
Solomon I. Khmelnik

Navier-Stokes equations
On the existence and the search method

for global solutions



I dedicate to memory 
of my older brother Mikhail

Third edition

Israel       2018

2



Copyright © 2011 by Solomon I. Khmelnik

All right reserved. No portion of this book may be reproduced or 
transmitted in any form or by any means, electronic or mechanical, 
without written permission of the author.

Published by “MiC” - Mathematics in Computer Comp.
BOX 15302, Bene-Ayish, Israel, 60860
email: solik@netvision.net.il

Printed in United States of America, Lulu Inc., 

First Edition 1, 30.06.2010
First Edition 2, 20.08.2010

ID 9036712, ISBN 978-0-557-54079-2
Second Edition 1, 03.01.2011
Third Edition 2, 03.01.2018

ID 9976854, ISBN 978-1-4583-2400-9

3



Foreword of the Reviewer

I have 50 years of experience in the field of hydrodynamics.
In recent years, the author of the book (my brother) developed 

variational principles for dissipative systems and has formulated the 
principle extremum of full action. This principle is an extention of the 
Lagrange formalism, and it takes into account the fact that in real systems 
the full energy (i.e. the sum of  kinetic and potential energies) decreases 
with the motion, turning into other types of energy, for instance, into 
thermal energy, which means that there is energy dissipation. 
Mathematically it means that for any (as the author thinks) physical 
system it is possible to build a functional possessing a global saddle line. 
Thus far he had proved it for electrodynamics, electrical engineering, 
mechanics. In the presented book the proof of using the developed 
method in hydrodynamics is given..

It is important to say that opening the authors of the existence of 
global extremum made it possible for the author to develop a numerical 
method for such systems , based on the descend along the functional 
towards the global optimum. This allows to show theoretically and 
practically that the global solution for Naviet-Stokes equations  exists. It 
should be noted that in his research the author had used essentially the 
works of  a somewhat forgotten nowadays distinguished scientist Nikolay 
Umov.

What is really amazing, that for realizing the method there is no 
necessity to add boundary conditions to these equations – it is enough to 
describe the boundaries of  the closed domain where the solution is being 
considered. The boundaries may be walls or free surfaces. The proof lies 
in the fact that both of them do not alter the energy of fluid.

Prof. Khmilnik Mikhail
(to the first edition, 2010)
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Annotation
In this book we formulate and prove the variational extremum 

principle for viscous incompressible and compressible fluid, from which 
principle follows that the Navier-Stokes equations represent the 
extremum conditions of a certain functional. We describe the method of 
seeking solution for these equations, which consists in moving along the 
gradient to this functional extremum. We formulate the conditions of 
reaching this extremum, which are at the same time necessary and 
sufficient conditions of this functional global extremum existence.

Then we consider the so-called closed systems. We prove that for 
them the necessary and sufficient conditions of global extremum for the 
named functional always exist. Accordingly, the search for global 
extremum is always successful, and so the unique solution of Navier-
Stokes is found. 

We contend that the systems described by Navier-Stokes equations 
with determined boundary solutions (pressure or speed) on all the 
boundaries, are closed systems. We show that such type of systems 
include systems bounded by impermeable walls, by free space under a 
known pressure, by movable walls under known pressure, by the so-
called generating surfaces, through which the fluid flow passes with a 
known speed.

The book is supplemented by open code programs in the MATLAB 
system – functions realizing the calculation method and test programs. 
Links on test programs are given in the text of the book when the 
examples are described. The programs may be obtained from the author 
by request at solik@netvision.net.il
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Introduction
In his previous works [6-25, 37, 38] the author presented  the full 

action extremum principle, allowing to construct the functional for 
various physical systems, and, which is most important, for dissipative 
systems. In [31, 34, 35, 36, 39] described this principle as applied to the 
hydrodynamics of viscous fluids. In this book (unlike the first edition of 
[34, 35]) used a more rigorous extension of this principle for power and 
also is considered hydrodynamics of compressible fluids.

The first step in the construction of such functional consists in 
writing the equation of energy conservation or the equation of powers 
balance for a certain physical system. Here we must take into account the 
energy losses (such as friction or heat losses), and also the energy flow 
into the system or from it.

This principle has been used by the author in electrical engineering, 
electrodynamics, mechanics. In this book we make an attempt to extend 
the said principle to hydrodynamics. 

In Chapter 1 the full action extremum principle is stated and its 
applicability in electrical engineering theory, electrodynamics, mechanics 
is shown. 

In Chapter 2 the full action extremum principle is applied to 
hydrodynamics for viscous incompressible fluid. It is shown that the 
Naviet-Stokes equations are the conditions of a certain functional's 
extremum. A method of searching for the solution of these equations, 
which consists in moving along the gradient towards this functional's 
extremum. The conditions for reaching this extremum are formulated, 
and they are proved to be the necessary and sufficient conditions of the 
existence of this functional's global extremum.

Then the closed systems are considered. For them it is proved that 
the necessary and sufficient conditions of global extremum for the 
named functional are always valid. Accordingly, the search for global 
extremum is always successful, and thus the unique solution of Naviet-
Stokes is found. 

It is stated that the systems described by Naviet-Stokes and having 
determined boundary conditions (pressures or speeds) on all the bounds, 
belong to the type of closed systems. It is shown that such type includes 
the systems that are bounded by:

o Impermeable walls,
o Free surfaces being under a known pressure,
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o Movable walls being under a known pressure, 
o So-called generating surfaces through which the flow passes 

with a known speed. 
Thus, for closed systems it is proved that there always exists a unique 
solution of Naviet-Stokes equations.

In Chapter 3 the numerical algorithm is briefly described.
In Chapter 5 the numerical algorithm for stationary problems is 

described in detail.
In Chapter 6  the algorithm for dynamic problems solution is 

suggested, as a sequence of stationary problems solution, including 
problems with jump-like and impulse changes in external effects.

Chapter 7 shows various examples of solving the problems in 
calculations  of a mixer by the suggested method.

In chapter 8 we consider the fluid movement in pipe with 
arbitrary form of section. It is shown that regardless of the pipe section 
form the speed in the pipe length is constant along the pipe and is 
changing parabolically along its section, if there is a constant pressure 
difference between the pipe's ends.  Thus, the conclusion reached by the 
proposed method for arbitrary profile pipe is similar to the solution of a 
known Poiseille problem for round pipe.

In Chapter 9 it is shown tat the suggested method may be 
extended for viscous compressible fluids.

Into Appendix 1 some formulas processing was placed in order 
not to overload the main text.

For the analysis of energy processes in the fluid the author had 
used the book of Nikolay Umov, some fragments of which are sited in 
Appendix 2 for the reader's convenience.

In Appendix 3 there is a deduction of a certain formula used for 
proving the necessary and sufficient condition for the existence of the 
main functional's global extremum.

In Appendix 4 the method of solution for a certain variational 
problem by gradient descend  is described.

In Appendix 5 we are giving the derivation of some formulas for 
the surfaces whose Lagrangian has a constant value and does not depend 
on the coordinates.

In Appendix 6 dealt with a discrete version of modified Navier-
Stokes equations and the corresponding functional.

In Appendix 7 we discuss an electrical model for solving modified 
Navier-Stokes equations and the solution method for these equations 
which follows this model.
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Сhapter 1. Principle extremum of 
full action

1.1. The Principle Formulation
The Lagrange formalism is widely known – it is a universal method 

of deriving physical equations from the principle of least action. The 
action here is determined as a definite integral - functional

   2
1

)()()( t
t dtqPqKqS (1)

from the difference of kinetic energy )(qK  and potential energy )(qP , 
which is called Lagrangian

)()()( qPqKq  . (2)
Here the integral is taken on a definite time interval 21 ttt  , and q   
is a vector of generalized coordinates, dynamic variables, which, in their 
turn, are depending on time. The principle of least action states that the 
extremals of this functional (i.e. the equations for which it assumes the 
minimal value), on which it reaches its minimum, are equations of real 
dynamic variables (i.e. existing in reality).

For example, if the energy of system depends only on functions q  

and their derivatives with respect to time
 
q , then the extremal is 

determined by the Euler formula
    0
















q
PK

dt
d

q
PK

. (3)

As a result we get the Lagrange equations.
The Lagrange formalism is applicable to those systems where the 

full energy (the sum of kinetic and potential energies) is kept constant. 
The principle does not reflect the fact that in real systems the full energy 
(the sum of kinetic and potential energies) decreases during motion, 
turning into other types of energy, for example, into thermal energyQ , i. 
e. there occurs energy dissipation. The fact, that for dissipative systems 
(i.e., for system with energy dissipation) there is no formalism  similar to 
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Lagrange formalism, seems to be strange: so the physical world is found 
to be divided to a harmonious (with the principle of least action) part, 
and a chaotic ("unprincipled") part. 

The author puts forward the principle extremum of full action, 
applicable to dissipative systems. We propose calling full action a definite 
integral – the functional

  2
1

)()( t
t dtqq (4)

from the value
 )()()()( qQqPqKq  , (5)

which we shall call energian (by analogy with Lagrangian). In it )(qQ  is 
the thermal energy. Further we shall consider  a full action quasiextremal, 
having the form:  

    0



















q
Q

q
PK

dt
d

q
PK

. (6)

Functional (4) reaches its extremal value (defined further) on 
quasiextremals. The principle extremum of full action states that the 
quasiextremals of this functional are equations of real dynamic processes.

Right away we must note that the extremals of functional (4) 
coincide with extremals of functional (1) - the component corresponding 
to )(qQ , disappears

Let us determine the extremal value of functional (5). For this 
purpose we shall "split" (i.e. replace) the function )(tq  into two 
independent functions )(tx  and )(ty  , and the functional  (4) will be 
associated  with functional

  2
1

),(),( 22
t
t dtyxyx , (7)

which we shall call "split" full action. The function ),(2 yx  will be 
called "split" energian. This functional is minimized along function )(tx  
with a  fixed function )(ty  and is maximized along function )(ty  with 
a fixed function )(tx . The minimum and the maximum are sole ones. 
Thus, the extremum of functional (7) is a saddle line, where one group of 
functions ox  minimizes the functional, and another - oy , maximizes 
it.  The sum of the pair of optimal values of the split functions gives us 
the sought function oo yxq  , satisfying the quasiextremal 
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equation (6). In other words, the quasiextremal of the functional (4) is a 
sum of extremals oo yx ,  of functional (7), determining the saddle 
point of this functional. It is important to note that this point is the sole 
extremal point – there is no other saddle points and no other minimum 
or maximum points. Therein lines the essence of the expression 
"extremal value on quasiextremals". Our statement 1 is as follows:
 

In every area of physics we may find correspondence between full 
action and split full action, and by this we may prove that full action 
takes global extremal value on quasiextremals.  

Let us consider the relevance of statement 1 for several fields of physics.  

1.2. Energian in electrical engineering
Full  action in electrical engineering takes the form (1.4, 1.5), where

.)(,
2

)(,
2

)(
22

qqRqQEqSqqPqLqK 












 (1)

Here stroke means derivative , q  - vector of functions-charges with 
respect to time, E  - vector of functions-voltages with respect to time, L  
- matrix of inductivities and mutual inductivities, R  - matrix of 
resistances, S  - matrix of inverse capacities, and functions 

)(),(),( qQqPqK  present magnetic, electric and thermal energies 
correspondingly. Here and further vectors and matrices are considered in 
the sense of vector algebra, and the operation with them are written in 
short form. Thus, a product of vectors is a product of column-vector by 
row-vector, and a quadratic form, as, for example, qqR   is a product of 
row-vector q  by quadratic matrix R  and by column-vector q .

