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Foreword of the Reviewer

I have 50 years of experience in the field of hydrodynamics.

In recent years, the author of the book (my brother) developed
variational principles for dissipative systems and has formulated the
principle extremum of full action. This principle is an extention of the
Lagrange formalism, and it takes into account the fact that in real systems
the full energy (i.e. the sum of kinetic and potential energies) decreases
with the motion, turning into other types of energy, for instance, into
thermal energy, which means that there is energy dissipation.
Mathematically it means that for any (as the author thinks) physical
system it is possible to build a functional possessing a global saddle line.
Thus far he had proved it for electrodynamics, electrical engineering,
mechanics. In the presented book the proof of using the developed
method in hydrodynamics is given..

It is important to say that opening the authors of the existence of
global extremum made it possible for the author to develop a numerical
method for such systems , based on the descend along the functional
towards the global optimum. This allows to show theoretically and
practically that the global solution for Naviet-Stokes equations exists. It
should be noted that in his research the author had used essentially the
works of a somewhat forgotten nowadays distinguished scientist Nikolay
Umov.

What is really amazing, that for realizing the method there is no
necessity to add boundary conditions to these equations — it is enough to
describe the boundaries of the closed domain where the solution is being
considered. The boundaries may be walls or free surfaces. The proof lies
in the fact that both of them do not alter the energy of fluid.

Prof. Khmilnik Mikhail
(to the first edition, 2010)




Annotation

In this book we formulate and prove the variational extremum
principle for viscous incompressible and compressible fluid, from which
principle follows that the Navier-Stokes equations represent the
extremum conditions of a certain functional. We describe the method of
seeking solution for these equations, which consists in moving along the
gradient to this functional extremum. We formulate the conditions of
reaching this extremum, which are at the same time necessary and
sufficient conditions of this functional global extremum existence.

Then we consider the so-called closed systems. We prove that for
them the necessary and sufficient conditions of global extremum for the
named functional always exist. Accordingly, the search for global
extremum is always successful, and so the unique solution of Navier-
Stokes is found.

We contend that the systems described by Navier-Stokes equations
with determined boundary solutions (pressure or speed) on all the
boundaries, are closed systems. We show that such type of systems
include systems bounded by impermeable walls, by free space under a
known pressure, by movable walls under known pressure, by the so-
called generating surfaces, through which the fluid flow passes with a
known speed.

The book is supplemented by open code programs in the MATLAB
system — functions realizing the calculation method and test programs.
Links on test programs are given in the text of the book when the
examples are described. The programs may be obtained from the author
by request at solik@netvision.net.il
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Introduction

In his previous works [6-25, 37, 38| the author presented the full
action extremum principle, allowing to construct the functional for
various physical systems, and, which is most important, for dissipative
systems. In [31, 34, 35, 36, 39] described this principle as applied to the
hydrodynamics of viscous fluids. In this book (unlike the first edition of
[34, 35]) used a more rigorous extension of this principle for power and
also is considered hydrodynamics of compressible fluids.

The first step in the construction of such functional consists in
writing the equation of energy conservation or the equation of powers
balance for a certain physical system. Here we must take into account the
energy losses (such as friction or heat losses), and also the energy flow
into the system or from it.

This principle has been used by the author in electrical engineering,
electrodynamics, mechanics. In this book we make an attempt to extend
the said principle to hydrodynamics.

In Chapter 1 the full action extremum principle is stated and its
applicability in electrical engineering theory, electrodynamics, mechanics
is shown.

In Chapter 2 the full action extremum principle is applied to
hydrodynamics for viscous incompressible fluid. It is shown that the
Naviet-Stokes equations are the conditions of a certain functional's
extremum. A method of searching for the solution of these equations,
which consists in moving along the gradient towards this functional's
extremum. The conditions for reaching this extremum are formulated,
and they are proved to be the necessary and sufficient conditions of the
existence of this functional's global extremum.

Then the closed systems are considered. For them it is proved that
the necessary and sufficient conditions of global extremum for the
named functional are always valid. Accordingly, the search for global
extremum is always successful, and thus the unique solution of Naviet-
Stokes is found.

It is stated that the systems described by Naviet-Stokes and having
determined boundary conditions (pressures or speeds) on all the bounds,
belong to the type of closed systems. It is shown that such type includes
the systems that are bounded by:

o Impermeable walls,
o Free surfaces being under a known pressure,




o Movable walls being under a known pressure,
o So-called generating surfaces through which the flow passes
with a known speed.
Thus, for closed systems it is proved that there always exists a unique
solution of Naviet-Stokes equations.

In Chapter 3 the numerical algorithm is briefly described.

In Chapter 5 the numerical algorithm for stationary problems is
described in detail.

In Chapter 6 the algorithm for dynamic problems solution is
suggested, as a sequence of stationary problems solution, including
problems with jump-like and impulse changes in external effects.

Chapter 7 shows various examples of solving the problems in
calculations of a mixer by the suggested method.

In chapter 8 we consider the fluid movement in pipe with
arbitrary form of section. It is shown that regardless of the pipe section
form the speed in the pipe length is constant along the pipe and is
changing parabolically along its section, if there is a constant pressure
difference between the pipe's ends. Thus, the conclusion reached by the
proposed method for arbitrary profile pipe is similar to the solution of a
known Poiseille problem for round pipe.

In Chapter 9 it is shown tat the suggested method may be
extended for viscous compressible fluids.

Into Appendix 1 some formulas processing was placed in order
not to overload the main text.

For the analysis of energy processes in the fluid the author had
used the book of Nikolay Umov, some fragments of which are sited in
Appendix 2 for the reader's convenience.

In Appendix 3 there is a deduction of a certain formula used for
proving the necessary and sufficient condition for the existence of the
main functional's global extremum.

In Appendix 4 the method of solution for a certain variational
problem by gradient descend is described.

In Appendix 5 we are giving the derivation of some formulas for
the surfaces whose Lagrangian has a constant value and does not depend
on the coordinates.

In Appendix 6 dealt with a discrete version of modified Navier-
Stokes equations and the corresponding functional.

In Appendix 7 we discuss an electrical model for solving modified
Navier-Stokes equations and the solution method for these equations
which follows this model.
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Chapter 1. Principle extremum of
full action

1.1. The Principle Formulation

The Lagrange formalism is widely known — it is a universal method
of deriving physical equations from the principle of least action. The
action here is determined as a definite integral - functional

t
S(9) =, (K(q)~ P(q) ¥t 0
from the difference of kinetic energy K(g) and potential energy P(q),

which is called Lagrangian
Ag)=K(q)~P(q)- @

Here the integral is taken on a definite time interval f; <t <7y, and ¢
is a vector of generalized coordinates, dynamic variables, which, in their
turn, are depending on time. The principle of least action states that the
extremals of this functional (i.e. the equations for which it assumes the
minimal value), on which it reaches its minimum, are equations of real
dynamic variables (i.e. existing in reality).

For example, if the energy of system depends only on functions {

. o . . ' .
and their derivatives with respect to time ¢ , then the extremal is
determined by the Euler formula

o(K-P) d(o(K-P) 0
dq dt\  oq '

As a result we get the Lagrange equations.
The Lagrange formalism is applicable to those systems where the

full energy (the sum of kinetic and potential energies) is kept constant.
The principle does not reflect the fact that in real systems the full energy
(the sum of kinetic and potential energies) decreases during motion,

)

turning into other types of energy, for example, into thermal enerng , 1.

e. there occurs energy dissipation. The fact, that for dissipative systems
(i.e., for system with energy dissipation) there is no formalism similar to

11



Lagrange formalism, seems to be strange: so the physical world is found
to be divided to a harmonious (with the principle of least action) part,
and a chaotic ("unprincipled") part.

The author puts forward the principle extremum of full action,
applicable to dissipative systems. We propose calling full action a definite
integral — the functional

t
(q) = [ R(g)dr (4
from the value

R(9) = (K(9)~ P(9)-0(9)). ®)
which we shall call energian (by analogy with Lagrangian). In it Q(q) is

the thermal energy. Further we shall consider a full action quasiextremal,
having the form:

o(K-P) d(o(K-P) 0 _,

oq dt\ oq' oq

Functional (4) reaches its extremal value (defined further) on
quasiextremals. The principle extremum of full action states that the
quasiextremals of this functional are equations of real dynamic processes.

Right away we must note that the extremals of functional (4)
coincide with extremals of functional (1) - the component corresponding

to Q(q), disappears

Let us determine the extremal value of functional (5). For this

©)

purpose we shall "split" (ie. replace) the function C](l‘) into two

independent functions X(#) and V(f) , and the functional (4) will be
associated with functional

t
@3 (x, )= [, R (x p)dt, )

which we shall call "split" full action. The function Ry (X, y) will be

called "split" energian. This functional is minimized along function X (t )

with a fixed function y(f ) and is maximized along function y(t) with

a fixed function X(¢). The minimum and the maximum are sole ones.
Thus, the extremum of functional (7) is a saddle line, where one group of

functions X, minimizes the functional, and another - ), maximizes

it. The sum of the pair of optimal values of the split functions gives us
the sought function ¢ = X, t V., satisfying the quasiextremal
12




equation (6). In other words, the quasiextremal of the functional (4) is a

sum of extremals Xp, ), of functional (7), determining the saddle

point of this functional. It is important to note that this point is the sole
extremal point — there is no other saddle points and no other minimum
or maximum points. Therein lines the essence of the expression
"extremal value on quasiextremals”. Our statement 1 is as follows:

In every area of physics we may find correspondence between full
action and split full action, and by this we may prove that full action
takes global extremal value on quasiextremals.

Let us consider the relevance of statement 1 for several fields of physics.

1.2. Energian in electrical engineering
Full action in electrical engineering takes the form (1.4, 1.5), where

2
K@)="1", pg)= SZ—Eq . 0(¢)=Rq's. 0

Here stroke means derivative , § - vector of functions-charges with

respect to time, F - vector of functions-voltages with respect to time, L
- matrix of inductivities and mutual inductivities, R - matrix of

resistances, O - matrix of inverse capacities, and functions

K(q), P(q), O(q) present magnetic, electric and thermal energies

correspondingly. Here and further vectors and matrices are considered in
the sense of vector algebra, and the operation with them are written in
short form. Thus, a product of vectors is a product of column-vector by

row-vector, and a quadratic form, as, for example, Rq'q is a product of

row-vector q' by quadratic matrix R and by column-vector ¢ .

In [22, 23] the author shown that such interpretation is true for any
electrical circuit. The equation of quasiextremal (1.6) in this case takes the
form:

Sq+Lg"+Rq'-E=0. )
Substituting (1) to (1.5), we shall write the Energian (1.5) in expanded
form:

13



12 2
L S ,
R(g) = g —Z +Eq—Rq'q |. 3)

Let us present the split energian in the form
X% —Sx? + Ex- Rx'y)

Here the extremals of integral (1.7) by functions X(¢) and ¥(t), found
by Euler equation, will assume accordingly the form:
28x +2Lx"+2Ry'— E=0, (5)
28y +2Ly"+2Rx' - E=0. ()
By symmetry of equations (5, 6) it follows that optimal functions X() and

Ry(x,y)= @)

)0 satisfying these equations, satisfy also the condition

X0 = )o- )
Adding the equations (5) and (6), we get equation (2), where
g=%otYVo. ®)

It was shown in [22, 23] that conditions (5, 6) are necessary for the
existence of a sole saddle line. It was also shown in [22, 23] that sufficient
condition for this is that the matrix L has a fixed sign, which is true for
any electric circuit.

Thus, the statement 1 for electrical engineering is proved. From it
follows also statement 2:

Any physical process described by an equation of the form (2),

satisfies the principle extremum of full action.

Note that equation (2) is an equation of the circuit without knots.
However, in [2, 3] has shown that to a similar form can be transformed
into an equation of any electrical circuit (with any accuracy).

1.3. Energian in Mechanics

Here we shall discuss only one example - line motion of a body
with mass M under the influence of a force f and drag force kq’,

where K - known coefficient, ¢ - body's coordinate. It is well known
that

f=mq"+kq". (1)

14



In this case the kinetic, potential and thermal energies are accordingly:

K(q)=mq?/2, P(@)=—fa, Q@)=keg'. @
Let us write the energian (1.5) for this case:
72 !
R(g)=mg™ 2+ fg—kaq'. ©

The equation for energian in this case is (1)
Let us present the split energian as:

[+ p-ro)
)" (nx’2+fx—kx'y) |

It is easy to notice an analogy between energians for electrical
engineering and for this case, whence it follows that Statement 1 for this
case is proved. However, it also follows directly from Statement 2.

)

1.4. Mathematical Excursus

Let us introduce the following notations:

y= . p=[l . (1)

There is a known Euletr’s formula for the variation of a functional of
function f(y,y,»",...) [1]. By analogy we shall now write a similar
formula for function f(...,p, v,y y",...):

VACS S S U N @)
72

t 1 ' d 1 1
var = ...—jofﬁdwrfy —Efy/ +dt—2fy” —.. 3)

In particular, if f() =xy’, then var =—x";if f()=xp, then var=—x.
The equality to zero of the variation (1) is a necessary condition of the
extremum of functional from function (2).

