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Abstract 
 

We define so called n-delta lattice containing (n-1) lattice points in first 
(topmost) row, (n-2) lattice points in second row, and so on. Each time the 
count of lattice points decreases by unity as we move down by one row till 
we reach the last (bottommost) row containing single lattice point. We label 
these lattice points in two different ways and obtain two different labeled 
lattices. In the first kind of labeling we associate vertex pairs in a particular 
way as labels for points of the lattice and so call it edge-labeled n-delta 
lattice. In the second kind of labeling we associate integers as labels with 
lattice points in each row to indicate the position of that lattice point in the 
row and so call it position-labeled n-delta lattice. This defining of position-
labeled n-delta lattice enables us to associate a lexicographic ordering with 
lattice paths. We define distinct as well as different lattice paths and further 
see that for proving graceful tree conjecture one needs to show that the count 
of distinct lattice paths corresponding to trees in the edge-labeled n-delta 
lattice is same as the count of nonisomorphic trees with n vertices. We verify 
this for some (small) values of n. We further see that existence of graceful 
labeling for an unlabeled tree with n vertices follows from the existence of a 
lattice path representing this same tree in the edge-labeled n-delta lattice. It 
is possible to generate all (n, n-1)-trees from all (n-1, n-2)-trees by attaching 
an edge that emerges from each of the inequivalent vertices of (n-1, n-2)-
trees and entering in the new vertex taken outside. We show that extending 
all lattice paths by adding a lattice point in the paths sitting in the sub-lattice 
of n-delta lattice in all possible ways is same as the above mentioned 
generation of trees from lower trees.  
                   
1. Introduction: A tree on n vertices is said to be graceful or said to have a 
graceful labeling if when its vertices are labeled with integers {1, 2, …, n} 
and lines (edges) are labeled by the difference of their respective end vertex 
labels then all the edge labels taken together constitute the set {1, 2, …, 
n─1}.       
                               In the year 1964 Ringel [1] proposed the following 
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Conjecture 1.1(Ringel): If T is a fixed tree with m lines, then )12( +mK , the 
complete graph on (2m+1) vertices, can be decomposed into (2m+1) copies 
of T. 
                              Attempts to prove Ringel’s conjecture have focused on a 
stronger conjecture about trees [2], called the Graceful Tree Conjecture:  
 
Conjecture 1.2 (Graceful Tree Conjecture): Every (unlabeled) tree is 
graceful, i.e. has a graceful labeling.  
 
2. Graceful Tree Conjecture: In this section we define certain lattices and 
show that all possible graceful trees in a complete graph can be seen as 
certain lattice paths in a triangular shaped lattice of points each of whose 
lattice point is labeled by a unique vertex pair (forming the edge).  
 
Definition 2.1: A delta lattice (n-delta lattice) is a triangular shaped lattice 
of points, having shape of inverted triangle (like symbol delta), containing 
(n-1) lattice points in first (topmost) row, and each time this number of 
lattice points in the respective rows decreases by unity as one moves down 
to next row till one reaches the last row containing single lattice point. 
 
Definition 2.2: The edge-labeled n-delta lattice is the same lattice above 
whose lattice points are labeled as follows: the lattice points in the top row 
have associated labels (i, i+1), where i goes from 1 to n-1, the lattice points 
in the second row below it have associated labels (i, i+2), where  letter i goes 
from 1 to n-2, …., the lattice points in the k-th row, reached by successively 
creating rows downwards, have associated labels (i, i+k), where i goes from 
1 to n-k, … the last row has a single lattice point with vertex pair (1, n) as 
the associated label. 
                            We give below as an illustration the representation of this 
lattice with associated labels for n = 2,3,4,5,6 (we don’t draw here the 
associated lattice points and it is to be understood that they are there) as 
follows: 
 
1) For n = 2, the 2-delta lattice consists of single lattice point labeled by the 
associated vertex pair (1,2) : 
 
                                                   (1,2) 
 
