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Abstract

In this paper, we have established a connection between The Dirichlet series with the
Mobius function M (s) = > 72, u(n)/n® and a functional representation of the zeta function
((s) in terms of its partial Euler product. For this purpose, the Dirichlet series M (s) has been
modified and represented in terms of the partial Euler product by progressively eliminating
the numbers that first have a prime factor 2, then 3, then 5, ..up to the prime number p, to
obtain the series M (s, p;). It is shown that the series M (s) and the new series M (s, p,) have
the same region of convergence for every p,. Unlike the partial sum of M (s) that has irregular
behavior, the partial sum of the new series exhibits regular behavior as p, approaches infinity.
This has allowed the use of integration methods to compute the partial sum of the new series
and to examine the validity of the Riemann Hypothesis.
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1 Introduction

The Riemann zeta function ((s) satisfies the following functional equation over the complex
plain [2]
C(1 = s) = 2(2m)2 cos(0.5sm)T(5)(s), (1)

where, s = o + it is a complex variable and s # 1.

For o > 1 (or R(s) > 1), ((s) can be expressed by the following series

=1

C(S) = = Ea (2)

or by the following product over the primes p;’s

1 o0 1
C(s)_iHl<1_pf>' 3)

where, p1 = 2, [[:2,(1 — 1/p;®) is the Euler product and [[;_;(1 — 1/p;®) is the partial Euler
product. The above series and product representations of ((s) are absolutely convergent for
o>1



The region of the convergence for the sum in Equation (2) can be extended to %(s) > 0 by
using the alternating series 7(s) where

0 1\yn—1
a(s) =3 T @
n=1
and .
((s) = mﬁ('ﬁ ®)

One may notice that the term 1 — 2!7% is zero at s = 1. This zero cancels the simple pole that
((s) has at s = 1 enabling the extension (or analog continuation) of the zeta function series
representation over the critical strip where 0 < R(s) < 1.

It is well known that all of the non-trivial zeros of ((s) are located in the critical strip. Rie-
mann stated that all non-trivial zeros were very probably located on the critical line (s) = 0.5
[12]. There are many equivalent statements for the Riemann Hypothesis (RH) and one of them
involves the Dirichlet series with the Mobius function.

The Mobius function p(n) is defined as follows
p(n)=1,ifn =1.

p(n) = (=1)%,if n = [T¥_ pi, pi’s are distinct primes.
p(n) = 0, if p?|n for some prime number p.

The Dirichlet series M (s) with the Mobius function is defined as

o~ A(n)
M(s) = nz::l s (6)
This series is absolutely convergent to 1/((s) for R(s) > 1 and conditionally convergent to
1/((s) for R(s) = 1. The Riemann hypothesis is equivalent to the statement that M (s) is
conditionally convergent to 1/{(s) for R(s) > 0.5. It should be pointed out that our definition
of M (s) is different from Mertens function (defined in the literature as M () = >~ <,,<, (1))
If we denote M (s; 1, N) as partial sum of the series M (s) o

M1, = 3 ) @)
a1
then the Mertens function is given by M (0; 1, V). On RH, we then have [15]
M(0;1,N) = O(N'/#+),
where € is an arbitrary small number. By partial summation, on RH, we also have

M(1;1,N) = O(N~Y/2+e),

The irregular behavior of the Mobius function z(n) has so far hindered the attempts to esti-
mate the asymptotic behavior of any of the above two sums as IV approaches infinity.



The Riemann hypothesis is also equivalent to another statement that involves the prime
number function 7(x) (defined by the the number of primes less than x). The prime counting
function can be computed using Riemann Explicit Formula

[log z/log 2] 1/n
m(x /")

Li(z") — 1 =

n Z i@ 0g(2 +/ 2-1) logt

m(x) +

n=2

and on RH,
Li(z/?)

m(x) = Li(x) — 5

- Z Li(x”) 4+ Lesser terms

p
where Li(z) is the Logarithmic Integral of x and the sum 3°, Li(2”) is performed over the
nontrivial zeros p; = o; + 77; . This sum is conditionally convergent and it should be per-
formed over the nontrivial zeros with |y;|< T as T approaches infinity. The distribution of
the prime numbers can be also analyzed by defining the function v(x) as

> logpi

pim<x
and using Von Mangoldt formula given by
) -2
r)=x—) —— 7= —-log(l—=
o) = =35 =g o=

It is well known that as x approaches infinity, the prime counting function is asymptotic to
the function Li(x). Therefore, if we consider that 7(z) is comprised of two components, the
regulator component given by Li(x) and the irregular component J(z) given by

J(x) = m(x) — Li(x) (8)

then on RH, we have
1
J(z) < ;ﬁlogm for x > 2657
T

The irregular component .J () is also given by [13] (refer to lemmas 5 and 6)

J(z) = Ylz) —= L0 <ﬁ>

log log
or
NZA
J(x) = — — 9
log x Z <log x ©)

Our method to examine the validity of the Riemann Hypothesis is based on represent-
ing the Dirichlet series M (s) (defined by Equation (6)) in terms of the integral [ dJ(z)/z. In
order to do that, we need to smooth the irregular behavior of the function A (s) by introduc-
ing a method to represent the series M (s) in terms of the partial Euler product. This task is
achieved in section 2 by first eliminating the numbers that have the prime factor 2 to generate
the series M (s, 3) (i.e, the series M (s, 3) is void of any number with a prime factor less than
3). For the series M (s, 3), we then eliminate the numbers with the prime factor 3 to generate
the series M (s,5), and so on, up to the prime number p,. In other words, we have applied
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the sieving technique to modify the series M (s) to include only the numbers with prime fac-
tors greater than or equal to p,. In the literature [10], numbers with prime factors less than y
are called y-smooth while numbers with prime factors greater than y are called y-rough. In
essence, our approach is to compute the Dirichlet series over p,_;-rough numbers. In section
3, we have shown that the series M (s) and the new series M (s, p,) have the same region of
convergence (Theorem 1).

We will then present two methods to represent the series M (s, p,) in terms of the integral
J>dJ(x)/x. The first method is based on complex analysis (section 4). With this method,
we have provided a functional equation for ((s) using its partial Euler product. The second
method is described in section 5 and it is based on integration methods to represent the series
M (s, pr) in terms of the integral [* dJ(z)/x.

Gonek, Hughes and Keating [5] have done an extensive research into establishing a re-
lationship between ((s) and its partial Euler product for (s) < 1. Gonek stated ”Analytic
number theorists believe that an eventual proof of the Riemann Hypothesis must use both
the Euler product and functional equation of the zeta-function. For there are functions with
similar functional equations but no Euler product, and functions with an Euler product but
no functional equation”. In section 4, we will present a functional equation for ((s) using its
partial Euler product. The method is based on writing the Euler product formula as follows

-0
_i=1 p; _i=1 pi) p; '

The above equation is valid for #(s) > 1. To be able to represent ((s) in term of its partial
Euler product for R(s) < 1, we need to replace the term [[>° (1 — 1/pf) with an equivalent
one that allows the analytic continuation for the representation of ((s) for R(s) < 1. Thus, the
new term (that we need to introduce to replace [[° (1 — 1/pj)) must have a zero that corre-
sponds to the pole ((s) has at s = 1. In section 4, we will use the complex analysis to compute
this new term and then represent ((s) in terms of its partial Euler product. This functional
representation is given by Theorem 2. We have then used this theorem to represent the series
M(s,p;) in terms of the integral [ d.J(x)/z (Theorem 3).

As mentioned before, the efforts to use the series M (o) to examine the validity of the Rie-
mann Hypothesis have so far failed due to the irregular behavior of the partial sum of the
series M (o) (due to the irregular behavior of the Mobius function p(n)). In section 5, we
have shown that the partial sum of the new series M (o, p,) exhibits regular behavior as p,
approaches infinity. This has allowed the use of integration methods to compute the partial
sum of the new series. We have then shown that the partial sum of the series M (1, p,) can
be decomposed into two terms (Theorem 4). The first term, that we have called the regular
component, is generated by the regular component of the prime counting function Li(z). The
second term is the remainder and we denote it as the irregular component.

In section 6, we have used Theorem 3 and the Fourier analysis to derive a second rep-
resentation for the partial sum of the irregular component of the series M(1,p,). The two
representations of the irregular component of the partial sum of the series M (1, p,) are then
compared to examine the validity of the Riemann Hypothesis. This comparison analysis in-
dicates that non-trivial zeros can be found arbitrary close to the line R(s) = 1.



2 Applying the Sieving Method to the Dirichlet Series M (s).

The Dirichlet series M (s) with the Mobius function is defined as

1 1 0 1 1
EETID TR T TR
Next, we introduce the series M(s,3) by eliminating all the numbers that have a prime
factor 2 (or keeping only the numbers with prime factors greater than or equal to 3). Thus,
M (s,3) can be written as
1 1 1 0 1 1 1

M(s,3)=1— o0 — o= ot o0 — 15 —

Our analysis to test the conditional convergence of these series (M (s) and M(s,3) for
o < 1) is based on comparing correspondent terms of these two series. Therefore, rearrange-
ment and permutation of the terms may have a significant impact on analyzing the region of
convergence of both series. Thus, it essential to have the same index for both series M (s) and
M (s, 3) refer to the same term. Hence, we will represent M (s, 3) as follows

or

M(Sa 3) = ) (10)

where
w(n,3) = p(n), if n is an odd number,
p(n,3) = 0, if n is an even number.
The above series M (s, 3) can be further modified by eliminating all the numbers that have

a prime factor 3 (or keeping only the numbers with prime factors greater than or equal to 5)
to get the series M (s, 5) where

M(5,5) =1 — — —

or more conveniently

and so on.
Let I(p,) represent, in ascending order, the integers with distinct prime factors that belong

to the set {p; : p; > p,}. Let {1,1(p,)} be the set of 1 and I(p,) (for example, {1,1(3)} is the
set of square-free odd numbers), then we define the series M (s, p;) as

5



M(s,p) = 3 HPr), (1)

where

pu(n,pr) = p(n), if n € {1,1(pr)},
otherwise, u(n, p,) = 0.

It can be easily shown that, for every prime number p,, the series M(s,p,) converges
absolutely for R(s) > 1. Furthermore, it can be shown that, for R(s) > 1, M (s, p,) satisfies
the following equation

r—1
M(s) = M(s,pr) [| (1 - 1) : (12)

i=1
Since

1 > 1
M”cm“()

therefore we conclude that, for R(s) > 1, M (s, p,) approaches 1 as p, approaches infinity. It
should be pointed out here that with this definition of M (s, p,), M (s, 2) is equal to M (s).

3 The region of convergence for the series M(s) and M (s, p,).

In this section, we will deal with the question of the relationship between the conditional
convergence of the two series M (s, p,) and M (s) over the strip 0.5 < (s) < 1. Theorem 1
establishes this relationship.

Theorem 1. For s = o + it, where 0.5 < o < 1 and for every prime number p,, the series M (s)
converges conditionally if and only if the series M (s, p,) converges conditionally. Furthermore, within
the region of convergence, M (s) and M (s, p,) are related as follows

M(s) = M(s.p) [ <1 _ 1) . (13)

S
i—1 Db

The proof of this theorem can be achieved either by applying the Cauchy convergence
criteria or more conveniently by applying the complex analysis where we take advantage of
the fact that both functions ¢(s) and ¢(s) [T/={ (1 — 1/p) have the same zeros (and a simple
pole at s = 1) to the right of the line R(s) = 0.