1.5. Full Action for Powers

In this case full action-2 is a definite integral - functional
) t ]
b)) = jt2 R(i)dt )
1

from the value

R(i) = (R(0)+ P(i) + O(0)), @

15



which we shall call Energian-2. In this case we shall define full action
quasiextremal-2 as

a(fumej

Oi
Functional (1) assumes extremal value on these quasiextremals. The
principle extremal of full action-2 asserts that quasiextremals of this
functional are equations of real dynamic processes over integral

=0. 3)

generalized coordinates I .
Let us now determine the extremal value of functional (1, 2). For
this purpose we, as before, will “split” the function i(f) to two

independent functions x(t) and Y(t), and put in accordance to
functional (1) the functional

s (x.) = [ R (), @

which we shall call "split full action-2. We shall call the function

Eﬁz (x,y) "split " Energian--2. This functional is being minimized by

the function X(¢) with fixed function Y(#) and maximized by function
¥(t) with fixed function X(Z). As before, the quasiextremal (3) of

functional (1) is a sum [ = Xo T Vo of extremals Xy,), of the
functional (4), determining the saddle point of this functional.

1.6. Energian-2 in mechanics

As in Section 3 we shall consider an example, for which the
equation (3.1) is applicable, or

f=m-i'"+k-i. 1)
In this case the kinetic, potential and thermal powers are accordingly:
. .o . . )
K@) =m-i-i', P(O)==f-i, O(g)=k-i". @
Let us write the energian-2 (6.2) for this case:
R(i)=m-i-i'— fi+k-i’. 3)

VpaBHeHNE KBA3UIKCTPEMAAH B 9TOM CAydae IpuHuMaeT BHA (1).

16



1.7. Energian-2 1n Electrical Engineering

Let us consider an electrical circuit which equation has the form,
(2.2) or

Si+L-i'"+R-i—-E=0. (1)
In this case the kinetic, potential and thermal powers are accordingly:
KG)=L-i-i", PG)=S-i-i—E-i, O()=R-i*. ©
Let us write the energian-2 (6.2) for this case:
R(i)=L-i-i'+S-1-i—E-i+R-i. 3)
The equation of quasiextremal in this case assumes the form (1).
Let us now present the “split” Energian-2 as

o )[S(Xﬁ—féy)M(xy’—ij
2R +R€2—y2)E(x—y) |

The extremals of integral (6.4) by the functions X(¢) and Y(f), found
according to equation (4.3), will assume accordingly the form:
289 +2Ly'+2Rx—-E =0, 5)
288 +2Lx"+2Ry—E =0. ()

From the symmetry of equations (5, 0) it follows that optimal functions

)

Xo and ), satisfying these equations, satisfy also the condition

X0 =)0- )
Adding together the equations (5) and (6), we get the equation (1), where
q=Xp+Yo- ®)

Therefore, the equation (1) is the necessary condition of the existence of
saddle line. In [2, 3] it is shown that the sufficient condition for the

existence of a sole saddle line is matrix L having fixed sign, which is
true for every electrical circuit.

1.8. Energian-2 in Electrodynamics

In [22, 23, 38], the proposed method is also applied to
electrodynamics.

1.9. Conclusion

The functionals (1.7) and (6.4) have global saddle line and therefore
the gradient descent to saddle point method may be used for calculating
physical systems with such functional. As the global extremum exists,
then the solution also always exists. Further, the proposed method is
applied to the hydrodynamics.

17



Chapter 2. Principle extremum of full
action for viscous incompressible fluid

2.1. Hydrodynamic equations for viscous incompressible fluid
The hydrodynamic equations for viscous incompressible liquid are as
follows [2]:

div(v)=0, 1)
p?;+Vp—yAv+p(v-V)v—pF:O, )
where

L =const is constant density,
M - coefficient of internal friction,

P - unknown pressure,

V=\[y,V V> VZJ - unknown speed, vector,
F= x’Fy ,FZJ - known mass force, vector,
X,¥,Z,t - space coordinates and time.

The reminder notations VP, AV, (V : V)V are repeatedly given below

n._n

in Appendix 1. Further the letter "p" will denote the formulas given in
this application.

2.2. The power balance

Umov [1] discussed for the liquids the condition of balance for
specific (by volume) powers in a liquid flow. For a non-viscous and
incompressible liquid this condition is of the form (see (56) in [1] and
Appendix 2)

A)+P5(v)+ B (p,v) =0, ©
and for viscous and incompressible liquid - another form (see (80) in [1]

and Appendix 2)
A)+Ps(v)+P(p,v)=0, ©

where

18



p=L% 5
"2 & ©
i dap n dp Xy ap, n
dx dy dz
d d d,
P={v, Pxy APyy aPy; ©
dx dy dz
i apy. n dpyz n dp,
dx dy dz
Py=v-Vp, ©)
1 aw?  aw?*  aw?
P=— + + , 8
5 2’{” & Yy 7 J ®
W2=Q£+v)2,+v§/ )

Pxy and so on — tensions (see (p24) in Appendix 1).

Here P is the power of energy variation, P is the power of work of
pressure variation, P5 - the power of variation of energy variation for

direction change, and the value

Pr(p,v) = Bs(v)+ B4 (p,v) (10)
is, as it was shown by Umov, the variation of energy flow power through
a given liquid volume — see (56) u (58) B [1]. In [2] it was shown, that for
incompressible liquid the following equality is valid

dpx n dpxy n dpy;
dx dy dz

dpxy N dpyy N dpyz
dx dy dz

=Vp—u-Av (11)

dps; + dpyz + dp,,
dx dy dz
This follows from (p24). From this it follows that

19



Py =v(Vp—u-Av). (12)
or subject to (6)

P2 = P4 — P3 (13)
where

Py=pu-v-Av (14)
- power of change of energy loss for internal friction during the motion.
Therefore, we rewrite (4) in the form

A)+Ps(v)+ Fy(p,v) - B3(v) =0, (15)
We shall supplement the condition (15) by mass forces power
Fy = pFv. (106)

Then for every viscous incompressible liquid this balance condition is of
the form

A)+Ps(v)+ B4 (p,v) - B(v) - F(v)=0. (7
Taking into condition(1) and formula (pla) let us rewrite (7) in the form

Py = diV(v : p), (18)
Taking into account (p9a), condition(1l) and formula (pla) let us rewrite
(8) in the form

Py =divk-w? 19)
From (18, 19) and Ostrogradsky formula (p28) we find:

J[[2av=[[[at-p)v = [ ps-v,-ds. @)

I[Py = [[favk-w2 Iy = [ v, s con

ot, subject to (p15),

[[[Rar =[[[¢-coyr =[[w?-v,-ds. 1)
ReturningVagain to th(: definitions of poivers (7, 8), we will get
J[J©-Vp)v =[] pg-v,-dS, (21a)

Jg@.v@z))wng.vn.ds ot

or
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]G GV = HWZ V- dS. 210)
4 S

2.3. Energian and quasiextremal
For further discussion we shall assemble the unknown functions
into a vector

g=[p.v]=p.vyvyovs (22)
This vector and all its components are functions of (X, y,z,t). We

are considering a liquid flow in volume V'. The full action-2 in
hydrodynamics takes a form
T
D= j jSSR(q(x,y,z, HdV ydt, (23)
ow
Having in mind (17) and the definition of energian -2, let us write the
energian-2 in the following form

iR(q)=Pl<v)—;P3<v>+P4(q)+Ps(v)—P6<v>. 24

Below in Appendix 1 will be shown — see (p8, p15, p18):
dv

PA=p-v g (25)

Ps=p-v-G(v), (26)
where

Gv)=(-V. @7)

Taking this into account let us rewrite the energian (24) in a detailed form
dv 1 .
%(q):p-vd—2,u-v-Av+d1v(v-p)+p-v-G(v)—va. (28)
t
Further we shall denote the derivative computed according to

Ostrogradsky formula (p23), by the symbol 670, as distinct from
1%

ordinary derivative 87 . Taking this into account (p19), we get
1%

21



(Ao e

ov dt dt
div(v)

0
8q(P4(q)) V(p)/

% (pov)=pF.

In accordance with Chapter 1 we write the quasiextremal in the following
form:

(o) e S

ov " dt

S BOGE)-pb VN @)

0. (30)
. ;(p5 ©,G(v)))- FZ(I% (V))

From (29) it follows that the quasiextremal (30) after differentiation
coincides with equations (1, 2).

2.4. The split energian-2
Let us consider the split functions (22) in the form

g =[p' V1= v, 'y,vgj (1)
q — /! v!l] IP” an y, J (32)

Let us present the split energian taking into account the formula (p18) in
the form

X ( a;; v"i;;j u- (V,AV !IAVH)

Ry (q',q") =4 +2(div(v'- p")-div(y"- p"))+ . (33)
X (V’G(V”) _ V"G(V,))— o F(V, _ vﬂ)

Let us associate with the functional (23) functional of split full action

T
Dy = | { ﬁmz(fJ',Q")dV}dt ’ (34)
0l
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With the aid of Ostrogradsky formula (p23) we may find the variations of

functional (34) with respect to functions (]'. In this we shall take into
account the formulas (p22), obtained in the Appendix 1. Then we have:

0,R
=2 = by, (39)
op
0,R
072 by, (36)
ov
by =2div(v"), (37)
dv”
20— =2u-A'+2V(p"
by=1""ar " @)L (38)
+2p-[GOG")+ GOV )-p- F
So, the vector
b = |_bpy’bva (39)
is a variation of functional (34), and the condition
b = |_bpr, by O (40)
is the necessary condition for the existence of the extremal line. Similarly,
b = k)p"’ bv”J: 0 41)

The equations (40, 41) are necessary condition for the existence of a
saddle line. By symmetry of these equations we conclude that the optimal

functions q{) and q6, satisfying these equations, satisfy also the
condition

q0 =40 42)
Subtracting in couples the equations (40, 41) taking into consideration
(37, 38), we get

2div(v'+v") =0, (43)
d('+v")
dt

‘2. G(V,,, ov j+ G(v,, v )+ G(V,’ v j+ G(v,,’ v j
oxX ox oxX ox

For v/ =v" according to (p20), we have

” 14 al” [ ”n 87‘;, _ 14 14
{G(v )+ G(v , an + G(v )+ G(V , aXﬂ = G(v +v ) (45)

2p —2u-A(V' +V")+2V(p' + p")-2p-F

—0- (49
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Taking into account (27, 45) and reducing (43, 44) by 2, moaygaem we get
the equations (1, 2), where

o "
d=490 t40- (40)
- see (22, 31, 32), i.e. the equations of extremal line are Naviet-Stokes
equations.

2.5. About sufficient conditions of extremum
Let us rewrite the functional (34) in the form

T
@y = [{3 1§ Ra(q',q"dx {dy dz pdt @7)

0lz |y x
where vectors ¢',q" are determined by (31, 32), X Z(X,y,Z,l‘)—
vector of independent wvariables. Further only the functions
' (X)=[p'(X),v'(X)] will be varied.

Vector b, defined by (39), is a variation of functional @9 by the

function ¢’ and depends on function ¢, i.e. be(q'). Here the
function ¢" here is fixed.

Let S be an extremal, and subsequently, the gradient in it is bs =0.

To find out which type of extremum we have, let us look at the sign of
functional's increment

8Dy =05 (S)-D,(C), (48)
where C'is the line of comparison, where b= bc # 0. Let the values

vector q' on lines S wu C differ by

q9c—4qs=9'—q9s =04 =a-b, (49)
where b is the variation on the line C, 2 — a known number. Thus,
!/
p b
g =qs+a-b= ,S+a P (50)
VS bv

where bp, b, are determined by (35, 36) accordingly, and do not

depend on ¢'.
If
oDy =a-A, (51)
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where A has a constant sign in the vicinity of extremal by =0, then

this extremal is sufficient condition of extremum. If, furthermore, A is
of constant sign in all definitional domain of the function ¢, then this
extremal determines a global extremum.

From (48) we find
My =Ry (5)-R2(C)=Ry(¢5)-R2 (@), (52)

or, taking into account (33, 50),

, a'"  ,dvs+ab
_p.((vs+abv)62_v (vsdtaV)j

= (5 +aby A +ab, )= v"A("))
MRy = +2((v; -l-abv)-V(p")— v"-VQ); +ab, )) (53)
+2p- (Vs +ab, JG(") = v'G(vg +ab, ))
= pF((vg +ab, )=

Taking into account (p21), we get:
G(vy +ab,) = G(v}) +a[G (v}, b, )+ Gy (vi, b, [+ a*G(b,). (5%

Here (53) is transformed into
My =Ryg+Rya+ SRzzaz, (55)
where ERZ(), 9%21, 9%22 are functions not dependent on &, of the

you (Vé o V' L(vs )j

form

dt dt
Rog =1 — - Vs AQ, )= v AG"N+205V(p")-v"-V(py )-GO
+2p- (VGO —v'G(vy )- p- F(v —v")

Yodt dt
%21 = +2Q7V 'V(p”)— V”'V@p))-k > (57}

2p(va(V”) - V"(Gl (V; by )+ Gy (V; by )))_ p-F-b,

p-[b dv —v”dbvj—ﬂ'(vaV; +vsAD, )
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SR22 = _/Uva(bv) - 2,0"”G(bv) : (58)

Now we must find
2
07 (My) _
8a2

This function depends on ¢'. To prove that the necessary condition

=Ry (59)

(40) is also a sufficient condition of global extremum of the functional

. . ! .
(47) with respect to function ¢ , we must prove that the integral

o*d, L
=2 =[{foRa(q.q"aV (i (60)
aa® ol
or, which is the same, the integral
2 T
0 CI)2 J ﬂ;%zde dt (61)
aa® oy

is of constant sign. Similarly, to prove that the necessary condition (41)
is also a sufficient condition of a global extremum of the functional (47)

with respect to function ¢ ", we have to prove that the integral similar to
(60) is also of the same sign.