2) For n = 3, the 3-delta lattice consists of three lattice points, two in first 
row and one in second row:  
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                                             (1,2)     (2,3) 
 
                                                    (1,3) 
 
3) For n = 4, the 4-delta lattice is: 
 
                                        (1,2)     (2,3)      (3,4)  
 
                                               (1,3)     (2,4) 
 
                                                      (1,4) 
 
4) For n = 5, the 5-delta lattice is: 
 
                                   (1,2)     (2,3)      (3,4)     (4,5) 
 
                                         (1,3)      (2,4)     (3,5) 
 
                                                 (1,4)     (2,5) 
 
                                                       (1,5) 
 
5) For n = 6, the 6-delta lattice is: 
 
                                   (1,2)     (2,3)      (3,4)     (4,5)     (5,6) 
 
                                         (1,3)      (2,4)     (3,5)     (4,6)  
 
                                                 (1,4)     (2,5)     (3,6) 
 
                                                       (1,5)      (2,6) 
 
                                                               (1,6) 
 
Definition 2.3: An imaginary vertical line starting from lattice point 
associated with pair (1,n) and going upwards passing through the lattice 
points (2,n-1), (3,n-2), ….., extending and incorporating the lattice points on 
the rows, and rising up to first row is called line of symmetry. 
 
In the above illustrations of delta lattices: 
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1) For n = 2 the line of symmetry passes through lattice point associated 
with vertex pair (1, 2), i.e. through the only lattice point. 

2) For n = 3 the line of symmetry passes through lattice point associated 
with vertex pair (1, 3), since there is no other lattice point on this 
vertical line. 

3) For n = 4 the line of symmetry passes through lattice point associated 
with vertex pairs (1, 4), (2, 3) since there is no lattice point on this 
vertical line from second row. 

4) For n = 5 the line of symmetry passes through lattice point associated 
with vertex pairs (1, 5), (2, 4) since there is no lattice point on this 
vertical line from first and third row. 

5) For n = 6 the line of symmetry passes through lattice point associated 
with vertex pairs (1, 6), (2, 5), (3, 4) since there is no lattice point on 
this vertical line from second and fourth row. 

 
Definition 2.3: If we choose one entry (lattice point in terms of vertex pair) 
from each row of the edge-labeled n-delta lattice (and consider the graph 
produced by edges in this choice taken together) then this assembly of vertex 
pairs taken together in a set is called a lattice path. Actually, the lattice path 
sitting in the lattice can be shown by starting from bottommost row and 
selecting and joining a lattice point from each row above in succession till 
one reaches the topmost row where the lattice path terminates at some lattice 
point in the first (topmost) row. 
 
Remark 2.1: It is easy to check that in the edge-labeled n-delta lattice 
corresponding to graph of n vertices, each lattice path among all possible (n-
1)! lattice paths represents a graceful graph, i.e. a labeled graph having 
graceful labeling. Lattice path can be visually shown by starting with 
bottommost row containing lattice point labeled by vertex pair (1, n) we join 
to selected point among points associated with some vertex pair {(1, n-1), (2, 
n)} in the row above it. We then join to selected point among points 
associated with some vertex pair {(1, n-2), (2, n-1), (3, n)} in the row above 
it, and so on. We continue this procedure of joining to the selected point 
each time among the points associated with some vertex pair in the row just 
above till we reach the top row and join to some lattice point associated with 
some vertex pair for the topmost (first) row. 
 
Definition 2.4: If a lattice path formed by choosing vertex pairs such that 
each row of the lattice contributes exactly one vertex pair and all vertex pairs 
taken together contain all the vertices labeled as {1, 2, 3, ….., n} then each 
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of such lattice paths represent a graceful tree and these are the only lattice 
paths representing graceful trees. All other lattice paths formed by choosing 
one vertex pair from each row of the triangular lattice but which vertex pairs 
taken together do not contain all the vertices are not trees though they are 
graceful graphs.  
                             We now proceed to give examples of the lattice paths in 
the above mentioned lattices for n = 2, 3, 4, 5, 6 
  

1) Case n = 2: In this case, there is only one lattice point with associated 
vertex label (1, 2). So, the lattice path is of zero length. Note that there 
exist only one tree, made up of single edge, and this is graceful 
labeling 

2) Case n = 3: In this case, there two lattice paths formed by vertex pairs 
{(1, 3), (1, 2)} and {(1, 3), (2, 3)}. Note that these lattice paths are 
mirror images of each other in the line of symmetry mentioned above. 
So, they are graceful graphs. Moreover, since each together contain all 
vertices {1, 2, 3}, so, they are graceful trees.  