In the following, we will use the complex analysis to prove Theorem 1 by using a method
similar to the one outlined by Littlewood theorem that shows that the Riemann Hypothesis
is valid if and only if the sum 2, u(n)/n® is convergent to 1/{(s) for every s with o > 0.5.
The proof of this theorem can be found in [15] (refer to Theorem 14.12) and it depends mainly
on Lemma 3.12 of the same reference [15]. This Lemma states: Let f(s) = > .- a,/n®, where
o > 1, a, = O(¢(n)) being non-decreasing and Y >, |a,|/n” = O(1/(c — 1)*) as 0 — 1.
Then, if ¢ > 0, 0 + ¢ > 1, x is not an integer and N is the integer nearest to x, we have

an 1 et v x¢ Y(2z)z' 7 log P(N)zl=°
n;g ws T o Joy ST w0 (T(a Y- 1)a>+0 ( T O\ T =
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To prove the first part of Theorem 1 (i.e. for s = o + it and 0.5 < ¢ < 1, the series M (s, p;)
converges conditionally if M (s) converges conditionally), we note that for o > 1,

M =3 D =

and

M(s,pr) = S 1Pr) ! .
( p) nz::l ns C<3> ;«:_11(1_%)

If we assume that M (s) is convergent for ¢ > h > 0.5, then ((s) has no zeros in the
complex plane to the right of the line (s) = h [15] (refer to Theorem 14.12). Consequently, the
function ¢(s) [T/} (1 — 1/p$) has no zeros in the complex plane to the right of the line R(s) =
h. Thus, we may apply Lemma 3.12 [15] with a,, = p(n,p,), f(s) = 1/(§(s) - 1/pf)>,
¢ = 2 and z half an odd integer to obtain [15] (refer to Theorem 14.12)

Z w(n, pr) 1 /ZHT 1 ar“’d Lo <x2>
plnpr) _ 1 o
nse M BTRAT () [T (1—ps£w> v g

i

However, by the calculus of residues we have

1 2+4T 1 x? 1
2 / , o= r—1 T
B N GCE T § ey (1 — p§£w) w C(s) IIiz (1 - p—?)
1 h—o+~y—iT h—o+~y+iT 24T 1 L
— / + + —dw
2mi \ Jo—ir h—g4~y—iT h=o 74T ) (5 4 ) [0 <1 B p$1+w> w

where, 0 < v < o — h. Since, along the line of integration and for an arbitrary small €, we
have 1/{(c+1iT") = O(T*) [15], therefore the first and third integrals on right side of the above
equation are given by O(T~!*<z?) while the second integral is given by O(z"~7+7T¢). Hence

Z N(n,spr) _ 11 - + O(TflJrer) + O(Tea:h70+'y)
n<x n C(S) ::_1 (1 - p?)

Taking T' = 23, the O—terms tend to zero as = approaches infinity. Consequently, the partial
sum ), . p(n,p,)/n’ is convergent as x approaches infinity and it is given by

- M(napr)
M(s,pr) - Z ns
n=1

or



Similarly, we can prove the second part of Theorem 1 (i.e. for s = o +itand 0.5 < 0 < 1,
the series M (s) converges conditionally if M (s, p,) converges conditionally). The second part
of the theorem can be also proved by first defining M (s, p,; N1, N2) as the partial sum

n, pr
M(s,pr; N1, No) = Z“ .Pr) (14)
n=N1

where Ny > N; > p,.. Then, we have

M(sapr—l;laNpT—l) :M(sapr;laNpT—l)_ M(S,phl,N). (15)

S

r—1

Since the series M (s, p,) is conditionally convergent, then the partial sums M (s, p,; 1, Np;)
and M (s,pr; 1, N) are both convergent to M(s,p,) as N approaches infinity. Furthermore,
the partial sum M (s, p;; Np,—1, Np,—1 + k) (for any integer k in the range 1 < k < p,_1)
approaches zero as N approaches infinity. Hence, as N approaches infinity, we obtain

. 1
M(s,pr—1) = lim M(s,pr—1;1,2) = M(s, p) ( e > :
r—1

By repeating this process » — 1 times, we then obtain

r—1 1
M(s) = M(s,p.) [] (1 - > _

i=1 p;

4 Functional representation of ((s) using its partial Euler product.

In this section, we will use the prime counting function to derive a functional representation
for ((s) using its partial Euler product. We will start this task by first writing ((s) for o > 1

as follows
B HEHAE)

For o > 0.5, we have

1
log H (1 — ) Z log (1 - ) + 27iN,
i=rl p; i=rl pi®

where NV is zero, positive or negative integer to account for the ambiguity in the phase of the
logarithm of complex numbers. Since 1/|p;|< 1, hence,

1 2 1 1 1 ,

i=rl 1 i=rl

Let 6(pr1, pr2, s) and d(p,1, s) be defined as the sums

St pras) = 3 (-5 -7~ o) (17)
Dbr1, Pr2, = - - - e )y
rh i S0\ 2ps 3pPs dpts
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and

> 1 1 1
5(pp1, 8) = - - - ). 1
(pri, <) ;;1( 2p%s 3pds Apts ) (18)
Thus,
r2

1
log H (1 — ) =-> e + 8(pr1,pr2, s) + 2miN. (19)

i=rl Z i=r1 £

Since [0(pr1, pra, $)|< S0, (g + g + o ) thus [8(prt, pro, 5)|= O(pl /(20 — 1)),
Furthermore, if 20 — 1 is a fixed positive number, then |5(p,1, pra, s)|= O(pl;*).

Using the Prime Number Theorem (PNT) with a suitable constant a > 0, the number of
primes less than x is given by [14] (refer to page 43)

m(x) = Li(x) + J(x), (20)

where Li(z) is the Logarithmic Integral of  and

J(x)=0 (xe_a\/@) ; (21)
or
J(x) =0 (m/(log :c)k) , (22)

where k is a number greater than zero.

Using Stieltjes integral [7], we may then write the sum Y72 ; 1/p; for o > 1 as follows

Pr2  da(x
L (@)

i=rl pi? T=Ppri z?

(23)

Using Equation (22) for the representation of 7(x), we may then write the integral in Equation
(23) as [7] (refer to Theorem 2, page 57)

DPr2 1 1
/ r+0 <k> , (24)
1 B Jpn a® log 2! (log pr1)
where £ is a number greater than zero. Therefore,
©1 1 1
/ x—/ — dx+0<k>. (25)
1 pz x(f log T Pr2 xO’ log T (log p'l’l)

Recalling that the Exponential Integral E () is given by

Eq(r) :/ idu,

u

and using the substitutions v = (0 — 1) log z, du = (0 — 1)dz/x and 27 /x = €*, then for o > 1,
we may write Equation (25) as

r2 1 1
2;1 o =FE) ((c —1)logpr1) — Eq ((0 — 1) log pr2) + O <(logpr1)k) . (26)

9



Combining Equations (19) and ((26)) and noting that, for ¢ > 1, E; ((c — 1) logpr2) ap-
proaches zero as p,2 approaches infinity, we may write Equation (16) for s = c and o > 1
as

r—1 00
1 1
—log((a) =) 10g<1—]ﬂ>—§ ,—5 +0(pr,0),
i=1 i i=r V1

or

r—1
log ((o) + Z log (1 - plU> — FE1 (0 —1)logp,) =,
i=1 g

where ¢ = O(1/(log p,)¥) can be made arbitrarily small by setting p, sufficiently large. There-
fore, by taking the exponential of both sides of the above equation, we then have

r—1
(o) 1 (1 - pla> exp (—E1((0 —1)logp;)) = L+ e+ O(°). (27)
=1 ?

As p, approaches infinity, e approaches zero. Hence, the right side of the above equation ap-
proaches 1 as p, approaches infinity.

Similarly, for R(s) > 1, we can use the following expression for F; (s)

O

T

to show that

r—1
1 .
log ¢(s) + Zlog (1 - ps) — E1((s—1)logp,) = €+ 2miN.
i=1 i

where |¢| can be made arbitrarily small by setting p, sufficiently large. Taking the exponent
of both sides and allowing r to approach infinity, we then have

r—1
lim {C(S) II (1 - ]013) exp (—=F1((s — 1) logpr))} =1 (28)

r—00 .
=1

(2

Let the function G (s, p,) be defined as

r—1
G(s,pr) =¢(s) [ (1 - pt) exp (—Er((s = 1) logpr)) (29)

=1 2

where, G(s,p;,) is a regular function for R(s) > 1. Referring to Equation (28), the function
G(s, pr) approaches 1 as p, approaches infinity. It should be noted that, for every p,, the func-
tion exp (—E1((s — 1) logp,)) is an entire function, the function ((s) is analytic everywhere
except at s = 1 and the function [T/=; (1 — 1/p$) is analytic for R(s) > 0. Thus, for any o > 1,
the function G(s, p,) can be considered as a sequence of analytic functions. Furthermore, as
pr (or r) approaches infinity, this sequence is uniformly convergent over the half plane with
o > 1+ e (where, € is an arbitrary small number). Therefore, by the virtue of the Weiestrass
theorem, the limit is also analytic function [4] (Weiestrass theorem states that if the function
sequence fy, is analytic over the region €2 and f,, is uniformly convergent to a function f, then

10



f is also analytic on € and fn/ converges uniformly to f "on Q). If we define this limit as G (s),
where
G(s) = lim G(s.p;) (30)

then, G(s) is analytic over the half plane R(s) > 1 and it is equal to 1 by the virtue of Equation
(28).

Our next task is to extend the previous results to the line s = 1 4 it. We will then show
that on RH and for the strip s = o + it (where 0.5 < o < 1), these results are also valid with
the limit of G(s, p,) is 1 as p, approaches infinity.

We will start this task by showing that although both ((s) and E;((s — 1) logp,) have a
singularity at s = 1, the product G(s, p,) has a removable singularity at s = 1 for every p;..
This can be shown by first expanding ((s) as a Laurent series about its singularity at s = 1

(s — 1) (s—1)3
o BT g T

where 7 is the Euler-Mascheroni constant and ~;’s are the Stieltjes constants. For s = 1 + ¢,
where € = € + i€y, €1 and ¢; are arbitrary small numbers, the above equation can be written
as

((s) = 5 +7 = mls = 1)+ &

() ==+ s 4 (32)
S_e Y — 1€ 722! 733!

Furthermore, using the definition of the Exponential Integral, we may write F (s) as

2 83 54

S
El(s)——y—logs—ks—ﬁ—kﬁ—m—&—.... (33)

Thus, for s = 1 + ¢, we have

(elogpy)?  (elogp,)?
551 aal o] B9

exp (—E1((s — 1) logp;)) = e7e log p, exp (—elogpr + -

By taking the product ((s)exp (—FE;((s — 1)logp,)) and allowing |e| to approach zero, we
then have

lim {C(s) exp (~Ea((s — 1) logp,)} = ¢ logp,. (35)
However, it is well known that the partial Euler product at s = 1 can be written as [10]
r—1 —
1 e 7 1
1-— ) = + 0 () . 36
g ( bi log pr—1 (Ingr—l)Q (36)

Multiplying Equations (35) and (36), we then conclude that at s = 1, G(s, p,) approaches 1 as
pr approaches infinity. Furthermore, for s = 1 + it and ¢ # 0, the value of exp(—E (it logp,))
approaches 1 as p, approaches infinity and since

r—1
TIL%O{C(S) il (1- pl)} 1,

therefore, for s = 1 + it, we have the following

r—1
lim G(sp,) = lim {C(s) 11 (1 _ 1) exp (—E1((s — 1) logpr))} 1.

r—00 .
i=1

7
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So far, we have shown that the function G(s, p,) is uniformly convergent to 1 when R(s) >
1+ 6 > 1 (where ¢ is an arbitrary small number). We have also shown that G(s, p,) is con-
vergent to 1 for R(s) = 1. In the following, we will show that, assuming the validity of the
Riemann Hypothesis, the function G(s, p,) is uniformly convergent to 1 for every value of s
with R(s) > 0.5+ ¢, where € is an arbitrary small number. Toward this end, we will first show
that on RH the function G(s, p;) is convergent for any value of s on the real axis with o > 0.5.
This can be achieved by first writing the expressions for G(o, py1) and G(o, pr2) (Where 2 is
an arbitrary large number greater than r1)

G(o,pr1) = ((0) exp (—E1((0 — 1) log pr1)) 1:[ (1 - ) (37)

’L

r2—1
G(U7pr2) = C(O’) €xp (_El((o- - 1) 1ngr2)) H (1 - pl> (38)
=1 ?

Since the function G(s, p,) is analytic and not equal to 0 for o > 0.5, hence we can divide
Equation (38) by Equation (37) and then take the logarithm to obtain

r2—1
log (M) = E1 ((0 —1)logpr1) — E1 ((0 — 1) log pr2) + log (Zgl (1 - ]730)) + 2im Ny
(39)

where N is zero, positive or negative integer. To compute the logarithm of the partial Euler
product in Equation (39), we recall Equation (19) with s = ¢ + ¢0 and ¢ > 0.5 to obtain

r2—1 r2—1 1
log H (1 - ) -y e +6(pr1, Pra—1,0),
(3

P i=rl
where 6(p,1, pra_1,0) = O(pi1%? /(20 — 1)). Furthermore, we have
r(2) = Li(z) + J (@), (40)

where, on RH, J(z) is given by
J(x) =0 (Vz logz) . (41)

Using the above equation for the representation of the prime counting function, we may then
have (refer to Appendix 1)

r2—1 1

P = Ei((0 — 1)logpr1) — E1((0 — 1) log pro—1) + €(pr1, pra—1,0),
r1 0

1=

where
DPr2

e(pr1,Pr2,8) = / dJ(x)/x®,

Pri

cp,s) = | dJ(z))z*

Pri

and on RH, |e(py1,pr2,8)|= O (pr1°° 7 logpy1/(c — 0.5)). Hence, on RH and for o > 0.5,
Equation (39) can be written as

12



G(O’, pr?)

