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My preon foundation of the Standard Model and mass-generalized Maxwell’ s equations

hint at and are consistent with this soliton solution [1][2][3][4][5].

A soliton isasolitary travelling wave. Generally it does not change or changes little or

gradually asit travels.

The simplest elementary particlesin the preon model of the Standard Model are the

first order objects (including electrons and their neutrinos). Recall that afirst order object
may be described by (R,R,R) (where R representseither a E or a B component).

e = e(l) = (ELELEY),

u=e2) = (ELE% B,

7~ = e(3) = (ELEZED),

ve = v(1) = (B1,B?,B3),

v, = v(2) = (BL,B?%,B3),

ve = v(3) = (B,B%,B3),

Ur = Ul(l) = (Bl,EZ,E3)l

Cr = U1(2) = (Bl,EZ,E3)2

tr = U1(3) = (BY,E%E?),

Ug = Uz(l) = (El,BZ,Es)l

Cg = U2(2) = (El,BZ,Es)2

tc = U2(3) = (El,Bz,E3)3

us = us(1) = (ELE?%B3),

cs = U3(2) = (ELE%B?),

ts = us(3) = (E',E%B?),

dr = d1(1) = (E*, B%,B3),

sr = d1(2) = (E*,B%,B3),

br = d1(3) = (E',B?%,B?),

de = d2(1) = (BY,E?,B?),

se = d2(2) = (BY,E?,B?),

be = d2(3) = (BY,E?,B3),

ds = d3(1) = (BL,BZED),

Sg = d3(2) = (Bl,BZ,E3)2

be = da(3) = (BL,BZE),

The Helmholtzian factorization [6] generalization of the d’ Alembertian [7] factorization

re-retrieval.
d’ Alembertian factorization:
Jt AL
Jo J? _ [JA?
NE A3
J0 A0

=LA

isacompact expression of the mass-generalized Maxwell’ s equations expanded, for
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[02E3 — 63E2 + 0oB1] — [02B3 — 03B2 + 0oEL] + 01(V - f*)

[—01E83 + O3EL + 9oB2] — [-01B3 + 83BL + E2] + 02(V - f*)

[01E2 — 6,EL + 60B3] — [01B2 — 0B + 00E3] + 83(V « f*)

\ [01BL + 62B2 — 63B3] — [01EL + 02E2 — 03E3] — 9o(V + f*)

Note the |eft brackets are identically zero (the Homogeneous Maxwell’s
equations).

the right brackets are the terms of the Inhomogeneous Maxwell’s
equations.
Thus, this factorization reveals a symmetry/assymetry.
Switch the E’'s & B’sand you get their respective charge densities

(for appropriate gauge).
Helmholtzian factorization:
[ (O - m[?)AL
J2 - |m|?)A2?
3 | ©=Im) _ O mP)A
J3 (O — |m|?)AS
\_J° EENRY
/ D, Dy -Df D D} -Dy D5 Du Al
_| D& Do Df D Dy D! -Df D A2
D -Df" Do D Dy Df D) Ds AP
0 0 i 0 0
\ Di D: D5 D J\ pf b} D} b J\A



Dy DY -Df -D; D} -D§ D5 -D Al

_| -D§ -Do Df -Ds Dy -D! -Df -D, A2
0
-D7 -D3; -D3 Dy —DE _Dg _Dg Do A
where:
Drs(6i+mi) , D;s(ai—mi)
Dif O 0 Dif O
D| = y D| = ’
0 Dy 0 Df

D+ +
o= 0P ) ot 0P
D! 0 D 0

E - w¥!(-D{AT — D1A%) + w*2(-D{A% — DA ) + w*3(-DJA - D3A?)

B = w41 (D,A3 — D3A?) + W42(—D1A3 + D3AL) + w3(D1A2 — D,AY)

Eq = w(-Dg AL - DFA®) + w*?(-Dg 'A2 - D A°) + w*3(-Dy 'AS - D A°
By = WAL(D5° A% — DS A2) + WH2(—D{° A3 + DS AL) + wA3(DF° A2 — D5°AL)

So, these expand to:

E - E+ _ Wl —(80 — mo)Ai — (81 + ml)AE N
E_ —(80 + mo)AE — (61 — ml)AQ

+wé2 —(50 - mo)AE - (62 + mz)AE N
—(ao + mo)A? - (62 - mz)A9
—(60 — mo)AE — (53 + mg)AE

—(ao + mo)A§ — (53 — mg)A9

3 _ 2
B — B, _ wét (82 + mz)AJr (83 + m3)A+ N
B_ (82 - mz)A§ - (83 - m3)A§

+ w43



L ypen (01 MDA+ (B2 + M)A ) .