3)  Case n = 4: In this case, there are in all six (3!) lattice paths formed 
by vertex pairs {(1, 4), (1, 3), (1, 2)}, {(1, 4), (1, 3), (2, 3)}, {(1, 4), 
(1, 3), (3, 4)}, {(1, 4), (2, 4), (1, 2)}, {(1, 4), (2, 4), (2, 3)}, {(1, 4), (2, 
4), (3, 4)}. Out of these the first, second, fourth, and fifth lattice paths 
are graceful trees, while paths third and sixth are only graceful graphs 
but not graceful trees.  

4) Case n = 5: The three lattice paths which are nonisomorphic graceful 
trees are  

                                {(1,5), (1,4), (1,3), (1,2)} 
                                {(1,5), (1,4), (1,3), (2,3)} 
                                {(1,5), (1,4), (2,4), (2,3)} 
 
5) Case n = 6. In this case we get following six distinct lattice paths 

which correspond to nonisomorphic trees and chosen entries in 
successive rows are shown to be joined by an arrow to bring clarity 
about path structure that will be seen in the 6-delta lattice when lattice 
points will be joined in the 6 copies of 6-delta lattices: 

  
                        (1,6) (1,5) (1,4)  (1,3) (1,2)             …..(1) 
 
                        (1,6) (1,5) (1,4)  (1,3)  (2,3)             ….(2) 
 
                        (1,6) (1,5) (1,4)  (2,4)  (2,3)             .....(3) 
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                         (1,6) (1,5) (1,4) (2,4) (3,4)              …..(4) 
 
                         (1,6) (1,5) (2,5) (2,4) (3,4)              …..(5) 
 
                         (1,6) (1,5) (2,5) (1,3) (3,4)              …..(6) 

 
                             Further, it is easy to see that if we take some lattice path 
and consider the path formed as mirror image in the line of symmetry of 
the chosen path then both these paths represent graceful graphs which are 
isomorphic. The graceful nature of mirror image is clear (since the mirror 
image itself is again a lattice path). More clearly, the mirror image of a 
lattice point with associated vertex pair (i, j) we get the lattice point with 
associated vertex pair (n-i+1, n-j+1) and so by the below given simple 
theorem 2.1 the result follows. 
 
Theorem 2.1 Every graceful (n, n─1) tree remains graceful under the 
transformation (mapping) of vertex labels: 

)1( +−→ jnj .   
Proof: Let ki, be the vertex labels of two adjacent vertices of the tree. Then 
the edge label for this edge will be || ki − . Now under the mentioned 
transformation the edge labels 

|||)1()1(||| kikninki −=+−−+−→− , hence etc. 
 
 
Remark 2.2: It is easy to visualize that edge-labeled n-delta lattice is 
essentially a representation for complete graph on n vertices where these 
vertices are labeled by numbers {1, 2, 3, …, n}.  
. 
Remark 2.3: A lattice path is a path obtained by selecting some one lattice 
point on each row of  edge-labeled n-delta lattice and joining these lattice 
points in sequence starting with the lattice point on the last row and moving 
up in succession incorporating the chosen lattice point on each row till the 
path finally terminates at the selected lattice point on the first row.  
 