Glo. ) = —&(pr1,Pra—1,0)+0(Pr1, pra—1,0)+E1((0—1)log pro—1)—E1((0—1) log pro)+2imN;.

log

Taking the exponential of both sides, we then have

g(a’pﬂ) = exp (—e(pr1,Pr2—-1,0) + 6(pr1, pra—1,0) + E1((0 — 1) log pra—1) — E1((0 — 1) log pr2)) -
(0’ prl)
However, the difference £ ((c — 1) logpyo—1) — E1((0 — 1) log py2) approaches zero as p,2 ap-
proaches infinity. This follows from Cramer’s theorem on the gap between primes. This theo-
rem states that on RH, the gap between the prime numbers p,_; and p; is less than k,/p, log p;
for some constant k [3]. Therefore,

lim M = e*E(pr1,0)+6(prl,a).

Pr2—00 G(U7 p?"l)

It should be emphasized here that for the above equation, p,; was kept fixed while p,, was
allowed to approach infinity. Therefore, G (o, p,) is bounded for any arbitrary large p,. Fur-
thermore, on RH and for o > 0.5 + ¢, the term —&(p,1,0) + d(pr1,0) can be made arbitrary
small by choosing p, arbitrary large, thus the limit of G(o, p;) as p, approaches infinity exists
and it is given by

G(o) = lim G(o,p,) (42)

T—00

This proves that, on RH, G(o, p;) is convergent as p, approaches infinity and thus G(o) exists
for o > 0.5.

Similarly, we can follow the same steps to show that G(s,p,) is convergent as p, ap-
proaches infinity and thus G(s) exists for #(s) > 0.5. Therefore, on RH and for o > 0.5 + ¢,
we have (refer to Equation (39) )

G(S)pTQ)) 27l .

log [ 2 Pr2)) _ B (s — 1) log pr1) — E1 ((5 — 1) 1og pra) — S — +8(py1, pro_1, 8) + 2miNy,

o8 (Grirts) = B (s = 1)logp) = By (s = 1) logpra) = Y- —+8(pr1.pract,5) +27i)
3)

where N is zero, positive or negative integer. In Appendix 2, we have shown that, on RH
and for R(s) > 0.5, we also have

i=rl £

r2

> pl,s = E1((s — 1) logpy1) — E1((s — 1) log pr2) + €(pr1, pr2, 5), (44)

1=rl

where 5(prlapr27 5) = 1?:12 dJ(:L‘)/xS ’ |5(prlapr27 3)|: @) (% pr10'5_a logprl) (on RH and

for o > 0.5) and e(p,1, s) = [, dJ(z)/x°. Hence

lim M = e_s(Pr1:3)+5(Pr1,S).
Pr2—r00 G(SapTl)

Therefore, the limit of G(s, p,) as p, approaches infinity exists and it is given by

G(s) = lim G(s.p,) (45)

13



It should be noted that, while the function sequence G(s, p,) is not uniformly convergent
when the region of convergence is extended all the way to the line o = 0.5, it is however
uniformly convergent for any rectangle extending from —:7" to iT" (for any arbitrary large T')
and with ¢ > 0.5+ € (for any arbitrary small €). This follows from the fact that, on RH, (s, p,.)
is bounded for any rectangle extending from —iT to iT" (for any arbitrary large 7) and with
o > 0.5 + € (for any arbitrary small €). . Since G(s,p,) is analytic for R(s) > 0 and it is uni-
formly convergent for £(s) > 0.5 + ¢, thus G(s) is analytic for the half right complex plain
with 1(s) > 0.5+ € (Weiestrass theorem [4]). Since we have shown that G(s) = 1 for R(s) > 1,
thus on RH, G(s) = 1 for R(s) > 0.5 + e. Consequently, we have the following theorem

Theorem 2. On RH and for o > 0.5, we have

r—1
Jim {C( ) I1 (1 - ;) exp (—=F1((s — 1) logpr))} =1 (46)
=1 g
Jim {M (s, pr) exp (E1((s — 1)logpr))} = 1. (47)

It should be also pointed out that Theorem 2 can be generalized for the case where there
are no non-trivial zeros for values of s with R(s) > h (where h > 0.5). For this case,
Equation (46) is valid for every s with R(s) > h and |e(p,1,s)| in Appendix 2 is given by

@) ((Ul L)Z prl Ingrl)-

Equation (46) of Theorem 2 can be written as follows

r2—1
log ¢(s) + log H <1—> —FE1((s—1)logpr2) +27iNy =0 asre — 00

’L

where N is zero, positive or negative integer. Notice that the equality of both sides of the
above equation is attained as r2 (or p,2) approaches infinity (or more appropriately, the right
side can be made arbitrary close to zero by choosing p,» sufficiently large). For r < 72, the
above equation can be then written as

1 r2—1 1
log((s) = E1((s —1)logpre) — Zlog (1 — ) Z log (1 — p) +27wiN3  as rg — o0

i=r g

where N3 is zero, positive or negative integer and

r2—1 1 r2—1 1
- log <l—ps> =Y — —0(pr,pra-1,5) + 2miNy

where N, is zero, positive or negative integer. For the region of convergence of the series
M (s, pr), we have (refer to Appendix 2)

r2—1
Z — (s —1)logp,) — By ((s — 1) log pya_1) + £(pr, pra_1, 5)

14



Therefore, ((s) can be written as

. -1
C(s) = 1_[1 <1 — 1S> lim eE1((s—1D)logpr)+Er1((s—1)logprz)—E1((s—1)log pra—1)+e(pr,pr2,s)—=0(pr.pra,s)
=1 25 Pr2—>00

(48)
where for sufficiently large p,, [0(pr, 5)| is negligible compared to |e(p,, s)| (in fact, |0(pr, 5)]| is
of the same order of magnitude as |(p;, s)|?). Consequently, M (s, p,) can be represented by

the following theorem

Theorem 3. For the region of convergence of the series M (s, p,) = >_7° pu(n, pr)/n’, we have

M(s,p,) = e~ Frlls=1)logpr)=e(pr,s)+3(prss) (49)
wheree(py,s) = [ dJ(x)/2%, J(x) = n(x)-Li(z) and 6(p,, s) = 372, (—Qpigs - 3p133 - 4p14s...).

Furthermore, on RH and for sufficiently large p,., we have for o > 0.5

M(o,p,) = e~ =Dr) (1 — 2(p,,0) + O (2(py, 0)2) + 6(pr, ) ) (50)

While in this section we have used the complex analysis to compute M (s, p,), in the next
section, we will employ integration methods to compute the partial sum M (s, p,; 1,p%). The
results obtained in this section and the following section will be then combined (using the
Fourier analysis methods) in section (6) to examine the validity of the Riemann Hypothesis.

5 The series M(o,p,)ato = 1.

In this section, we will compute the partial sum M(1, p,; 1, p,*) using integration methods
and noting that M (1, p,) equals zero for every p, (in other words, for every p,, M (1,p,; 1, p,%)
approaches zero as a approaches infinity).

Before we present the details of our method, it is important to mention that the partial
sum M (1,p,; 1, p,*) can be also generated using y-smooth numbers. The y-smooth numbers
are the numbers that have only prime factors less than or equal to y. These numbers have
been extensively analyzed in the literature [6] [8]. In [6], a method was presented to generate
the partial sum M (1, p;; 1, p,*). With this method and using the inclusion-exclusion principle
[6] (refer to page 248), one can then provide an estimate for the partial sum M (1, p,; 1, p,). In
this section, we will provide a more general approach to compute M (1, p,; 1, p,*). The main
advantage of our approach is the ability to extend it to compute the partial sum for values of
s other than 1. We will present our method in the following two steps.

e In the first step of our approach, we will show that, for every a and as p, approaches
infinity, the partial sum M (1, p,; 1, p,*) approaches a function that is dependent on only
a (independent of p;.).

Toward this end, we define the function f(a, p,) as

pr®
flapr) = M(1Lpr 1,pe%) = 3 lmopr)

n=1 n
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We will then show that, for every a and as p, approaches infinity, the function f(a,p,) ap-
proaches a deterministic function p(a). In other words; if we plot M(1,p,;1,N) (where
N = p,*) as a function of a = log N/logp,, then for each value of @ and as p, approaches
infinity, f(a, p,) approaches a unique value p(a). This is equivalent to the statement

pla) = lim fla,p;) = lim M(L,py1,pc).

Pr—00

This result can be achieved by first noting that the partial sum M (1,p,;1,p,%) for1l < a < 2
is given by

1
M(1,pslp)=1- > —.
pr<pi<p,o Vi
If we define M1 (1,p,;1,p,?) as
o 1
Ml(LPr? ]-apT ) = Z ;a
a Pi

Pr<p;i<pr

then, using Stieltjes integral, we obtain

P dn(z a  dr(p.Y
M(Lpr;lapr“)=1*M1(1,pr;1,pr“)=1*/ :zE ) :17/ (pr?)
T=pr y

Since

dr(p,/Y) = dLi(p.Y) + dJ (p}),

therefore
dm (pr Y )

py
= dpY +dJ(pY) = —Zdy + dJ(pY),
log(pr¥) (pr?) y #:%)

where on RH, J(p¥) = O(y/p,Y log(p,¥)). Hence, for 1 < a < 2, we have

ad @ dJ(p,Y
M(1,pr;Lp®) =1 —/ - —/ # =1 —log(a) + g1(pr, a), (51)
1Y 1 Pr
where 0 ()
gi(pria) = = [ ST, (52)
1 Pr

As p, approaches infinity, g; (p,, a) approaches zero. Consequently,

lim M(1,p.;1,p.*) =1—loga.

Pr—00

The terms of the partial sum M(1,p,;1,p,*) for a in the range 1 < a < 3 are either a
reciprocal of a prime or a reciprocal of the product of two primes. Therefore, for 1 < a < 3,
we have

1
M(1,p;lp") =1— > —+ >

Pr<p;<pr® pi Pr<pi1<pi2<pi1Pi2<Pr

1
o Pi1Pi2 ’
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where p;; and p;2 are two distinct primes that are greater than or equal to p,. Let M>(1, p,; 1, p,%)
be defined as

1 1 1
Ms(1,pr;1,p,%) = > == > —M@,p;1L,p/pi) + o

Pr<pi1<pi2<pi1pi2<pr® Pi1pi2 Pr<pi<pro~1

Note that, for the second sum (i.e. 32, <) ;a1 p%_M1(1, pr; 1, p%/pi)), the factor of half was
added since each term of the form 1/(pii1pi2) is generated twice. Furthermore, this sum in-
cludes non square-free terms (notice that, there is no repetition in any of the non square-free
terms). The term r was added to offset the contribution by these non square-free terms. We
will show later that the contribution by these terms (or r2) approaches zero as p, approaches
infinity. Using Stieltjes integral, we then have

1 o1 dn(p,Y
My(1,pr;1,p%) = = (p:?) (log(a — ) + g1(pr,a —y)) + 2.
2 )1 orY

Hence
M(1,pr;1,pr") =1 —log(a) + g1(pr, a) + % /1(11 bg(ay_y)dy + 92(pr, a),
where
2(pr,a 2/ 1(pr.a )d + - / log(a — )djégry)—k
2/ 1(pr.a —y)djégr )+r2.

It can be easily shown that, for any fixed value of a, the three integrals on the right side of
the above equation approach zero as p, approaches infinity. We will also show later that
approaches zero as p, approaches infinity. Thus, for 1 < a < 3, we have

1 a—ll _
lim M(1,p51,p,%) =1~ loga+ 5/ log(a —y) ;.
1

Pr—00 y

Therefore, as p, approaches infinity, M (1, p,; 1, p,*) approaches a function that is dependent
on only a.