—(01 — mp)AS + (03 — mz)AL
(81 + ml)AE — (62 + I’nz)AJlr
(01— ml)AE — (02— mz)AE

E- —(0o + Mp)AL — (01 — mp)A°
Ey = = w4l (G0 +Mo) (01 =ma) +
E. —(0o — mo)Ai —(01+ ml)AE
w2 —(ao + mo)AE — (52 — mz)AQ N

—(60 - mo)AJZr — (52 + mg)AE
—(0o + mo)A§ - (03— mg)AQ

+ w3

+ w43 v
—(80 - mo)Af — (63 + ms)A9
B_ 02 — Mp)A3 — (83 — m3)A2
By = _ ol (02 2) (03 3) N
B. (02 + mz)Ai — (03 + m3)AJ2r
+wé2 —(01 — m1)A§ + (03 — ms)A} N
—(61 + ml)Aﬁ + (53 + mg)AJ];
+ w3 (61 - ml)AE - (52 - mz)A} v
(01 + My)A2 — (82 + my)Al
and:
[ (O - )AL
J2 - |m|?)A2?
_ | @=1m) O A
J3 (O - [m[>)A3
\ (O - |m2)A°
/ Dy Dy -Dy D DIAL + D;A® — DS A2 + D A3
| -Ds Do Df D DIA2 + D,A? — D AR + DAL
Dy DY Do Ds DUA3 + D3A? - D5°AL + D A2
\  Di D} Di -Dj DIAL + DIAZ + DUAZ — DoA?



1 1
Do Dy -Df D —E"+ B

DY Do D D, —E? + B}
Df -Df Do Ds B3+ B}
Di D D§ Dy J\ v, .Ar

(" Do(Bl-EY) + D5 (B2 - E2) - D (B3~ E°) + D1(V; -A%) )
-Dg*(B} - E') + Do(BZ - E2) + D" (B} - E®) + Dz(gﬁ -A*)
D5 (B} - E*) - D" (B2 - E2) + Do(B3 - E%) + Ds(Vy - A")
> D! (B} - E*) + DY(B;  E2) + Di(B3 - E%) - D(V; -A") )

m
[D5°E3 - DS'E2 + DoBL | - [ D"BE — D5°B2 + DoE! ] + Dl(vII -A*)

m
[-DT°E® + DS°E' + DoB2 | - [ -D{°BS + D5°B} + DoE2 | + DZ(Vﬁ .A*)

m
[DfE? - D°E' + DoB2 ] - [ DiB2 - DBl + DoE® ] + Dg(vII -A*)

\ [DiBi+DjB2 + DIB} | - [ DIE! + DiE? + DIE? | - D%(Qﬁ -A*)

Working these out just as the ones above were worked out confirms that
these are
the homogeneous and inhomogeneous mass-generalized Maxwell’s
equations
(plus the usual but generalized gauge terms).
These and the other factorization are worked out in more detail in [8]
(including the various gauges).

The mass-generalized Maxwell’ s equations may be written (as| first did in thisformin
2001):

(V+m)-B =0, (V—m)x§:(%+mo)ﬁ’+3’
(V-m)-E = p, (?+m)xE’:—(%—mo)§
B=(V+mM)xA , *E—(%—mo)ﬁ—(%mw

Asyou can see, this form summarizes the above equations in matrix form,

wherethe R./R_ parts are substituted for the corresponding R along with the
corresponding sign of the mass.



The merging process of al fundamental objects (first or second order) (particle) with
their antiobject (antiparticle) is dightly more complicated than simple addition.
The object is adoublet with a single non-zero entry.

11
At merge each is multiplied by merge factor 11 , essentially converting the

doubl et/spi n-% object into a spin-1 object, by a projection operator flattening the space as
follows:

11\, (11 R (R
11 ) 0 R
11 11 0 R
R_: =
11 11 R R
11 \w 11 11 R, R, +R.
R = (R. +R.) = -
11 11 11 R R, +R.

A free doublet naturally has two degrees of freedom (dimensions).

The above projection/flattening operator drops one degree of freedom to one (like a
shadow or aflat mirror reflection).

The spin of a particleisthe reciprocal of the dimension of the particle spaceitisa
member of .