Specifying the concepts, we will say that the Navier-Stokes
equations have a global solution, if for them there exists a unique non-
zero solution in a given domain of the fluid existence.

In the above-cited integrals the energy flow through the domain's
boundaries was not taken into account. Hence the above-stated may be
formulated as the following lemma

Lemma 1. The Navier-Stokes equations for incompressible fluid
have a global solution in an unlimited domain, if the integral (61, 58) has
constant sign for any speed of the flow.

2.6. Boundary conditions

The boundary conditions determine the power flow through the
boundaries, and, generally speaking, they may alter the power balance
equation. Let us view some specific cases of boundaries.

2.6.1. Absolutely hard and impenetrable walls

If the speed has a component normal to the wall, then the wall gets
energy from the fluid, and fully returns it to the fluid. (changing the
speed direction). The tangential component of speed is equal to zero
(adhesion effect). Therefore such walls do not change the system's
26




energy. However, the energy reflected from walls creates an internal
energy flow, circulating between the walls. So in this case all the above-
stated formulas remain unchanged, but the conditions on the walls
(impenetrability, adhesion) should not be formulated explicitly — they
appear as a result of solving the problem with integrating in a domain
bounded by walls. Then the second lemma is valid:

Lemma 2. The Navier-Stokes equations for incompressible fluid
have a global solution in a domain bonded by absolutely hard and
impenetrable walls, if the integral (61, 58) is of the same sign for any flow
speed.

2.6.2. Systems with a determined external pressure

In the presence of external pressure the power balance condition
(17) is supplemented by one more component — the power of pressure
forces work

R =pg-vy, (62)
where
Py - external pressure,
S - surfaces where the pressure determined,

Vy - normal component of  flow incoming into above surface,

In this case the full action is presented as follows:

T
® = [{ [ R(g(x, y,2,0dV + { R(q(x, p,2,0dV {di- (©63)
ow S

For convenience sake let us consider the functions Q , determined
on the domain of the flow existence and taking zero value in all the

points of this domain, except the points belonging to the surface S.
Then the restraint (63) may be written in the form

T
@ = [{fR(g(x, y,z,0dV b, (64)
0w
where energian
R(q)=R(@)+0-R(vy). (63)

One may note that here the last component is identical to the power of
body forces — in the sense that both of them depend only on the speed.
So all the previous formulas may be extended on this case also, by
performing substitution in them.
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F=>F+0-ps/p. (66)
Therefore the following lemma is true:

Lemma 3. The Navier-Stokes equations for incompressible fluid
have a global solution in a domain bounded by surfaces with a certain
pressures, if the integral (61, 58) has constant sign for any flow speed.

Such surface may be a free surface or a surface where the pressure
is determined by the problem's conditions (for example, by a given
pressure in the pipe section).

Note also that the pressure Pg¢ may be included in the full action

functional formally, without bringing in physical considerations. Indeed,
in the presence of external pressure there appears a new constraint -
(21a). In [4] it is shown that such problem of a search for a certain
functional with integral constraints (certain integrals of fixed values) is
equivalent to the search for the extremum of the of the sum of our
functional and integral constraint. More precisely, in our case we must
seek for the extremum of the following functional:

T
® = [{ {R(g(x, y,z,0))dV tdt, ©7)
0w

R(g(x, y,2.t) = {

R(g(x,,z,1)) + )} | )

A-(v-Vp+Q-ps-v,

where A —an unknown scalar multiplier. It is determined or known

initial conditions [4]. For A=1 after collecting similar terms the
Energian (68) again assumes the form (65), which was to be proved.

2.6.3. Systems with generating surfaces

There is a conception often used in hydrodynamics of a certain
surface through which a flow enters into a given fluid volume with a
certain constant speed, i.e., NOT dependent on the processes going on
in this volume. The energy entering into this volume with this flow,
evidently will be proportional to squared speed module and is constant.
We shall call such surface a generating surface (note that this is to some
extent similar to a source of stabilized direct current whose magnitude
does not depend on the electric circuit resistance).

If there is a generating surface, the power balance condition (17) is
supplemented by another component — the power of flow with constant
squared speed module.
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Ry =W2-v,, (69)
rAe
WS - squared module of input flow speed,
S - surfaces where the pressure determined,
Vy; - normal component of flow incoming into above surface,

One may notice a formal analogy between WS and Pg. So here

we also may consider the functional (64), where the energian is

R(q)=R(@)+0-Ry(v,). (70)
and then perform the substitution
F:>F+Q-WS2/,0. (71)

Consequently, the following lemma is true:

Lemma 4. The Navier-Stokes equations for incompressible fluid
have a global solution in a domain bounded by generating surface with a
certain pressure , if the integral (61, 58) has constant sign for any flow

speed.
Note also that WS the pressure Pg may be included in the full

action  functional  formally, without bringing in  physical

considerations.(similar with pressure Pg ). Indeed, in the presence of

external pressure there appears a new constraint - (21c). Including this
integral constraint into the problem of the search for functional's
extremum, we again get Energian (70).

2.6.4. Closed systems

We will call the system closed if it is bounded by
o absolutely hard and impenetrable walls,
o surfaces with certain external pressure,,
O generating surfaces, or
o not bounded by anything.

In the last case the system will be called absolutely closed. Such case
is possible. For example, local body forces in a bondless ocean create
such a system, and we shall discuss this case later. There is a possible
case when the system is bounded by walls, but there is no energy
exchange between fluid and walls. An example — a flow in endless pipe
under the action of axis body forces. Such example will also be
considered below.

In consequence of Lemmas 1-4, the following theorem is true:
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Theorem 1. The Navier-Stokes equations for incompressible fluid
have a global solution in a given domain, if

o0 the domain of fluid existence is closed,

o the integral (61, 58) has constant sign for any flow speed.

The free surface, which is under certain pressure, may also be the
boundary of a closed system. But the boundaries of this system are
changeable, and the integration must be performed within the fluid

volume. It is well known that the fluid flow through a certain surface S
is determined as

wg = ﬁp -div(v)-d® . (72)
S
Thus, the boundary conditions in the form of free surface are fully

considered, by the fact that the integration must be performed within the
changeable boundaries of the free surface.

We have indicated above, that the power of energy flow change is
determined by (10). In a closed system this power is equal to zero.
Therefore for such system the Energian (24) or (28) turns into Energian
(accordingly)

R(g)= R0+ /) -FB), 73)
d
SR(q)zp-v?‘;hu-v-Av—va. (74)
For such systems the Navier-Stokes equations take the form (1) and
ov

P o

Some examples of such system will be cited below.

— pAv - pF =0, (75)

2.7. Modified Navier-Stokes equations
From (p19a) we find that

-V)v=a@>)2. (76)
Substituting (76) in (2), we get
(v-V)-v=A(W2 2. (77)
Let us consider the value
D:(p+'[2)W2j, (78)

which we shall call quasipressure. Then (77) will take the form
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0
pa—‘;—,u-Av+VD—p-F:0, (79)

The equations system (1, 79) will be called modified Navier-Stokes

equations. The solution of this system are functions Vv, D, and the

pressure may be determined from (9, 78). It is easy to see that the
equation (79) is much simpler than (2).
The above said may be formulated as the following lemma.
Lemma 5. If a given domain of incompressible fluid is described
by Navier-Stokes equations, then it is also described by modified Navier-

Stokes equations, and their solutions are similar.
Physics aside, we may note that from mathematical point of view the

equation (79) is a particular case of equation (2), and so all the previous
reasoning may be repeated for modified Navier-Stokes equations. Let us

do it.
The functional of split full action (34) contains modified split

Energian
a’ av'
_ . v! - v" vVAv ”Av"
p( — dt) 7l )| 0)
+(div(y'- D")~div("- D))~ p-F(/'—v"
- see (33). Gradient of this functional with respect to function q' is (37)

and

R,(q'.q") =

b, ={2p-d—vt—2,u-Av'+ZV(D")—p-F}. (81)
- see (38). The components of equation (55) take the form
&' ,db
-p:|b,— b AV. +V A
R, = p( dr er”(vv()) 82)
+20,-v(D" )~ -V, )-p-F-b,
~#b,Ab,). (83)

Thus, for modified Navier-Stokes equations by analogy with
Theorem 1 we may formulate the following theorem
Theorem 2. Modified Navier-Stokes equations for incompressible
fluid have a global solution in the given domain, if
o the fluid domain of existence is a closed system
o theintegral (61, 83) has the same sign for any fluid flow speed.
Lemma 6. Integral (61, 83) always has positive value.
Proof. Consider the integral
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T
J=ul{fv-Am)av pd (84)
ow
This integral expresses the thermal energy, evolved by the liquid due to
internal friction. This energy is positive not depending on what function
connects the vector of speeds with the coordinates. A stricter proof of
this statement is given in Appendix 3. Hence, integral (84) is positive for
any speed. Substituting in (84) V = bv, we shall get integral (61, 83),
which is always positive, as was to be proved.
From Lemmas 5, 6 and Theorem 2 there follows a following.
Theorem 3. The equations of Navier-Stokes for incompressible
fluid always have a solution in a closed domain.
The solution of equation (1, 79) permits to find the speeds.
Calculation of pressures inside the closed domain with known speeds is
performed with the aid of equation (78) or

Vp+p(v-VI=0. (85)

2.8. Conclusions

1. Among the computed volumes of fluid flow the closed volumes
of fluid flow may be marked, which do not exchange flow with adjacent
volumes — the so-called closed systems.

2. The closed systems are bounded by:

o Impermeable walls,

o Surfaces, located under the known pressure,

o Movable walls being under a known pressure,

o So-called generating surfaces through which the flow passes
with a known speed.

3. It may be contended that the systems described by Naviet-Stokes
equations, and having certain boundary conditions (pressures or speeds)
on all boundaries, are closed systems.

4. For closed systems the global solution of modified Navier-Stokes
equations always exists.

5. The solution of Navier-Stokes equations may always be found
from the solution of modified Navier-Stokes equations. Therefore, for
closed systems there always exists a global solution of modified Navier-
Stokes equations.
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Chapter 3. Computational
Algorithm

The method of solution for hydrodynamics equations with a known
functional, having a global saddle point, is based on the following

outlines {22, 23]. For the given functional from two functions g1, ¢»

two more secondary functionals are formed from those functions

41> ¢p. Each of these functionals has its own global saddle line.

Seeking for the extremum of the main functional is substituted by
seeking for extremums of two secondary functionals, and we are moving
simultaneously along the gradients of these functionals. In general
operational calculus should be used for this purpose. However, in some
particular cases the algorithm may be considerably simplified.

Another complication is caused by the fact that in the computations
we have to integrate over all the flow area. But the area may be infinite,
and full integration is impossible. Nevertheless, the solution is possible
also for an infinite area, if the flow speed is damping.

Here we shall discuss only these particular cases.
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Chapter 5. Stationary Problems

Note that in stationary mode the equations (2.1, 2.2) assumes the
form

div(v) =0,
Vp—puhv+p(v-V—pF=0"

The modified equations (1, 79) in stationary mode take the form:

div(v) =0,
—u-Av+VD—-p-F=0.

In Appendix 6 we considered the discrete version of modified Navier-
Stokes equations for stationary systems (2). It was shown that for
stationary closed systems the solution of modified Navier-Stokes
equations is reduced to a search for quadratic functional minimum (and
not a saddle points, as in general case). After solving these equations the
pressure is calculated by the equation (2.78), i.e.

2
p=D—§W. ©

@

)

or
Vp=VD-p(-Vl=0 @)
The equation (2.75) for absolutely closed systems in stationary
mode takes the form
— tAv — pF =0. (5)
The solution of equation (2) has been discussed in detail in Appendix 4.
After solving it the pressures are calculated by the equation (4) if

VD=0.
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Chapter 6. Dynamic Problems

6.1. Absolutely closed systems

Let us consider the equation (2.75) for absolutely closed systems and
rewrite is as

0

a‘; —-nAv—-F =0 1)
where

"= /’; - @

Assuming that time is a discrete variable with step dt, we shall
rewrite (1) as

Vi = Vo

ndtnl_nAvn_Fn:O; )
where n =1,2,3,... — the number of a time point. Let us write (3) as

1%

CZ_U'AVn_FnIZO- )
where

v
F.=|F,+ 1] 5

For a known speed V,_1 the value V, is determined by (4).

Solving this equation is similar to solving a stationary problem — see

Appendix 4. On the whole the algorithm of solving a dynamic problem
for a closed system is as follows

Algorithm 1
1. v,_1 and Fn are known
2. Computing v, by (4, 5).
3. Checking the deviation norm
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&= % _ avn_l (6)
ot ot

and, if it doesn't exceed a given value, the calculation is over.
pacder 3akanunBaerca. Otherwise we assign

Vy_1 <V, )
and go to p. 1.

Example 1. Let the body forces on a certain time point assume
instantly a certain value — there is a jump of body forces. Then in the

initial moment the speed vV, =0, and on the first iteration we assign

Vy-1= 0. Further we perform the computation according to
Algorithm 1.

6.2. Closed systems with variable mass forces and external

pressures

Consider the modified equation (1, 79) in the case when the mass
forces are sinusoidal functions of time with circular frequency @. In this
case equations (1, 79) take the form of equations with complex variables:

div(v) =0,

jew-pv—p-Av+VD—p-F=0, ®

where ] - the imaginary unit.
In Appendix 6 the discrete version of these equations is considered.
There it is shown that their solution is reduced to the search of saddle

point of a certain function of complex variables. After solving these
equations the pressure is calculated by equation(4).
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Chapter 7. An Example:
Computations for a Mixer

7.1. The problem formulation

Let us consider a mixer, whose lades are made of fine-mesh material
and are located close enough to one another. Then the pressure forces of
the blades on the fluid may be equated to body forces.