In [22, 23] the author shown that such interpretation is true for any 
electrical circuit. The equation of quasiextremal (1.6) in this case takes the 
form: 

0 EqRqLSq . (2)
Substituting (1) to (1.5), we shall write the Energian (1.5) in expanded 
form:
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












 qqREqSqqLq

22
)(

22
. (3)

Let us present the split energian in the form

 
  

















yxRExSxxL

yRxEySyyL
yx

22

22

2 ),( . (4)

Here the extremals of integral (1.7) by functions )(tx  and )(ty , found 
by Euler equation, will assume accordingly the form: 

0222  EyRxLSx , (5)
0222  ExRyLSy . (6)

By symmetry of equations (5, 6) it follows that optimal functions 0x  and 

0y , satisfying these equations, satisfy also the condition

00 yx  . (7)
Adding the equations (5) and (6),  we get equation (2), where

oo yxq  . (8)
It was shown in [22, 23] that conditions (5, 6) are necessary for the 
existence of a sole saddle line. It was also shown in [22, 23] that sufficient 
condition for this is that the matrix L  has a fixed sign, which is true for 
any electric circuit. 

Thus, the statement 1 for electrical engineering is proved.  From it 
follows also statement 2:

Any physical process described by an equation of the form  (2), 
satisfies the principle extremum of full action. 
Note that equation (2) is an equation of the circuit without knots. 

However, in [2, 3] has shown that to a similar form can be transformed 
into an equation of any electrical circuit (with any accuracy).

1.3. Energian in Mechanics
Here we shall discuss only one example - line motion of a body 

with mass m  under the influence of a force f  and drag force qk  , 

where k  - known coefficient, q  - body's coordinate. It is well known 
that

qkqmf  . (1)
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In this case the kinetic, potential and thermal energies are accordingly:

qkqqQfqqPqmqK  )(,)(,2)( 2 . (2)
Let us write the energian  (1.5) for this case:

qkqfqqmq  2)( 2 . (3)
The equation for energian in this case is (1)
Let us  present the split energian as:

 
  

















yxkfxxm

ykxfyym
yx

2

2

2 ),( . (4)

It is easy to notice an analogy between energians for electrical 
engineering and for this case, whence it follows that Statement 1 for this 
case is proved. However, it also follows directly from Statement 2. 

1.4. Mathematical Excursus
Let us introduce the following notations:

.ˆ, 0 t ydtydt
dyy (1)

There is a known Euler’s formula for the variation of a functional of 
function ,...),,( yyyf   [1]. By analogy we shall now write a similar 
formula for function ,...),,,ˆ(..., yyyyf  :

,...),,,ˆ(..., yyyyf  : (2)

......var '
2

2
''

0
'
ˆ   yyy

t
y f

dt

d
f

dt
dfdtf (3)

In particular, if yxf () , then xvar ; if yxf ˆ()  , then x̂var  . 
The equality to zero of the variation (1) is a necessary condition of the 
extremum of functional from function (2).

1.5. Full Action for Powers
In this case full action-2 is a definite integral - functional

  2
1

)(ˆ)(ˆ t
t dtii (1)

from the value
 )(ˆ)(ˆ)(ˆ)(ˆ iQiPiKi  , (2)
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which we shall call Energian-2. In this case we shall define full action 
quasiextremal-2  as

0
ˆˆ

2
ˆ











 

i

KPQ

. (3)

Functional (1) assumes extremal value on these quasiextremals. The 
principle extremal of full action-2 asserts that quasiextremals of this 
functional are equations of real dynamic processes over integral 
generalized coordinates i . 

Let us now determine the extremal value of functional (1, 2). For 
this purpose we, as before, will “split” the function )(ti  to two 
independent functions )(tx  and )(ty , and put in accordance to 
functional (1) the functional

  2
1

),(ˆ),(ˆ 22
t
t dtyxyx , (4)

which we shall call  "split full action-2. We shall call the function 
),(ˆ 2 yx  "split " Energian--2.  This functional is being minimized by 

the function )(tx  with fixed function )(ty  and maximized by function 
)(ty  with fixed function )(tx . As before, the quasiextremal (3) of 

functional (1) is a sum oo yxi   of extremals oo yx ,  of the 
functional (4), determining the saddle point of this functional.

1.6. Energian-2 in mechanics
As in Section 3 we shall consider an example, for which the 

equation (3.1) is applicable, or
ikimf  . (1)

In this case the kinetic, potential and thermal powers are accordingly:
2)(ˆ,)(ˆ,)(ˆ ikqQifiPiimiK  . (2)

Let us write the energian-2 (6.2) for this case:
2)(ˆ ikifiimi  . (3)

Уравнение квазиэкстремали в этом случае принимает вид (1).
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1.7. Energian-2 in Electrical Engineering
Let us consider an electrical circuit which equation has the form, 

(2.2) or
0ˆ  EiRiLiS . (1)

In this case the kinetic, potential and thermal powers are accordingly:

.)(ˆ,ˆ)(ˆ,)(ˆ 2iRiQiEiiSiPiiLiK  (2)
Let us write the energian-2 (6.2) for this case:

.ˆ)(ˆ 2iRiEiiSiiLi  (3)
The equation of quasiextremal in this case assumes the form (1).

Let us now present the “split” Energian-2 as
   
    

















yxEyxR

yxyxLyxyxS
yx 222

ˆˆ
),(ˆ . (4)

The extremals of integral (6.4) by the functions )(tx  and )(ty , found 
according to equation (4.3),  will assume accordingly the form:

022ˆ2  ERxyLyS , (5)
022ˆ2  ERyxLxS . (6)

From  the symmetry of equations (5, 6) it follows that optimal functions 

0x  and 0y , satisfying these equations, satisfy also the condition 

00 yx  . (7)
Adding together the equations (5) and (6), we get the equation (1), where  

oo yxq  . (8)
Therefore, the equation (1) is the necessary condition of the existence of 
saddle line. In [2, 3] it is shown that the sufficient condition for the 
existence of a sole saddle line   is  matrix L  having fixed sign, which is  
true for every electrical circuit.  

1.8. Energian-2 in Electrodynamics
In [22, 23, 38], the proposed method is also applied to 

electrodynamics.

1.9. Conclusion
The functionals (1.7) and (6.4) have global saddle line and therefore 

the gradient descent to saddle point method  may  be used for calculating 
physical systems with such functional.   As  the  global  extremum  exists, 
then the solution  also always exists.   Further,  the  proposed  method  is 
applied to the hydrodynamics.
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Chapter 2. Principle extremum of full 
action for viscous incompressible fluid

2.1. Hydrodynamic equations for viscous incompressible fluid
The hydrodynamic equations for viscous incompressible liquid are as 

follows [2]:
0)(div v , (1)

  0

 Fvvvp
t
v  , (2)

where
const   is constant density,

  - coefficient of internal friction,
p  - unknown pressure,

 zyx vvvv ,,  - unknown speed, vector, 

 zyx FFFF ,,  - known mass force, vector,

tzyx ,,,  - space coordinates and time.

The reminder notations  vvvp  ,,  are repeatedly given below 
in Appendix 1. Further the letter "p" will denote the formulas given in 
this application.

2.2. The power balance
Umov [1] discussed for the liquids the condition of balance for  

specific (by volume) powers in a liquid flow.  For a non-viscous and 
incompressible liquid this condition is of the form (see (56) in [1] and 
Appendix 2)

0),()()( 451  vpPvPvP , (3)
and for viscous and incompressible liquid - another form (see (80) in [1] 
and Appendix 2)

0),()()( 251  vpPvPvP , (4)
where
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2 (6)

pvP 4 , (7)













dz
dWv

dy
dWv

dx
dWvP zyx

222
5 2

1  , (8)

 2222
zyx vvvW  (9)

xyp  and so on – tensions (see (р24) in Appendix 1).

Here 1P  is the power of energy variation, 4P  is the power of work of 
pressure variation, 5P  - the power of variation of energy variation for 
direction change, and the value

),()(),( 457 vpPvPvpP           (10)
is, as it was shown by Umov, the variation of energy flow power through 
a given liquid volume – see (56) и (58) в [1]. In [2] it was shown, that for 
incompressible liquid the following equality is valid
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xzxyxx
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
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
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          (11)

This follows from (р24). From this it follows that
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 vpvP  2 .          (12)
or subject to (6)

342 PPP           (13)
where

vvP  3          (14)
- power of change of energy loss for internal friction during the motion. 
Therefore, we rewrite (4) in the form

0)(),()()( 3451  vPvpPvPvP ,         (15)
We shall supplement the condition (15) by mass forces power

FvP 6 .         (16)
Then for every viscous incompressible liquid this balance condition is of 
the form

0)()(),()()( 63451  vPvPvpPvPvP .         (17)
Taking into condition(1) and formula (p1a) let us rewrite (7) in the form

 pvP  div4 ,        (18)
Taking into account (p9a), condition(1) and formula (p1a) let us rewrite 
(8) in the form

 2
5 div WvP  .        (19)

From (18, 19) and Ostrogradsky formula  (p28) we find:
   

S
nS

VV

dSvpdVpvdVP div4 ,        (20)

   
S

n
VV

dSvWdVWvdVP 22
5 div        (20а)

or, subject to (р15),
   

S
n

VV

dSvWdVvGvdVP 2
5 )( .        (21)

Returning again to the definitions of powers (7, 8), we will get
   

S
nS

V
dSvpdVpv ,        (21а)

    
S

n
V

dSvWdVWv 22        (21в)

or
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   
S

n
V

dSvWdVvGv 2)( .        (21с)

2.3. Energian and quasiextremal
For further discussion we shall assemble the unknown functions 

into a vector
   zyx vvvpvpq ,,,,   .          (22)

This vector and all its components are functions of ),,,( tzyx . We 
are considering a liquid flow in volume V . The full action-2 in 
hydrodynamics takes a form

 













T

V
dtdVtzyxq

0
),,,(( ,          (23)

Having in mind (17) and the definition of energian -2,  let us write the 
energian-2 in the following form

)()()()(
2
1)()( 65431 vPvPqPvPvPq  .          (24)

Below in Appendix 1 will be shown – see (р8, р15, р18):

dt
dvvP  1 ,           (25)

),(5 vGvP             (26)
where

 vvvG )( .           (27)
Taking this into account let us rewrite the energian (24) in a detailed form

  FvvGvpvvv
dt
dvvq   )(div

2
1)( . (28)

Further we shall denote the derivative computed according to 

Ostrogradsky formula (р23), by the symbol 
v
o




, as distinct  from 

ordinary derivative 
v


.  Taking this into account (р19),  we get
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          (29)

In accordance with Chapter 1 we write the quasiextremal in the following 
form: 

     
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From (29) it follows that the quasiextremal (30) after differentiation 
coincides with equations (1, 2).