Repeating the previous process |a| times (where |z ] is the integer value of z) and by
using the induction method, we can show that, as p, approaches infinity, the partial sum
M(1,pr; 1, pr*) approaches a function that is dependent on only a. Specifically, we first write
the partial sum M (1, p,; 1, p,*) as follows

M(l,pr; 1apra) =1- Ml(lapr; 1apra) + M2(1apr§ 1apra) — ...+ (_1)ij(1apr§ 17pra) + ..+

(=D, (1 pe L, pe®) + (DM (L, prs 1, p,),
where
1

M;(1,pr;1,p,) = > T
o Pi1Pi2---Pij

Pr<pi1<pi2<..<pij <Pi1P:i2--Pij <Pr

17



and p;1, pi2, ..., pij are j distinct prime numbers greater than or equal to p,. If we assume that
Mj—1(17 Pr; 17 p'ra) is given by

M;_1(1,pr;1,p:%) = hj—1(a) + gj—1(pr, a)

where h;_1(a) is a function of a and g;_1(pr, a) approaches zero as p, approaches infinity,
then

1 1
Mi(Lp;1,pe") == Y, —Mia(1,pripr,p}/pi) + 75
Pr<pi<pro~!

where the factor of 1/j was added since each term of the form 1/(p;1pi2...pi;) is generated j
times. It should be also noted that the sum of the above equation includes non square-free
terms. The term r; was added to offset the contribution by these non square-free terms. We
will show later that the contribution by these terms (or r;) approaches zero as p, approaches
infinity. Using Stieltjes integral, we then have

1 /al dﬂ(pry)
1

M;(1,pp;1,p.%) = ~
i(Lprid pr) prY

; (hj,l(a—y)+gj71(pr,a—y))+7"j'

Hence

1 ro—1ph. (q—
M;(1,pr;1,p,") = f/ Mdyﬂng(pr,a),
JJ1 4
where the first term is a definite integral with only one variable y integrated over the range
1 <y < a — 1. Thus, the definite integral is a function of only a. We define this function as

hj(a). The second term is given by

I Dr,a — dJ(pY
gj(prva):f/ gj=1\Prd " Y) 1( d + - / —y) (y )+
JJ1 r
1/(1—1 dJ(pry)
= gj—1\pr,a —Y + ;5.
ifw ( ) . j

It can be easily shown that, for a fixed value of a, the three integrals on the right side of
the above equation approach zero as p, approaches infinity. We will also show later that r;
approaches zero as p, approaches infinity. Hence, as p, approaches infinity, we have

1 (o1 hii(a—y)
lim M;(1,p;1,p.° :f/ L T dy=hia
m M;(L,pri 1, pr) i, ” y = hj(a)

where h;(a) = log(a). Hence, for every a and as p, approaches infinity, we have

lim M(1,pp;1,p.%) =1 — hi(a) + ha(a) — ha(a) + ... + (=1)!* by, (a) = p(a). (53)

Pr—00

It should be pointed out that the above equation implies that the partial sums M (1, p,; 1, p,%)
and M(1,p¥;1,p."Y) (where, p¥ is a prime number) have the same limit as p, approaches
infinity. Hence,

lim M(1,p.;1,p.*) = lim M(1,pY;1,p.%) = p(a). (54)

Pr—>00 DPr—00
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Equation (54) will be used in the next step to estimate the asymptotic behavior of the function
p(a) as a approaches infinity.

As mentioned earlier, the partial sum M(1, p,; 1, p,*) constructed by this process included
non square-free terms (i.e r;’s). In the following, we will show that, for every a and as p,
approaches infinity, the total contribution by these non square-free terms approaches zero as
well. Toward this end, let Sy be the sum of the terms with the factor 1/p?. Therefore, Sy can
be expressed as Ky/p2. Let S; be the sum of the remaining terms with the factor 1/(p,41)>.
Therefore, S can be expressed as K/ (pr41)?. Let So be the sum of the remaining terms with
the factor 1/(p,12)? where Sy can be expressed as K3/ (p,+2)?, and so on. Let S be sum of all
the terms associated with non square-free terms. Thus, S is given by

1

1 1
S - 72K0 + 72[{1 + ...+ TKL,
p?” p'f’"!‘l pr+L

where p, 1, is the largest prime that satisfies the condition p?,; < p,®. Furthermore, since
there is no repetition in any of the non square-free terms, therefore

1 1 1
| Ko, | K1)y [KL|< 14 = + = 4 oo+ —,
2 3 pr®

and
|Kol, | K1l ..., | Kr|= O(alogp,).

Thus,

1 1 1
S=|—+—5+...+ O(alogp).
(pr2 pr+12 p12”+L> ( T)

Hence, the contribution by the non square-free terms S is given by,

S = O(alogp,/py).

Consequently, for every a and as p, approaches infinity, S (or the contribution by the non
square-free terms) approaches zero.

e In the second step, we write the partial sum M(1, p,; 1, p,*) as the sum of two compo-
nents. The first one is the deterministic or regular component and it is given by p(a)
(= limy,, 500 M(1,pr;1,pr*)). The second one is the irregular component R(1,p,; 1, p,%)
given by M (1,p,; 1, p*) — p(a). We will then show that the function p(a) is the Dickman
function that has been extensively used to analyze the properties of y-smooth numbers.

Toward this end, we write the partial sum M (1, p,; 1, p,*) as the following sum
a 1 a 1
M,pil,p ) =1— > =M(L,piy;Lp" i) — Y,  —. (55)
pr<pi<pro/2 " pr/2<p;<p,®

The second sum was added since the first sum is void of the terms 1/p;’s for pi? < p; < pd. It
can be easily shown that every term on the right side of Equation (55) is a term on the left side
of the equation and vice versa. Furthermore, there is no repetition of any term on the right
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side of Equation (55). The first sum on the right side of the above equation can be written as
follows (refer to Equation (15))

1 1 1
> —MLpilpt/p) = Y, — (M(lupi; L pr/pi) + —M(1, pit1; 1,Pra/p?)>
pr<pi<pr/2 " pr<pi<pr/2 " pi

Let Q(p,, a) be defined as

1
Qlpra)= Y S5 M(1,pis:Lp"/p}).
pr<p; <pra/2 i
Hence
1 a 1 a
>, —MLpisLp /o)=Y, —M(,p; 1, /pi) + Qpr, a).
pr<pi<pra/2 pr<pi<pra/2 '

For sufficiently large p,, the contribution by the term Q(p,, a) becomes negligible compared
to the sum on the right side of the above equation. In fact, it can be easily shown that the term
Q(pr, a) is given by O(p,; ). In Appendix 3, we have shown that

M (1,piy1; 1,0 /p7)|< 2.

Thus,
1 a /.2 1 -1
Qpr,a)l=| Y SMpsuLe/p)| <2 Y. = =0@/").
prﬁpi<pr“/2 i p,-Spi<pT‘1/2 i

Using Stieltjes integral, we can write Equation (55) as follows

a/2 dﬂ'(pry)
pr

a dm(p.Y
M(L,pri1,p,%) = 1—/1 M(1,pTy;1,pg/pg)_/ (pr")

+ - Q), 56
e Qpr,a),  (56)
where dr(p,Y) = dLi(p,Y) + dJ(p,Y). It should pointed out that while Equations (55) and (56)
provide the value of the partial sum M (s, p,;1,p%) at s = 1, they can be easily modified to
compute the partial sum for any value of s to the right of the line #(s) = 1 (and on RH, to the
right of the line R(s) = 0.5).

For any fixed a, as p, approaches infinity, M (1, p,¥; 1, p¢"Y) approaches p(a/y — 1) (refer
to Equation (54)). Therefore, as p, approaches infinity, we have

p(a):l—/la/2p<z_1)dy—/: @ (57)

Yy 2y

In the following, we will show that p(a) is the Dickman function that has been extensively
used in the analysis of the y-smooth numbers. This task will be achieved by using Equation
(57) to compute the difference p(a + Aa) — p(a) (where, Aa is an arbitrary small number) to
obtain
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(a+Aa)/2 p atla _ 1 a/2 p a1 (a+Aa) 4 a
pla+Aa)—p(a) = —/ (y)dy—k/ (y>dy—/( £+/ &
1 1 a

Yy Yy at+Aa)/2 Y /2 Y

Since the third integral of the above equation is equal to the fourth integral, therefore

(a+Aa)/2 p (422 _ ] a2p(e—1
pla+ Aa) — p(a) = —/ <yy)dy +/ (yy)dy.
1 1

If we define z = y/(1 + Aa/a), then we have

((a+Aa)/2)/(1+Aa/a) p a/2 p @ — 1
pla+Aa) = pla) = - [ +/ dy.
1/(14+Aa/a)
Thus,
1 a_q
pla+ Aa) — pla) = —/ Mdz.
1/(14+Aa/a) z

Dividing both sides of the above equation by Aa and letting Aa approach zero, we then

obtain
dpla) __pla—1) 8)

da a

where p(a) = 1—log(a) for 1 < a < 2. Equation (58) is a first order delay differential equation
that has been extensively analyzed in the literature [6] [8]. The function p(a) is known as the
Dickman function. As a approaches infinity, p(a) can be given by the following estimate [6]

pla) = (12D (59)

aloga

For sufficiently large values of a, we have p(a) < a™*.

To compute the irregular component of M (1,p,;1,p%), we notice that R(1,p,;1,p,*) is
given by

R(lva; 17p7"a) = M(1>p7’7 1>pg) - IO(CI)

Thus, R(1,p,;1,p,*) can be computed by subtracting Equation (57) from Equation (56) to
obtain the following theorem

Theorem 4. The partial sum M (1,p,;1,p%) = En i u(n pr)/n can be expressed as

M (1, pr; 1, p7) = pla) + R(1, pr; 1, pr®) (60)
where p(a) is Dickman function. The reqular component of M (1, p,; 1, p¢) is given by
pla) = lim M(1,pr;1,pr). (61)

R(1,pr; 1, py%) is defined as the irregular component of M (1 pr; 1, p%) and it is given by

s dJ (p,? dJ (p, dr(p!
ALt == [ plofy =) P [PEED [ ) T 0t

(62)

where Q(p, a) is given by O(p; 1)
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Since the partial sum M (s, p,;1, N) is given by the sum "2, 1u(n, p,)/n®, therefore we
can write it as follows

N
M(s,pr;1,N) —1+/ idM(l,pT;l,gc),
z=p, s

or
Mlspetpt) =1+ [* Teanr(tpct o),
Consequently
a py a py
Mspilf) =1+ [ Bedoy)+ [ BedR(Lpitp?). (63)
y=1 Pr y=1DPr

Therefore, for any s, the partial sum M (s, p,; 1, pf) has two components. The first one is the
deterministic or regular component given by 1+ [i* “1 5 ys dp( ). The second one is the irregular

component given by fy:1 If’Js dR(1,pr;1,pY). Therefore if we define o as

o= (S - 1) log pr

and the regular component of M (s, p,; 1, p?) as F'(«, a), then

=1 —l—/ P79 () d,
1

or,
Fla,a)=1 +/ e” o/ (z)dz, (64)
1

while the irregular component is given by

R(Svpr; 1710?) = M(SapT; 17p?) - F(O[, CL).

Notice that for s = 1, we have a = 0 and F(0,a) = p(a). We also notice that the regular com-
ponent exists for any value of s with R(s) > 0. This is expected since the regular components
of both the prime counting function and M (s, p,; 1, p%) are not determined by the location of
the non-trivial zeros within the critical strip.

We now define F'(«) as

F(a) = lim F(a,a) =1+ e “p/( (65)

a— 00

Thus, for R(s) > 1, o is a complex variable in the complex plane to the right of the hne
R(s) = 1. Hence, the integral [ e~ “*p/(z)dz is the Laplace transform of the function p ( )
and is given by F(a) — 1 (where F(«a ) is the regular component of the series M(s,p,), i

M (s,pr;1,00)). Since the Laplace transform of p(z) multiplied by s is given by e E(s) [9]
(refer to page 569) [8] and the Laplace transform of p' (z) is given by s£(p(z)) — p(0), therefore

F(a) = e (@),

22



Remarkably, these results agree with what we have obtained in Theorem 2. In Theorem 2,
we have shown that

lim {M(s,pr)exp (E1((s —1)logp,))} =1,

7—00

or referring to Theorem (3), we have

M (s, py) = e Fr(@)=e(prs)+0(pr.s) (66)

where (pr, s) = [* dJ(z)/2* and J(z) = 7(z) — Li(x). Consequently, we have the following
theorem

Theorem 5. For the region of convergence of the series M (s, p,), M (s, py) can be expressed as
M(s,pr) = lim M(s,pr; 1,pr*) = M(s,pr; 1,00) = F(a) + R(s, p;) (67)
where oo = (s — 1) log p, and F'(«) is regular component of M (s, p,) given by
F(a) = e (@), (68)
and R(s,p,) is the irreqular component of M (s, p,) and it is given by
R(s,p;) = lim R(s,pyi1,p,%) = R(s,py; 1,00) = e F1() (e7eers)t0rs) 1) (69)
Furthermore, on RH, M (s, p,) can be written as

M(s,py) = F(a) (1 —(pr, 5) + O(p; ! log? pr)) . (70)

It should be emphasized here that the regular component F'(«) is the value of M (s, p,) due
to Li(z) component of the prime counting function 7 (x). The irregular component R(s, p;)
is given by limg o0 R(s,pr; 1, %) = limg_yoo M (s, pp; 1, %) — limg—y00 F'(ar, pr®). It should be
also pointed that for s = 1, the irregular component R(1,p,) = F(0)(e~=@PrD+opr1) _ 1) jg
zero for every p, (note that R(s, p,; 1, p,*) may deviate from zero but it ultimately approaches
zero as a approaches co). For s # 1, F(a)(e~<Pr*)+9(r:5) _ 1) may have values different from
zero although it approaches zero as p, approaches infinity

In the following section, we will use Theorem 5 and the Fourier analysis to obtain an
alternative representation for R(1,p,;1,p?). This representation will then be compared with
Equation (62) of Theorem 4 to examine the validity of the Riemann Hypothesis.