The body forces might have a limited area of action ® (less than
the fluid volume) It mean only that outside this area the body forces are
equal to zero. In addition, these forces may be a function of speed,
coordinates and time. Let us discuss some cases. For example, the blades

of a mixer work in a closed fluid volume © , and the force F, . applied

to the blades, is passed to the fluid elements. The body force /' may be
determined as

Fop = [J(u-Av+ pF YO
)

Let us assume also that the mixer is long enough, and so in its
middle the problem of calculation of the field of speeds may be
considered as a two-dimensional problem. Let us first consider a structure
without walls. In such a problem there is no restraints, and so the system
is a closed one (in the sense that was defined above). Let us use for our
calculations the method described in Chapter 5.

Let us assume that the body forces created by mixert's blades and
acting along a circle with its center in the coordinate origin, are described
as follows

F(R)=eoR=a) 0

where
R is the distance from the current point to the rotation axis,

O, Qa jre certain constants.

Function (1) is shown on Fig. 1, and gradient of forces (1) is shown on
Fig. 2.
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7.2. Polar coordinates
If body forces are plane and do not depend on the angle, then the
Naviet-Stokes equations assume the form [2]:

2

r por
2
ov lov v
F4p ot = [=0
P Iuarz ra]" }/‘2 ‘ )

Interestingly enough in this system the equation for the calculation
of pressure using speed is extracted from the main equation. Physically it
may be explained by the fact that our system is absolutely closed (in the
determined above sense). It confirms our assertion that speed calculation
and pressure calculation in a absolutely closed system may be parted. The
condition of continuity in this system is also absent, which also
corresponds with our statement for absolutely closed system.

Thus, as the pressure in this case is not included into equation (3),
the latter cannot be solved independently, and the pressure may be found
afterwards by direct integration of the equation (2). But the equation (3)
may not be solved by direct integration. Indeed, depending on the
direction of integration (from infinity to zero or vice versa) the results
will be quite different. When integrating "from the zero:" the result
depends on initial values of speed and on its derivative, which are not
determined by the problem's conditions.

Nevertheless, the unique solution should exist, and it may be
obtained by the proposed method. To achieve it, we must better return
to Cartesian coordinates..

7.3. Cartesian coordinates
Projections of forces (1) on coordinate axes are

Y —o(R-a
Fy(r.y)=2 e oa), (@)
R
X —o(R-a
Fyley)=="e (R-aY (4h)
The equation for this absolutely closed stationary system is as follows:
u-Av+pF =0, (5)
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To solve the equation (5) use the method described above in Chapter 5.
This method is realized in the program zestPostokPuas22 (mode=1), which
builds the following graphs

1. Logarithm of relative mistake function

g = ﬁ(,u -Av + pF )zdxdy ﬁ(,OF )dedy )
X,y XY

— of the residual of equation (2.70) in dependence of iteration
number — see the first window on Fig 3;
2. Logarithm of relative mistake function

2 2
d
&y = ﬁ(div(v))zdxdy ﬁ; (Cz}xj J{;yJ dxdy (8)
X,y X,y X y

- of the residual in the continuity condition in dependence of
iteration number — see the second window on Fig. 3; note that
this mistake is a methodic one — it is caused by boundedness of
the surface of integration plane and decreases with the surface
extension;

3. speed function Vg (on the last iteration) in dependence of radius
—see the third window on Fig 3; thus, this Figure shows the
problem solution;

4. force function pPF and Lagrangian function g-AV in
dependence of radius — see the fourth window on Fig 3, where
these functions a denoted by dot line and full line accordingly.

The calculation was performed for

=01 a=5 u=1 p=1, n=35, where XN - the

dimensions of the integration domain. The dimensions are chosen
large enough, so that the speed on a large distance from center would
be close to zero, and thus the system may be considered absolutely

closed. Here &1 = 001, &y = 0007, k = 286,Where k is the

number of iterations.

40



testPostokPuas22

0 -3.5
— % _4
< 2
i g
Z 45 \
0 100 200 300 0 100 200 300
40 1.5

o E—_

Al |
AR

-50 0 50 -50 0 50

\_
/
Er-g,Lv-r
o
o N
——
Eba—

Fig. 3.

7.4. Mixer with walls

Contrary to the previous case (in Cartesian coordinates) we shall
now consider a mixer with cylindrical walls, located on the circle with
radius RS . We have shown above that the walls create a closed system

and do not change the power balance in the system. In essence, the
calculation is done in the same way, by (5.2) and the program
testMixerModif, mode=2, as in the previous case. The integration area is
restricted by the circle with radius RS . Calculation results are shown on

Fig. 4, In this case
g =510 £ =0.0026, k=7000, R, =20. 1 s

important to note that on the circle of radius RS the speed is V = 0.

This answers the known fact that due to vicious friction the speed of fluid
on the surface of a body surrounding it, is equal to zero. It is also
important to note that to get this result we had not have to add more
equations in the main equation - it was enough to restrict the integration
domain.
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7.5. Ring Mixer

Let us consider now a mixer with internal and external cylindrical
walls, located on circles correspondingly with radius Rl and Rz. Fig.
4a shows the result of computation by (5.2), by the program festKolzoModif,
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variant=2,, which has built the following graphs:
function (2.7) — see the first window;
function (2.8) — see the second window;

1.
2.

3.

4.

The

the speed function Vg depending on radius — see the third

window;

the

speed module

function VvV depending on Cartesian

coordinates — see the fourth window.
have

calculations

oc=0.1, a=25, ,lel, ,021, r=233 andR1=3O, R2=7O

been

Wegot & =4-107%, £, =0.0028, k =500

made
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In the similar way we shall consider a mixer where interior part has

the form of a square with half-side of Rl' Fig. 48 shows the result of
calculation by (5.2), by the program testKolzoModif, variant=1. We got

£ =0.0045, &, =0.0432, k=500

Fig. 4c and 4d show the speed gradient distribution for a round and
square interior parts accordingly.

7.6. Mixer with bottom and lid
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Let us consider now a mixer with bottom and lid — see Fig. 5, where
(9,10,11,12) — unlimited integration domain,,
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(2,3,6,7) —the area of mixer's blades,

(1,8) — the mixer's bottom,

(4,5) — the mixet's lid,

(1,4; 5,8) — the mixet's cylindrical wall,

OX - the axis passing along the diameter through the mixer's center,
OZ - the axis passing along the rotation axis of mixer's blades,

Rs - the radius of mixet's can,

Ri - the radius of initial integration domain,

H s - half-height of the mixer's can, bounded by bottom and lid,
H m half-height of mixer's blades,

H; - half-height of initial integration domain.
Bottom, lid and walls of the can create a closed system and do not

change the power balance in the system. The calculations are performs
exactly as in the previous case. The calculations results are shown on Fig.

4. It is important to note that on the circle of radius RS , along the

bottom and along the lid the speed is V =0 - see further. This answers
the already mentioned fact that due to viscous friction the fluid's speed on
the surface of a body surrounded by the fluid, is always equal to zero. It is
significant that to get this result it was no need to add any more
conditions to the main equations — it was enough to restrict the
integration domain in the course of calculations. The calculations were
performed by the program festMixerModif3 (mode=1), which has built the
following graphs:
1. the function (2.7) — see the first window on the first vertical line
on Fig 6;
2. the function (2.8) — see the second window on the first vertical
line on Fig 6;
3. the function of speed Vp depending on radius — see the first
window on the second vertical line on Fig 6;
4. the function of speed Vp depending on the distance along the

height up to the mixet's center for constant value of radius equal
to @ — see the third window on the second vertical line on Fig 6;
the rectangle in this window depicts the force action area;

5. the function of force PF and function of Lagrangian £-Av
depending on radius — see the fourth window on Fig. 6, where
these functions are depicted by dot line and full line accordingly.
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The calculations were performed for:

c=01 a=5 u=1 R =35,
R, =15, H; =15 H, =3, H; =7, r=33.
We got €1 =0.004, & =0.004, k=133,
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7.7. Acceleration of the mixer

In Section 2 we have discussed the case of steady-state movement of
the fluid in the mixer. Now we shall consider the period of acceleration,
assuming (as in Example 1 in Section 6.1), that the body forces in a
certain moment instantly assume a certain value — there occurs a jump of

body forces.. Then in the first moment V(1)=0 and on the first

iteration we assume V(1)=0, and then we calculate the transient

process according to algorithm 1 from Section 6.1. This algorithm is
realized in the program  festRagonMixer?, which builds the following
graphs (see Fig. 8):

1. the speed function with radius 5.

2. the relative residual function (6.4);

3. the relative divergence from zero function.
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The computation was performed for the conditions taken in Section 2,
ieeoc=01 a=5 u=1, p=1, n=35.

testRagonMixer2; dynamic22
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Chapter 8. An Example:
Flow in a Pipe

8.1. Ring pipe
We shall begin with an example. Let there be a ring pipe with
rectangular section — see Fig. 1, where 0 is center of construction, § —

center of rectangular pipe section, R — the distance from 0% axis of the

ring to a certain point of pipe section measured along the axis 0X; also
the Figure shows the main dimensions of the construction and the
directions of Cartesian coordinates axes.

Oz
A

Oy

Zo

Fig. 1

Such ring pipe is a closed system. Let us assume that in this system
the body forces directed perpendicularly to the section plane of the pipe
are in effect. Such forces do not depend on the Z coordinate and are
defined by formulas
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Fx(xayaz):F0;;> (1)

Fy(xayaz):_FO;' (2>

FZ(xayaz)ZO' (3)

The definitional domain of body forces is the interior of the pipe.

At this
Fr(®,2)=|(Fo (e, 02)F + (e, 2)) ®

Fr(R,z)=1. ©)
The calculation is performed by program festMixerModif3 (mode=2)
and, in accordance with Chapter 5, in two stages: the speed was calculated
by the equation (5.2), and the pressure derivatives — by equation (5.3) for
given speed. The following initial data was used:

F,=2 p=17, u=07, r,=12, z, =11, R, =17.

The calculations were performed for

®2)= 0 Cr 2P + 0, @n2)f . o

2
dp(R,z) _ (@KL%ZU2+ dpv.y,2))"
dr dx dy - O

Let us further denote the distance from a point in the section to the

or

center of the section along 0. axis as
r=R-R,. ©
The calculations results are shown on Fig.. 2 as follows:

1. function (7.2.7) — see first window on the first vertical;
2. tunction (7.2.8) — see the second window on the first vertical

3. the speed function Vg depending on radius and on the
coordinate X for constant z =0,y =0 — see the first window
on the second vertical;

4. the speed function Vp depending on the distance by height to

the center of the pipe section with constant radius Ro — see the

second window on the first vertical;
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5. the pressure derivative function dp / dR depending on the radius
— see the second window on the second vertical.

testMixerModif3, mode=2
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The mentioned calculation (see the first window) shows that this
speed satisfies equation (5.2). It is important to note that the solution
obtained by the proposed method without indicating the initial
conditions, knowing only the domain of the flow existence. Distribution

of speeds vy (R,z) along the pipe section drawn by the plane y =0 is
shown on Fig.. 3. The same function depending on the coordinates of
one pipe section will be denoted as Vy(l”, z) ot vy(7,z). From (5.2)

it follows that this function has a constant value of Lagrangian on its
definition domain — the pipe section. We shall call such functions —
functions of constant Lagrangian. Since for each form of section these

functions have different form, we shall denote the function v y (r,z) for

a rectangular section as vy (7,2) .
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20 <

Fig. 3.

It is important to note that this solution was obtained by the
proposed method without specifying the initial conditions, but only with
an indication of the region of existence of the flow. Zero values of speed
on the pipe walls appeared as the result of computations. The velocity

distribution vy (R,z) along the cross-section of the pipe, drawn along

the plane ¥ =0, is shown in Fig. 3.

8.2. Long pipe

Here we shall discuss flow in a infinitely long pipe of arbitrary
profile in which body forces are in action. Let us mark a certain segment
of this pipe and assume that the section forms and speeds on both ends
of the segment are similar. Then instead of this segment we may consider
an equivalent system of such segment where the ends are connected in
such way that the fluid flow from, say, the left end flows directly into the
right end. Such system is a closed one and we can use the proposed
method for its calculation. Evidently, the flow in every part of an
infinitely long pipe coincide with the flow in the built system.

For example, let us look at a "connected" in the described way

segment of pipe of the length Z,, where constant body forces Fo are
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acting, directed along the pipe's axis 0%. Let also the pipe's section is

determined in coordinates (X,y) and is a square with half-side 7, and
the following values are known:

F,=1, p=1, u=1, n=13, z, =27.

testDawleModif (mode=2)
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Fig. 3.

This system is absolutely closed, because the fluid does not interact
with the walls. The computation is performed according to (5.5). The
result of calculation using the program festDawleModif (mode=2) are
depicted on Fig 3, where the following functions are shown:

1. function (2.7) — see the first window on the first vertical,

2. function of speed V,(X,)) for constant z — see second

window on the first vertical,

3. Lagrangian function f£-AV in dependence of coordinates
(x,¥) of the section for constant z — see the first window on
the second vertical,

4. functions PF and Lagrangian £+ Av depending on X with

¥ =0 and with constant z — see the second window on the

second vertical where these function are depicted by straight and
broken lines accordingly.
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The speed divergence and the pressure gradient are equal to zero.
Thus, for constant body force the pressure in a linear pipe is constant.
From (5.5) it follows that for constant body force the Lagrangian also has
a constant value on all pipe section, excluding the boundaries, where the
force and the Lagrangian experience a jump — see Fig. 3. The function
of speed distribution on the pipe section, which corresponds to the
constant Lagrangian, is shown on Fig. 3. We shall call such functions the
functions of constant Lagrangian. As for each form of pipe section the

functions are different, we shall denote the function V,(X,)) for a

rectangular section as Vi (X, ).