2.4. The split energian-2
Let us consider the split functions (22) in the form

   zyx vvvpvpq  ,,,, ,         (31)

   zyx vvvpvpq  ,,,, .         (32)
Let us present the split energian taking into account the formula (р18) in 
the form
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)()(
divdiv2),(2 . (33)

Let us associate with the functional (23) functional of split full action  
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V
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22 ),( ,         (34)
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With the aid of Ostrogradsky formula (р23) we may find the variations of 
functional (34) with respect to functions q . In this we shall take into 
account  the formulas (р22), obtained in the Appendix 1. Then we have:

p
o b
p 


 2 ,         (35)

v
o b
v 


 2 ,         (36)

)(div2 vbp  ,         (37)
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222
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.          (38)

So, the vector 
 vp bbb  ,           (39)

is a variation of functional (34), and the condition
  0,   vp bbb          (40)

is the necessary condition for the existence of the extremal line. Similarly,
  0,   vp bbb          (41)

The equations (40, 41) are necessary condition for the existence of a 
saddle line. By symmetry of these equations we conclude that the optimal 
functions 0q  and 0q  , satisfying these equations, satisfy also the 
condition

00 qq  .         (42)
Subtracting in couples the equations (40, 41) taking into consideration 
(37, 38), we get

0)(2div  vv ,          (43)
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For vv   according to (р20), we have
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Taking into account (27, 45) and reducing (43, 44) by 2, получаем we get 
the equations (1, 2), where  

oo qqq  .          (46)
- see (22, 31, 32), i.e. the equations of extremal line are Naviet-Stokes 
equations.

2.5. About sufficient conditions of extremum  
Let us rewrite the functional (34) in the form
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z y x
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22 ),( ,         (47)

where vectors qq , are determined by (31, 32),  tzyxX ,,,  – 
vector of independent variables. Further only the functions 

   )(),( XvXpXq   will be varied.
Vector b , defined by (39), is a variation of functional 2  by the 

function q  and depends on function q , i.e.  qbb  . Here the 
function q   here is fixed. 

Let S  be an extremal, and subsequently, the gradient in it is 0sb . 
To find out which type of extremum we have, let us look at the sign of 
functional's increment

   CS 222  ,          (48)
where С is the line of comparison, where   0 сbb . Let the values 
vector q  on lines S  и С differ by 

baqqqqq SSC   ,          (49)
where b  is the variation on the line  С, а – a known number. Thus, 

.
v

p

S

S
S b

b
a

v
p

baqq 



          (50)

where vp bb ,  are determined by (35, 36) accordingly, and do not 

depend on q .  
If 

Aa 2 ,         (51)
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where A  has a constant sign  in the vicinity of extremal 0sb , then 
this extremal is  sufficient condition of extremum. If, furthermore, A  is 
of constant sign in all definitional domain of the function q , then this 
extremal determines a global extremum. 

From (48) we find
       qqCS S  22222 ,         (52)

or, taking into account (33, 50),
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Taking into account (р21), we get:
     )(,,)()( 2

21 vvsvssvs bGabvGbvGavGabvG  .    (54)
Here (53) is transformed into

2
2221202 aa  ,        (55)

where 222120 ,,   are functions not dependent on а, of the 
form
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)(2)(22 vvv bGvbb   .          (58)
Now we must find
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         (59)

This function depends on q . To prove that  the necessary condition 
(40) is also a sufficient condition of global extremum of the functional 
(47) with respect to function q , we must prove that the integral
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or, which is the same,   the integral
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         (61)

is of constant sign. Similarly, to prove that  the necessary condition (41) 
is also a sufficient condition of a global extremum of the functional (47) 
with respect to function q  , we have to prove that the integral similar to 
(60)  is also of the same sign.

Specifying the concepts, we will say that the Navier-Stokes 
equations have a global solution, if for them there exists a unique non-
zero solution in a given domain of the fluid existence.

In the above-cited integrals the energy flow through the domain's 
boundaries was not taken into account. Hence the above-stated may be 
formulated  as the following lemma

Lemma 1. The Navier-Stokes equations for incompressible fluid 
have a global solution in an unlimited domain, if the integral  (61, 58)  has 
constant sign for any speed of the flow. 

2.6. Boundary conditions
The boundary conditions determine the power flow through the 

boundaries, and, generally speaking, they may alter the power balance 
equation. Let us view some specific cases of boundaries.  

2.6.1. Absolutely hard and impenetrable walls
If the speed has a component normal to the wall, then the wall gets 

energy from the fluid, and fully returns it to the fluid. (changing the 
speed direction). The tangential component of speed is equal to zero 
(adhesion effect). Therefore such walls do not change the system's 
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energy. However, the energy reflected from walls creates an internal 
energy flow, circulating between the walls. So in this case all the above-
stated formulas remain unchanged, but the conditions on the walls 
(impenetrability, adhesion) should not be formulated explicitly – they 
appear as a result of solving the problem with integrating in a domain 
bounded by walls. Then the second lemma is valid:

Lemma 2. The Navier-Stokes equations for incompressible fluid 
have a global solution in a domain bonded by absolutely hard and 
impenetrable walls, if the integral (61, 58) is of the same sign for any flow 
speed.

2.6.2. Systems with a determined external pressure
In the presence of external pressure the power balance condition 

(17)  is supplemented by one more component – the power of pressure 
forces work

ns vpP 8 ,          (62)
where

sp  - external pressure,

S  - surfaces where the pressure determined,

nv  - normal component of   flow incoming into above surface,
In this case the full action is presented as follows: 

 













T

SV
dtdVtzyxqPdVtzyxq

0
8 ),,,((),,,(( .    (63)

For convenience sake let us consider the functions Q , determined 
on the domain of the flow existence and taking zero value in all the 
points of this domain, except the points belonging to the surface S . 
Then the restraint (63)  may be written in the form

 













T

V
dtdVtzyxq

0
),,,((ˆ ,         (64)

where  energian
)()()(ˆ 8 nvPQqq  .         (65)

One may note that here the last component is identical to the power of 
body forces – in the sense that both of them depend only on the speed. 
So all the previous formulas may be extended on this case also, by 
performing substitution in them.   
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spQFF  .        (66)
Therefore the following lemma is true:

Lemma 3. The Navier-Stokes equations for incompressible fluid 
have a global solution in a domain bounded by surfaces with a certain 
pressures, if the integral  (61, 58)  has constant sign for any flow speed.

Such surface may be a free surface or a surface where the pressure 
is determined by the problem's conditions (for example, by a given 
pressure in the pipe section). 

Note also that the pressure sp  may be included in the full action 
functional formally, without bringing in physical considerations. Indeed, 
in the presence of external pressure there appears a new constraint - 
(21а). In [4] it is shown that such problem of a search for a certain 
functional with integral constraints (certain integrals of fixed values) is 
equivalent to the search for the extremum of the of the sum  of our 
functional and integral constraint. More precisely, in our case we must 
seek for the extremum of the following functional:  

 













T

V
dtdVtzyxq

0
)),,,((ˆ ,         (67)

 











ns vpQpv

tzyxq
tzyxq

-
)),,,((

),,,((ˆ


,         (68)

where   – an unknown scalar multiplier. It is determined or known 
initial conditions [4]. For 1  after collecting similar terms the 
Energian (68) again assumes the form   (65), which was to be proved.

2.6.3. Systems with generating surfaces
There is a conception often used in hydrodynamics of a certain 

surface through which a flow enters into a given fluid volume with a 
certain constant speed, i.e., NOT dependent on the processes going on 
in this volume. The energy entering into this volume with this flow, 
evidently will be proportional to squared speed module and is constant. 
We shall call such surface a generating surface (note that this is to  some 
extent similar to a source of stabilized direct current whose magnitude 
does not depend on the electric circuit resistance).

If there is a generating surface, the power balance condition (17) is 
supplemented by another component – the power of flow with constant 
squared speed module. 
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ns vWP  2
9 ,         (69)

где

sW  - squared module of input flow speed,

S  - surfaces where the pressure determined,

nv  - normal component of   flow incoming into above surface,

One may notice a formal analogy between  sW  and sp . So here 
we also may consider the functional (64),  where the energian is

)()()(ˆ 9 nvPQqq  ,          (70)
and then perform the substitution

2
sWQFF  .         (71)

Consequently, the following lemma is true:
Lemma 4. The Navier-Stokes equations for incompressible fluid 

have a global solution in a domain bounded by generating surface  with a 
certain pressure , if the integral  (61, 58)  has constant sign for any flow 
speed.

Note also that sW  the pressure sp  may be included in the full 
action functional formally, without bringing in physical 
considerations.(similar with pressure sp  ). Indeed, in the presence of 
external pressure there appears a new constraint - (21c). Including this 
integral constraint into the problem of the search for functional's 
extremum, we again get Energian (70).

2.6.4. Closed systems
We will call the system closed if it is bounded by  

o absolutely hard and impenetrable walls,
o surfaces with certain external pressure,,
o generating surfaces, or
o not bounded by anything.

In the last case the system will be called absolutely closed. Such case 
is possible. For example, local body forces in a bondless ocean create 
such a system, and we shall discuss this case later. There is a possible 
case when the system is bounded by walls, but there is no energy 
exchange between fluid and walls. An example – a flow in endless pipe 
under the action of axis body forces. Such example will also be 
considered below.

In consequence of Lemmas 1-4, the following theorem is true: 
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Theorem 1. The Navier-Stokes equations for incompressible fluid 
have a global solution in a given domain, if 

o the domain of fluid existence is closed,
o the integral  (61, 58)  has constant sign for any flow speed.

The free surface, which is under certain pressure, may also be the 
boundary of a closed system. But the boundaries of this system are 
changeable, and the integration must be performed within the fluid 
volume. It is well known  that the fluid flow through a certain surface S  
is determined as

  dvw
S

S )(div .         (72)

Thus, the boundary conditions in the form of free surface are fully 
considered, by the fact that  the integration must be performed within the 
changeable boundaries of the free surface.

We have indicated above, that the power of energy flow change is 
determined by (10). In a closed system this power is equal to zero. 
Therefore for such system the Energian (24) or (28) turns into Energian 
(accordingly)

)()()()( 631 vPvPvPq  ,          (73)

Fvvv
dt
dvvq   )( .          (74)

For such systems the Navier-Stokes equations take the form (1) and 

0

 Fv
t
v  ,         (75)

Some examples of such system will be cited below.

2.7. Modified Navier-Stokes equations  
From (p19a) we find that

   22Wvv  . (76)
Substituting (76) in (2), we get   

   22Wvv  . (77)
Let us consider the value







  2

2
WpD 

, (78)

which we shall call quasipressure.  Then  (77) will take the form
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0

 FDv
t
v  . (79)

The equations system (1, 79) will be called  modified Navier-Stokes 
equations. The solution of this system are functions Dv, , and the 
pressure may be determined from (9, 78). It is easy to see that the 
equation  (79) is much simpler than (2).

The above said may be formulated as the following lemma.
Lemma 5. If a given domain of incompressible fluid is described 

by Navier-Stokes equations, then it is also described by modified Navier-
Stokes equations, and their solutions are similar.  

Physics aside, we may note that from mathematical point of view the 
equation (79) is a particular case of equation (2), and so all the previous 
reasoning may be repeated for modified Navier-Stokes equations. Let us 
do it.  