6 The irregular component of M(1,p,;1,p%) and the Riemann Hy-
pothesis.

The irregular component of M (1,p,;1,pf) for values of a > 1 is given by Equation (62) of
Theorem 4

. e dJ(p) e dI(py) [ o dn(pY
R(Lpe 1) = = [* ptapy =1 P [PEBD T i, ) T Q)
s b) T T

In the following, we will find an alternative representation for R(1, p,; 1, p,*) using Equa-
tion (69) of Theorem 5
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R(SJPT‘; 17 OO) — 67E1(a) (efi(pr,s)JrzS(pr’s) _ 1)’

or
R(S,pr; 1, OO) = _e_El(a)E(pr, 5) + e_El(a)""(pr, 5)7

where £(p,,s) = [2,dJ(p})/pY = [2,e"dJI(p})/pY. Also, on RH, |r(p;,s)| is given by
O(p; ! log? p.). However, using Stieltjes integral and by the virtue of Equations (63) and (64),
we can write R(s, py; 1, p,%) in term of R(1,p,; 1, p,*) as follows

a Yy a
R(s,pr; 1, ps%) = / PraR(1,pyi1,pY) = / e~ YAR(1, pr; 1,p,).
y=1 Pr y=1

Hence

[ R ) = —e P Oy, 5) + P (),
y=1

or

o] o0 Y
/ e~ YdR(1,pr; 1,p,Y) = —e B2 / vt ) | e P @r(p,, 5). (71)
y=1

y=1 p%“/

To compute R(1,p,;1,p,*) using the above equation, we first ignore the term r(p,, s) (the
contribution by the term r(p,, s) is analyzed in Appendix 4). For y > 1, let fi(y) and f2(y) be

defined as
dR(1,p,;1,p,Y)

fily) = dy )
and 17 (o) /¥
faly) = LI

while fi(y) = fa2(y) = 0 for y < 1. Thus, after ignoring the term r(p,,s), we can write
Equation (71) as follows

Lfi(y) = —e T OLf(y).

Since L~ Te1(®) = p/(y) + 6(y), therefore

fity) = = ((p' +0) * f2) (y)

Since f1(y), f2(y) and p/(y) are zero for y < 1, hence

y—1
hw == [ =) fa@)ds - fa()

Consequently,
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Thus, ,
a a y— a
/y dR(L,py;1,p,Y) = — / dy / Py — @) fol)d — /x:lfmdx. 72)

=1 y=2 =1

The right side of the above equation can be written as the following sumes,

[ [ d-on@ant [ A

r=1

[aNV] j—N Tip1 2 laN| Tit1 25

. Jpr — J(p¥i J(pr — J(p¥

i (S 80’5 gy - O =) TG — )
7O \jSeN =N r =N pr

where Ay = 1/N,y; = j/N, Az = 1/N and z; = i/N. From the above sum, we notice that,
for every ;, the term (J(pr™™") — J(p¥)) /p® is multiplied by p (y; — x;)’s for values of y;’s
in the range z; < y; < a. Thus, by noting that p/(x) and f»(x) are zero for = < 1, the order of

integration of equation (72) can be changed as follows

/yildR(l,pr;l,pr = / fole < /Hlp(yx)dy)dx’

/ya dR(1,pr; 1,pY) :_/“ &f” (1—1—/yam+1,0/(y—a:)dy>. (73)

=1 r=1 Dy

or

Since p(z) = 1+ [{ p(x)dz, thus p(a — z) = 1 + [, p'(y — x)dy. Hence, ignoring the term
r(pr, s) (refer to Equation (71)), we then have

. “ 47 (2
R(LPT?LPT ): _/71p(a_‘r) ]Ef )

In Appendix 4, we have shown that the contribution by the term r(p,,, s) is given by O(e%(p,, 1))+
d(pr,1)). Consequently, we have the following theorem

Theorem 6. For sufficiently large N and for every p, > N, the relationship between the irregular
component R(1,p,; 1,p%) of the partial sum M (1, p,; 1, p%) and J(x) is given by

R(l,pr;l,pﬂ):—/a p(a_w)dj(pr)

=1 T

+O(e (pml) +d(pr, 1)). (74)

where R(1,py31,p7) = M(L,pr;1,p7) — pla), J(x) = n(z) — Li(x) and on RH, O(*(pr, 1) +
§(pr, 1)) is given by O(p; ' log? p,.). In other words; on RH, we have

R(l,pr;l,pr‘l)——/; p(a_x)dJ( ;)

+ O(p, “1log? Dr).-
=1 pr

Equations (74) (of Theorem 6) and (62) (of Theorem 4) provide two different representa-
tions of the term R(1,p,;1,p,*). Our analysis to examine the validity of the Riemann Hy-
pothesis will be based on analyzing the difference between these two representations. Before
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we proceed with this task, we will first analyze the relationship between p, and the integral
jyoil (dJ(p¥)/pY). Referring to Appendix 1, on RH, we have

/ > dJ(p})
y=1 pg

Furthermore, by the virtue of Equation (9), we also have on RH (refer to Appendix 5)

e dJ(py —1/2—e
/yl ]fg)zfl(pr v )

where € can be made arbitrary small by choosing p, sufficiently large. Therefore, for suffi-
ciently large NV and for some constant &, there are an infinite number of p,’s (that are greater
than N) such that

:O< 1/QIng)

o dJ(p¥
/ (57“) > kpr_1/2 €50
y=1 Dr
Moreover, for any positive number h, we also have
> dJ(p}) ~1/2 —h, —1/2
~=0(1+h w2 logpy) = O (p, "p " logpr ) .
/y=1+h . (1 +r)p, gpr) =0 (p. " epr)
Thus,
o d.J(pY Lth 4.7 (pY
y=1 Dr y=1 Dr

Therefore, on RH and for sufficiently small h, we can always find infinitely many p,’s so
that the integral | ;i (dJ(pY)/pY) is determined by values of y in the vicinity of one. In other

words; we have
/°° dJ(pY) _/”h dJ(pY) +/°° dJ(pY)
y=1 D y=1 DI y=1+h DY

where,
< dJ(p¥
/ (5 ) > kp, M2 5 0,
y=1 DPr
and
> dJ(pY o
/ (5T) < k1pr hpr 1/2 log pr,
y=1+h Pr

for some constant k;. Therefore, for any h and for sufficiently large p,, there are infinitely
many p, satisfying the following equation

< dJ(p 1+h 4] (p
[ R e 75)
y=1 Dr =1 Dr

where 47 is given by O(p, ") and it can be made arbitrary close to zero by choosing p, suffi-
ciently large.
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It should be noted that the above analysis for the integral fyoil (dJ(p¥)/pY) can be extended
to the integral fy 1(g(x)dJ (p¥)/p¥) where g(x) is a differentiable function for = > 1 that grows
no faster than €% or decays no slower than e~%% for any § > 0 (for example, g(x)or — g(z) =

Lax,2? .2 1/x,1/2%, .., 1/2", (log #)"). For the integral J21(g(z)dJ (pY)/pY), we then have

on RH 07(0Y)
o Pr)| —1/2+¢
z =0 (pr ;
/y _ (@) pr (p )

and (refer to Appendix 5),

/yoo g(x)dj(fg) -0 (prfl/2fe) ’

where € can be made arbitrary small by choosing p, sufficiently large. Therefore, for suffi-
ciently large NV and for some constant £, there are an infinite number of p,’s (that are greater

than V) such that
o0 dJ(p¥ 1/9—c
[ oy 00 s gy,
y=1 pr

> kp, > 0.

After analyzing the integral [ =, (dJ(p})/p}), we now turn our attention to the analysis of
two representations of the term R(1,p,; 1, p,*). The first representation is based on Equation
(62) of Theorem 4 where we have unconditionally

3 dJ (p, dJ (p, dr(pY
BlLpi ) == [ plofy =) 2 [PEED [ ) T 0t

T T

where Q(p;, a) is given by O(p, ). The second representation of the term R(1,p,;1,p,?) is
based on Equation (74) of Theorem 6

ROpeitp®) == [ pla- 20

z=1 T

+O(%(pr, 1) + 6(pr, 1)),

where, on RH, O(¢2(p,, 1) + §(p;, 1)) is given by O(p, ' log? p.). Consequently, we have the
following theorem

Theorem 7. On RH, the difference between the representation of R(1,p,;1,p,*) by Equation (62)
without the term Q(pr, a) and the representation of R(1,p,; 1, p,*) by Equation (74) without the O
term is given by O(p, 1 log? pr). In other words;

< / pla/y—1) J(Ty)_/;djg()];y)_/lgml’ V1 gt >d7T]§§;‘{)>_

<_ /: pla — x)d‘](ff)> _ O(Pr_110g2pr). (76)

=1 ot

For the remaining of the paper, we will analyze Equation (76) and use this analysis to

examine the validity of the Riemann Hypothesis. The terms ;' / *(pla Jy — 1)dJ(p,Y)/p¥) and
[ (p(a — x)dJ (p¥)/pT) are given by Q(p,~1/2+€) (refer to Appendix 5). However, the term

=

N 12(dJ (pr?)/pY) is given by O(pr - 2+6) Therefore, for the Riemann Hypothesis to be valid,
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the integral Ip = a/2(R(1 Y31, p8Y)dm(pY)/pY) has to equal the sum S; = [ p(a —
D) dIWE)/pE) — [ (p(afy — 1)dT(0,2)/pY) — [2(dJT (p,¥)/p¥) within a margin of O(p ).

Our task will then be focused on computing the integral Ir = a/ (R(1, p,¥; 1, p2=¥)dm(pY) /p¥)
at different values of a and comparing the result with the sum S 7= [ (pla—z)dJ(pF)/pZ)—

2 (plafy = )T (p:) /DY) — [2(dT (0¥ /pY)

In the following, on RH, we will compute the integral (I = [’ /2 (R(1,pY; 1, p2¥)dr(p¥)/p¥))
and the sum (S = [, (pla — 2)dJ(p%) /o) — [/ (pla/y — AT (p,) [p) — J2o(dT (") /1)
for values of a in three intervals. The first mterval is 1 < a < 2. For this interval, we will
show that both the integral Ir and the sum S are zero. The second interval is 2 < a < 3. For
this interval, we will show that the integral I and the sum S; are the same within a margin
of O(p,~'log® p,) (this result is consistent with RH). The third interval is 3 < a < 4. For this
interval, our analysis shows that the integral I and the sum S; differ by a margin that is well
over O(p,~log? p,) and this result is the basis for our claim that the Riemann Hypothesis is
invalid.

For the interval 1 < a < 2, it can be easily shown that Equations (62) and (74) ) provide
the same value for R(1,p,;1,p,*) (this follows from the fact that for 0 < u <1, p(u) = 1 and
2 R(1,p,Y3 1, p2 V) dm(pY) /pt = O for 1 < a < 2).

For the interval 2 < a < 3, we have

a/2 dJ (p, dJ Y
/1 pla/y—1) p /pa— p)z

/la/2 (p (1(a B y)) e y)) dJ(]z)fy) B /a oam y)dJ(f%f)_

Yy Dr a/2 Dr

We also have p(u) = 1 —log(u) for 1 < u < 2. Thus

a/2 dJ(pr) a dJ(py)
/1 plafy—1)= 5 —/1 pla—y)——5= =

s T

a2 dJ(py) et dj(py) [ dJ(pY)
lo L —/ 1 —log(a — L —/ T,
/1 &Y g a/2 ( g( y)) p%“/ a—1 pg

Hence the sum S is then given by,

a dJ(p? a/2 dJ (p,Y @ dJ(p¥
/19(a—y) (5T)—/1 pla/y—1) ](f; )—/a (5)2

Dr T /2 Pr
a/2 dJ(p¥ a-1 dJ(pY
—/ logy (5 ) +—/ log(a —y) (5 )
1 Dbr a/2
The integral fla/Q(R(l,pry; L, p¢=¥Y)dm(p¥)/pY) is given by

a/2
/ R(1,p.Y;1,pp7Y dn(p})
1

Using the method of integration by parts, we then have on RH

(77)

a/2 dy a/2
=/ R(l,pry;l,p?_y)*Jr/ R(1,p; 1,77 ) —5—.
1 Y 1 br
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a/2 d Y a/2
/ R(1,p,Y;1,p87Y) 72557") = —/ logy dR(1,p,Y; 1,pf™Y) 4+ O(p,~ " log* pr).
1 T 1
where, on RH and for a < 3, [/* R(1,p,%;1,p2~¥)dJ(p¥)/p¥ = O(p,~‘log®p,) (note that
for y > 1, a < 3/2 and using Theorem 6, R(1,p,Y;1,p¢"Y) = —féi}y’/y dJ(p¥*)/p¥* +

O(p; ' log? p,) = O(p,~/?log? p,) ).