So, on a rectangular section of a pipe the speeds are distributed

according to the function Vv (I", z ) with a constant Lagrangian.

In Appendix 5 it is shown that elliptic paraboloid is also a function
with constant Lagrangian. Therefore, in a similar way we may prove that
on an elliptic section of ring pipe the speeds are distributed according to
a function V,(7,2) of elliptic paraboloid. In particular, the speeds on a
circular section of ring pipe are distributed according to paraboloid of
revolution function.

Let us consider now another mode of flow in pipe; we shall call this
mode a conjugated mode (with regard to the above considered mode). In
this mode the body forces are absent, but beside the pressure p there

exists a certain additional pressure p R If

fo:_p.F’ (12)
then the equation (5.5) may be substituted by equation
fo—,u-Av:O. (13)

From (12) there also follows that the gradient has a constant value in the
direction perpendicular to the pipe section, i.e.

d
Vps= ;y’ &
and
 _ 1Ay (15)
dy
or
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d7p -p-F, (16)

dy
Thus, in a pipe the speed along the pipe is distributed according to the
function vy (7,2) of a constant Lagrangian, if only the pressure is
constant on all the points of the pipe section, and is changing uniformly
along the pipe. The difference of pressures between two pipe sections

spaced at a distance L, is equal to

d,
pi-py =LY 17)
dy
and, taking into account (15),
plez Ay 0

Evidently, the same conclusion may be reached regarding any part of a
pipe. Therefore,
The speed in a part of the pipe with rectangular section is constant
along the pipe and is changing on the section according to

function Vy(7,z), if there exists a constant difference of

potentials on the ends of the pipe.

If the analytical dependence is known:

v (X, ) = Avy - f(x, ), (19)
then, as it follows from (18),
v(xy) =2 1 (). @)
L-u

In a similar way we may get the function V,4(¥,z) of speed

distribution in a pipe with elliptic section, and, particularly — with a
circular section. In this case there exists an analytical dependence of the
form (19), namely dependence (c16) — see Appendix 5. Specifically, for
circular section it has the form (c22), and then the formula (20) becomes:

p-r (2 (2, .2)
Vk(r)z iL-yz'Q) —( +z ) 21)

where I, 1is the radius of circular pipe section. The latter formula

coincides with the known Poiseille formula [2]. This may serve as an
additional confirmation of the proposed method applicability.

55



In the same way we may calculate the flow in a pipe of arbitrary
section and/or in a pipe bent in atbitrary way (if only the form of
sections and speeds on both ends of the segment are the same). Thus, an
infinite system is formally transformed into a closed system.

8.3. Variable mass forces in a pipe

Here we shall assume that in a long pipe there are mass forces
varying sinusoidally with time. Then for speeds calculation we may use
the equations (6.8) and their solution method , given in Appendix 6. Fig.
3a and Fig. 1 show the results of calculations by the program
testDawleModifTime (mode=2) for

F, =100, p=1, n=13, z, =27
and for several values of M, @. Fig. 3a presents the speeds V,

distribution for zZ =0, and the table shows the values of speeds
amplitudes and cosine of phase-shifts of speed sinusoid from mass forces
sinusoid in the point X = 10, y=10.

We may note that for high frequency the distribution function of the

speed V, by pipe section tends to a constant, with the exception of

section contour, where it is always equal to zero. However in this process

the speed V, amplitude decreases significantly.

Table 1.
Variant U Q Amplitude Cosine
1 1 0 62.12 1
2 1 100 0.01 ~
3 100 1 0.58 0.92
4 1 10 0.10 ~(
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8.4. Long pipe with shutter
Here we shall discuss the flow in an infinitely long pipe with square

section with square side 7, in which an absolutely hard cube with half-

side Ro is placed. As in the previous case, we shall consider a

"connected" pipe segment of length Z,, where constant body forces

Fo , are acting, directed along axis 0% — see Fig. 4. Let also the pipe
section be defined in coordinates (X, ) and be a square with half side
N | and also the following values are known

F, =100, p=1, u=1, u=1, r=39, n=27, z, =57, R, =4

(Y
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This system is closed, and in it the fluid interacts with the cube's
walls. The calculation is performed according to (5.2). The ruslts of
calculation with the aid of program festDawleModif (mode=8) are
presented on Fig. 5, 6, 7. The values obtained are:

£ =0.0035, & =0.06, k=922

On Fig. 4 the vertical lines (-6,-5,-4,-3) are drawn, passing through
the centers of sections distant by (-6,-5,-4,-3) from the cube's center.. Fig.

5 shows distribution of speeds V, by these sections, and Fig. 6 shows
distribution of speeds Vy by the same sections. Fig. 7 shows distribution
of speeds V, and Vy by the axis of these sections for fixed value of

y= 0. These figures permit to give a picture of speeds distribution

when flowing around the cube under the influence of body forces in an
infinitely long pipe.
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8.5. Variable mass forces in a pipe with shutter

Here we, as in Section 8.3, shall assume that in a long pipe with
shutter the body forces, varying sinusoidally with time, are acting. Then
for speeds calculation we may use equations (6.8) and methods of their
solution given in Appendix 6. Fig. 7a, 7b and Table 2 show the results of
calculation by the program testDawleModifTime (mode=5) for

F, =100, p=1, n=13, z,=23
and for several values of M, @. Fig. 7a and 7b present the speeds

distribution V, and Vy accordingly by the pipe section for Z = 0.
Table shows the values of speeds amplitudes for Vv, (— 10,—10,0) and
Vx(— 8,—8,—6) cosine of phase-shifts of speed sinusoid from body

forces sinusoid in the point.
We may note that for high frequency the distribution function of the

speed V. by pipe section tends to a constant, with the exception of
p z Dby pip > p

section contour, where it is always equal to zero. However in this process

the speed V, amplitude decreases significantly. The amplitude of speed

Vy also decreases with frequency growth.
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Table 2.

Variant | U @ | Amplitude | Cosine | Amplitude | Cosine
Vz Vz Vx Vx
1 1 0 1319 1 100 -1
2 1 | 100 1 ~( 0.00001 0.42
3 100 | 1 104 -0.03 3.15 0.78
4 1 10 10 ~( 0.057 0.56

8.6. Pressure in a long pipe with shutter

Let us return to the example in section 8.4 and analyze the
distribution of pressures in a pipe with shutter. For this purpose we shall
analyze the following values:

- quasipressure — see (18) in Appendix 6 or

D =—-r-div(v); O
- gradient of quasipressure, as derivatives of (1) or by (2.77), i.e.

VD = uAv + pF . @)
- gradient of dynamic pressure — see (p19d) or

A(Fy)=p-G ©

or, taking into account (p19a, p19c, p19d),

AE)=2v2 ) -G, o

- gradient of pressure — see (2.78) or

Vp=VD- pv@/z \ .
P ) , ©5)

or, taking into account (4),

Vp:VD—,DG (6)

Furtherfore, we shall calculate average values by pipe's section

g, dG dD
Pzmid :‘: Pz (x,y)} > Gomid = 7Z(xay) > Dzmid :[ £ (x’y)i|
dZ dz dZ mid

for a fixed value of z, and also average value of pressure

mid mid

4
P, = [ pomiqgdz-

zmin
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Fig. 8 shows the results of the calculation program testDawleModif
(mode = 8):
1. functions p_:q, Gomids Dzmid> £ ©f Z — see the first
window on the first vertical ;
2. functions p,, G,, D, of z for fixed values of X =) = 9 -
see the first window on the second vertical ;
3. functions p, of z for fixed values of X =) = 9 (the upper

curve) and X =) = —11 (the lower curve) — see the second
window on the first vertical;
4. functions p, of y for fixed values X =10 and z=1 (the

upper curve) and Z = 19 (the lower curve) — see the second
window on the second vertical.
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. o - dp
Fig. 9 shows distribution functions d—(x,y) for fixed values of
Z

1 -4

6 -20

One may notice the following:.
1) Quasipressure is equal to zero (a closed system!).
2) Average pressure gradient by every section is equal to zero.
3) Difference of pressures, as an integral of pressures gradient on the
ends of the pipe —are equal to zero, i.e.
Zmax

[pdz=0. ™

Zmin
4) The distribution of pressure gradient by the pipe's section is irregular.
5) The proposed method permits to calculate the pressure distribution in
the pipe with shutter for given body forces. We must note that the
precision of calculation increases with the extension of the pipe's
segment length, due to the fact that as the distance between the
segments ends and the shutter grows, the dependence of speeds
distribution on the ends decreases, and the distributions themselves
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become equal — this same assumption is made when we "connect"
the ends of infinite pipe.

Let us now consider the case when the body forces are absent, but
there is a difference between pressures on the ends of the segment. In the
above treated problem the equation of the type (5.1) has been solved. We
shall now rewrite the last of equations as

Vp —uAv + pG - pF =0, ®)
Let us perform a substitution
pF=Vp', ©)

and call the value p’ a force pressure.. Then the equation (8) will take
the form

V(p")— pAv + pG =0. (10)
Here
p'=p-p. (11)
We have:
zmax
Jp’dZZL'F, (12)
zmin

where L - length of the pipe. From this and from (7) it follows that the
solution of equation (10) satisfies the constraint

zmax
Ip"dZ = OP , (13)
zmin
where
OP=L-F (14)

- the known pressures difference on the pipe ends. Consequently, the
solution of equation (8) is also solution of equation (10) with constraint
(13). But it was shown above that the solution of modified equations (1,
77) is unique. Therefore, the solution of equation (8) always is the
solution of equation (10) with constraint (13).

So, the solution of equation (10) with constraint (13), i.e. calculation
of speeds in a pipe with shutter and pressures difference of the pipe's
ends, may be substituted by solution of equation (8), where

F=6P/L. (15)
For brevity sake we have omitted here to mention that the equations (8)
and (10) should be solved together with the equation (2.1).
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Chapter 9. Principle extremum of full
action for viscous compressible fluid

In this section we shall use this principle for the Navier-Stokes
equations describing compressible fluid.

Navier-stokes equation for viscous compressible fluid are
considered. It is shown that these equations are the conditions of a
certain functional’s extremum. The method of finding the solution of
these equations is described. It consists of moving along the gradient
towards the extremum of his functional. The conditions of reaching this
extremum are formulated — they are simultaneously necessary and
sufficient conditions of the existence of this functional’s global extremum

9.1. The equations of hydrodynamics
Recall the equation for a viscous incompressible fluid (2.1.1, 2.1.2):

div(v)=0, 1)

p(?;+Vp—y-Av+p-G(v)—p-F=0, )

G =V ©
In contrast with the equations for viscous incompressible fluid, the
equations for viscous compressible fluid have the following form [2]:

%’f+div(p-v)=0, @)

P+ Np -ty p-GO)-pF-400)=0. ¢
where

Q(v)=V(Wv). ©)
The Appendix 1 functions (3) and (6) are presented in expanded form -

see (pl4, p29, p30). For a compressible fluid density is a known function
of pressure:

p=f(p). 0

where
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Further the reasoning will be by analogy with the previous. In this
case we have to consider also the power of energy loss variation in the
course of expansion/compression due to the friction.

R(v)= é‘v Q). )
We have also:

K _u 10

o BO)=500). (10)

We may note that the function (2(V) in the present context

behaved in the same way as the function A(V). This allows to apply the
proposed method also for compressible fluids.

9.2. Energian-2 and quasiextremal
By analogy with previous reasoning we shall write the formula for
quasiextremal for compressible fluid in the following form:

;}(p-vj;j—;y —( Av)+( div(p- p- v)j
+§@.V.G(v))_%(p.p.v)_ _o- (D)
O(pop) lu 9,

apr 8zj 23 4 000

9.3. The split energian-2
By analogy with previous reasoning we shall write the formula for
split energian-2 for compressible fluid in the following form:

yox (v 62; v”CZJ - (v'Av "Av")

+ 2 (div(p-v'- p")—div(p-v"-p'))+

P - (12
yoX (v'G(v”) - v"G(v'))— X F(v’ —v")-
2 ,dp ,, d,O / " "
2y )4 a)-var)

dt dt
With the aid of Ostrogradsky formula (p23) we may find the variations of

Ry(q'.q9") =

functional of spilt full action-2 with respect to functions ¢ "
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509?2

=b., 13

o P (13)

0Ny _ by, (14)
ov'

These variations are determined by varying the functions p’ and V',

whereas the functions P, p”,v” do not change. Then we shall get:

) 0 .v'dlﬂ_v"dl’ ) v’
P K AR | I

2)

6’ [ - (A —v'A" )= 2u- AV,
ov

3 2 peGOen -vG))=2p- an’ Z;( j . G(V,’ Z;(ﬂ

ov'

a ! [/
B LEpEG-)p-F,
ov
a i H ' ' " " Zlu '
5) ——-(vQ(v)—vQ(v )) :——-Q(v)
ov'| 3 3
6 _2 . ’ " : " ! | "
6) P —(dlv(p-v - p )—dlv(p-v p)) :Zgrad(p ),
1% _,O i
O 2 i ey N2
7) —| =(div(p-v'-p")-div(p-v" p N|=—"div(p-v"),
r'Lp l»p
_ (15)
S T P |
| p\Pa T a)] par
Remarks for these formulas:
1, 2, 3, 4) — the derivation is given below,
5) — is similar to formula 2),
6,7) — the derivation is given in the Appendix 1 — see (p34, p35)
accordingly
Then we have:
dp .
b, =-2-"=-2div(p-v"), 16
P » (p-v") (16)
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2p- 02 a0)- 22 00)+ 29 ")

by = ov" ov" 1
+2p'H aX)“’( aXﬂ_p'F
As was shown above, the condition
b = |l_9pr, bvsz 0 (18)
and the similar condition
b"= |@p~, bvuJ: 0 (19)

Are necessary conditions for the existence of a saddle line. From the

symmetry of these equations it follows that the optimal functions qb and
q6 , satisfying the equations (18, 19), must satisfy also the condition
40 = 40- (20)

Subtracting in pairs the equations (18, 19) taking into account (16, 17),
we get

"

(21)

+2p'd(vd-;v) 2u-A(V' +Vv") - 3 Q(v +V" )+

G(v", o' ) +G(V,’a"j+ _0-22)
oX oX

+ G(v', 6\/) + G(v", 8\)}
oX oX

Taking into account (1.45) and cancelling (21, 22) by 2, we get the
equations (4, 5), where

o "
9=490 T 40, (23)
ie. equations extreme lines are the Navier-Stokes equations for
compressible fluids.