So, the spin of afermion (first or second order object) isthe reciprocal of the dimension
of the fermion space:: % , and, likewise, the spin of aphotonis: 1 .

The equations of athus merged first order object with it’ s anti-object become:
0+0=(V+m)-B+(V-1m)- §—[(V’+m)+(? m} ~2V.B
O=p-p=(V-M)-E+(V+m)- E_[(V m)+(V+m)} .E=2V.
0=J-J=(V- m’)xB—(%ero)EJr(V—m)xB—(Eero)E)

(V- m)xB+(V—m)x§—(ﬁ+mo)E’—(i+mo)E’

[(? M)+ (V- m)}xB [(gt+mo)E+( +mo)}E’
- Vxﬁ—iﬁ}

9 _myB+ (V- ﬁf)xE+(—+mo)
=[(V+m)+(€’—m)}xﬁ+[(gt m)+(8t+mo)
2[V><E+i§]

ot
And the potentials satisfy:

N
B
N
B



B+B=(V+M)xA+(V-M)xA = [(V+m)+(ﬁ’—m)}xﬂ’:ﬁxﬂ’
E’+E’z—(%—mo)ﬂ’—(9+m)A0—(%+mo)K—(V—m)A0

= [ (& -mo) = (L mo) R+ [~(Vam) - (V-1) ]a°

- 2[-SR-VA|

These are the equations of light, each of E and B ,aswell as A and ¢ = A°
satisfying the wave equation.

The second order objects (quarks) merge, likewise. Since via the self-fermion
interaction the merging of second order object with it’s anti-object then becomes the
merger of first order object with it’s anti-object.

Dealing with the mass-generalized Maxwell’ s equations for fundamental objectsis not
like dealing with a single equation. Each fermion is specified by a non-zero triplet. Each
component of thetriplet may bean E ora B , and eachiseither + or — . Four possible
states for each component comes to twelve. Since three are non-zero, nine must vanish.
The AL & A" must satisfy the pair of homogeneous and pair of inhomogeneous
eguations, specified by the architecture of afermion.

Ei = —(0o — Mo)Al, — (8; + m;)A?

B, = (-1)"[ (2ot + Mato0))AT ™Y — (O3-1y1-1) + Maryon) )ALV ]

EL = —(ao_-l- mo)Ai_ —(0i — mi)AQ _ _

Bl = (1) [(@2-1o() =~ Ma-16) JAS T — (83 10(1-1) — M3 1-2) )AZ 700

(i €{1,2,3})

Some initial definitions may facilitate initial analysis of fundamental objects.

Let:

. E, .m=0 .
R(m,o,i) = _ [me {0,1},0 € {+,—},i € N]
BL ,m=1

Xn(Mg, Mz, Mg, 0) = (R(My,0,1),R(Mz,0,2),R(Ms,0,3)),
- ,0=+ 1 ,o=+

G = , S(o) = [0 € {+.=}]

+ ,0=- -1 ,0=-
This notation may rather efficiently express afundamental object fermion of generation

The polarity o efficiently expresses when all the opposing field strengths vanish.
For fermion expressed by:  Xn(mg,mz,ms, o) :
(R(m,5,1),R(m,5,2),R(m,5,3)), = (0,0,0),, , Vme {0,1}
and thus:
0 = ES = —(0o + S(G)Mo)AL — (i + S(G)m; )AS



0=B;= (—1)i+1[(52—To(i) + S(6)Ma-1o) JAS P — (O3 1yqion) + S(E)m&To(i_l))Aé’TO(i)]

So, regardless of what the fermion is, these will be satisfied for it.

Of course, vanishing of all the field potentials AL for agiven o will satisfy these,

but a more general solution may be obtained (including this) by analyzing all these
equations.

Note first, that: e_I de(yej de) =y +Py= (% + P)y

So, we may write:  Xp(mg, my, Mz, o) :
(" 0= E% = _efs(?:)moxoao <Ai6es(c=;)m0x°> _ e—s(c—;)mix‘ai <Ages(6)mix‘>

L J 0= B = (et g, g (AT Dm0 |

— @@ 105, o <A§_T°(i_1) (@) M-7()x* 00 )]

0 (Ages(a)mixi > _ _es(a)mixi—s(ﬁ)moxoao <Ai_7es(5)mox° )
3-To(i-1) ~s(5 x2-To(

= < Gomyy (A5 VeIt
_ es(a)m27T0(i)X27TO(i)7S(6)m&TO(i)X}TO(i) aS_TO(l) (Ag—To(l—l) es(g)m?rTO(i)Xl’rTo(i) >:|
.
(" 01 <A9—, es(a)mlxl > _ _es(c‘r)mlxl—s(é)moxoao <A% es(%)moxo >