The functional of split full action (34) contains modified split 
Energian  
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vvFDvDv

vvvv
dt
vdv

dt
vdv

qq




divdiv
),(2 .        (80)

- see (33). Gradient of this functional with respect to function q  is (37) 
and 

 






 


 FDv
dt
vdbv  222 .        (81)

- see  (38). The components of equation (55)  take the form
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vpv

vssv
v

v

bFbvDb

bvvb
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dbv
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vdb





2
21 ,        (82)

)(22 vv bb   .        (83)
Thus, for modified Navier-Stokes equations by analogy with 

Theorem 1 we may formulate the following theorem
 Theorem 2. Modified Navier-Stokes equations for incompressible 

fluid have a global solution in the given domain, if  
o the fluid domain of existence is a closed system
o the integral (61, 83) has the same sign for any fluid flow speed.  
Lemma 6. Integral (61, 83) always has positive value.
Proof. Consider the integral
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 
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










T

V
dtdVvvJ

0
)(          (84)

This integral expresses the thermal energy, evolved by the liquid due to 
internal friction. This energy is positive not depending on what function 
connects the vector of speeds with the coordinates. A stricter proof of 
this statement is given in Appendix 3. Hence, integral (84) is  positive for 
any speed. Substituting in (84) vbv  , we shall get integral (61, 83), 
which is always positive, as was to be proved.

From Lemmas 5, 6 and Theorem 2 there follows a following.
Theorem 3. The equations of Navier-Stokes for incompressible 

fluid always have a solution in a closed domain. 
The solution of equation (1, 79) permits to find the speeds. 

Calculation of pressures inside the closed domain with known speeds is 
performed with the aid of equation (78) or

  0 vvp  .          (85)

2.8. Conclusions
1. Among the computed  volumes of fluid flow the closed volumes 

of fluid flow may be marked, which do not exchange flow  with adjacent 
volumes – the so-called closed systems.

2. The closed systems are bounded by: 
o Impermeable walls,
o Surfaces, located under the known pressure,
o Movable walls being under a known pressure, 
o So-called generating surfaces through which the flow passes 

with a known speed. 
3. It may be contended that the systems described by Naviet-Stokes 

equations, and having certain boundary conditions (pressures or speeds) 
on all boundaries, are closed systems. 

4. For closed systems the global solution of modified Navier-Stokes 
equations always exists.

5. The solution of Navier-Stokes equations may always be found  
from the solution of modified Navier-Stokes equations. Therefore, for 
closed systems there always exists a global solution of modified Navier-
Stokes equations.
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Chapter 3. Computational 
Algorithm

The method of solution for hydrodynamics equations with a known 
functional, having a global saddle point, is based on the following 
outlines [22, 23]. For  the given functional from two functions 21, qq  
two more secondary functionals are formed from those functions 

21, qq . Each of these functionals has its own global saddle line. 
Seeking for the extremum of the main functional is substituted by 
seeking for extremums of two secondary functionals, and we are moving 
simultaneously along the gradients of these functionals. In general   
operational calculus should be used for this purpose. However, in some 
particular cases the algorithm may be  considerably simplified.

Another complication is caused by the fact that in the computations 
we have to integrate over all the flow area. But the area may be infinite, 
and full integration is impossible. Nevertheless, the solution is possible 
also for an infinite area,  if the flow speed is damping.

Here we shall discuss  only these particular cases.
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Chapter 5. Stationary Problems

Note that in stationary mode the equations (2.1, 2.2) assumes the 
form

  .
0

,0)(div








Fvvvp
v


. (1)

The modified equations (1, 79) in stationary mode take the form:








.0
,0)(div

FDv
v


. (2)

In Appendix 6 we considered the discrete version of modified Navier-
Stokes equations for stationary systems (2). It was shown that for 
stationary closed systems the solution of modified Navier-Stokes 
equations is reduced to a search for quadratic functional minimum (and 
not a saddle points, as in general case). After solving these equations the 
pressure is calculated by the equation (2.78), i.e.

2
2
WDp 

 . (3)

or
  0 vvDp  (4)

The equation (2.75) for absolutely closed systems in stationary 
mode takes the form   

0 Fv  . (5)
The solution of equation (2) has been discussed in detail in Appendix 4. 
After solving it  the pressures are calculated by the equation (4) if 

0D .
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Chapter 6. Dynamic Problems

6.1. Absolutely closed systems
Let us consider the equation (2.75) for absolutely closed systems and 

rewrite is as

0

 Fv
t
v  (1)

where


  . (2)

Assuming that time is a discrete variable with step dt , we shall 
rewrite (1) as

01 
 

nn
nn Fv

dt
vv  , (3)

where ,...3,2,1n  – the number of a time point. Let us write (3) as

01  nn
n Fv
dt
v  . (4)

where







  

dt
vFF n

nn
1

1 . (5)

For a known speed 1nv  the value nv  is determined  by (4). 
Solving this equation is similar to solving a stationary problem – see 
Appendix 4. On the whole the algorithm of solving a dynamic problem 
for a closed system  is  as follows

Algorithm 1
1.   1nv  and nF  are known
2. Computing nv  by (4, 5).
3. Checking the deviation norm
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t
v

t
v nn








 1  (6)

and, if it doesn't exceed a given value, the calculation is over.  
расчет заканчивается. Otherwise we assign 

nn vv 1 (7)
and go to p. 1.

Example 1. Let the body forces on a certain time point assume 
instantly a certain value – there is a jump of body forces. Then in the 
initial moment the speed 0ov , and on the first iteration we assign 

01 nv . Further we perform the computation according to 
Algorithm 1.

6.2. Closed systems with variable mass forces and external 
pressures
Consider the modified equation (1, 79) in the case when the mass 

forces are sinusoidal functions of time with circular frequency  . In this 
case equations (1, 79) take the form of equations with complex variables:








,0
,0)(div

FDvvj
v


.            (8)

where j  - the imaginary unit.
In Appendix 6 the discrete version of these equations is considered. 

There it is shown that their solution is reduced to the search of saddle 
point  of a certain function of complex variables. After solving these  
equations the pressure is calculated by equation(4).
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Chapter 7. An Example: 
Computations for a Mixer

7.1. The problem formulation
Let us consider a mixer, whose lades are made of fine-mesh material 

and are located close enough to one another. Then the pressure forces of 
the blades on the fluid may be equated to body forces. 

The body forces might have a limited area of action   (less than 
the fluid volume) It mean only that outside this area the body forces are 
equal to zero. In addition, these forces may be a function of speed, 
coordinates and time. Let us discuss some cases. For example, the blades 
of a mixer work in a closed fluid volume  , and the force mF , applied 
to the blades, is passed to the fluid elements. The body force F  may be 
determined as

   


dFvFm  .

Let us assume also that the mixer is long enough, and so in its 
middle  the problem of calculation of the field of speeds may be 
considered as a two-dimensional problem. Let us first consider a structure 
without walls. In such a problem there is no restraints, and so the system 
is a closed one (in the sense that was defined above). Let us use for our 
calculations the method described in Chapter 5.

Let us assume that the body forces created by mixer's blades and 
acting along a circle with its center in the coordinate origin, are described 
as follows

   2aReRF   , (1)
where

R  is the distance from the current point to  the rotation axis,

a,  are certain constants.
Function (1) is shown on Fig. 1, and gradient of forces (1) is shown on 
Fig. 2 .
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7.2. Polar coordinates
If body forces are plane and do not depend on the angle, then the 

Naviet-Stokes equations assume the form [2]: 

012






r
p

r
v


, (2)

01
22

2
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











r
v

r
v

rr
vF  . (3)

Interestingly enough in this system the equation for the calculation 
of pressure using speed is extracted from the main equation. Physically it 
may be explained by the fact that our system is absolutely closed (in the 
determined above sense). It confirms our assertion that speed calculation 
and pressure calculation in a absolutely closed system may be parted. The 
condition of continuity in this system is also absent, which also 
corresponds with our statement for absolutely closed system.

Thus, as the pressure in this case is not included into equation (3), 
the latter cannot be solved independently, and the pressure may be found 
afterwards by direct integration of the equation (2). But the equation (3) 
may not be solved by direct integration. Indeed, depending on the 
direction of integration (from infinity to zero or vice versa) the results 
will be quite different. When integrating "from the zero:" the result 
depends on initial values of speed and on its derivative, which are not 
determined by the problem's conditions.

Nevertheless, the unique solution should exist, and it may be 
obtained by the proposed method. To achieve it, we must better return 
to Cartesian coordinates..

7.3. Cartesian coordinates
Projections of forces (1) on coordinate axes are

   2, aR
x e

R
yyxF  

,           (4a)

   2, aR
y e

R
xyxF  

.           (4b)

The equation for this absolutely closed stationary system is as follows:
0 Fv  , (5)
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To solve the equation (5) use the method described above in Chapter 5. 
This method is realized  in the program testPostokPuas22 (mode=1), which 
builds the following graphs

1. Logarithm of relative mistake function 

    dxdyFdxdyFv
yxyx

 
,

2

,

2
1  (7)

 – of the residual of equation (2.70) in dependence of iteration 
number – see the first window on Fig 3;

2. Logarithm of relative mistake function

  dxdy
dy
dv

dx
dvdxdyv

yx

yx

yx
 






























,

222

,
2 )(div (8)

- of the residual in the continuity condition  in dependence of 
iteration number – see the second window on Fig. 3; note that 
this mistake is a methodic one – it is caused by boundedness of 
the surface of integration plane and decreases with the surface 
extension;  

3. speed function Rv  (on the last iteration) in dependence of radius 
– see  the third window on Fig 3; thus, this Figure shows the 
problem solution;

4. force function F  and Lagrangian function v  in 
dependence of radius – see  the fourth window on Fig 3, where 
these functions a denoted by dot line and full line accordingly. 

The calculation was performed for 
35,1,1,5,1.0  na  , where nn   - the 

dimensions of the integration domain. The dimensions are chosen 
large enough, so that the speed on a large distance from center would 
be close to zero, and thus the system may be considered absolutely 

closed. Here 286,007.0,01.0 21  k , where k  is the 
number of iterations. 
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7.4. Mixer with walls
Contrary to the previous case (in Cartesian coordinates0 we shall 

now consider a mixer with cylindrical  walls, located on the circle with 
radius sR . We have shown above that the walls create a closed system 
and do not change the power  balance in the system. In essence, the 
calculation is done in the same way, by (5.2) and the program 
testMixerModif, mode=2, as in the previous case. The integration area is 
restricted by the circle with radius sR . Calculation results are shown on 
Fig. 4. In this case 

20,7000,0026.0,105 2
11

1  
sRk . It is 

important to note that on the circle of radius sR  the speed is 0v . 
This answers the known fact that due to vicious friction the speed of fluid 
on the surface of a body surrounding it, is equal to zero. It is also 
important to note that to get this result we had not have to add more 
equations in the main equation - it was enough to restrict the integration 
domain.
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7.5. Ring Mixer
Let us consider now a mixer with internal  and external cylindrical 

walls, located on   circles   correspondingly with radius 1R  and 2R . Fig. 
4а shows the result of computation by (5.2), by the program testKolzoModif, 
variant=2,, which has built the following graphs:

1. function (2.7) – see the first window;
2. function (2.8) – see the second window; 
3. the speed function Rv  depending on radius – see the third 

window;
4. the speed module function v  depending on Cartesian 

coordinates – see the fourth window.
The calculations have been made for 

33,1,1,25,1.0  ra   and 70,30 21  RR .

We got  500,0028.0,104 2
4

1   k . 
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Fig. 4с.