+2V(p'+ p")-2p-F +2p-

9.4. About sufficient conditions of extremum

Above we have proved for incompressible fluid, that the necessary
conditions (18, 19) of the existence of extremum for the full action-2
functional are also sufficient conditions, if the integral

69



T

1= [ {RopdV tdt (24)
ow
has constant sign, where
Ry =-ub,A(b,)-2pv"G(Dy). (25)

For compressible fluid the necessary conditions (18, 19) of the existence
of extremum for the full action-2 functional are also sufficient
conditions, if the integral (24) has constant sign , where, contrary to (25),

Rz = by Ahy) = 5O = 2pV'G(By). 2o

For closed systems with a flow of system incompressible fluid we
have shown above that the value (25) assumes the form

Rpp =—ub,A(b)). 27)

Similarly, for closed systems with a flow of compressible fluid the value
(26) assumes the form

Wz = by Ahy) = B, @

Let us consider now, similarly to (24), the integral

T
J = [ [ RodV b 29)
0w
where
m&zz—u-v-A(v)—’;lv-Q(v). (30)

(i.e. in this formula instead of the function bv there is the function of

speed). As the proof of the integral’s constancy of sign must be valid for
any function, it is enough to prove the constancy of sign of integral (29)
with speeds. For this we must note that:
o the first term in (30) expresses the heat energy exuded by the
fluid as the result of internal friction,
o the second tem in (30) is the heat energy exuded/absorbed by the
fluid as the result of expansion\compression.
The first energy is positive regardless to the value of vector-function of
speed with respect to the coordinates (A more exact proof of this fact
for the first term is given in [4, 5]). The second term is equal to zero (as
in our statement the temperature is not taken into account, i.e. assumed
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to be constant). Therefore, integral (24, 30) is positive on any iteration,
which was required to show.

Thus, the Navier-Stokes equations for incompressible fluid have a
global solution.
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Discussion

Physical assumptions are often built on mathematical corollary facts.
So it may be legitimate to build mathematical assumption on the base of
physical facts. In this book there are several such places

1.

The equations are derived on the base of the presented principle
of general action extremum.

The main equation is divided into two independent equations
based on a physical fact — the absence of energy flow through a
closed system.

The exclusion of continuity conditions for closed systems is
based in the physical fact — the continuity of fluid flow in a
closed system

Usually in the problem formulation we indicate the boundaries
of solution search and the boundary conditions — for speed,
acceleration pressure on the boundaries These conditions
usually are formed on the base of physical facts, for example —
the fluid "adhesion" to the walls, the walls hardness, etc. In the
presented method we do not include the boundary conditions
into the problem formulation — they are found in the process
of solution.

The solution method consists in moving along the gradient towards
saddle point of the functional generated from the power balance
equation. The obtained solutions:

a.

b.

may be interpreted as experimentally found physical effects (for
instance, the walls impermeability, "sticking” of fluid to the walls,
absence of energy flow through a closed system),

coincide with solutions obtained eatlier with the aid of other
methods (for instance, the solution of Poiseille problem),

c. may ue seen as generalization of known solutions (for instance,

a generalization of Poiseille problem solution for pipes with
arbitrary form of section and/or with arbitrary form of axis line),

d. belong to unsolved (as far as the author knows) problems (for

instance, problems with body as the functions of speed,
coordinates and time) .
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We may point also some possible directions of this approach
development , for example
o for compressible fluids,
o for problems of electro- and magneto-hydrodynamics
o for free surfaces dynamics (in changing boundaries for constant
fluid volume).

The proof of global solution existence belongs to closed systems
Practically, we must analyze the bounded and closed systems. Therefore
above we have discussed some methods of formal transformation of
non-closed systems into closed ones, such as:

1. long pipe as the limit of ring pipe,

2. transformation of a limited pipe segment into closed system

At the same time it must be noted that the solution method has not
been treated here on a full scale — we considered only special cases of
stationary flows and changing with time flows.
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Appendix 1. Certain formulas

Here we shall consider the proof of some formulas that were used
in the main text. First of all we must remind that

0
div(v)= 6Vx+ Uy 4 O , (P
ox oy oz
div(v- Q): v-VO+Q- div(v), (pla)
dp op op
vp=|P P P\ 2
p L}x,ay,az} (P2)

azvx N 82vx azvx .
ox? 8y2 62>
Lagrangian in Cartesian coordinates
82vx N 62vx 82vx
o’ o 822

Av, = (P3)

Av = Y e r (p42)
ox? 8y2 022
2 2 2

o“v, +8 v, +8 v,
ox? 8y2 022

Lagrangian in cylindrical coordinates

I l+r o’v, +i82vr N o%v,
r or* 1 op’ o7
1 o’v, 1 azv(/, o’y

4

Av=||—+r 2+ +
r o’ r*op’ o |, (p4s)
1 np 0’v, N 1 o’v, N 0%y,
r o’ r*op’ 0z
0 0 0
(v-V)z{vxax+vyay+vZaZ} (P>
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v vy v, vy ‘v, oy
ox oy oz
ov ov ov

v-Vlh=|v,—L+v,—L+v, —2
(V=] vy x Yo Cooz
Vy v, v, =+v, v,
T Ox oy oz |
From (2.5, 2.7a) it follows that
\
A Iy
2 dt
ie.
o dv
dt

Let us consider the function (2.7) or

X
Ps
Yy

or
N

PS :pV'AeV2 >
2 /

> =02 +v2+22))

Differentiating, we shall get:

where

d (2,2 2)

deQx+Vy+Vz
1 d (2, 2 2)

;25 +Vdex+Vy+VZ

d
G2 n?)

dv dV
Vy (vx X4y Y

+v v
dx Y odx Z dx
+v +v dv,
dx Y odx “ dx
dv dv,

y +VZ
X dx dx

(PO)

(P7)

(P8)

®9)

(P92)

(P98)

(p10)
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After rearranging the items, we get

)C

Let us denote:

-y
dz |

dv, dv
=V, — —_—
Ex Lx dx ¥ dy
dv dv dv
Y Y
gy:(vxdx-i-vydy'FVZ
dv, dv, dv,
= —= —= 4y, —= |
gz (x a0 y Z
Let us consider the vector
Ex
G= gy
gy
or
po OV Qv vy |
Tax Yo e
G=|v av—y+v aV—y+v 8vy .
Yax Yooy oz
y Nz vy%w%
| Ox oy 0z

Note that

;G(v) =2G(v/2)

(P11

(p12)

(p13)

(p14)

(p14a)
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From (p11-p14) we get
Ps/p=v-G,
oPs (v, G(v)) _

ov -

pG(v),

Comparing (p6) and (p14), we find that

Gv)=(-V.
Thus,

MG _ vy,

ov

Comparing (p9a, p15, p18), we find that

\Y% Wz):2-(v-V)-v.

As dynamic pressure is determined [2] by

By =pW?)2,

(p15)
(p10)

(P18)

(p19)

(p19a)

(p19¢)

then from (p18, p19a) it follows that the gradient of dynamic pressure is

ARy )=p-G.

Let us consider also

G(v+b)=G(v)+G(b)+ G| (v,b)+ G, (v,b),

where

Gl(vab): Vx

S

Gy(v,b)=|b, > +b

(p19d)
(p20)

(p20a)

(p208)
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If b=a-b,, then

G(v+a-b,) = Gv)+a’G(b,)+aG(v,b, )+ aG, (v,b, ). (p21)
We have

80( ,,dv'j dv” 80( ,,dv'j dv'

— |V — |=— ’ v = ’

ov' dt dt o' dt dt

80, (VAV)=2AV",

O(V"G@ )=-Gi6v"). 226G 07)=66"),
(v v(p")=Vv("), P % (- V(p")=—div(y)

Odlv(v p")=V(p"), Odlv(v - p")=—div(y")-see (pla).

(p22)
The necessary conditions for extremum of functional from the
functions with several independent wvariables — the Ostrogradsky

equations [4] have for each of the functions the form

of Uy mafﬂzo, 23

ov  ov da\ d(dv/da)

a:x’y’zﬂt
where f — the integration element, D(X,y,z,zy — the variable function, 4 —
independent variable.
The tensions (in hydrodynamics) are determined in the following

way [2]:

ov vy ov,
pxx:_p+2/u87;a pyy:_p"_z,uga pZZ:_p+2;uEa
v, Ov) ovy OV
Pxy =DPyx = A{ayx o ] Pxz = Pzx = ﬂ(@zx-l—ﬁxzj’
ov ov
Pyz = Pzy = :U[ 6Zy + ayZ J (p24)

Let us consider formulas
dy =VyPxx + VyPxy tVzPxz»
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dy =VyDyx +VyPyy +VzDyz,
d; =VyPxx + VyPxy T VzPxz: (p25)
From (p24, p25) we find

M x+vyavx+vzavx +
ox oy 0z
dx:_p+ﬂ 5 oy 5 )
va+vy y+vZ Vz
Oox ox Oox
ov ov ov
v, y+vy Ly, — 2|+
ox oy 0z
dy,=-p+u 5 o ’ ,
vy vx+vy y+vZ VZ]
Oy Oy oy
V2, yavz+ s
ox oy Z
d,=—p+u 5 (p20)
\ 8A+v vy+v v,
Y oz Y oz Z bz

From this it follows that the double integral in formula (81) in [1]
and in Appendix 2 may be presented in the following form

cosnx(—p+J81x(v))+
J31 :”da cosny(—p+J81y(v))+ : (p27)
Cosnz(—p+J812(v))

The Ostrogradsky formula: integral of divergence of the vector field
F', distributed in a certain volume V', is equal to vector flow [

through the surface S, bounding this volume:

mdiv(F):lV:”F-n-dS. (p28)
V

oldiv(v)) o(div(v)) oldiv(v)
o] ) o) o]
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62vx N azvy N 82\/2
2
Ox oxoy  0x0z

oy | 0%, L%
2
xQy oy 0yoz

Q) = » (P30)
szx 52Vy N 82\)2
Ox0z 0yoz  pg?

It p,p are sclear fields, and Vv is a vec;or field, then
div(p-v)=v- grad(p)+ p-div(v), (p31)
diV(p-p-v):p-v—grad(p)+p-div(,0-v), (p32)

1.e.

div(p-p-v)= p-v-grad(p)+p'v-grad(p)+p -p-div(v). (p33)

Consider div(p-p'-v") and suppose that the extremum of a
certain functional is determined or by varying the function p’, or by

varying the function V". Then, differentiating the last expression by
Ostrogradsky formula (p23), we shall find:

20, [div(p-p'-v")]=0+v"-grad(p)+ p-div(v"),
P
a : ! /4 ! 1 2

o [div(p-p'v")]=p-grad(p')+ p'-grad(p)- p'- grad(p)

or

80, [div(p-p'-v)]=div(p-v"), (p34)
op

a M ! 1A [

o [div(p-p'-v")]= p-grad(p’). (p35)
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Appendix 2. Excerpts from the
book of Nicholas Umov

http:/ /nn.mi.ras.ru/Showbook.aspx?bi=171

JPABIIEAL
ABUFKEHIA SHEPI'INM

Bb TBHBAAXD.

o g

EHEEOIAH YMOBA

e R

DAEEEA,
BE THOOTEAQIN FILPERA E TOFIRLE
1874.
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— 18 -

HOMS U MOMS KOAuSecmelh SHepiiu, nporodAWEMI uepess HUTI
a3 Oeaconetno Mo saeMenmes SpemMeEnit, PEAHD,

§ 8. Fpasuenia deuncenia suepiine a3 mmaaxs Howdxuws.
Paseiorpuns ¢mavais ®OIEOCTHE, B 00pAMAd BERNANIA HA TAED HASH-
BAENMOE BEYTPEREEE Telle uacTAN® ®ugRocTH. OIEAUAR UEDERT U, v, 10
CEOPOCTH JBEECEIA MACTENE HOJIEOCTE BL ofmoff ® Tolf e Toumd
HpOCTPaHCTES, 16DE3T P —— RABICHIE H p— LIOTHOCTS, M EMbexq
cabiyOmis ypaBAeHid ThHAPOJEEAMARE :