To compute dR(1,pY;1,p,*"Y), we note that the change in R(1,p¥;1,p,*"Y) due to the
change in y by Ay is given by

AR(1,p%;1,p,27Y) = R(1,p, Y 2Y: 1, p, Y =2Y) — R(1,p¥; 1, p."7Y)

However, referring to Equation (52), for 1 < h < 2, we have

1+h 1+h d J(pY
ROpi L ™ = [ ar(psapy = - [ P00, 79)
y=1 y=1 Dr
Thus, for 1 <y < 2, we have
dJ(p¥
dR(1,pr;1,p,Y) = — 155 ) 79)

Consequently, for 1 < “-¥ < 2, we obtain

9

LIy

AR(1,pY: 1, p, oY :—/
(1,p2;1,p,27Y) iny P L,

or

y+AY d.J(p? a—y d.J(p?
AR(1,pY;1,p"7Y) =/ —(fr) +/ (fr).
z=y Dr z=a—y—Ay Pr

Hence for2 < a < 3,
_dJ(p}) N dJ(p:"7Y)

dR(1, p¥: 1, pyY
( b br ) p%{ prY

]

Therefore, on RH and for 2 < a < 3, we conclude that

o/2 oy A (pY a/2 dJ(py) | dJ(p"Y -
/1 R(Lp¥; 1, py y)(y)z—/1 logy< p(y i p(a_y 1) 4 0, log? pr),

or
a/2 Y a/2 Y a/2 z

/ R(l,pry;l,pﬁ‘y)dﬂ(pr) = _/ logydjp(fr) +/ log(a—z)dglg)+0(pr‘llog3pr)-
1 1 T a—1

¥ .
(80)

Thus, referring to Equations (77) and (80), on RH and for 2 < a < 3, the difference between
the sum S5 = [ (pla — y)dJ (p2)/p2) — [ (pla/y — 1)dT(p:?)[pt) — [(dT (p,) /pY) and
the integral Ip = fla/Q(R(l,pTy; 1, p¢~¥)dm(p¥)/pY) is then given by

SJ - IR = O(pril 10g3p7‘)
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Thus, for 2 < a < 3, the sum S is the same as integral /r within a margin of O(p,~1%¢). This
result is consistent with the Riemann Hypothesis.

For the interval 3 < a < 4, the representation of the functions p(a — y) and p((a — y)/y) is
dependent on the value of y. For values of y in the range 1 < y < a/3, we have [7]

a=y dv
pla—y) =1-logla—y)+ [ logv—1)T.
and
1 (a—y)/y dv
p(5la=n) =1-logta—p) +logy+ [ logo -1
2
Thus, for values of y in the range 1 <y < a/3, we have
a/3 dJ (p:) a/3 dJ(p)
— -1 +/ a— =
/1 pla/y—1) . . pla—y) !
a/3 dJ(pY a/3 dJ(p¥) [o—v d
—/ log ¥ (57") +/ (57«)/ log(v — 1)—”. (81)
1 Dr y=1 DPr v=(a—y)/y v
For values of y in the range a/3 < y < a — 2, we have
a=y dv
pla—y) =1-logla—y)+ [ " loglo— 1)
and )
p <y(a - y)) =1+ logy —log(a — y).
Thus, for values of y in the range a/3 < y < a — 2, we have
a2 dJ (p) a2 dJ (p)
— aly—1 +/ a—y)—y— =
/61/3 plafy =)=+ [ e )=
a—2 dJ(nY a=2 J J(p¥Y a—y d
—/ logy %JT) +/ (5’") / log(v — 1)—U. (82)
a/3 pr a/3 br 2 v
Similarly, for values of y in the range a — 2 < y < a/2, we have
a/2 dJ(p¥) | [? dJ (pY) o2 dJ(pY)
— aly—1 + / a— = —/ lo T, 83
| ptary =0 [t = = - [ oy S (53)

For values of y in the range a/2 <y < a — 1, we have

/aal pla — y)M = /aal(l —log(a —y)) dJ(’Z’?%)'

/2 p%’ /2 pr

while for values of y in the range a — 1 < y < a, we have

[ oap™00 [ 40D
a—1 a

Dr -1 Dr
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Thus, for values of y in the range a/2 < y < a, we have

. dIPY) _ [ et - P [ A ()
/a/zpm—y) = /{1/2 log(a —y) =} +/a br), (84)

To compute the integral I = [* /2 R(1,p,Y;1,p8Y)dr(p¥)/pY, we refer to Equation (74) of
Theorem 6. On RH and for a < 3, we then have

dJ(py)
jzd

R(LpriLpf) = = [ pla =)= 2 + O, log?p).
1

Therefore, fora < 4and 1 <y < a/2, we have
a—-y
- — dJ((p¥)*
R ) == [ 7o ( ) T o, gt
r=1 r

Defining z = yz , we then have

a—y _ dJ (p?
R(1,pY;1,ppY) = —/ p (a y_ Z) (p7) + O(pr ' log? py),
z=y

= (] y/) i
and
a/2 o dm(py a/2 ( ra—y (g — z\ dJ(pz _ drm(p¥
/ R(l,pry; 17]7? y) (1]/) ) = _/ </ P < y_ ) (f ) + O(pr ! 10g2p7")> (5 )
1 br 1 z=y Yy Yy by br

By noting that dn(p¥)/p¥ = dlogy + dJ(pZ)/pZ, 0 < dr(p¥) < dp¥ and by using the method of
integration by parts, we then have

a/2 dm(pY a/2 -y /g — z\ dJ(p? _
/ R(1,p,Y; Lp?*y)# = / logy d (/ p( Y ) (f )> +0(py " 1og® pr).
1 Dr 1 2=y ) Y by

The change in the integral [7_ p (% - i) 4J5) due to the change in y by Ay is given by

24
a—y _ z
A</ p<a y_Z) dJ(pr)>:
2=y Yy Yy D5

/a—y—Ayp ( a—z 1> dJ(py?) B /a—yp (a -z 1) dJ(ff«)’
z=y+Ay y+ Ay Dr? z=y Yy pr
or

a—y _ z y+Ay _ Z
A(/ p(a y_Z) dJ(pr)>:_/ p<a 2_1> dJ(p7)
2=y y ¥/ pr a=y y p;

a-y a—z dJ(p,2%) /“_y ( < a—z ) (a—z >> dJ(pz)
) 2 —1) - ~1 ,
/z:a—y—Ay P < Yy > prtTF z=y P Y+ Ay P Yy p?

where
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Consequently

(05 ) ) 2,

a=y a—=z a—zdJ(p:Z
(55 )

=y Yy

and
a/2 Y a/2 dJ(pY a/2 dJ(p, @ *
/ R, pY 1,p3_y)d7r(pr> _ _/ P (Z — 2) logy# _ / 1ngL+
1 1 1

pg T pr&F
a/2 a—y a—z a— zdJ(p?
/ logy(/ p’( —1) 5 (Z’"))dy,
1 z=y Y Yy Dby

or
a/2 _dr g a/2 a dJ pg a—1 dJ pg{

/ R(1,p,Y;1,p77Y) (5 ) —/ p ( —2) log y (y )—/ log(a—y) (y L+
1 Dbr 1 Yy Dbr a/2 Dr

a/2 a-y a—z a— zdJ(p? _
/ logy (/ o’ ( - 1) 5 (z >> dy + O(p, " log® p,).
1 2=y Y Yy Pr

For the third integral on the right side of above equation, we rearrange the double integral as
follows

a/2 a—y a—z a—zdJ(p?)
oey ([, (57 1) S ) o=
/y:l &y Z=y P Y y2 pi

a/2 | z z _ _ a=1 qJ(p? a—z _ _
/ J(ior) / logy o <a z 1) a QZdy—i- (ﬁ)r) / logy o (a z 1) a 22
z=1 Dy y=1 ) Yy z=a/2 Pr y=1 Yy Y

Consequently,

a/2 a—us A (DY a2 /q dJ(p? a=l dJ(p¥
/ R(1,p.Y; 1, p; y)ﬁ = —/ p ( - 2) logy (y )—/ log(a—y) (y L
1 1 Yy Dr a/2 pr

p?
a/2 2 z — -
/ dJ(pr)/ logy o/ (“ - 1> Ly
z=1 pi y=1 Yy Y
a—1 z a—z — —
/ dJ(fT) / logy ¢ (a - - 1) S dy + O, log® py). (85)
z=a/2 Py y=1 Yy y

Thus, on RH and for 3 < a < 4, the difference between S; = f;zl(p(a —y)dJ(pY)/pY) —

J(play = 1) (0¥)/pY) — [i5(d] (%) /p¥) and Tp = [{"*(R(1,p,¥; 1, p=¥)dr (p¥) /pY) can
be computed by combining Equations (81), (82), (83), (84) and (85) to get
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a/2 dJ(nY a/3 d.J(pY a—y d a—=2 JJ(pY a—y d
Sj—Ip = —/ logy(fr)wL/ (Z,gr)/ log(v—l)—v+/ (5’") / 10g(v—1)—v+
1 p 1 pr ( y=a/3  Pr v

Y a-y)/y v V=2
o)2 dJ (oY a/2 4.J(p¥) [V — -
J ﬂ(a—z) 1ogy‘](5’")—/ J(fT)/ log”’)/(a ’ _1> Tl
1 y Dr y=1  Pr Ju=l Y v
a=1 g J(p¥Y a—y — - :
[0 [ g (S0 ) St ot o
y=a/2 Pr v=1 v v

Since for a/3 < y < a—2, the integral [;'"/ (log(v —1)dv/v) is a differentiable function that
grows no faster than p{¥ (for any € > 0), hence on RH we have,

a2 qy(py) [o-v dv e
/ (pr) / IOg(’U _ 1)? =0 (p'r /6+ ) )
y v

=a/3 p'%{ =2

Similarly for a/2 < y < a — 1, the integral [,/ logv p’ (% — 1) “Sdv is is a differentiable
function that grows no faster than p{¥ (for any € > 0),. Therefore, on RH, we have

a—1 dJ(pY a—y _ _
/ (57‘) / IOgU p/ <a Yy . 1) a dev -0 (pr_a/4+6)
y=a/2 Pr v=1 v v

Moreover, by the virtue of Theorem 7, on RH we have S; — Ir = O(p, 1 log? pr). Thus,
Equation (86) can written as follows,

a/2 Y a/2 Y a/3 YY) ra—y
0 (prfa/GJre) _ _/ logde(pr)‘f‘/ P a 2 logyd‘](pT)Jr/ dJ(m/ ]og(v—l)dl_
1 pr 1 y ; 1 7o) v

7 pr a—y)/y

a/2 Y Y _ _
/ dJ(py) / logv p/ (a J_ 1) a4 dev (87)
Yy v

=1 pq?f =1 v v

For1l <y <a/3, let

9 (y) = (—1 +p <Z - 2)) logy

ww)= " logo-1T

v=(a—y)/y
and

y — _
gg(y):—/ log v p’(a y—l) ¢ gydv
v=1 v (Y

Therefore, Equation (85) can be written as

a/ 7
0 (pr—a/6+e) — /l 3(91 (y) + g2 (y) + g&(y))dj(ypr)

T

Without loss of generality, we can assume for y > a/3 that ¢g1(y) = ¢ + di/y, where
g1(a/3) = c14+3d1 /aand g, (a/3) = —9d; /a®. Also, fory > a/3, we set ga(y) = co+ds/y, where
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g2(a/3) = ¢3 + 3da/a and gy(a/3) = —9dy/a>. Similarly, for y > a/3, we let g3(y) = c3 + d3/y,
where g3(a/3) = c3+3dz/a and g3(a/3) = —9d3/a’. Hence, we can rewrite the above equation
as,

dJ (py)

Pt

0 (=) = [T (01w + 9200 + 95(w) (88)

In the following, we will show that function ¢1(y) + g2(y) + g3(y) is positive monotone
increasing by show its derivative is positive for y > 1. Since ¢1(y) + ¢2(y) + g3(y) is 0 at
y = 1, therefore the function g1(y) + g2(y) + g3(y) is positive for 1 < y < a/3. To show that
derivative of the function g; (v) + g2(v) + g3(y) is positive, we have (note that for 1 <y < a/3,

pla/y —2) =1—log(a/y —2)),

dg1(y)
dy

1 1 1
:2< +) logy — — log(a — 2y),
a—2y y y

we also have

dga(y)
dy

1 a
= — log(a — 1 —y) + — log(a — 2y) —
ol ) J log(a — 29)

a
—— logy,
yla—y -v)

y(a

and

dgs(y)  ala—y)
= log .
dy  Pla—z2y Y

Therefore for 1 < y < a/3, d(g1(y) + 92(y) + g3(y))/dy is positive and the function g; (y) +
g2(y)+g3(y) is positive and monotone increasing for 1 < y < a/3. Thus, referring to appendix

6, we then have,
dJ (p¥ e
(r¥) Q( 71/2 )

pr

[T 0w+ 2l0) + )

Therefore, on RH and for sufficiently large p,, we then have
O (p; /%) = @ (p, 712 (89)

Consequently, on RH and for sufficiently large p,, Equation (89) will eventually lead to a
contradiction. This contradiction points to the invalidity of the Riemann Hypothesis. Sim-
ilar results can be also attained if we assume that there are no zeros to the right of the line
R(s) = cfor any ¢ < 1. This follows from the fact that if there are no zeros to right of the line
R(s) = c for any ¢ < 1, then J(z) is given by O(z'~°¢) and Q(x!7¢7¢) and this will lead to
similar contradiction. This indicates that non-trivial zeros can be found arbitrary close to the
line R(s) = 1.