Fig. 4d.
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In the similar way we shall consider a mixer where interior part has 
the form of a square with half-side  of 1R . Fig. 4в shows the result of 
calculation by (5.2), by the program testKolzoModif, variant=1. We got 

500,0432.0,0045.0 21  k .
Fig. 4c and 4d show the speed gradient distribution for a round and 

square   interior parts  accordingly.

7.6. Mixer with bottom and lid
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Let us consider now a mixer with bottom and lid – see Fig. 5, where
(9,10,11,12) – unlimited integration domain,,
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(2,3,6,7) –the area of mixer's blades,
(1,8) – the mixer's bottom,
(4,5) – the mixer's lid,
(1,4; 5,8) – the mixer's cylindrical wall,
ox  - the axis passing along the diameter through the mixer's center,  
oz  - the axis passing along the rotation axis of mixer's blades, 

sR  - the radius of mixer's can,

iR  - the radius of initial integration domain,

sH  - half-height of the mixer's can, bounded by bottom and lid, 

mH  half-height of mixer's blades,

iH  - half-height  of initial integration domain.
Bottom, lid and walls of the can create a closed system and do not 

change the power balance in the system. The calculations are performs 
exactly as in the previous case. The calculations results are shown on Fig. 
4. It is important to note that on the circle of radius sR , along the 
bottom and along the lid the speed is 0v  - see further. This answers 
the already mentioned fact that due to viscous friction the fluid's speed on 
the surface of a body surrounded by the fluid, is always equal to zero. It is 
significant that to get this result it was no need to add any more 
conditions to the main equations – it was enough to restrict the 
integration domain in the course of calculations. The calculations were 
performed by the program testMixerModif3 (mode=1), which has built the 
following graphs:

1. the function (2.7) – see the first window on the first vertical line 
on Fig 6;  

2. the function (2.8) – see the second window on the first vertical 
line on Fig 6;  

3. the function of speed Rv  depending on radius – see the first 
window on the second vertical line on Fig 6;  

4. the function of speed Rv  depending on the distance along the 
height up to the mixer's center for constant value of radius  equal 
to a  – see the third window on the second vertical line on Fig 6;  
the rectangle in this window depicts the force action area;

5. the function of force F  and function of Lagrangian v  
depending on radius – see the fourth window on Fig. 6, where 
these functions are depicted by dot line and full line accordingly. 
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The calculations were performed for:

.33,7,3,15,15

,35,1,5,1.0





rHHHR

Ra

smis

i

We got 133,004.0,004.0 21  k .
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7.7. Acceleration of the mixer
In Section 2 we have discussed the case of steady-state movement of 

the fluid in the mixer. Now we shall consider the period of acceleration, 
assuming (as in Example 1 in Section 6.1), that the body forces in a 
certain moment instantly assume a certain value – there  occurs a jump of 
body forces.. Then in the first moment 0)1( v  and on the first 
iteration we assume 0)1( v , and then we calculate the transient 
process according to algorithm  1 from Section 6.1. This algorithm is 
realized in the program   testRagonMixer2, which builds the following 
graphs (see Fig. 8):

1. the speed function with radius  5.
2. the relative residual function (6.4);
3. the relative divergence from zero function.

47



The computation was performed for the conditions taken in Section 2, 
i.e. 35,1,1,5,1.0  na  .
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Chapter 8. An Example: 
Flow in a Pipe  

8.1. Ring pipe
We shall begin with an example.  Let there be a ring pipe with 

rectangular section – see Fig. 1, where   o is center of construction, s – 
center of rectangular pipe section, R – the distance from oz axis of the 
ring to a certain point of pipe section  measured along the axis  ox;  also 
the Figure shows  the main dimensions of the construction and the 
directions of Cartesian coordinates  axes.

Oz

Ox

Oy

Zo

Roro

Rr
z

s o

Fig. 1

Such ring pipe is a closed system. Let us assume that in this system  
the body forces directed perpendicularly to the section plane of the pipe 
are in effect. Such forces do  not depend on the z coordinate and are 
defined by formulas  
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 
R
yFzyxF ox ,, , (1)

 
R
xFzyxF oy ,, . (2)

  0,, zyxFz . (3)
The definitional domain of body forces is the  interior of the pipe.  

At this

       22 ,,,,, zyxFzyxFzRF yxR  (5)

or
  1, zRFR . (6)

The calculation is performed by program testMixerModif3 (mode=2) 
and, in accordance with Chapter 5, in two stages: the speed was calculated 
by the equation (5.2), and the pressure derivatives – by equation (5.3) for 
given speed. The following initial data was used: 

.17,11,12,7.0,7.1,2  oooo RzrF 
The calculations were performed  for

       22 ,,,,, zyxvzyxvzRv yxR  , (7)

      22 ,,,,,

















dy
zyxdp

dx
zyxdp

dr
zRdp

. (8)

Let us further denote the distance from  a point in the section to the 
center of the section  along ох axis as

oRRr  . (9)
The calculations results are shown on Fig.. 2   as follows:

1. function (7.2.7) – see first window on the first vertical;
2. function (7.2.8) – see the second window on the first vertical 
3. the speed function Rv  depending on radius and on the 

coordinate x  for constant 0,0  yz  – see the first window 
on the second vertical;

4. the speed function Rv  depending on the distance by height to 
the center of the pipe section with constant radius oR  – see the 
second window on the first vertical;
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5. the pressure derivative function dRdp  depending on the radius 
– see the second window on the second vertical. 
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The mentioned calculation (see the first window) shows that this 
speed satisfies equation (5.2). It is important to note that the solution 
obtained by the proposed method without indicating the initial 
conditions,  knowing only the domain of the flow existence. Distribution 
of speeds ),( zRvy  along the pipe section drawn by the plane 0y  is 
shown on Fig.. 3. The same function depending on the coordinates of 
one pipe section will be denoted as    ),( zrvy  or ),( zrv . From (5.2) 
it follows   that this function has a constant value of Lagrangian  on its 
definition  domain – the pipe section. We shall call such functions – 
functions of constant Lagrangian. Since for each form of section these 
functions have different form, we shall denote the function ),( zrvy  for 

a rectangular section as ),(п zrv .
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It is important to note that this solution was obtained by the 
proposed method without specifying the initial conditions, but only with 
an indication of the region of existence of the flow. Zero values of speed 
on the pipe walls appeared as the result of computations. The velocity 
distribution ),( zRvy  along the cross-section of the pipe, drawn along 

the plane 0y , is shown in Fig. 3.

8.2. Long pipe
Here we shall discuss flow in a infinitely long pipe of arbitrary 

profile in which body forces are in action. Let us mark a certain segment 
of this pipe and assume that the section forms and speeds on both ends 
of the segment are similar. Then instead of this segment we may consider 
an equivalent system of such segment where the ends are connected in 
such way that the fluid flow from, say, the left end flows directly into the 
right end. Such system is a closed one and we can use the proposed 
method for its calculation. Evidently, the flow in every part of an 
infinitely long pipe coincide with the flow in the built system. 

For example, let us look at a "connected" in the described way 

segment of pipe of the length oz ,  where constant body forces oF  are 
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acting, directed along the pipe's axis oz. Let also the pipe's section is 
determined in coordinates ),( yx  and is a square with half-side n, and 
the following values are known:

.27,13,1,1,1  oo znF 
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This system is absolutely closed, because the fluid does not interact 
with the walls. The computation is performed according to (5.5). The 
result of calculation using the program testDawleModif (mode=2) are 
depicted on Fig 3, where the following functions are shown:

1. function (2.7) – see the first  window on the first vertical,
2. function of speed ),( yxvz  for constant z  – see second 

window on the first vertical,
3. Lagrangian function v  in dependence of coordinates 

),( yx  of the section for constant z  – see the first window on 
the second vertical,

4. functions F  and Lagrangian v  depending on  x  with 
0y  and with constant z  – see the second window on the 

second vertical where these function are depicted by straight and 
broken lines accordingly. 
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The speed divergence and the pressure gradient are equal to zero. 
Thus,  for constant body force the pressure in a linear pipe is constant. 
From (5.5) it follows that for constant body force the Lagrangian also has 
a constant value on all pipe section, excluding the boundaries, where the 
force and the Lagrangian   experience a jump – see Fig. 3. The function 
of speed distribution on the pipe section, which corresponds to the 
constant Lagrangian, is shown on Fig. 3. We shall call such functions the 
functions of constant Lagrangian. As for each form of pipe section the 
functions are different, we shall denote the function ),( yxvz  for a 
rectangular section as ),(п yxv .

So, on a rectangular section of a pipe the speeds are distributed 
according to the function  ),(п zrv  with a constant Lagrangian.

In Appendix 5 it is shown that elliptic paraboloid is also a function 
with constant Lagrangian. Therefore, in a similar way we may prove that 
on an elliptic section of ring pipe the speeds are distributed according to  
a function  ),(э zrv  of elliptic paraboloid. In particular, the speeds on a 
circular section of ring pipe are distributed according to paraboloid of 
revolution function.

Let us consider now another mode of flow in pipe; we shall call this 
mode a conjugated mode (with regard to the above considered mode). In 
this mode the body forces are absent, but beside the pressure p  there 
exists a certain additional pressure fp . If

Fp f   , (12)
then the equation (5.5) may be substituted by equation

0 vp f  . (13)
From (12) there also follows that the gradient has a constant value in the 
direction perpendicular to the pipe section, i.e. 

dy
dpp f  (14)

and

v
dy
dp

  (15)

or
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oFdy
dp

  (16)

Thus, in a pipe the speed along the pipe is distributed according to the 
function ),(п zrv  of a constant Lagrangian, if only the pressure is 
constant on all the points of the pipe section, and is changing uniformly 
along the pipe. The difference of pressures between two pipe sections 
spaced at a distance  L , is equal to  

dy
dpLpp  21 (17)

and, taking into account (15),

v
L
pp


 21 . (18)

Evidently, the same conclusion may be reached regarding any part of a 
pipe. Therefore, 

The speed in a part of the pipe with rectangular section is constant 
along the pipe and is changing on the section  according to 
function ),(п zrv , if there exists a constant difference of 
potentials on the ends of the pipe.

If the analytical dependence is known:
),(),( пп yxfvyxv  , (19)

then, as it follows from (18), 

),(),( 21
п yxf

L
ppyxv 







. (20)

In a similar way we may get the function ),(э zrv  of speed 
distribution in a pipe with elliptic section, and, particularly – with a 
circular section. In this case there exists an analytical dependence of the 
form (19), namely dependence (c16) – see Appendix 5. Specifically, for 
circular section it has the form (с22), and then the formula (20) becomes:

    22221
4

zrr
L
pprv ok 







. (21)

where or  is the radius of circular pipe section. The latter formula 
coincides with the known Poiseille formula [2]. This may serve as an 
additional confirmation   of the proposed method applicability.  
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In the same way we may calculate the flow in a pipe of arbitrary 
section and/or in a pipe bent in arbitrary way (if only the form of 
sections and speeds on both ends of the segment are the same). Thus, an 
infinite system is formally transformed into a closed system.

8.3. Variable mass forces in a pipe
Here we shall assume that in a long pipe there are mass forces 

varying sinusoidally with time. Then for speeds calculation we may use 
the equations (6.8)  and  their solution method , given in Appendix 6. Fig. 
3а and Fig. 1 show the results of calculations by the program   
testDawleModifTime (mode=2) for

27,13,1,100  oo znF 

and for several values of , . Fig. 3а presents the speeds zv  

distribution for 0z , and the table shows the values of speeds 
amplitudes and cosine of phase-shifts of speed sinusoid from mass forces 
sinusoid in the point 10,10  yx . 