Remark 2.4: In the above definition by starting with the selected lattice 
point on the first row and moving down in succession incorporating the 
chosen lattice point on each row till the path finally terminates at the 
selected lattice point on the last row we will construct the same lattice path.  
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Remark 2.5: It is easy to visualize that a lattice path in n-delta lattice, when 
corresponds to a tree, is essentially equivalent to showing existence of a 
gracefully labeled isomorphic copy (for an unlabeled tree of some 
isomorphic type) in the complete graph on n vertices where these vertices 
are labeled by numbers {1, 2, 3, …, n}. 
                             It is easy to see that when we take a lattice path and use it 
to construct a graph by taking the vertex pairs that appear in that path as 
edges and the numbers that appear in the totality in these vertex pairs as 
vertex labels we get essentially a graceful graph.  
                             If this graceful graph is an (n, n-1) connected graph or 
(n,n-1) acyclic graph then the lattice path represents a graceful tree. 
Otherwise, the associated graph, though graceful, obtained from that lattice 
path is not a tree. 
                             Consider following two straight lattice paths which are 
symmetrically placed (mirror images of each other) around line of 
symmetry, namely, 
 

(1,n) (1,n-1) (1,n-2) ………. (1,2) 
 

and 
 

(1,n) (2,n) (3,n) ………… (n-1,n) 
 
It is easy to check that these lattice paths lying at left and right boundary of 
n-delta lattice correspond as a graph to gracefully labeled (n, n-1) star-trees. 
                             Consider following two zigzag lattice paths which are 
symmetrically placed (mirror images of each other) around line of 
symmetry, namely, 
 

(1,n) (1,n-1) (2,n-1) (2,n-2) (3,n-2) …… 
 

and 
 

(1,n) (2,n) (2,n-1) (3,n-1) (3,n-2) (4,n-2) …  
 
It is easy to check that these lattice paths going away from and coming 
towards line of symmetry by unit distance at each alternate move and 
passing in a zigzag way close to line of symmetry of n-delta lattice 
correspond as a graph to gracefully labeled (n,n-1) path-trees. 
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We now proceed with an algorithm to generate all possible gracefully 
labeled trees in terms of the totality of all lattice paths in n-delta lattice. 
 
For the sake of clarity let us state some more definitions: 
 
Definition 2.5: A tree is called a star-tree or simply a star if it is a tree with 
one vertex of degree k, k bigger than one, and all other vertices are adjacent 
to it and have degree exactly equal to one.  
 
Definition 2.6: A tree is called a path-tree or simply a path if it is tree with 
all vertices have degree two except two (end) vertices (where the path 
terminates) and they have degree one. 
 
Definition 2.7: The position-labeled n-delta lattice is the same lattice 
above whose lattice points are labeled as follows: the lattice points in the top 
row have associated labels i, where i goes from 1 to n-1, the lattice points in 
the second row below it have associated labels i, where  letter i goes from 1 
to n-2, …., the lattice points in the k-th row, reached by successively 
creating rows downwards, have associated labels i, where i goes from 1 to n-
k, … the last row has a single lattice point with vertex pair 1 as the 
associated label. 
                            We give below as an illustration the representation of this 
position-labeled lattice with associated labels for n = 2,3,4,5,6 (we don’t 
draw here the associated lattice points and it is to be understood that they are 
there) as follows: 
 
 
1)For n = 2, the position-labeled 2-delta lattice is: 

 
                                                   1 
 
2) For n = 3, the position-labeled 3-delta lattice is:  
 
                                             1     2 
 
                                                 1 
 
3) For n = 4, the position-labeled 4-delta lattice is: 
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                                        1     2      3  
 
                                           1     2 
 
                                               1 
 
4) For n = 5, the  position-labeled 5-delta lattice is: 
 
                                   1     2      3     4 
 
                                      1      2     3 
 
                                          1     2 
 
                                              1 
 
5) For n = 6, the 6-delta lattice is: 
 
                                   1     2      3     4     5 
 
                                       1      2     3     4  
 
                                           1     2     3 
 
                                               1      2 
 
                                                   1 
 
Definition 2.8: A lattice path in position-labeled n-delta lattice is produced 
similarly as was produced in edge-labeled n-delta lattice by starting at the 
only lattice point in the last row that exists at bottom of the and choosing one 
lattice point per row in the rows above in succession in the lattice and 
joining these lattice points in succession.  
 