0 ( Al @s(@)myx? ) — _@S(@)mx?-s(G)mox° do ( A2 @s(@)mox° )

O3 <A9—, es(a)mgx3 > _ _es(c‘r)m3x3—s(§)m0x°ao <A(3—, es(%)moxo >
(S

( al <Ag e3(5)m1X1+S(6)m2X2+S(6')m3X3+S(5)m0XO ) _ —80 <A% 65(3)m1X1+S(6)m2x2+s(6)m3x3+s(5)m0x° )

A

=< 02 (Ag 5@ Mx1+8(E)Mzx?+5(3) Mex*+S(3)Mox° ) = —0o < A2 @S0)Mix+5(E)mpx2+5(@) mex3+S(F)mox’ >
(o
03 (Ag @S(@)M1x'+5(5)mpx?+8(3) Max®+S(5 )mox° ) = -0 ( A3 (@) Mix1+5(3)myx2+5(3)Max+8(3)mox° )
0
e 01 <Ag eS(E)m1x1+s(6)m2x2+s(6)m3x3+s(c=;)m0x0) — —0o < AL @S(@)MuxL+5(@)mpx2+S(@)msx® +s(5)mox°>
(o3
o1 < A(Z—; es(&)m1x1+s(c‘;)m2x2+s(6)m3x3+s(5)mox0 ) = 05 < A% es(a)m1x1+s(6)m2x2+s(c‘r)m3x3+s(<?)mox° )
+ @or2(X%, X2, x3)
= < 01 <A(§} @S(@)Mx+8(G)Mzx*+8(5)Max>+5(5 )mox° > = 03 <A(ly @5(0)M1X1+5(0)Mox2+5(3)Max+S(F) mox° >
+ @o13(X%, X2, x3)
O < Ag es(a)m1x1+s(6)m2x2+s(6)m3x3+s(c=;)m0x° ) = 03 < A2 es(c‘;)m1x1+s(6)m2x2+s(6)m3x3+s(§)mox° )
(o3

+ @oza(Xt, x%,x3)

. \.
Likewise:



é 0, (Ages(a)mixi > _ _es(c‘:)mixifs(ﬁ)moxoao <A%es(é)mox0 )

= < O2T(i) (A? Tol=D) gs(@)ms.ro(x* o ) =

\ — @5@)My ) 100 —s(@)mg 1)x3 T 03140 ( Aé—To(i—l) @(E)Ma.1o;x> To0 )]

( 0 ( A @s(@)myx? ) = e@OM’-s@)m 5, ( A2 es(@)msx® )
01 <AC3_y es(a)mlxl ) _ es(a)mlxl—s(a)m3x363 (A% es(a)mgx3 )
01 ( A2 es(@)muxt ) — eS(E)mlxl—S(c‘r)mzxzaz ( Al @s(@)myx? )

01 < A2 es((‘r)m1x1+s(6)m2x2+s(6)m3x3+s(c=r)mgx° ) =0y < Al es(c‘r)mlx1+s(6)m2x2+s(6)m3x3+s(§)m0x° )
'O 'O

A

— o1 < A3 es(a)m1x1+s(c‘r)m2x2+s(6)m3x3+s(%)mox0 ) = 03 < Al es(a)m1x1+s(6)m2x2+s(6)m3x3+s(5)mox° )
(2 0

O < A3 es((‘r)m1x1+s(6)m2x2+s(6)m3x3+s(c=r)mgx° > = 03 < A2 es(c‘r)mlx1+s(6)m2x2+s(6)m3x3+s(§)m0x° >
(o3 (o}

The third equation is satisfied identically when the first two are satisfied.
This shows that both sets of equations have three equations in common.
Like the above, except not including:
01 < A?, es(a)mlx1+s(6)m2x2+s(6)m3x3+s(c=r)mox° > = 0o < A% es(c‘;)m1x1+s(6)m2x2+s(6)m3x3+s(5)mox° >
and: @aij(xt,x%,x3) =0
Thisis quite interesting. And that all six equations reduce to four minus one (since one
is satisfied identically by the other two) which is less than the number of potentials, and
then there will be arbitrary functions in the solutions as well.
Now, half of the equations for all fermions have been established; and for each fermion
three are subject to densities, while three vanish established as above.