We may note that for high frequency the distribution function of the 
speed zv  by pipe section tends to a constant, with the exception of 
section contour, where it is always equal to zero. However in this process 
the speed zv  amplitude decreases significantly. 

Table 1.
Variant   Amplitude Сosine

1 1 0 62.12 1
2 1 100 0.01 0
3 100 1 0.58 0.92
4 1 10 0.10 0
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8.4. Long pipe with shutter
Here we shall discuss the flow in an infinitely long pipe with square 

section with square side n , in which an absolutely hard cube with half-
side oR  is placed. As in the previous case, we shall consider a 

"connected" pipe segment of length oz , where constant body forces 

oF , are acting, directed along axis oz – see Fig. 4. Let also the pipe 
section be defined in coordinates ),( yx  and be a square with half side 
n , and also the following values are known

.4,57,27,39,1,1,1,100  ooo RznrF 
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This system is closed, and in it the fluid interacts with the cube's 
walls. The calculation is performed according to (5.2). The ruslts of 
calculation with the aid of program testDawleModif (mode=8) are 
presented on Fig. 5, 6, 7. The values obtained are:

922,06.0,0035.0 21  k .
On Fig. 4 the vertical lines (-6,-5,-4,-3) are drawn, passing through 

the centers of sections distant by (-6,-5,-4,-3) from the cube's center.. Fig. 
5 shows   distribution of speeds  zv  by these sections, and Fig. 6 shows 

distribution of speeds xv  by the same sections. Fig. 7 shows distribution 

of speeds zv  and xv  by the axis of these sections for fixed value of 
0y . These figures permit to give a picture of speeds distribution 

when flowing around the cube under the influence of body forces in an 
infinitely long pipe. 

58



-20
0

20

-20
0

20
0

2000

4000

vz(x,y), z=zz-6 -20
0

20

-20
0

20
0

2000

4000

vz(x,y), z=zz-5

-20
0

20

-20
0

20
0

2000

4000

vz(x,y), z=zz-4 -20
0

20

-20
0

20
0

2000

4000

vz(x,y), z=zz-3

Fig. 5.

-20
0

20

-20
0

20
-1000

0

1000

vx(x,y), z=zz-6 -20
0

20

-20
0

20
-1000

0

1000

vx(x,y), z=zz-5

-20
0

20

-20
0

20
-2000

0

2000

vx(x,y), z=zz-4 -20
0

20

-20
0

20
-500

0

500

vx(x,y), z=zz-3

Fig. 6.

59



-20 -10 0 10 20
0

2000

4000

-20 -10 0 10 20
0

2000

4000

-20 -10 0 10 20
0

1000

2000

-20 -10 0 10 20
0

1000

2000

vz(x), y=n+a, z=zz-3,4,5,6

-20 -10 0 10 20
-2000

0

2000

-20 -10 0 10 20
-1000

0

1000

-20 -10 0 10 20
-1000

0

1000

-20 -10 0 10 20
-500

0

500

vx(x), y=n+a, z=zz-3,4,5,6

Fig. 7.

8.5. Variable mass forces in a pipe with shutter
Here we, as in Section 8.3, shall assume that in a long pipe with 

shutter the body forces, varying sinusoidally with time, are acting. Then 
for speeds calculation we may use equations (6.8) and methods of their 
solution given in Appendix 6. Fig. 7а, 7b and Table 2 show the results of 
calculation by the program testDawleModifTime (mode=5) for 

23,13,1,100  oo znF 

and for several values of , . Fig. 7а and 7b present the speeds 

distribution zv  and xv  accordingly by the pipe section for 0z . 

Table shows the values of speeds amplitudes for  0,10,10 zv  and 
 6,8,8 xv  cosine of phase-shifts of speed sinusoid from body 

forces sinusoid in the point.
We may note that for high frequency the distribution function of the 

speed zv  by pipe section tends to a constant, with the exception of 
section contour, where it is always equal to zero. However in this process 
the speed zv  amplitude decreases significantly. The amplitude of speed 

xv  also decreases with frequency growth.
60



-20
0

20

-20
0

20
0

500

1000

om=0,mu=1 -20
0

20

-20
0

20
0

1

2

om=100,mu=1

-20
0

20

-20
0

20
0

100

200

om=1,mu=100 -20
0

20

-20
0

20
0

10

20

om=10,mu=1

Fig. 7а.

-20
0

20

-20
0

20
-10

0

10

om=0,mu=1 -20
0

20

-20
0

20
-2

0

2

x 10
-4

om=100,mu=1

-20
0

20

-20
0

20
-0.05

0

0.05

om=1,mu=100 -20
0

20

-20
0

20
-0.2

0

0.2

om=10,mu=1

Fig. 7в.

61



Table 2.
Variant   Amplitude

zv
Сosine

zv
Amplitude

xv
Сosine

xv
1 1 0 1319 1 100 -1
2 1 100 1 0 0.00001 0.42
3 100 1 104 -0.03 3.15 0.78
4 1 10 10 0 0.057 0.56

8.6. Pressure in a long pipe with shutter
Let us return to the example in section 8.4 and analyze the 

distribution of pressures in a pipe with shutter. For this purpose we shall 
analyze the following values:

- quasipressure – see (18) in Appendix 6 or
)(div vrD  ; (1)

- gradient of quasipressure, as derivatives of (1) or by (2.77), i.e.
FvD   . (2)

- gradient of dynamic pressure – see (р19d) or
  GPd    (3)

or, taking into account (р19a, p19c, p19d),

    GWPd   2
2

; (4)

- gradient of pressure – see  (2.78) or

 2
2

WDp 


, (5)

or, taking into account (4),
GDp   . (6)

Furtherfore, we shall calculate average values by pipe's section 

mid
mid ),( 



 yx
dz
dpp z

z , 
mid

mid ),( 



 yx
dz
dGG z

z
, 

mid
mid ),( 



 yx
dz
dDD z

z

for a fixed value of z , and also average value of pressure 

dzpP
z

z
zz 

min
mid .

62



-40 -20 0 20 40
-1

-0.5

0

0.5

1
x 10

5

dp
(z

)

z, x=y=-11(k), x=y=9(g)
-20 -10 0 10 20

-5

0

5

10
x 10

4

dp
(y

)

y, x=10, z=1(b); 19(r)

-40 -20 0 20 40
-1

-0.5

0

0.5

1
x 10

5

dp
(z

),
G

(z
),D

(z
)

z; x=y=9
-40 -20 0 20 40

-3

-2

-1

0

1
x 10

5

dp
,G

,D
,P

(z
)

Fig. 8.

Fig. 8 shows the results of the calculation program testDawleModif 
(mode = 8):

1. functions zzzz PDGp ,,, midmidmid  of z  – see the first 
window on the first vertical ;

2. functions zzz DGp ,,  of z  for fixed values of 9 yx  – 
see the first window on the second vertical ;

3. functions zp  of z  for fixed values of 9 yx  (the upper 

curve) and 11 yx  (the lower curve) – see the second 
window on the first vertical;

4. functions zp  of y  for fixed values 10x  and 1z  (the 
upper curve) and 19z  (the lower curve) – see the second 
window on the second vertical.
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Fig. 9 shows distribution functions ),( yx
dz
dp

 for fixed values of 













206
41

z

One may notice the following:.
1) Quasipressure is equal to zero (a closed system!).
2) Average pressure gradient by every section is equal to zero.  
3) Difference of pressures,  as an integral of pressures gradient  on the 

ends of the pipe –are equal to  zero, i.e.

0
max

min
 dzp

z

z
. (7)

4) The distribution of pressure gradient by the pipe's section is irregular.
5) The proposed method permits to calculate the pressure distribution in 

the pipe with shutter for given body forces. We must note that the 
precision of calculation increases with the extension of the pipe's 
segment length, due to the fact that as the distance between the 
segments ends and the shutter grows, the dependence of speeds 
distribution on the ends decreases, and  the distributions themselves 
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become  equal – this same  assumption is made when we "connect" 
the ends of infinite pipe.

Let us now consider the case when the body forces are absent, but 
there is a difference between pressures on the ends of the segment. In the 
above treated problem the equation of the type (5.1) has been solved. We 
shall now rewrite the last of equations as

0 FGvp  . (8)
Let us perform a substitution

pF  , (9)
and call the value p  a force pressure.. Then the equation (8) will take 
the form  

  0 Gvp  .          (10)
Here

ppp  .          (11)
We have:

FLdzp
z

z


max

min
,           (12)

where L  - length of the pipe. From this and from (7) it follows that the 
solution of equation (10) satisfies the constraint

Pdzp
z

z


max

min
,          (13)

where 
FLP           (14)

- the known pressures difference on the pipe ends.  Consequently, the 
solution of equation (8) is also solution  of equation (10) with constraint 
(13). But it was shown above that the solution of modified equations (1, 
77) is unique. Therefore, the solution of equation (8) always is the 
solution of equation   (10) with constraint (13).

So, the solution of equation  (10) with constraint (13), i.e. calculation 
of speeds in a pipe with shutter and pressures difference of the pipe's 
ends,  may be substituted by solution of equation (8), where

LPF  .          (15)
For brevity sake we have omitted here to mention that the equations (8) 
and (10) should be solved together with the equation (2.1).
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Chapter 9. Principle extremum of full 
action for viscous compressible fluid

In this section we shall use this principle for the Navier-Stokes 
equations describing  compressible  fluid. 

Navier-stokes equation for viscous compressible fluid are 
considered. It is shown that these equations are the conditions of a 
certain functional’s extremum. The method of finding  the solution of 
these equations is described. It consists of moving along the gradient 
towards the extremum of his functional. The conditions of reaching this 
extremum are formulated – they are simultaneously necessary and 
sufficient conditions of the existence of this functional’s global extremum

9.1. The equations of hydrodynamics  
Recall the equation for a viscous incompressible fluid (2.1.1, 2.1.2):

0)(div v , (1)

0)( 

 FvGvp
t
v  , (2)

where
 vvvG )( (3)

In contrast with the equations for viscous  incompressible fluid, the 
equations for viscous compressible  fluid have the following form [2]:

  0div
t



 v

, (4)

    0
3



 vFvGvp
t
v  , (5)

where
   vv  . (6)

The Appendix 1 functions (3) and (6) are presented in expanded form - 
see (p14, p29, p30). For a compressible fluid density is a known function 
of pressure:

 pf . (7)
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Further the reasoning will be by analogy with the previous. In this 
case we have to consider also the power of energy loss variation in the 
course of expansion/compression due to the friction. 

)(
3

)(8 vvvP 


. (9)

We have also:

  )(
3

)(8 vvP
v



  .          (10)

We may note that the function )(v  in the present context 
behaved in the same way as the function )(v . This allows to apply the 
proposed method also for compressible fluids. 