Remark 2.6: Note that a lattice path in position-labeled n-delta lattice 
provides a natural lexicographic ordering for the corresponding lattice path 
containing same lattice points in edge-labeled n-delta lattice. It is easy to see 
that the lattice path 1 1 1 1 ….. 1 is the lattice path with smallest 
lexicographic order in the position-labeled n-delta lattice, representing star-
tree having vertex labeled 1 as central vertex and vertices labeled 2, 3, …, n 
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as pendant vertices. Similarly, the lattice path 1 2 3 4 …..  n is the 
lattice path with largest lexicographic order in the position-labeled n-delta 
lattice which is mirror image of lattice path just considered with smallest 
lexicographic order in the line of symmetry, again representing star-tree 
having vertex labeled 1 as central vertex and vertices labeled 2, 3, …, n as 
pendant vertices. Also, it is easy to see that lattice paths  
1 1 2 2 3 3 ….. i i (i+1) (i+1) ….. [n/2]  and 
1 2 2 3 3 4….. i (i+1) (i+1) (i+2) ….. [n/2]  are lattice 
paths in position-labeled lattice representing path-trees in edge-labeled 
lattice which are mirror images of each other in the line of symmetry. 
 
Definition 2.9: Two lattice paths in edge-labeled lattice are called different 
if as lattice paths in position-labeled lattice they are different, i.e. they are 
different lexicographic sequences (but may be representing graceful graphs 
which are isomorphic thus may not be different as unlabeled graphs). 
 
Definition 2.10: Two lattice paths in edge-labeled lattice are called distinct 
if they represent two graceful graphs which are nonisomorphic. 
 
3. Graceful Labeling for Trees: Graceful tree conjecture can be settled if 
one can show that the count of distinct lattice paths corresponding to 
graceful trees in the edge-labeled n-delta lattice is same as the count of 
unlabelled (n, n-1)-trees.  
 
Conjecture 3.1: For every unlabeled (n, n-1)-tree there exists a lattice path 
in the edge-labeled n-delta lattice such that the lexicographic order of the 
sequence corresponding to same lattice path viewed in the position-labeled 
n-delta lattice lies in between the lexicographic orders of lattice paths for 
star-tree and path-tree.  
  
We now verify this conjecture for some small values of n. For n = 1, 2, 3, 4 
the conjecture is clear. So, we check the case n = 5. The edge-labeled 5-delta 
lattice is  
                                  (1,2)     (2,3)      (3,4)     (4,5) 
 
                                         (1,3)      (2,4)     (3,5) 
 
                                                 (1,4)     (2,5) 
 
                                                       (1,5) 
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For this lattice the corresponding position-labeled 5-delta lattice is 
                                   1     2      3     4 
 
                                      1      2     3 
 
                                          1     2 
 
                                              1 
 
The lattice path (1, 5) (1, 4) (1, 3) (1, 2) in the edge-labeled lattice 
is star-tree and from its associated lattice path 1 1 1 1 in the position-
labeled lattice and so has associated lexicographic sequence (1, 1, 1, 1). 
Further, the lattice path (1, 5) (1, 4) (2, 4) (2, 3) in the edge-labeled 
lattice is path-tree and from its associated lattice path 1 1 2 2 in the 
position-labeled lattice and so has associated lexicographic sequence (1, 1, 2, 
2).  As we know, there exists only one tree in addition to star-tree and path-
tree mentioned above with lattice path (1, 5) (1, 4) (1, 3) (2, 3) in the 
edge-labeled lattice and has its associated lattice path 1 1 1 2 in the 
position-labeled lattice and so has lexicographic sequence (1, 1, 1, 2). It is 
clear to see that 
 

(1, 1, 1, 1)  < (1, 1, 1, 2) < (1, 1, 2, 2) 
 