Furthermore, Equation (89) can be used to estimate where the distribution of the prime
number deviates or starts to deviate from what has been predicted by the Riemann hypothe-
ses. As mentioned earlier, we don’t expect to have inconsistent results with RH for values of
a less than 3. Hence, we need to set a greater than 3. In the following, we will set a equal to
4. For a = 4, the left side of Equation (89) is less than kip; 23+ for some constant k1 while
the right side of the equation is greater than kop,~1/27¢ for some constant ky. Therefore, if p,q
satisfies the following equation

ky > kopt/S (90)

rl »
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then for prime numbers p,o > p,1, the integral Ip = [Z(R(1,p,;1,p? ¥)dn(p¥)/p¥) and the

sum Sy = [y p(4 — 2)(dJ(pF)/pF) — [L(p(4/y — 1)d] (p,¥ )/pr) J5 (dJ(p,¥)/p¥) are not the
same within a margin of O(p, }7¢).. Consequently, we expect that the prime numbers greater

than p!; do not follow the distribution predicted by the Riemann hypothesis. Notice that the
estimation of p,; depends on poper estimation of the constants k; and k-

Appendix 1

Assuming RH is valid and for o > 0.5, to show that

r2 1

Z P = FE((0c —1)logpy1) — Ei((o — 1) logpra) + €(pr1, pr2, o)
i=rl £
where, £(p1, pr2, 0) = [72 dJ(z) /27 = O (m prt/?e logpm) and J(z) = 7(z) — Li(z),
we first recall that
i 1 /m dr(z) /m dLi(z) /prz dJ(z)
Pl 24 pr1 X7 pr1 27 p T
or
r2
1 Pr2 Pr2 1 Pr2 1
Z — :/ dn(z) :/ dfc+/ —dO (vzlog ).
i=rl b; Pri x7 Pri1 x? logx Pri x7

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain

/pm %do (VFloga) = O (Pr2logpra) O (/prilogpr) _/ppr(\/Elog:U)d(le)

r1 L pr20 Pri1 g =1

Since x > 0, thus

Dr O A/ Pr 1 r (@) \/Pr I r Pr
/ 2iad0 (Valogz) = (Vpr2logpra) O (Vprilogpn) —O( 2ﬁlogazd<1a>>
P €T

1 L pr20 prlo Pri

With the substitution of variables y = log x, we then obtain

1 log pr2
Vaxlogxd (U> = —/ aye( Oy,
X 1

Pr2

Pri og pri
Since .
/:L‘e‘wdw = (a: — 2) “,
a a
therefore
Pr2 1 log pro 1 ) 0.5— ( log pr1 1 ) 0.5—
1 dl — ) =— — o o _ O o
- Vloge (:r”) 0(0.5—0 05-02)"" T \o5-6 (050"
Hence, for o > 0.5, we have
pr2 1 pr1%577 log pr1
—dO 1 =0|—— 91
/pﬂ 4O (/7 log ) ( o7 (91)
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Pr2
pr1 % logzp

Exponential Integral E1(r) = [>° <=du (where r > 0) to obtain

For o > 1, the integral

dx can be computed directly from the definition of the

Pr2 1
/ xalogxd:E:El((U_ 1)logpr1) — E1((0 — 1) log pr2)
Ppri1

It should be pointed out that although the functions E((c — 1) logp,1) and E;((o — 1) log py2)
have a singularity at o = 1, the difference has a removable singularity at o = 1. This follows
from the fact that as o approaches 1, the difference can be written as

Eyi((0 —1)logpr1) — E1((0 — 1) logpra) = —log ((1 — o) logp,y1) — v +log ((1 — o) log pr2) +

or,

. Pr2 1
lim ~
o—1Jp,, x%logx

da = lim {E1((0 —1)logp;1) — E1((0 —1)log pr2)} = —loglog py1 +loglog pra

To compute the integral [ dx for o < 0, we first use the substantiation y = log

to obtain

Pr2 1 log pr2 6(1 o)y log pr2 6(1 o) logpr1 o(1—0)y
/ ~ dr = dy = / dy — / dy
pr1 27 logx log pr1 € Y

z° log T

where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1
and z3 = y/log p,2 , we then obtain

Dr- 1 1 (1—0)(log pr2) 22 1 (1-0)(logpr1)21
[Pl gt e
p

o a7 log ¢/log pr 22 ¢/logpri 2

With the variable substantiations w; = (1 — o)(log pr1)21 and we = (1 — o)(log pr2)z1 and by
adding and subtracting the terms — f( (- U logp 2y f((l o) logprs w1, we then have

Pr2 1 (1-0)logpra gw2 _ 1 (1-0)logpr1 ew1 _ q
Pri x? loga: (1—o0)e w2 (1—0)e w1

1-o)e w2

/(1—0) log pr2 dws /(1—0) log pr1 dw
( (1—o0)e w1

Using the following identity [1] (refer to page 230)

a t_l
/et dt = —Ey(—a) — log(a) —
0

where a > 0, we then obtain for o < 1,

Pr2 1
de =F —1)logpr) — FE — 1) logp,
|7 g = Balle = Dlogpn) — Bi((o ~ 1)logpra)
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Hence, for o > 0.5, we have

Z — = Ei((0 — 1) logpr1) — E1((0 — 1) log pra) + (pr1, Pr2, 0)

In general, if there are no non-trivial zeros for values of s with R(s) > a, then by following
the same steps, we can also show that for ¢ > a, we have

r2
1
Z e Ey((0 —1)logpr1) — Ev((0 — 1) log pra) + €(pr1, pr2, 0)

:rlpi

where, e(py1,pp2,0) = [72 dJ(x) /27 = O (pr1?~7 log pr1/ (0 — a)?).

Appendix 2

Assuming RH is valid and for o > 0.5, to show that

r2 1

> Pyl = E1((s — 1)logpr1) — E1((s — 1) log pr2) + €(pr1, pr2, S)
i=rl £*

where, |e(pr1, pro, s)|= O (% pr /20 logprl), we first recall that

Z 1 e dr(x) /prz do /pr2 idj
Py

S
= it pr1 L , x°logx

We will first compute the integral [* LdJ(x). This can be done by integration by parts

to obtain ) S S .
DPr2 Pr2
pr1 L Pro Pr1 Pr1 x

The integral on the right side of the above equation can be then written as

Dr2 ]_ DPr2

/ J(x)d (5> =—s J(x)z* L.

Pr1 x Pri
DPr2 1 1
[ a5 <1 [ 0 (varoga) o
Pr1 €T Pr1
Pr2 ] prl UIngrl
[ )| = <|| — )

r1
For R(s) > 1, the integral If Tf 1’5 I gxda: can be computed directly from the definition of
(z) > 0) to obtain

Hence,

Consequently,

the Exponential Integral F(z) =

Pr2 1
/ o logxdx = FEi1((s —1)logpr1) — E1((s — 1) log pr2)
Pr1
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To compute the integral [ :

dx for R(z) < 1, we first write the integral as follows

% log x
prz ] Pr2 ¢ =718 cog(t log ) [Pz 77198 T gin(tlog )
/ o dr = ] dr —1 / o dz.
Pr1 x° logx Pri ogx Pr1 g
—ologx
The first integral on the right side [ © . 10;(’;@ 1°82) 72 can be computed by using the sub-

stitution y = log x to obtain

i

/pT‘Q 6*0' log COS(t log IB) d /lngrz e(lfU)y Cos(ty) d
X —_——
p 1

1 log x og pri Y
or
pra o—0logz t1 logpra o(1=0)y t logpra o(1=0)y logpra o(1—0)y
/ e cos( ng)dac :/ e cos( y)dy—i—/ e dy— e dy.
pr1 log x log pr1 log pr1 Y log pr1 Y
Hence,
pro ,—0logT t1 log pr1 (I*U)y 1— t log pr2 e(lfg)y 1 — cos(t
[T gy, e 00 o), (1 - costy)
r1 log ¢ € Y

logpr1 o(1—0)y logpra2 o(1=0)y
/ dy + / dy
€ Yy € Yy

where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1
and z3 = y/log pr2 , we then obtain

/Pr? e~7198% cos(t log ) dx /1 e(1=o)(ogpr)21(1 — cos(t(log pr1)z1))
p €

= ClZl—
- log

/Ing'rl 21

/1 e(1=0)(logpr2)za (] _ COS(t(logprz)ZQ))dZQ_

/log pra 22
/1 e(1—0)(logpr1)z1 1 o(1=0)(log pra) 2o
€

dz1 + —dz»
/log pr1 21 e/log pro 29

By the virtue of the following identity [1] (refer to page 230)

/1 e (1 — cos(bt))
0

t dt — %log(l +82/a?) + Li(a) + R[E1(—a + ib)],

where a > 0, we then obtain the following

/pr? e~71987 cos(t log )
P

— RIEL((s — 1) log p, Li((1 — o) log p,y)—
i Tog dx = R[E1((s — 1)log pr1)] + Li((1 — o) log py1)

R[E1((s — 1) log pro)] — Li((1 — o) log pra2)—
/1 e(lfa)(logpr.l)zl 1 e(lfo)(logprg)z?

dz1+ —_—d2x
/log pr1 ?1 €/log pr2 z2
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With the variable substantiations w; = (1 — o)(log p,1)2z1 and wy = (1 — o)(log py2)22 and by
adding and subtracting the terms — f(( U))glogp "z | Ja- (1 0 bgp " 441 we then have

pro ,—0logT
/ e cos(tlogz) , R[E1((s — 1) logpr1)] + Li((1 — o) log pr1)—
p

log

RIE1((s — 1) log pra)] — Li((1 — o) log pr2)+

(1-0)logprz pw2 _ 1 (1-o)logpr1 ew1 _ 1
/ de - / dw1—|—
(1—0)e w2 (1—0)e w1

1—0)e w2

1—0)e w1

/(1_‘7) log pr2 dw2 /(1_0) log pr1 d’lU]_
( (

Using the following identity [1] (refer to page 230)

aet _ 1
/ ¢ ; dt = Ei(a) — log(a) — v
0

where a > 0, we then obtain for o < 1,

/pr? e~7198% cos(t log )
p

e dx = R[E1((s — 1) log pr1)] — R[E1((s — 1) log pr2)]

1

Similarly, using the identity [1] (refer to page 230)

1 pat
/ esln(bt)dt = m — arctan(b/a) + S[E1(—a + ib)],
0

where a > 0, we can show that for 0 < 1, we have

- /pprz e~ 18 gin(t log 2) g — S[EL((s — 1)1og pr1)] — S[EL((s — 1) log py2)].-

- log

Therefore, for R(s) > 0.5, we have

r2
1
— = Ei((s — 1)logp1) — E1((s — 1) log pr2) + (pr1, pra; 8)
i=r1 Pi
where, (pr1,pra, 5) = [72 “2) and on RH, [£(py1, pra, )= O (5os2pin /2~ log pya ).

It is worth mentioning here that the term £(p,, s) can be represented in terms of the non-
trivial zero if von Mangoldt function is used in this analysis instead of using the prime count-
ing function.
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Appendix 3

To show that

we first note that

Zd/n N(dJ)r) = 11 ifn = 11
> d/n w(d, pr) = 1, if all the prime factors of n are less than p,,
> a/n 1(d,pr) = 0, if any of the prime factors of n is greater than p,.