1dp du e il du
Topds T @ T e TPy T

ldp  dv do ~ dv .
~odr = d.:"‘“da,""" +”’¢u (54)
1dp din diw
—pds T r+“ f“d:y"' iz

Ma cnosa onyesacws coyva¥ phbiferein pRImMEEXD cEIT HA YACTHIH
wupiocrd. Lpowdk opweegemEmE® coormomemili mu mwbend eme
exbaynomia:

dp . d{pu) d{Pﬁ] d(gw)
d t @ t t d =

(55)
1 dp e dv duw
pd!+dr dy T T

Yunoman supazeuin (54) coorsbrevsesso mn wdf, vdi, wdf, ck1a-
Aupaf, fbim ma df u WATETPEDYL [EA BoeTo OGBEMS cpefH, Haxo-
JHME

ST TS wrotwyioson [ [ [ogmee+o)

-+ pﬂdE (#2402 +10?)+-pt0 j— [ﬂ2+u*+w“]] duw

—|—fff( o 1: dy -{- wE-) =0  (56)
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[TepeanA WaeTh 3TOTO BHpaXedid moclh HETETPAMIT mo TACTINTD Dpei-
erasaTcd B% BEXE:

fff%z o) ffi"Pr’-Ed“’
(57)

£u3+1?2+m2}+?] {“‘”oﬁ[ﬂw}+'ﬁt‘03{ﬂﬂ]+ﬂcﬂs{uﬂ)] b=

+17]¢

r3t ds eern axementn Tpapnmd i () Gy0@UecLOC BACTINIEEiE. “iTO
BHPAKEHIE MOEETH (MTh DAUAEANO WE LD TaLOND bEAL:

-J‘-J"J- [E?f{g{uz’l‘“i”F“i)]—pﬂ]ﬂm

(a8)
S [ (HE—H} - ﬂ—}i—j@] [-ucas[wm)+ucus[-a:y}q—m-us[nsj]d::n

Tpoltaoll morerpans, sxofamill B% aTo BEpamemie, IpeJeTABIALTE
cyuwy uswbmeniil sEepTim BO BrBXD HABMERTANT WPOCTPLUCTEL 3A-
narare epepon. Jhfersnrencao mepemll wient mOLTRuTETpagnnol
{pyrenin rpoliaaro maTerpaxa mpejcrapnzers wawbnenie mepod enau
¢h RPEMEHEMT BB OJEOND W TOND me siementh ofnema epejiu;
sropolt me wiems roll me mognmmrerpaatmoll (IVERNIE mpepcTAB-
naers wawkmenie paGorm Japxenil BT ojEON® W roMB ®e sxcmentl,
BAITOE ©F HALIERAMKET 3HAROMB. COvempa cabiyers, wro pooinoi
WITErpalD BUpimenin (58) npejeraniAerh ROANYECTLO SNEprin
BYOJANAE BB ePeIy Uepeat en rpanrmH. CabpoBarennuo supume-
Hie (58) mpejcTaBIAeTE JAROET COXPAHBHLN sHeprilm jam pell mug-
B0l cpefisl B HOTOMNY OHO TOMecTBeHEO ob Tpapmenient (7). Ilvoil-
goll maTerpans ypubuemin (58) foimens OUTL TORSCTBLNT ©B
JROHEENS HETEIpAloNT ypabmesia (V) B cxBioBateanno JoLEeNt
NpeolpasoBHBATECT B Tpolinol WRTETPAND TOMECTEENARE ¢0 BTOMINE
Tpofisuns ReTerpasont supamenin (6 ). LLiereareasso gpolnoll mure-
Tpals BHpAEeRin (58) momers GuTe mpeofpazocaEd ®BE  Tpoftnoft
BETETpals CcIBITOMATG BEJA:
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b{p+ﬁﬁhfﬁ+wﬂ
E

(P + o(u® 4 1:2—|—m“])] \
I

f

+

Jifes

+“w&+

&l

(59)

ol B £ m

plu® 4 v* —Hﬂ"])

d

Ilopsmaterpatinas QYRR BIOZAMAT B 010 BRpamenie mpe-
CTALLIETT TRE ROINUECTLO 9feprin Upoumcinmel BB eAWHALY Bpe-
MUHI BB OAMOT I TOTH ®e oIeNenrs olbems mupgocrd, Cmpaseft-
TBOETH BTOTY BALX0TeNif RoweTs OUTh mopbpems memocpeisTsenno,
Lieobjros ) LOXRIRTECpAXLET yuEin Tpoiizaro MATErpala
wipamenin (58) mWpM  COMOUN DpIBAXCMNEXT BHIG TABEeRil
niipo s men 1A% mererpaxonan yHENin sHpARenia [:‘19}
PORECTLEMA  ©h  woATunTerpaytuoll Jyecuied  wroparo rpoimare
srerpata papagmenit (T) K ¢ propol YacrLid OCHOBEATO YPaB-
nenin (1), Has orero romectsa putesamtds exBiymmis cooTaoms-
Hid MeEZY SALOHAMN OREPTIN H JUKOHAMH YACTHYHEXE XBEmenil
ERIREXD CPRIE

i
o, = u (p -+ EE—)
5g=n&+ﬂ) (1)

rih § cerh cROPOCTL NBAMENIA TUETHUH BMOJEOCTH, T. &
.' El
i? = w4 0* 4 w? (61)

Has supazenit (60V) cxdbpyers, 0sEAvaRm uepeds ¢ CEOPOCTE JRE-
HEWin aMePriE, 1. .




- 1 ==

oE0I0 ocel x, ¥, 5 Eeln B% ZEIR0CTH BpAMATAILEHA IBEEeHIR
nE CYWECTBYNTE, TO BHpAmesin (75) NPHRMMALTE BHA :

i dei
CEEPa T G

dy dei
o=2G+% (77)
dip dei
R R
Eexm o ecrs motesuiaxts cuopocred, To
ez i
%= (78)

7. 6. OTJHIATEIRHAN YACTHAS HPOHSBOJHAL 0T NOTEHIIaZa cropocreil
0 BPENBEN [ABAA NONOLHAD TPOE3BANEHIA CEOPOCTH IBHACHLA BHETLN
HL CEOPOCTL ABUHeHia yactunb. QyERDIL Bpemems, KoTopas NOXEHL
Omrn npudaceds 55 s pamenin (78), noxpasyyboasea 015 2HAE0NE 2,

§ 10. FVpagnenia deuscenis anepiin 65 HeudKocmars cs
mpeniens. Doxbe ofmie gufipepenialbiee sakomu IRAEZENIT &EH]-
noeTell DOIYIANTET, RAED NapbeTHO, NPANHYAN cFIecTROBARIe XaRTenill,
HANPARIGERHLD LOCHENNO KT DX0CLONY SIEMERTY BRAYTPH ZEJROCTH,
CTOPORE EOCTO DAPAIIIRRH ILIGCHOCTANG KOOPAHAATS; NH 0JRATENE
CIATARILIE EOCBANNHXT JADIORE MeDHTHDAGNHXT TPEMA CTOPOHANE
sIeMedra Ciumafimyui ©F Ha9any EOODAEHITS TEPE3D p.. Py,
Pucs Puys Pros Pus SHANEHIE yHOTPEGAEEBEXE 31BCE HHJIGKCOBT
gasberwo. Mu mwbews exbayomins gedhepennisdbEEL  ypasHenia
¢ TACTHUME [NPOEIBOJAEME, Ipeimorarad, uro sobmmis cwam me
JBHeTsynTs HA DIGMEHTH BRHIEOCTE:

( gyt ds)=m+“ﬂm+”¢y+"’ds

Lodp,  dpy  dp,\_dv  dv  dv o d
e+ )=t tog g (9

1 (d;:u ap.s

p.
g g

duo dw dw dio
)z—‘ﬁ -I—HE:E +'EE§ +ME
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Epoxt orext swpamenill fia Tpyuxes Zmgnoctell ocTamTed 31
card coorromeria (55).
SasoEn cOXpuHeEiT BEEPLiE XIf Besll MaccH mEMAEOCTR OFReTH

!.’nf{gﬂ (&H—ilf—!-m*) -k l[w d (.'r: +* _]_H--) +

+ PEEE;{H!+“B+W1}+Pwdﬁ(ﬂt‘}“ﬁg‘F wz)} ; o

d_pu:t dpnr d:pﬂ)
u (rj:t: + - dy +t

P f ool 4 ) <0 o

dp,. iy, d
coll + % + %)

Thrrerpupys sve BNpamenie 10 YAGTANT HAXOLHNT :

i il i
fj f [-2 Eﬂ{ p[ﬂ“‘+!}2+1ﬂ1}5 P“d? P”EI__,F P ﬁ_i'-- -
i -i-ﬂ) T do  dwey
~ P (@ﬂ“a& “(dfrﬂ!m) (a;'+ @)J o

o (M0 - u* 1
+t?{i.'¥.'?[ F(-—-——---- ]-I-'}l',utﬁ-l-ji Ly

op (u+0*+ w?) ]
+ [ jds '|—¢ﬂ'5"13"'[ 9 +PEFH+PH?"+PT“ =0 (81)

wp (44 vt 1
I+c-u.m5[ dl 3 ]+p,..u+p,,,i:+p,,m

E

Ilpocroil meTerpart exogamilt B: oT0 BHpAMERie NpeIeTARITETH
miwbremia sneprin seell sensod maccm OTHecemHOe KB efuEmumd
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Y
- I —

ppexent ; JROMEON Me AATEIpAXD pacTpocTpRECERRE Ha BJeNeRTH
MOBEPXHOCTA mELKON MBCCW NpPRISTABISETH EOIMUECTBO BHEDTIN ,
progamell 8% Eugroers H3pnd. J1orh jBolmolf EATETpALT MOEETE
GHTH TpeAcTABEeAT BB Qopud rpoliEare mAverpaia cidbaymmaro
BiEJA

r dm{ F[u- -:l_; +_1{:_] +7 “"]‘Fn“'{"ﬂzwg ‘I
1S fol 449 { p(m —I—E L ] ) (82)
& z x
_|_ 5% {:!F +ﬂ "I_"w} ‘I"‘F;;’H_]_pg;v-"'_?uw} I

Lo suaTerpansmas GYuENiA 91070 DHPLECHLT OP6JCTABIAETE EOII-
qeeTRO YHEPTIN, TPOHMEAOUE: BB OJEAE T TOTH He SIENEHTE
ofwena ®EAEOCTA OTEH cnbmauxs vactell =mwgrocrm. Iyrews sa-
gInwsnill cxogHuYE ¢b yOOTpeGIeHEHNEE BB DpeLBOIJOEIS MApA-
rpafaxs wH JOBAENGE, ULO 314 NOABEETEIPAIEEAd (JEENIL TO-
SECTBOANA €0 BTOPOM ¥asTol otwoBEare ypasmemin (I). Marvemarm-
UeCEOR BHPAmARIR BTOT0 TOHGCTHA UPEXCTABETCA CcIBIFOULMMA c0-
OTEOTGHLANE :

K 2 2

o, = up_[i_b _4-:%??]-'!5' ] 4 Pnﬂ_.hpﬂij-l—pﬂm
% Tl gpt

ol = PI{E +‘E T ] T+ Pt Pry = Praltl (83)
L pt E

a1, = + ) 4 kot pas

JaR0EH JEEAERiT oHeprim OPeACTABAARTE BB IAHEONT cayuah
cpefiAy MeEAY samomami MuwkDUENE whero gaan thaa yopyraro m
1ia ThIa EEIEATO.
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Appendix 3. Proof that Integral
fv-amar 1s of Constant Sign
|4

Here we shall consider in detail the substantiation of the fact that
integral (2.84) always has positive value. In other words — we shall prove
that the integral is of constant sign.

Ji=fv-A@v)v. 1)
v

Let us first consider the two-dimension case. Let us substitute the
Laplacian by its discrete analog. To do this we shall take a two-

dimensional speeds network Vie,m > where m =1,n - the number of

point on the axis OX, k= 1,7 - number of point on tee axis OV. The

value of discrete Laplacian in each point is determined by formula (see,
for example, the function DEL2 in MATLAB):

1
Lim =4 (Vk,m—l TVEmA1 T Vk=1m t Vi+1,m ) Vim- ()
According to this the discrete Laplacian may be found by the formula

L=v-4, €

where row vector

vl,l,...,vljm,...,vljn, T

V2’1,...,V2,m,...,V2,n,

< |
Il

) )

ijl,...,vk’m,...,vk’n )

Vi Lo Vo Vi
and A is a matrix built according to formula (2). For illustration Fig 1
shows matrix A for 1 =3, built according to formula (2) — see for

example, [27]. This Figure shows also the numbering of vector Vg »,
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elements. According to formula (3) the Laplacian also is presented in the
form similar to (4). The discrete analog of integral (1) is

Ji=v-Av ©)

To verify that the matrix .4 is of constant sign, let us find for it the
Kholetsky expansion

4=UTU, ©)
where U is the upper triangular matrix. It is known [28], that if matrix a
A is symmetrical and positively defined, then it has a unique Kholetsky
expansion. The program zestMatrix.m computes expansion (6) and shows

that matrix 4 is symmetrical and positively defined. It means that for any

vector V

v-A-vT >0, ™)
Thus, it is proved that the value (5) in two-dimensional case is
positive. Decreasing the network spacing, in the limit we get that the
integral (1) in two-dimensional case has positive value. In the same way
it may be shown that in three-dimensional case integral (1) is positive,
which was to be proved.