Note before going on, that these equations are satisfied by:

Ai(—, _ \P(XO)e—[s(a)m1x1+s(6)m2x2+s(c‘r)m3x3+s(5)mox°] ’ (i c {l, 2, 3})
Ag _ ‘P(XO)(—Xl —x2_ X3)e—[s(c‘r)m1x1+s(6)m2x2+s(6)m3x3+s(5)mox°]

but depending on the signsof s(G)m;

one side or the other of the component would have infinities.

Alternatively, a construction of potentials may be as follows.
If: AL = ¥;(x%x%,x2,x3)e k"l (B scenario)

0= BL = (02 + S(@)M)AS — (93 + S(3)M3)A2 = (33 + S(G)M3)AZ = (9, + S(T)M) A
0= B2 = —(81 + S(3)M)AS + (03 + S(@)Ms)AL = (93 + S(T)M3)AL = (01 + ST )My )AS
0 = B3 = (01 + S(6)M1)AZ — (02 + S(B)M2)AL = (02 + S(G)M2)A; = (01 + S(6)M1)AZ



/

[83\1’2 + (—Wk3 + S(O’)m3>\P2:|e_|k = [82‘1’3 + (—sz + s(o)m2>‘P3]e‘|k rl

[83\1’1 + (——k3 + S(O’)m3>\P1:|e_|k = [81‘1’3 + (——kl + s(o)m1>‘P3]e lk-r}

[82\1’1 + (—sz + s(o)m2>‘P1]e kerl = [81‘1’2 + ( ||< "| k1 + s(o)m1>‘P2]e lk-r}

= <

= <

03V2 = 02¥3 "': :I ksW, = |k rI <L koW3 | S(6)M3¥2 = S(6)MP3
03¥1 = 01¥3 |||: :I ksW¥W1 = Ik o S KW¥3 | S(6)Mms¥1 = S(6)M W3
02¥1 = 01¥2 | — IE:I koW1 = IIIZ:I ki¥s | S(G)m¥1 = S(6)mMY>
03¥2 = 02¥3 | W3 = tz Wo | Wa = s
03¥1 = 012 | Wa = (21| Wa = Vs
02¥1 = 012 | W2 = 21| W2 = 2V

ks ms ks ms ms ms
Ky Wl,k—z—WZ,TS—WZ\Pz——l\Pl

03¥2 = %GZ\PZ , 02¥1 = %81‘1’1 , 03¥1 = %81‘1'1

= ¥ =xkim-r +y;(x°)

\\§
If:

0=
0=
O_

= <

= A; = [kim -1 +yi(X0)]e ™ (i e {1,2,3})

AL = ¥;(x%,x%, x2,x3)e ™l (E scenario)

EL = —(00 + S(G)Mo)AL — (01 + S(3)M1)A2 = (0o + S(G)Mo)AL = —(81 + S(G)My)A2
E2Z = —(00 + S(6)Mo)AZ — (02 + S(6)M2)A2 = (0o + S(6)Mp)AZ = —(02 + S(G)My) A2
ES = —(00 + S(6)Mp)A2 — (03 + S(G)M3)A2 = (0o + S(G)Mp)AS = —(03 + S(6)M3)A2
[aowﬁ (— ko + S(B)Mo ) Wi |l = —[ 01%0 + (—KLka + S(B)My ) Wo |ek]
[80\1’2 + (— e | Ko + S(O')mo>‘"I'2:|e kerl = [82‘1’0 + ( Kl r| Ko + S(O')m2>‘Po:|e fer]
[80\1’3 + (——ko + S(O')mo>‘"I'3:|e kerl = [83‘1’0 + (——kg + S(O')m3>‘Po:|e ker

0o¥1 = -01%0 | W1 = _t_;xpo y = My,
902 = —02¥0 | W2 = —ﬁ‘{" p, = M2y
or2 2T 2 Ko 0 5 me Vo
Oo¥s = —03%o | W3 = —ﬁ‘f’ Y, = %\P
or3 310 3 K 0 3 me o

10



k __.m k __mm ﬁ:_&:ﬁ:& ks _ mg
ko Mo ' ko Mo "’ ko Mo kq m "k, my

= = Yo=k=Y = %k
= Ab = Mokemil | (he {0,1,2,3))

Combining these two yields these potentials for the vacuum.
The arbitrary function of x° will be forced to a constant, and the arbitrary
constants
ki will have to match vanish, yielding the following potentials.
Al = ke™l | (he {0,1,2,3})