9.2. Energian-2 and quasiextremal
By analogy with previous reasoning we shall write the formula for 

quasiextremal for compressible fluid in the following form: 

   

   
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v
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v
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q
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vdt

dvv
v

o

o

o











.   (11)

9.3. The split energian-2
By analogy with previous reasoning we shall write the formula for 

split energian-2 for compressible fluid in the following form: 

 

     

   

    





































 






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
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vvvv
dt
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.      (12)

With the aid of Ostrogradsky formula (р23) we may find the variations of 
functional of spilt full action-2 with respect to functions q : 
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 2 ,          (13)

v
o b
v 


 2 ,          (14)

These variations are determined by varying the functions p  and v , 
whereas the functions vp  ,,  do not change. Then we shall get:
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Remarks for these formulas:
1, 2, 3, 4) – the derivation is given below,
5)  – is similar to formula 2),
6, 7)  – the derivation is given in the Appendix 1 – see (p34, p35) 

accordingly
Then we have:

)(div22 v
dt
dbp   ,        (16)
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As was shown above, the condition
  0,   vp bbb          (18)

and the similar condition
  0,   vp bbb          (19)

Are necessary conditions for the existence of a saddle line. From the 
symmetry of these equations it follows that the optimal functions 0q  and 

0q  , satisfying the equations (18, 19), must satisfy also the condition 

00 qq  .          (20)
Subtracting in pairs the equations (18, 19) taking into account (16, 17), 
we get 

0)(2div-
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Taking into account (1.45) and cancelling (21, 22) by 2, we get the 
equations (4, 5), where 

oo qqq  ,          (23)
i.e. equations extreme lines are the Navier-Stokes equations for 
compressible fluids.

9.4. About sufficient conditions of extremum
Above we have proved for incompressible fluid, that the necessary 

conditions (18, 19) of the existence of extremum for the full action-2 
functional  are also sufficient conditions, if the integral 

69



 













T

V
dtdVI

0
22         (24)

has  constant sign, where
)(2)(22 vvv bGvbb   .         (25)

For compressible fluid the necessary conditions (18, 19) of the existence 
of extremum for the full action-2 functional are also sufficient 
conditions, if the integral (24) has constant sign , where, contrary to (25),

)(2)(
3

)(22 vvvvv bGvbbbb   .    (26)

For closed systems with a flow of system incompressible fluid we 
have shown above that the value (25) assumes the form

)(22 vv bb   .          (27)
Similarly, for closed systems with a flow of compressible fluid the value 
(26) assumes the form

)(
3

)(22 vvvv bbbb 
 .          (28)

Let us consider now, similarly to (24), the integral

 
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

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T

V
dtdVJ
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22         (29)

where

)(
3

)(22 vvvv   .         (30)

(i.e. in this formula instead of the function vb  there is the function of 
speed). As the proof of the integral’s constancy of sign must be valid for 
any function, it is enough to prove the constancy of sign of integral (29) 
with speeds. For this we must note that: 

o the first term in (30) expresses the heat energy exuded by the 
fluid as the result of internal friction,

o the second tem in (30) is the heat energy exuded/absorbed by the 
fluid as the result of expansion\compression.

The first energy is positive regardless to the value of vector-function of 
speed with respect to the coordinates (A more exact proof of this fact 
for the first term is given in [4, 5]). The second term is equal to zero (as 
in our statement the temperature is not taken into account, i.e. assumed 
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to be constant). Therefore, integral (24, 30) is positive on any iteration,  
which was required to show.

Thus, the Navier-Stokes equations for incompressible fluid have a 
global solution.
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Discussion

Physical assumptions are often built on mathematical corollary facts.  
So it may be legitimate to build mathematical assumption on the base of 
physical facts. In this book there are several such places

1. The equations are derived on the base of the presented principle 
of general action extremum. 

2. The main equation is divided into two independent equations 
based on a physical fact – the absence of energy flow through a 
closed system. 

3. The exclusion of continuity conditions for closed systems is 
based in the physical fact   – the continuity of fluid flow in a 
closed system 

4. Usually in the problem formulation we indicate the boundaries 
of solution search  and the boundary conditions – for speed, 
acceleration pressure on the boundaries These conditions 
usually are formed on the base of physical facts, for example –
the fluid "adhesion" to the walls, the walls hardness, etc. In the 
presented method we do not include the boundary conditions 
into the problem formulation – they are found in the   process 
of solution.  

The solution method consists in moving along the gradient towards 
saddle point of the functional generated from the power balance 
equation. The obtained solutions:   

a. may be interpreted as experimentally found physical effects  (for 
instance, the walls impermeability, "sticking" of fluid to the walls, 
absence of energy flow through a closed system),

b. coincide with solutions obtained earlier with the aid of other 
methods   (for instance, the solution of Poiseille problem),

c. may иe seen as generalization of known solutions   (for instance,  
a generalization of Poiseille problem solution for pipes with 
arbitrary form of section and/or with arbitrary form of axis line),

d. belong to unsolved (as far as the author knows) problems (for 
instance, problems with body as the functions of speed, 
coordinates and time) .
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We may point also some possible directions of this approach 
development , for example

o for compressible fluids,
o for problems of electro- and magneto-hydrodynamics
o for free surfaces dynamics  (in changing boundaries for constant 

fluid volume).  

The proof of global solution existence belongs to closed systems 
Practically, we must analyze the bounded and closed systems. Therefore 
above we have discussed some methods of formal transformation of 
non-closed systems into closed ones, such as: 

1.  long pipe as the limit of ring pipe,  
2.  transformation of a limited pipe segment into closed system

At the same time it must be noted that the solution method has not 
been treated here on a  full scale – we considered only  special cases of 
stationary flows and changing with time flows.
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Appendix 1. Certain formulas

Here we shall consider the proof of some formulas that were used 
in the main text. First of all we must remind that  
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Lagrangian in cylindrical coordinates
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From (2.5, 2.7а) it follows that
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where
  2222

zyx vvvW  , (р9в)
Differentiating, we shall get:
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After rearranging the items, we get
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Let us consider the vector
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Note that

)2(2)(
2
1 vGvG  (р14а)
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From (р11-р14) we get
,5 GvP  (р15)

  )()(,5 vG
v
vGvP 




, (р16)

Comparing (р6) and (р14), we find that
 vvvG )( . (р18)

Thus,
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v
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Comparing (p9a, p15, p18), we find that
    vvW  22 . (р19а)

As dynamic pressure is determined [2] by

22WPd  , (р19с)
then from  (p18, р19a) it follows that the gradient of dynamic pressure is

  GPd   . (р19d)
Let us consider also
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If vbab  , then
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2  . (р21)
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 (р22)
The necessary conditions for extremum of functional from the 

functions with several independent variables – the Ostrogradsky  
equations  [4]  have for each of the functions the form
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where f – the integration element, v(x,y,z,t) – the variable function,  a – 
independent variable. 

The tensions (in hydrodynamics) are determined in the following 
way [2]:
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Let us consider formulas

xzzxyyxxxx pvpvpvd  ,
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yzzyyyyxxy pvpvpvd  ,

xzzxyyxxxz pvpvpvd  .       (р25)
From (р24, р25) we find 
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From this it follows that the double integral in formula (81) in [1] 
and in Appendix 2 may be presented in the following form
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The Ostrogradsky formula: integral of divergence  of the vector field 
F , distributed in a certain volume V , is equal to vector flow F  
through the surface S , bounding this volume:
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If p,  are scalar fields, and v  is a vector field, then
  )(divgrad)(div vvv   ,        (р31)

  )(divgrad)(div vppvvp   ,        (р32)
i.е.
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Consider )(div vp   and suppose that the extremum of a 
certain functional is determined or by varying the function p , or by 
varying the function v  . Then, differentiating the last expression by 
Ostrogradsky formula (p23), we shall find:
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80



Appendix 2. Excerpts from the 
book of Nicholas Umov

http://nn.mi.ras.ru/Showbook.aspx?bi=171
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Appendix 3. Proof that Integral 
dVvv

V
  )(   is of Constant Sign

Here we shall consider in detail the substantiation of the fact that 
integral (2.84) always has positive value. In other words – we shall prove 
that the integral is of constant sign.

dVvvJ
V
  )(1 . (1)

Let us first consider the two-dimension case. Let us substitute the 
Laplacian by its discrete analog. To do this we shall take a two-
dimensional speeds network mkv , , where  nm ,1  - the number of 

point on the axis ОХ, nk ,1  - number of point on tee axis ОУ. The 
value of discrete Laplacian in each point is determined by formula (see, 
for example, the function DEL2 in MATLAB):

  mkmkmkmkmkmk vvvvvL ,,1,11,1,, 4
1

  . (2)

According to this the discrete Laplacian may be found by the formula
AvL  , (3)
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and А is a matrix built according to formula (2). For illustration Fig 1 
shows matrix А for 5n , built according to formula (2) – see for 
example, [27]. This Figure shows also the numbering of vector mkv ,  
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elements. According to formula (3) the Laplacian also is presented in the 
form similar to (4). The discrete analog of integral (1) is

TvAvJ 1 . (5)
To verify that the matrix А is of constant sign, let us find for it  the 

Kholetsky  expansion

UUA T , (6)
where U is the upper triangular matrix. It is known [28], that if matrix а 
A is symmetrical and positively defined, then it has a unique Kholetsky 
expansion. The program testMatrix.m computes expansion (6) and shows 
that matrix A is symmetrical and positively defined. It means that for any 
vector v

0 TvAv . (7)
Thus, it is proved that the value (5) in two-dimensional case is 

positive. Decreasing the network spacing,  in the limit we get  that the 
integral (1) in two-dimensional case has positive value. In the same way  
it may be shown that in three-dimensional case integral (1) is positive, 
which was to be proved.

Fig. 1.
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Appendix 4. Solving Variational Problem 
with Gradient Descent Method

Let us consider the functional

 dvv
V
 2 . (1)

where

 

 

 
 


































zzzyyyxxx

zzyyxx

zzyyxx

vMPvMPvMP

vFvFvF

vvr

vvvvvv

v







)(div
2

2
1

)(2
, (2)

r  - constant coefficient,
P  - known pressures,
M  - areas on which these pressures are determined.

Notice, that

         )(div)(div)(div)(div vv
v

vvvv
v









,(3)

Taking into account (3) and in accordance with Ostrogradsky's equation 
(p23), the necessary condition for the extremum of this functional has 
the following form:

    0)(div  MPFvrv  . (4)
To prove that this condition is also sufficient, we will argue as in Section 
2.5. The gradient of the functional (1) has the form of the left-hand side 
of equation (4):

  Yvrvb  )(div (5)
где

 MPFY   (5а)
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Let S  be an extremal, and therefore the gradient on it  - 0sb . To 
reveal the nature of this extremum we must analyze the sign of 
functional's increment.

   CS 222  , (6)
where С is the line of comparison 0 сbb . Let the values S  and С 
differ by

bavv s  , (7)
where b  is the variation on the line С, а – a known number. If

Aa 2 , (8)
where A  is a value of constant sign in the vicinity of the extremal 

0sb , then this extremal determines a global extremum. If, in addition, 
A  is a value of constant sign  in all the domain of definition of the 
function v , then this extremal determines the global extremum.. 

From (2.55) we find
2

2221202 aa  , (9)

where 222120 ,,   are functions not depending on а of the 
form

     sssss vYvvvvr  
2
1div

220 , (10)

      

     






















bYbvvb

vbbvr

ss

ss


2
1

divdiv
2

21 , (11)

   )(
2
1div

222 bbbbr   . (12)

Further we shall use the following algorithm. 
Algorithm. On each iteration:
1. the gradient b  is calculated according to (5) for given function

v ;
2. the coefficient a  is calculated according to

2221 a , (13)
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dVdV
VV
  22222121 , , (14)

3. a new value of the function is calculated as   abvv : .  

