
 
 
 
 
 
 
 
A Hypothesis about Infinite Series, of the 

minimally centered variety 

By Sidharth Ghoshal 
May 17, 2012 

  



Contents 
Taylor’s Theorem and Maclaurin’s Special Case: A Brief Introduction ........................................................ 3 

The Curious Case of the Infinite Power Series: ........................................................................................... 4 

The Algebraic Method: ........................................................................................................................... 4 

Generating Infinite Series is not always Commutative: .......................................................................... 5 

The Inverse Series: ...................................................................................................................................... 6 

Complex Series: .......................................................................................................................................... 8 

Permutation Groups: .................................................................................................................................. 9 

Higher Order Generalizations: .................................................................................................................. 10 

Why Use It: ............................................................................................................................................... 10 

A Curious Side Note: ................................................................................................................................. 11 

 

  



Taylor’s Theorem and Maclaurin’s Special Case: A Brief Introduction 
 

One of the first lessons in approximation and modeling that students of calculus learn is a 

special rule known as Taylor’s Theorem. Taylor’s theorem is a method of approximating a function over 

a local domain through the use of the value of the function as well as its derivatives. The theorem can be 

stated as follows: 

        
   

      

 

   

      

  
 

Around a domain (r,k) which includes the point x = a on it for x   . In the Case of x   . The 

domain of the Taylor series approximation is the disk defined as            . This is a powerful tool 

for approximation as long as a function is infinitely differentiable around a particular area (and that its 

derivatives are not all equal to zero or undefined). Maclaurin specifically studied a special case of 

Taylor’s theorem where a is assumed to be zero. The series he created from this therefore were power 

series with only coefficients and without any subtraction/addition that needed to be complete under 

the power. Some examples of well known Maclaurin series include the following: 

        
  

 
  

  

 
   

  

  
              

 

   
                               

            
  

 
  

  

 
         

  

 
                

The power of these tools is undoubtedly high but unfortunately their ability to conduct 

approximations is quite often limited to a local range. In order to use the series for points outside of 

their original radius of convergence, a new series all together must be generated and that too, series 

that are not centered at x = 0 require the use of a summation on each individual sum (or in the case of a 

computer a single new stored variable). Then there are some functions all together who do not have any 



well defined Maclaurin series and require Taylor’s theorem to be applied in order to be approximated 

regardless if the function has a well defined limit at x= 0.  

 
 

 
                                    

The purpose of this piece is to explore and develop an alternative to the Taylor series for 

approximating functions and especially, to develop an alternative to the Maclaurin series (not only for 

computational efficiency but including aesthetics). These alternatives should preferably work in the 

regions of convergence where Taylor’s theorem doesn’t operate. 

The Curious Case of the Infinite Power Series: 
 

As stated earlier in the introduction the following identity is of common knowledge. 

   

 

   

               
 

   
           

I pick this as a starting point for this paper because of a question that many readers might ask. 

This identity seems so simple, is there a way that it can be produced without the use of Calculus? The 

answer to that is yes, there is an algebraic approach to the problem of creating infinite series as long as 

the sums can be expressed in a fraction. 

The Algebraic Method: 
 

In this case our goal is not to prove that the infinite sum of all powers of a number converges 

but that the original function is equal to the infinite sum of all powers of a number. We thus proceed 

onward with our original statement 
 

   
. By simply carrying out long division (divide 1 by 1-x) we end up 

with a never ending division sum that produces the terms of the geometric series. So basically one 

simply had “solve” the fraction to be able to produce the series. Now either by graphing the infinite sum 



or by actually using logic must one deduct that this series cannot possible converge for x with an 

absolute value greater than (or equal to for that matter) 1. Here I place the graph of 1/(1-x) as well as 

the power series to 10 terms (in green) to compare the two series. 

 

     
 

   
                                           

 

 

 

 

 

  

 

 

For many people this might now appear to be a closed point; however, we haven’t fully concluded it yet. 