Note that:
(ke ™1y = ki G kiai(— oL mye i)
= —kZm.&. g )
= —kémi[(lm—l,rlmi +(Mer)[—m-r|?] ln“;‘;lm.)e m-r| 4 _m et _Imrlm,>ef|m-r|

3
_ m; _(mer)? Simer| _ (mer)? —|m-r
khz—%ml[lmfl(l mer? )el - jmer [° me! IJ

|2 (m-r)? _

But: (m-r)?>=m-r e =
(naturaJIy, since -™- isaunit vector

jmer]
= 0)
3

= O(ke Ml = kZ mée Ml = (i miz)(ke—lm-rl) = [m[2(ke- 1)
h-0
= (- m| )(ke_'mr') =

=

—_1:>8.<

|m-r| [mer|

3
where, asusua: m-r sZmix‘ , Im? = Zmz
i=0
So: kel satisfiesthe Klein-Gordon equation.
[ massis not generally considered as afour-vector, but considering it
[ as such is consistent with the mass-generalized Maxwell’ s equations
and
[ this solution.

Since xX° =ct , m-r isof theform k - r — wt (for 3-space r ).
Thus, such a potential is represented as a traveling wave soliton solution
of the
Klein-Gordon equation.
(Note that zero-densities dual potentials (o & G ) may exist as such
in the vacuum.)

11



Thus:
kel jsa soliton solution of the Klein-Gordon equation,

3 3
where, asusua: m-r =X mx' , m]*=>Ynm?
i—0 i=0

Note the similarity of the graphs of some functions used to describe such
phenomena by well known and respected quantum physics expert authors.

5 _[2x sin2(3x)
cosh@o Pluelel . se P4 (green) , 55553 (gold)[10]

|

— Slf’(3x) (blue) & 55'(3()3) (gold) are both differentiable functions,

so there is no need to do analysis of itin L? . 5e"I (green) , on the other hand, is not
differentiableat x = 0. It is Lebesgue integrable, soisin L*! (the equivalence classes of

L ebesgue integrable functions). It is also easy to demonstrate that it isin L? the traditional
guantum mechanics Hilbert space. So, though analysis as a differentiable function may not
alway's be appropriate on this function, analysisasan L? function alwaysis. There must be
areason why differential analysisisinsufficient to describe quantum mechanical effects,

Note that

12



while Hilbert space analysis gives good results. ke™l field strength potentials gives such
areason.

Further, yw* isamathematical construct, so that it isasoliton isinteresting, but not
necessarily physically relevent. kel | on the other hand, is a physical manifestation of
the field strengths of the object in question; so representing a soliton in 3-space gives an
accurate represention of the physical phenomenon.

And, further sill, neither Ws(sx) (blue) nor 53":;()3:> (gold) are solutions of the

Klein-Gordon equation, which the chargel ess and vacuum states must be. ke ™l | on the
other hand, is a solution of the Klein-Gordon equation, so gives a meaningful represention
of the chargeless and vacuum conditions; and some variation leading to this with zero
charge may give an accurate represention of the field strengths.

e*X isnoted in exercise 2.2 of [9] , but the above establishes a proof of the
generalzation as a soliton solution of the Klein-Gordon equation.

The correlation appears to be:

SN200) . o] [ & 3
cosh(Ax) ~ (»? ke Pllax LAl

On arelated note, asimilar correlation may be made to a Cauchy/Breit—Wigner
distribution.

k . ka2 A~ —C - m= :E_g
cosh(Ax) "~ (kx)2+a?’ @)™ ] c~10(.3)" |

i

0.0
32=40 1 0.0
a2=0.3

Now that a soliton solution of the Klein-Gordon equation has been established,
indicative of a stable object which the preceeding analysis demonstrates that certain of
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these are fundamental; the use of this soliton solution in modeling the probability density
function of quantum mechanics would be a natural following step.

After decades of experimental confirmations, there is little doubt that the
probability density distribution model of QED accurately represents facts of physical
phenomena within it’s domain. However, all other probability distributions prescribe
information concerning an underlying real range from areal domain. Some of QED, like
statistical mechanicsis statistical in nature, requiring probability theory analysis (like
describing behavior of systems of indistinguishible identical particles - akin to the various
problems of picking colored balls from a hat). Other parts of QED may be better
understood if the underlying physical reality was well modeled. That is the object of this,
earlier, and future efforts.
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