We now proceed with one more check: the case n = 6. In this case we get the 
lattice paths in edge-labeled n-delta lattice and their associated lexicographic 
sequences from corresponding lattice paths in position-labeled n-delta lattice 
as follows: 
 
Lattice Path: (1, 6) (1, 5) (1, 4) (1, 3) (1, 2) 
Lexicographic Sequence: (1, 1, 1, 1, 1) 
Lattice Path: (1, 6) (1, 5) (1, 4) (1, 3) (2, 3) 
Lexicographic Sequence: (1, 1, 1, 1, 2) 
Lattice Path: (1, 6) (1, 5) (1, 4) (2, 4) (2, 3) 
Lexicographic Sequence: (1, 1, 1, 2, 2) 
Lattice Path: (1, 6) (1, 5) (1, 4) (2, 4) (3, 4) 
Lexicographic Sequence: (1, 1, 1, 2, 3) 
Lattice Path: (1, 6) (1, 5) (2, 5) (1, 3) (3, 4) 
Lexicographic Sequence: (1, 1, 2, 1, 3) 
Lattice Path: (1, 6) (1, 5) (2, 5) (2, 4) (3, 4) 
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Lexicographic Sequence: (1, 1, 2, 2, 3) 
 
It is clear from above that the lexicographic order of the sequence associated 
with any tree other than star-tree and path-tree lies in between the sequence 
corresponding to star-tree and path-tree. 
 
We now proceed to discuss two procedures. Showing equivalence of these 
two procedures will imply Graceful Tree Conjecture. 
  

1) The procedure for generating all possible unlabeled (n, n─1) trees 
from all possible unlabeled (n─1, n─2) trees by extension at every 
inequivalent vertex. 

2) The procedure of extending all possible lattice paths representing 
(n─1, n─2) trees sitting inside sub-lattice of edge-labeled n-delta 
lattice that results after deleting first row of edge-labeled n-delta 
lattice.  

 
Conjecture 3.2: The procedures 1) and 2) are equivalent. 
 
Remark 3.1: Note that in the procedure mentioned in 1) we need to extend 
once at each inequvalent vertex (defined below), i.e. we need to emerge one 
edge from each inequvalent vertex and join it to a new vertex taken outside. 
We proceed with some definitions which will make precise the first 
procedure mentioned above. 
 
Definition 3.1: Let G be an unlabelled (p, q) graph and let eG  be a 
supergraph of G obtained by taking a (new) vertex outside of the vertex set 
V(G) and joining it to some (unspecified) vertex of G by an (new) edge not 
in the edge set of G, E(G), is called the extension of G to eG . 
 
Definition 3.2: The subset jV of vertices { j

r
jj uuu ,,, 21 L } in a tree T is 

called a set of equivalent vertices or simply an equivalent set if all the 
trees T + j

svu , 1 ≤  s ≤  r, obtained from T by adding an edge j
svu , 

obtained by joining vertex j
su in set jV  to a new vertex v  not in V(G), are 

isomorphic. 
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Definition 3.3: The subset of vertices (vertices) of  V(G) is called a set of 
equivalent vertices or simply an equivalent set if the extension of graph G 
at any vertex among these vertices, achieved by joining any one vertex 
among these vertices to a (new) vertex taken outside not in V(G), leads to 
graphs which are all isomorphic. 
 
Definition 3.4: The collection of subsets { mVVV ,,, 21 L } of V(G), the 
vertex set of graph G is called a partitioning of V(G) into equivalent sets if 
all the subsets Vi , i = 1, 2,…, m are equivalent sets, 

UI
m

i
iji VGVandjiVV

1
)(,,

=
=≠∀= φ , where φφ  is a null 

set. 
 
Definition 3.5: The collection of all possible unlabelled (nonisomorphic) (n, 
n─1) trees is called (n, n─1)-stock.  
 
Definition 3.6: The set of unlabelled (n+1, n)-trees obtained by extension at 
(any) one vertex belonging to every set of equivalent vertices in the 
partitioning of V(T) into equivalent sets for a tree T is called Complete 
Extension of T, and is denoted by CE(T).  
 