Generating Infinite Series is not always Commutative: 
 

A rather unobvious question that one may ask is whether performing the same long division 

problem of 
 

   
 but using the term (-x + 1) in division will change the answer. One would naturally say no 

(or not likely) to that answer because that would appear to be as counterintuitive as 
 

   
   

 

    
 (which 

obviously is not true) but that seems to be the case here. Upon dividing by (-x + 1) in that order we are 

left with a very different series than our original geometric series. 

 

   
   

 

 
  

 

    
 

    
 

   

Curiously enough, this series has some very unique properties. It converges to the function 
 

   
 

(which I now believe is important enough function that it should be given its own name) for all x whose 



absolute value exceeds 1. Basically, this series makes up for where the original geometric series fails to 

converge. A graph of all three series graphed together reveals this relationship in more detail. 

   

       Blue is the new series 

 

 

 

 

 

 

 

 

At this point it is necessary to say that this series behaves very similarly to the Maclaurin series 

that we are more accustomed to except for a couple (major) differences. One, the series always 

converges outside a particular interval of convergence where as values of x being approximated are 

located further away, fewer terms are required to accurately model a function. The rest will be 

discussed in the next chapter (if that’s the appropriate word) of this paper. 

The Inverse Series: 
 

The first type of alternative-Taylor series to be considered here will be the inverse or reciprocal 

Series. Their currently does not exist a formal way of defining this series using only f and a value of f (+ 

derivatives and integral values) at a particular point but the following information can be discerned: 

The Inverse series when fully complete takes on a form that can be modeled by the following 

expression:  



         

  
 
 
  

   

 

     

      
 

 

   

 

Because all the terms in the sequence (for i>-1) approach zero as x approaches both positive and 

negative infinity, it is necessary to determine the values of the endpoints of the function being 

evaluated. 

Thus we know that a constant term must be added that satisfies: 

         
    

               

Except in the situation where f(x) can be expressed as: 

         

where q does not remove ln(x) all together from the most algebraically simple expression of the 

function. An example of such a function would be ln(1-x). Through the use of integration of the 

derivative series (-1/1-x) we find that: 

                
 

 
  

 

     
 

     
 

    

Clearly this series will have a value of infinity at the end. It is therefore very necessary to resort 

back to a more general way of determining the constant term: 

 

       
    

           

For those who are worried that evaluating at both ends of infinity will result in two different 

expressions a simple tool to counter that is the use of the function sign(x), sgn(x), or 
   

 
. This function is 

capable of creating a positive and negative constant function of two different values (which itself can be 

multiplied and added by constants) to create the individual terms in the positive power series portion of 

the reciprocal series. The golden question remains however; how does one derive the coefficients of the 

reciprocal terms and iterated-logarithmic-integral-terms? That latter is really a mystery to me but the 



former appears to have the same coefficients as the corresponding power series of f(x) except for one 

very important point. The sign of these terms changes back and forth as one integrates or derives the 

series repeatedly.  

Example: 

 

   
   

          

 
 

 
  

 

    
 

   
    

           
   

  

 
  

  

 
  

        
 

 
  

 

   

  

The magnitude of the coefficients between the Maclaurin and reciprocal series of functions has 

always been equal but the sign has been an issue. Sometimes the signs match, other times they do not. 

It appears as though every function as a number 1 or -1 assigned to it to define the sign orientation for 

its corresponding series. (Perhaps complex numbers may appear in future generalizations). The 

integrated log portions really have no discernible pattern at the moment. Which makes the existence of 

a close form expression of these series (taking on the form mention above) an open question or (for the 

sake of the title) a hypothesis.  

Complex Series: 
 

A Further Generalization from the reciprocal series can be committed. Consider the following 

functions (defined on C now as opposed to just R).  