In this case, at each iteration step, only those values of the variables that 
are in the region Q  of the flow exist.

We denote by
)(div vrD  . (15)

Then the necessary condition for the extremum of this functional 
(1), i.e. then equation (4), which is solved by minimizing this functional, 
takes the form:

  0 MPFDv  . (16)
In Appendix 6 it is proved that simultaneously with minimization 

of the functional (1) the condition is satisfied:
0)(div v . (17)

The accuracy of this condition increases with increasing value of 
the constant r . However, the calculation duration increases with 
increasing r . Consequently,

the minimization of the functional (1) by moving along the 
gradient (5) for a sufficiently large r  is equivalent of solution of 
equations (16, 17) with unknowns Dv, .
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Appendix 5. The Surfaces of Constant 
Lagrangian

1. Let us consider an elliptic paraboloid of speeds bounded by a 
plane perpendicular to its axis. The surface of such paraboloid is 
described by the following equation: 

  2
2

2
1, zvrvvzrv oy  , (с10)

where  zr,  are the coordinates of the plane that the paraboloid rests 

on. On the borders of this base plane   0, zrvy . Denoting as 

oo zr ,  the semi-axes of the ellipse  in the base of paraboloid, for 

 0,  zrr o  and for  ozzr  ,0  from (с10) we find 
accordingly  

2
1 oo rvv  , (с11)

2
2 oo zvv  . (с12)

Superposing   (с10, с11, с12), we get  

   222222
22, zrzrzr
zr
vzrv oooo
oo

o
y  . (с13)

Let us find the speed Laplacian. From  (с10) we find
 212 vvvy  . (с14)

Superposing (с11, с12, с14), we get   

 22
22

2
oo

oo

o
y zr

zr
vv 


 . (с15)

From (с13, с15) we find

    222222
222

, zrzrzr
zr

v
zrv oooo

oo

y
y 




 . (с16)
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2. Let us now consider a circular paraboloid of speeds. From the 
previous considerations for    oo zr   we get:

   22
1, zrvvzrv oy  , (с20)

2
4

o

o
y

r
vv 

 , (с21)

    222
4

, zrr
v

zrv o
y

y 


 . (с22)
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Appendix 6. Discrete Modified 
Navier-Stokes Equations

1. Discrete modified Navier-Stokes equations for stationary 
flows
Let us now consider the discrete version of modified Navier-Stokes 

equations (2.1, 2.79) for stationary flows. For this purpose we shall 
present functions of three variables (speed projections zyx vvv ,, , force 

projections zyx FFF ,,  and quasipressure D ) as row-vectors (shown, for 
instance, for two-dimensional case  in formula (4) of Appendix 3). The 
derivatives and Laplacians of these functions may be presented as 
product of some matrix by such functions. For example, we may 
construct a matrix – discrete Laplacian (for two-dimensional case the 
discrete Laplacian has been considered in Appendix 3) and a matrix – 
discrete derivative. 

Further we shall take a stationary system in which the pressures   
zyx PPP ,,  are determined, acting on the surface zyx QQQ ,, , in the 

direction perpendicular to coordinate axes   zyx ,, .
Then the modified Navier-Stokes equations will become:  

  0 T
zz

T
yy

T
xx vBvBvB , (1)

xxx
T

x
T
xx QPFDBvA   , (2)

yyy
T

y
T
yy QPFDBvA   , (3)

zzz
T

z
T
zz QPFDBvA   , (4)

where А – matrices – discrete Laplacians of speeds, В – matrices – 
discrete derivatives of speeds and quasipressures, and the upper subscript 
"Т" means transposition. The form of these matrices does not depend on 
the fact, to what functions they are applied; it depends only on the 
configuration of the domain of the fluid existence. Formally these 
equations may be considered as a linear equations system with respect to 
unknown vectors Dvvv zyx ,,, , where the matrices А, В, Q, and 
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vectors F, P are known. To solve this equations system let us consider 
the function 

 
 
 

  
































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T
zzz

T
yyy

T
xxx

T
zz

T
yy

T
xx

T
zz

T
yy

T
xx

T
zzz

T
yyy

T
xxx

vQPvQPvQP

vFvFvF

vBvBvBr

vAvvAvvAv





2

2

2
1

, (5)

where r  is a constant.  It is easy to see that the necessary conditions of 
this function's minimum by the variables zyx vvv ,,  are as follows: 

0 xxxx
T
xx QPFJrBvA  , (6)

0 yyyy
T
yy QPFJrBvA  , (7)

0 zzzz
T
zz QPFJrBvA  , (8)

where

 TzzT
yy

T
xx vBvBvBJ  . (9)

To analyze the sufficient conditions of the minimum existence we 
shall transform the function  (5) to the form
























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
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





 







 







 
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T
z

T
zzzz

T
y

T
yyyy

T
x

T
xxxx

vBBrAv

vBBrAv

vBBrAv

22
1

22
1

22
1







,         (10)

where   - the component depending on the first power of speeds.   
Thus, the considered function is a quadratic one and therefore has one 
minimum, if the matrices of the form  







  T

xxxx BBrAM
22

1          (11)

are negative-definite. For these matrices analysis we must note that the 
discrete Laplacians of the speeds are positive-definite (see Appendix 5), 
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and matrices T
xxBB  are also positive-definite.  Therefore, matrices of 

the form (11) are positive-definite and the function under discussion has 
a unique minimum.  

It may be shown [32]  that
0J  for r .         (12)

- see also Appendix 7. From this and also from (9) it follows that  for  
sufficiently large r

  0 T
zz

T
yy

T
xx vBvBvB .         (13)

So, for certain values of r  the equations (13, 6-8) coincide with 
equations (1-4), if we denote   

JrDT  ,         (14)
and gradient descent along the function (5) permits us to find the values 
of variables  that give a solution of  equations (1-4). The method of such 
gradient descent is considered in Appendix 7.

Let us now return from the formulas of discrete form to the 
analogous form. Then we shall get, that from (13) it follows

  0div v ,         (15)
and the function (5) turns into the functional

 

 
 
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



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















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zzzyyyxxx

zzyyxx

zzyyxx

vQPvQPvQP

vFvFvF

Dv

vvvvvv





2
1

2
1

.        (16)

where
)(div vrD  .       (17)

Notice, that

         )(div)(div)(div)(div vv
v

vvvv
v









.

Consequently, the gradient of the functional (16) has the form:
  0 QPFDv  .         (18)

Consequently,
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the minimization of the functional (16) by moving along the 
gradient (18) for a sufficiently large r  is equivalent of solution of 
equations (17, 18) with unknowns Dv,  under the condition (15).

Thus, the method of solving continuous equations (15, 17, 18) can 
be reduced to the method of solving the corresponding discrete 
equations, as described in Appendix 7.

2. Discrete modified Navier-Stokes equations for dynamic 
flows
Let us consider the discrete version of modified Navier-Stokes 

equations (6.8) for dynamic flow in the case when the body forces are 
sinusoidal functions of time with circular frequency  . As previously a 
discrete analog may be built for them in the form: 

0 xxxx
T
xxx QPFJrBvAvj  ,         (19)

0 yyyy
T
yyy QPFJrBvAvj  ,         (20)

0 zzzz
T
zzz QPFJrBvAvj  ,          (21)

and (9), where j  - imaginary unit. And in this case we may also show an 
analogy between the equations (9, 19-21) and the equations of an electric 
circuit with sources of sinusoidal voltage, considered in Appendix 7. The 
latter are solved by gradient descent method, descending to the saddle 
point of a known function. Thus, the method for solving continuous 
equations (6, 8) is reduced to the method for solving the corresponding 
discrete equations (9, 19-21, given in Appendix 7.
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Appendix 7. An Electrical Model for 
Solving the Modified Navier-Stokes 

Equations 

Here we shall deal with electrical model for solving modified Navier-
Stokes equations and the solution method following this model. 

The electrical circuits described below contain direct current 
transformers or transformers of  instantaneous values. Such transformers 
have been first introduced by Dennis [33]. So we shall in future call them 
Dennis transformers and denote them as TD. Dennis has presented the 
transformers as an abstract mathematical structure (for mathematical 
theory interpretation) and has developed the theory of direct current 
electric circuits including TD, resistors, diodes, current sources and 
voltage sources. 

In [32] such electric circuits are considered. They contain TD and 
are used to simulate various problems of regulation and optimal control. 
The analysis of such circuits permits to formulate algorithms for solution 
of appropriate problems.

To solve our problem we shall analyze the electric circuit shown on 
Fig. 1,  where

rRRR ,,, 321  - resistors,

Jiii ,,, 321  - currents in these resistors,

321 ,, EEE  - direct voltage sources,

321 ,, TDTDTD  - Dennis transformers,

321 ,, LLL  - inductances,

321 ,, kkk  - transformation ratio of these transformers.
First we shall consider of direct current circuit without inductances. 

In [32] it is shown that such circuit is described by the following 
equation:  

0 EiR , (1)
where
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2
33231

32
2
221

3121
2
1

3

2

1

kkkkk
kkkkk
kkkkk

r
R

R
R

R  (3)

and
222211 ikikikJ  (4)

and all the value included in these formulas, may also be vectors (in the 
sense of vector algebra). 

E1
R1 TD1

E2
R2 TD2

E3
R3 TD3

r

i1

i2

i3

J

L1

L2

L3

Fig. 1.

In  [32] it is shown that equation (1) is the necessary and sufficient 
condition of  the following function's minimum: 







  TT iEiRi

2
1 , (5)
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where
0J   for r . (6)

The minimum of function (5) and, consequently, the solution of 
equation (1) may be found by gradient descent method  

EiRb  , (7)
for the function (5), where the gradient step is determined by the 
formula  

bRb
bba T

T




 (8)

and
baii prevnext  . (9)

Then we shall consider a circuit with sinusoidal voltage sources 

321 ,, EEE  with circular frequency   and inductance 

321 ,, LLL . In [22, 23] it is shown that such circuit is described by 
the following equation

0 EiRiLj ,          (10)
where j  - imaginary unit, the values Ei,  are vectors with complex 

components and are determined by (2), R is determined by (3), and

.
00

00
00

3

2

1

L
L

L
L          (11)

In [22, 23] it is shown that the equation (10) is the necessary and 
sufficient condition for the existence of a unique saddle point of a 
function of split currents – see also Section 1.2. The solution of equation 
(10) may be found by gradient descent method, when on each step the 
new value of current is found from 

baii prevnext  .          (12)
where

EiRiLjb   ,          (13)

  bRLjb
bba T

T







.          (14)

Here, as in the case of direct current, the condition (6) is fulfilled.
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This book proposes the solution of one from the problems of the 
millennium formulated by the Clay Mathematics Institute, the 
problemma of the Navier-Stokes equations, which is formulated by this 
institution as: “This is the equation which governs the flow of fluids such as water 
and air. However, there is no proof for the most basic questions one can ask: do 
solutions exist, and are they unique? Why ask for a proof? Because a proof gives not 
only certitude, but also understanding.” This book is printed, reprinted and 
published in various electronic archives and downloaded approximately 5 
copies per day (the number of visible downloads). Well, when will I be 
awarded? I must warn the institute in advance that I will not refuse (like 
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