Theorem 3.1: The collection of nonisomorphic trees contained in  

U
j

jTCE )(/
, jT belongs to (n, n─1)-stock, and / indicates that the union is 

over  nonisomorphic trees, forms a (n+1, n)-stock. 
 
Proof: For every tree T belonging to (n+1, n)-stock there exists trees T* of 
some isomorphism type in (n, n─1)-stock obtained by deleting pendant 
vertex of T. So, T can be considered as arrived at by extension of some tree 
like T* belonging to (n, n─1)-stock, and trees isomorphic to T arriving from 
more than one T* is taken only once in the union.          
 
 
Definition 3.7: Two vertices in an unlabeled graph are called inequivalent 
if they belong to two different equivalent sets. 
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Thus, extending at each inequivalent vertex of trees in the (n-1, n-2)-stock 
we will be able to generate the entire (n, n-1)-stock. 
 
To understand procedure in 2) we begin with some simple observations: 
 

1) The (n+1)-delta lattice can be obtained from n-delta lattice by just 
appending new diagonal made up of n new lattice points labeled by 
vertex pairs {(1, n+1), (2, n+1), (3, n+1), …., (n, n+1)} parallel to 
diagonal {(1, n), (2, n), (3, n), …., (n-1, n)} of n-delta lattice. 

2) We consider sub-lattice of (n+1)-delta lattice that results after deleting 
first row of the (n+1)-delta lattice and consider all lattice paths sitting 
in this sub-lattice and representing (n, n-1)-trees with edge labeling 
made up of labels {2, 3, 4, … , n} and contain vertex labels {1, 2, …., 
i-1, i+1, …., n+1}, where missing label }1,,3,2,1{ +∈ ni L . 

3) Now, it is clear to see that we can extend each of lattice path 
considered in 2) in two ways: first by appending an edge (i-1, i) to get 
first variety of graceful tree in (n+1)-delta lattice  and then by 
appending an edge (i, i+1) to get second variety of graceful tree in 
(n+1)-delta lattice.  

 
We claim that we capture all possible unlabeled (n+1, n)-trees that forms the 
entire (n+1, n)-stock, in their graceful avatar!  

 
Illustration: Consider sub-lattice of 5–delta lattice after deleting its first row 
and lattice paths in it representing (4, 3)-trees below: 
 
 
                                         (1,3)      (2,4)     (3,5) 
 
                                                 (1,4)     (2,5) 
 
                                                       (1,5)                                          
 

(i) The lattice paths in this sub-lattice of  5–delta lattice which are (4, 
3)-trees are {(1, 5), (1, 4), (1, 3)}, {(1, 5), (1, 4), (2, 4)}, {(1, 5), (1, 
4), (3, 5)}, {(1, 5), (2, 5), (1, 3)},{(1, 5), (2, 5), (2, 4)}, {(1, 5), (2, 
5), (3, 5)}.  

(ii) By extending these lattice paths obtained in (ii) in 5–delta lattice 
we have following totality of  lattice paths: {(1, 5), (1, 4), (1, 3), 
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(1, 2)}, {(1, 5), (1, 4), (1, 3), (2, 3)}, {(1, 5), (1, 4), (2, 4), (2, 3)}, 
{(1, 5), (1, 4), (2, 4), (3, 4)}, {(1, 5), (2, 5), (2, 4), (2, 3)}, {(1, 5), 
(2, 5), (2, 4), (3, 4)},  {(1, 5), (2, 5), (3, 5), (3, 4)}, {(1, 5), (2, 5), 
(3, 5), (4, 5)} 

(iii) It can be easily checked that in the procedure explained in this 
illustration to get all possible distinct trees in 5–delta lattice by 
attaching an edge to the lattice paths in sub-lattice of  5–delta 
lattice we are essentially attaching edge to at least some one vertex 
belonging to every set of equivalent vertices in the partitioning of 
vertex set V(T) into equivalent sets for every tree T  under 
consideration. 
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