   
 

     
      

 

            
  

        
  

If one goes through the divide-terms-and-see-what-happens approach a variety of new types of 

series come into existence. They are of similar form to the reciprocal series but now a variety of rational, 

irrational, transcendental, and complex terms become possible for powers of x. It appears that a series 



can be constructed using any power of x. Just try it out for oneself and results will start to appear. This 

leaves a lot of possibilities for how to generalize the Maclaurin (and I think we’ve sidetracked the goal of 

generalizing Taylor’s Theorem) series. I believe that the use of fractional calculus might be a way to go 

about approaching the problem. A closed form expression for generating any type of power series 

(simply define the power of x who (along with derivative and integral terms) will be used and through 

calculus determine coefficients) should exist (no matter how un-elegant it will be). The question is how 

to determine this pattern.  

An interesting note here is that when defining a series on C the direction or path that one wants 

to take along the x-plane to approximate the function becomes changeable and thus multiple series can 

be created. A very similar idea to this is the notion of the Laurent Series which defines a variety of 

infinite series over a path integral. 

Permutation Groups: 
 

There is more than meets the eye in terms of possible series when attempting the original 

division problem of f(x)/g(x). Consider the following case as an example: 

   
 

             

Depending on how one orders the terms of 1, -x, +x2, and -5x3 a different series is produced as a 

solution. Even more interestingly is the fact that four all together different series (no matching terms to 

the point that terms containing an x to the same power have different coefficients) can be generated 

depending on whether 1, -x, x2, and -5x3 were the leading coefficient when conducting division. This zoo 

of different series (all of whom are some form or another of General Complex Power Series) can be 

grouped together as the Permutation group of defined series on the function. All integrals and 

derivatives of this function will have an integral and derivative series associated with those generated 



from this function. If it is possible to determine the number a permutation series a particular function 

has (say something abstract such as ln(x) + ex – 1/(1-x) ) then a General Complex Power Series Rule can 

be used quickly and effectively to only produce those series which do help approximate the function and 

not just any series. This comes down to the point of determining when a particular series should be used 

and when not. 

Higher Order Generalizations: 
 

The very notion of a series could be attached to any sort of iterated approximation. This paper 

primarily discusses power series but the idea can be considered with series of exponentials, series of 

wave functions (fourier is an example), series of tetrations, and further hyper-operators. Each has its 

own place and use for approximating functions.  The other notion that can be considered is creating n- 

dimensional series for approximation. Partial derivatives make the problem more complex because the 

notion of a total derivative for a function is much harder to arrive at and instead a matrix of series will 

need to be used that allows one to decide along which axis (or path) they take to approximate a 

function. Perhaps path efficiency would be a field of value in that case.  

Why Use It: 
 

Besides the convenience of being able to on the spot generate an infinite series that can 

approximate a given function (or differential equation) this idea has additional weight to it. It creates a 

framework from which additional integral methods (as opposed to trapezoidal, simpson’s rule etc… 

there exists the possibility of an reciprocal method, reciprocal quadratic, etc.. which can be used right 

now) can be generated. This also adds the convenience of being able to generalize the Runge-Kutta 

methods to allow for even more efficient methods of approximation (in the sense that these methods 



better fit the equation that is being modeled).  The latter of which would be invaluable to the fields of 

ODE and PDE.  

 

A Curious Side Note: 
 

While I was working on this idea I realized that linear algebra could be made even more 

invaluable to the field. By using matrices (or higher dimensional arrays if dealing with higher 

dimensional equations) one is able to very accurately locally approximate a function. This can be 

achieved by not only solving for the individual points that the function exists in and fitting a curve but 

also by measuring the values of the derivatives (and even more curiously) the values of definite integrals 

of that function so that curve fitting can become even more accurate. This method may be much more 

efficient than even Taylor’s Theorem or the proposed generalization (depending on the situation) as it 

may be much easier to compute. The main punch here is that by also evaluating a function at infinity 

(and perhaps using the matrices again for very accurate end point approximation) it may be possible to 

grasp the shape of the entire function without ever having to actually use a series approximation. This is 

just a thought though and needs to be explored further. 