Vikm)1,11,2 13 14 151112 13 14 15 11121314 15 11 12 13 14 1511 12 13 14 15

4 1 1

21 4 1 1

I 1 4 1

4 1 4 1 1

5 14 1

1 1 4 1 1

2l 1 1 4 1 1

3 1 14 1 1

4 1 1 4 1 1

5 1 1 4 1

1 1 4 1 1

2 1 14 1 1

3 1 14 1 1

4 1 1 4 1 1

5 1 1 4 1

1 1 4 1 1

2 1 1 4 1 1

3 1 1 4 1 1

4 1 1 4 1 1

5 1 1 4 1

1 1 4 1

2 1 1 4 1

3 1 1 4 1

4 1 1 4 1

5 1 1 4
Fig. 1.
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Appendix 4. Solving Variational Problem
with Gradient Descent Method

Let us consider the functional
D, = JSR(V)ZIV. )
V
where

%,u WAV, +v Av + vZAvZ)

r .
ERZ(V) |t E V- V(le(V))
+ p-(vax +Fyvy +szz)
+p-(PMy,+PMy, +PM.v.)

¥ - constant coefficient,

, @)

P _known pressures,

M - areas on which these pressures are determined.
Notice, that

aﬁ(v V(div(v)))= V({div(r) )+ vaﬁ (V(dive))=v(dvem) s
v V

Taking into account (3) and in accordance with Ostrogradsky's equation
(p23), the necessary condition for the extremum of this functional has
the following form:

- Av—r-V(divo)+ p-(F+P-M)=0_
To prove that this condition is also sufficient, we will argue as in Section
2.5. The gradient of the functional (1) has the form of the left-hand side
of equation (4):

b=—u-Av+r-V(div(v))-Y )
rAe

Y=p:(F+P-M) 69
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Let S be an extremal, and therefore the gradient on it - bs =0. To

reveal the nature of this extremum we must analyze the sign of
functional's increment.

8y = D5(S)-D,(C), ©)
where C is the line of compatison b= b, # 0. Let the values S and C
differ by

v—v¢=a-b, ©)
where b is the variation on the line C, @ — a known number. If

oDy =a-4, (8)

where A is a value of constant sign in the vicinity of the extremal

bs =0, then this extremal determines a global extremum. If, in addition,

A is a value of constant sign in all the domain of definition of the
function V, then this extremal determines the global extremum..
From (2.55) we find

Ry =R +Ryp-a+ Ry -a’, ©)
where ERZ(), RH1, Ryp are functions not depending on @ of the

form
R, = gvSV@iV(vs )}%yv AW,)-Y v, 0
%(VSV(diV(b))+ bV (aive, ))
- R O Y R )
R,, = %b : V(div(b))—% 1-b-Ab) w2

Further we shall use the following algorithm.
Algorithm. On each iteration:
1. the gradient b is calculated according to (5) for given function
Vs
2. the coefficient @ is calculated according to

a=—q)21/q)22, (13)

91



D1 = Ry dV, ©op RppdV . (14)
14 V
3. anew value of the function is calculated as V:=v+ab.

In this case, at each iteration step, only those values of the variables that
are in the region O of the flow exist.
We denote by
D=r-div(v). (15)
Then the necessary condition for the extremum of this functional
(1), i.e. then equation (4), which is solved by minimizing this functional,
takes the form:
pu-Av-VD+p-(F+P-M)=0. (16)
In Appendix 6 it is proved that simultaneously with minimization
of the functional (1) the condition is satisfied:
div(v) = 0. 17
The accuracy of this condition increases with increasing value of
the constant 7. However, the calculation duration increases with
increasing 7. Consequently,
the minimization of the functional (1) by moving along the
gradient (5) for a sufficiently large 7 is equivalent of solution of
equations (16, 17) with unknowns v, D.
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Appendix 5. The Surfaces of Constant
Lagrangian

1. Let us consider an elliptic paraboloid of speeds bounded by a
plane perpendicular to its axis. The surface of such paraboloid is
described by the following equation:

2 2
vy(r,z)z Vo=V 1T =vyz7, (c10)
where (I” »Z ) are the coordinates of the plane that the paraboloid rests

on. On the borders of this base plane Vy (7’ W Z ): 0. Denoting as

15 52 the semi-axes of the ellipse in the base of paraboloid, for

(l/' =1,,Z= 0) and for (I”' =0,z= ZO) from (c10) we find

accordingly

2
Vo =V1To (c11)
Vo = V2% - (c12)
Superposing (c10, c11, c12), we get
N
Vo 2.2 2.2
vy (r,z)= 2% Jzo -1z -1zt )
0 0
Let us find the speed Laplacian. From (c10) we find
Avy, ==2(v + 7). (c14)
Superposing (c11, c12, c14), we get
Ap = 2v, (2 N 2"
vy ~ 297 V0 Zg y (c15)
Yo %o

From (c13, c15) we find

2.2 2.2
4 (r,z) ( —r Z —TpZ"  (cl6)
g 2(2+ZO, ’
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2. Let us now consider a circular paraboloid of speeds. From the

previous considerations for (7”0 =Z, ) we get:

Vy (r,z)z Vo =V (2 + 22 » (c20)
—4v
Av, =——¢ o (c21)
)
—Av \
2 2, .2
Vy(I”,Z)= 1 Y (0 —( +z ) (c22)
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Appendix 6. Discrete Modified
Navier-Stokes Equations

1. Discrete modified Navier-Stokes equations for stationary

flows

Let us now consider the discrete version of modified Navier-Stokes
equations (2.1, 2.79) for stationary flows. For this purpose we shall

present functions of three variables (speed projections VxsVysVz, force
projections F)., F y’Fz and quasipressure D) as row-vectors (shown, for

instance, for two-dimensional case in formula (4) of Appendix 3). The
derivatives and Laplacians of these functions may be presented as
product of some matrix by such functions. For example, we may
construct a matrix — discrete Laplacian (for two-dimensional case the
discrete Laplacian has been considered in Appendix 3) and a matrix —
discrete derivative.

Further we shall take a stationary system in which the pressures
P, Py, P, are determined, acting on the surface Q, va 0., in the

direction perpendicular to coordinate axes X, y, Z.

Then the modified Navier-Stokes equations will become:

xv§ +Byv)]; +BZvZT)=O, (1)
T T

— Ay +ByD" —p-Fy = POy, @

~p- Ayl +B,D" ~p-F,=P,0,, 3)

_ﬂ'AZV5+BZDT_p.FZ:PZQZ’ 4)

where A — matrices — discrete Laplacians of speeds, B — matrices —
discrete derivatives of speeds and quasipressures, and the upper subscript
"T" means transposition. The form of these matrices does not depend on
the fact, to what functions they are applied; it depends only on the
configuration of the domain of the fluid existence. Formally these
equations may be considered as a linear equations system with respect to

unknown vectors Vx,Vy,VZ,D, where the matrices A, B, Q, and
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vectors F, P are known. To solve this equations system let us consider
the function

1 T T T)
z,u-QxAxvx +vyAyvy +v,4,v, )
r T T T
D +2-@xvx +Byvy +B,v, j , o)

+p- xv){ +Fyv§ +FZVZT)

T T T
+ (’xvax +Pyvay +P.0,v, )

where 7 is a constant. It is easy to see that the necessary conditions of

this function's minimum by the variables V.,V y»Vz areas follows:

p- AL + B Jr+p-F.+P.0, =0, ©)

p-Ayvy, +ByJr+p-F, +P,0, =0, ™

w- Ay +B_Jr+p-F, +P,0, =0, ®)
where

J= @x\/){ +Byv§ +Bzvg : ©9)

To analyze the sufficient conditions of the minimum existence we
shall transform the function (5) to the form

1 r T\ T
vx(zlwa +§-BxBx )vx +

3 1 r T\ T

| r T\ T
VZ(ZIU'AZ +§'BZBZ jvz

where ® - the component depending on the first power of speeds.
Thus, the considered function is a quadratic one and therefore has one
minimum, if the matrices of the form

Mx:(;ﬂ'Ax+;'BxB£j an

are negative-definite. For these matrices analysis we must note that the
discrete Laplacians of the speeds are positive-definite (see Appendix 5),
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. T . . .
and matrices BB, are also positive-definite. Therefore, matrices of

the form (11) are positive-definite and the function under discussion has
a unique minimum.
It may be shown [32] that
J — 0 for r > . (12)
- see also Appendix 7. From this and also from (9) it follows that for
sufficiently large 7

vy +Byv) +BZvZT):O. (13)

So, for certain values of 7 the equations (13, 6-8) coincide with
equations (1-4), if we denote

Dl =—Jr, (14)
and gradient descent along the function (5) permits us to find the values
of variables that give a solution of equations (1-4). The method of such
gradient descent is considered in Appendix 7.

Let us now return from the formulas of discrete form to the
analogous form. Then we shall get, that from (13) it follows

div(v)~0, (15)

and the function (5) turns into the functional

1
E,u- VAV, +v Av + vZsz)

1
o= —E'V'VD
(10)
+p- (vax +Fv, +szz)
+(PQv, +POY, +PO.v.)
where
D =—-r-div(v). (17)

Notice, that

aﬁ(v V(div(v)))= V(div(v))+ v§ (V(div(y)))=V(div(y)),

V V

Consequently, the gradient of the functional (16) has the form:
u-Av—VD+(p-F+P-0)=0 (18)

Consequently,
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the minimization of the functional (16) by moving along the
gradient (18) for a sufficiently large 7 is equivalent of solution of

equations (17, 18) with unknowns v, D under the condition (15).

Thus, the method of solving continuous equations (15, 17, 18) can
be reduced to the method of solving the corresponding discrete
equations, as described in Appendix 7.

2. Discrete modified Navier-Stokes equations for dynamic

flows

Let us consider the discrete version of modified Navier-Stokes
equations (6.8) for dynamic flow in the case when the body forces are
sinusoidal functions of time with circular frequency @. As previously a
discrete analog may be built for them in the form:

—jo-vy+u-AvL + B Jr+p-Fy+P0, =0, (19
. T

—jo-vy +u-A,v, +B,Jr+p-F,+P,0, =0, (20)

—ja)~vZ+y-AZvZT+BZJr+p-FZ+PZQZ:0 (21)

and (9), where J - imaginary unit. And in this case we may also show an

b

analogy between the equations (9, 19-21) and the equations of an electric
circuit with sources of sinusoidal voltage, considered in Appendix 7. The
latter are solved by gradient descent method, descending to the saddle
point of a known function. Thus, the method for solving continuous
equations (6, 8) is reduced to the method for solving the corresponding
discrete equations (9, 19-21, given in Appendix 7.
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Appendix 7. An Electrical Model for
Solving the Modified Navier-Stokes
Equations

Here we shall deal with electrical model for solving modified Navier-
Stokes equations and the solution method following this model.

The electrical circuits described below contain direct current
transformers or transformers of instantaneous values. Such transformers
have been first introduced by Dennis [33]. So we shall in future call them
Dennis transformers and denote them as TD. Dennis has presented the
transformers as an abstract mathematical structure (for mathematical
theory interpretation) and has developed the theory of direct current
electric circuits including TD, resistors, diodes, current sources and
voltage sources.

In [32] such electric circuits are considered. They contain TD and
are used to simulate various problems of regulation and optimal control.
The analysis of such circuits permits to formulate algorithms for solution
of appropriate problems.

To solve our problem we shall analyze the electric circuit shown on
Fig. 1, where

Ry, Ry, R3, r -tesistors,

i1, Iy, i3, J - currents in these resistors,
El R E2, E3 - direct voltage sources,
IDy, TD,, TDj3 - Dennis transformers,
Ll R Lz, L3 - inductances,

kl, kz, k3 - transformation ratio of these transformers.

First we shall consider of direct current circuit without inductances.
In [32] it is shown that such circuit is described by the following
equation:
R-i—-E=0, 1)

where
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i=i2, E=E2,, (2
i3 k3
R 0 0 K kky  kiks

R=10 Ry 0 +r-kiky k3 koks, 3)

0 0 Ry |kiky kyky &3
and
J=ky-ij+ky-ih+ky-iy 4)
and all the value included in these formulas, may also be vectors (in the
sense of vector algebra).

i
/ E
4_} R TDs }
i> E
4% Rz m;TDz | -
: > Es
O ™)
r{—o

Fig. 1.

In [32] it is shown that equation (1) is the necessary and sufficient
condition of the following function's minimum:

Q:(;LRJT—EJT} ©)
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where
J >0 for r—> 0. (0)
The minimum of function (5) and, consequently, the solution of
equation (1) may be found by gradient descent method
b=R-i—E, )
for the function (5), where the gradient step is determined by the
formula

X

a=————
bl .R-b

®)

and
Inext =1 prev — 4 b, )
Then we shall consider a circuit with sinusoidal voltage sources
E|, Ey, E3with circular frequency @ and inductance
Ly, Ly, L3. In [22, 23] it is shown that such circuit is described by

the following equation
@ j-L-i+R-i-E=0, (10)

where j - imaginary unit, the values i, E are vectors with complex

components and are determined by (2), R is determined by (3), and

L, 0 0
L=0 L, 0 (11)
0 0 I

In [22, 23] it is shown that the equation (10) is the necessary and
sufficient condition for the existence of a unique saddle point of a
function of split currents — see also Section 1.2. The solution of equation
(10) may be found by gradient descent method, when on each step the
new value of current is found from

Inext :iprev —a-b. (12)
where
b=w-j-L-i+R-i—E, (13)
b’ b
a (14)

b (w-j L+R)D

Here, as in the case of direct current, the condition (6) is fulfilled.
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