Adding all the terms }°;/,, u1(d, pr) for 1 < n < N, we then obtain

0< %u(n,pr) VXJ < N,

n=1

where |z | refers to the integer value of z. Define r,, as

[
™m = ——|—|>
n n
where 0 < r,, < 1. Hence, we have
N N N N N
>l pr)rn <Y p(n,pr) {nJ + 3, pe)rn < N+ p(n, pr)ra.
n=1 n=1 n=1 n=1

Since 0 < r,, < 1, therefore

—-N < i\f:u(n,pT) (rn—i— VZJ) < 2N.

n=1

Thus, for every p, we have

al N
n=1
or N
p(n, pr)
—l1<y ==~ <2
n=1 n
Appendix 4

Referring to Equation (69), we have
R(s,pr; 1, 00) = e 1) (emePrs)+o(prs) _ 1)

where
o = (s—1)logpr,
oo

R(a,py) = R(s,pr; 1,00) = / e~ VAR(1,py;1,p,Y),
y=1
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and
00 1 1 1 S 00 dﬂ'(py)
5o () = 6(pps) =S (- — _ o)== / —nay 47Pr) |
Pr (O[) (pT S) ; < 2p’£28 3]%'35 4pl.48 > 7;2 1 € np?y

Notice that for s = 1 + it, @ = it log p, and if we define w = tlog p,, then

R(w,pr) = RO+ it, py; 1, 00) = / e “YdR(1, py; 1, p,Y)
y=1

or, R(w, p,) is the Fourier transform of the function dR(1,p,; 1,p,Y)/dy . Similarly,

* —iwy 4 (PY)
ep, (W) = e Y -,
o) = | b
and -
o dm(pY)
5 (W) = — / nwy nr
pr( ) 7;2 1 npry
Therefore,
dR(1,p,;1,pY)
dy =L R(Oé,pr),
o dR(1, pri 1, p¥)
y Dry 1, Dr _ 1
a0 =F "R(w,pr).
Thus,
R(l,pr;l,pr“):/ L7'R(a,pr) dy,
1
or .
R(1,pr;1,p,:%) =/ F'R(w,py) dy.
1
Hence,

R(1,pr; 1,p%) :/ ((L"*lefEl(Oé) w L lemepr (@) Lqeapr(a))(y) _ Lfle*El(a)) dy,
1
where, £~ 1e=E1(®) = j/(y)) + §(y) and
a
R(l,p,«; 1,pra) :/ ((f*lefEl(w) ¥ FLle=epr (@) *}—fleépr(w))(y) —fﬁlefEl(w)) dy
1

where, F~le F1@) = /() 4 6(y).

J"oo e*iwy dJ(p?,{)

To compute the inverse Fourier transform of e~*»r @ (=¢ 1 77 )and e % @) we
first note 2 ()
_ g5 (w
e~er @) =1 ¢, (W) + p2! — e,
and

512,T(w) B
51 s

eI =16, () +
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The dominant term in the computation of R(1, p,; 1, p,¥) is given by

—(F e W Fle, ()(y) = — (0 +6) * f2) (v)-

Referring to section 6, we then have

_/yil(]:_le_El( )« F- Gpr( w))(y)dy = _/mil P(a—x)d!];f’x").

As it mentioned in section (6), for any & and for sufficiently large p,, we have

>~ dJ(p}) hdJ(pd)
/y:1 7 _(1+5)/y ,

Dr =1 p%

where § can be made arbitrary close to zero by choosing p, sufficiently large. Therefore, for
any h and for sufficiently large p,, we have

_/yil(]:_le_El( “) x F ey, (W) (y)dy = —(1 +6)p(a — 1) /ﬂ:’l de(fjf)

The second dominant term in the computation of R(1, p,; 1, p,Y) is given by

S s Frle, (W)« F e ()(0) = 5 (7 +0) % fo x ) (9)

l\DM—l

If we denote the convolution (F~le #1@ s F~1e, (w))(y) as G1(y), the convolution (F~'e F1(«)x
Flep (w) x Flep, (w))(y) as Ga(y) and so on, then

2620) =5 [ 7= a)fox )@+ 5 < 2)(0)

and the contribution of the term Gg(y) to R(1,pr;1,p,Y) is given by

;/yil Ga(y)dy = ;/y; (/;2 p(y —2)(fo x fo)(x)dz + (f2 * f2)(9)> dy,

or

1 e 1 ra “ /
3 Gwiy=5 [ Gor @ (14 [* d - ay) d
Thus e o
5 /y:1 G2(y)dy = 5 /x:l P(CL — T — 1)(f2 * f2)($)d$ (92)

A simple method to compute the integral in Equation (92) is to pull the term p(a — z — 1)
out of the integral. Thus, for sufficiently large p,, we have

3, Gatody = 2ota=2) [ (fos po)a)is

By noting that if G(s) is the Laplace transform of f(t) then F'(s)/s is the Laplace transform of
fg f(z)dx and using the final value theorem (which states that lim;_, f(¢) = lim,_,0 sF'(s)),

we then obtain ,
1 fa 1+6 ( OOdJ(pz)>
T Gatoty = ([ Y
5 /y L 2(y)dy 5 Pla—2) o
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where § can be made arbitrary small by choosing p, sufficiently large. Hence,

;ALG“”@:*)Oﬁf)j'

Alternatively, one may attain the same result without pulling the term p(a — = — 1) out of
the integral of Equation (92). This can be achieved by using the final value theorem to obtain

/ Ga(y = lli% (sﬁ (/;Ol ha —x — 1)(fa % fg)(az)dm) (s)) .

where h(z) = p(z) for 0 < z < a and h(x) = 0 otherwise. Hence,

/ Ga(y = hm (ﬁ(h(a —x—1)(s)* (Fg(s))2> .

2 5—0

where L(h(a—z—1)(s) = [*,h(a—z—1)e *dx = —e(* Vs H(—s),and H(s) = [, h(z)e *dx =

T x

[ p(z)e™*"dz (note that [ p(z)e *%dx = eF1(5) /5). Thus,

/ Gioly dy——fhm (el H(~s)) = (Fals))?).

2 s—0

or,

5 | Gty =g tim ([T e g F)Pa)

-1 25%0 271 Je—ico

where the integration can be performed with ¢ = 0 to obtain

+i0c0
—(a—1)u 2
/ Galw)dy =~ ([ eI () (Pa(w) ).
where Fb(u) = [Z ety djzfp’y“) By using the method of integration by parts, we can then

show that F(0) = [7°dJ(p¥)/pY = O(J(pr)/pr)- Similarly, we can show |F(u)|= |F(iw)|=
[ e vd ] (pY)/p¥|= O(J (p,)/pr). Since [T/ =@~V [ (4)du is bounded, therefore

;[l@@MA:OO””V>,

2 pr
a 1 e
[ Gatwras] = 5,067
y |

on RH, we then have

=1

Similarly, for sufficiently large p, we can show that the integral

;!/yal Gn(y)dy = ]:!/xal p(a—x —k+ 1)(f2 * fox ... % fg)(x)dx

is given by



or,

on RH, we then have

Following the same steps, we can also compute the contribution by the term €% to
R(1,py; 1, p,*). This contribution is dominated by the integral [, (F 'e™ 51« F 15, (w))(y)dy.
For sufficiently large p,, we then have

/yil(f_le_El(W) * f_l(SpT(w))(y)dy = (1 + 6)9(& _ 1) /yil d;gzjf) _ O(pr_l)

where e can be made arbitrary small by choosing p, sufficiently large. As expected, in ex-
amining the validity of the Riemann hypothesis, the contribution by the term 6(p,, s) can be
ignored. This can be also concluded using Theorem 3. In Theorem 3, it is clear that the term
d(pr, s) has no impact on the region of convergence of the series M (s, p,)

Appendix 5
On RH, we will show that
> dJ(p}) —1/2—
A /2—e¢ ,
/1 Py (p” )
and in general,
o dJ (Py) —1/2—
)0 /2—e ’
/1 9(y) . (pr )

where g(y) (or —g(x) is a differentiable function for y > 1 that grows no faster than e’
or decays no slower than e % for any § > 0 (for example, for y > 1, g(y) = 1,y,9?%
oy 1y, /Y2, ., 1/y™, (logy)™). There are a variety of theorems (that are based on Paley-
Wiener theorems) that establish the relationship between the decay properties of a function
with its Fourier, Laplace or Mellin transform (within its region of convergence). Our analysis
is similar to Landau approach that establishes the relationship between the decay (or growth)
rate of a Riemann integrable function and the region over which its Mellin transform is ana-
lytic [11].

Toward this end, we first write J(z) = n(z) — Li(z) as [13]

R w @) () —a

J(z) = 7(x) — Li(z) = — 2 - log = + P(x),
where,
Tah(u) —u )
P = — — Li(2
(z) 2 ulog?u log 2 i(2),

Hence, on RH, we have

V() —z Cap(u) —u < 1/2 1/3
J(r)=——""+ L +0
@) log z 2 ulog?u du —Li(z") (x ) ’
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or
1

A Y du — Li(z12 1/3
logxzp:p+/2 (ulog uzp:p> )+O( )’

J(z) =

and

1 eyplogpr y 1 e*Plogpr
Y) = dz — Li(pv/? y/3
J(pr) ylogpr 2’0: P + /M (ZQ 10gpr zp: p ) z l(pT ) + O (pT' )

log pr

Let
© 1 eyplogpr
h(pt) = —
Yy log pr 0 P
and
Jo(pY) Yy 1 Z e?plogpr p
2\Py) = / <
U S \Plogp
then,

(oY) = Ju(pY) + Ja(p¥) = Li(p¥?) + O (p¥?)

In the following, we will show that the integral [, d.J(p;)/p; = Q (p; v/ 2_5) by showing
that the Laplace transform of integral f;o dJ(p?)/p: is analytic function for o > —(y/2) log p,
with singularities at —(y/2) log p, + i3; (that correspond to the zeros of the zeta function at

pi = 1/2+ip;). Thus, the integral [,* dJ(p;)/p; grows faster than p; /27 due to the presence
of these singularities at —(y/2) log p, +if;. In other words; if the integral [,* d.J (p)/p; grows

at a rate slower than p, Y/2¢ then the Laplace transform of the integral fyoo dJ(pz)/p: will be
analytic at 0 = —(y/2) log p,. This contradicts our earlier assertion that the Laplace transform
function has singularities at —(y/2) log p, + if3; (or the Laplace transform integral diverges for

—(y/2)log py)-

To compute the Laplace transform (and its singularities) of the integral [,* dJ(p;)/p; , we
have,

/°° dJi(p7) _ Ji pr
Y

P / Jl pr dpr
Dr

Therefore,

/yoo dJl(pr) _ 1 Z (p¥)* n 1 /yoo (122 W) dz

Py ypr log p, p  logp, wp P

As mentioned earlier, the sum }° (2*/p) is conditionally convergent and it should be per-
formed over the nontrivial zeros with |v;|< T as T approaches infinity. Furthermore, refer-
ring to lemma 2 of reference [13], the sum is p(:z:p_1 /p) is uniformly convergent. Hence, the
integral and the sum in the above equation can be interchanged. In other words; the integral
on the right side of the above equation can be performed term by term. Therefore, on RH, we
have

/oo djl(pj): 1 ey(_1/2+ﬁi)10gpr+ 1 /oo e#(—1/2+0;) log pr
U ylogpr < pi logpr <\ Jy Zpi

dz> (93)
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Furthermore,

/oo dJa(p7) _ /OOL d / 1 Zewmlogmdw
vy P; y pidz \J@e2 wlogp, 7 p;

1

or, on RH, we have

00 z 1 00 p2(—1/2+pB;)log pr
/ dJ2(Zpr) _ 3 / G i 1)
y PP log pr 4\ Jy 22pi
and /2
/ dLi(py — / —(2/2)1ogpr 4., (95)
Y p'r logpr

Combining Equations (93), (94) and (95), we then have

/°° dJi(p7) _
y D5

1 eY(=1/2+p;) log pr 00 #(—1/2+pi)log pr 00 z(—1/2+pi)log pr
> + / dz + / dz | —
y y

log pr 4 ypi zpi 2°p;
1 /00 o~ (z/2)logpr g, +0 ( 2y/3) (96)
logp, Jy =z

To compute the Laplace transform of the integral, we note that the Laplace transform of
the function e is given 1/(s — a) with a pole (or singularity) at s = a. We also note the
Laplace transform of the function e® f(¢) is given by F (s —a) where F(s) is the Laplace trans-
form of f(t). In other words; multiplication of a function f(¢) by e* will shift the poles or
singularities of its Laplace transform F'(s) by —a. Furthermore, the Laplace transform of the
integral [,* f(t)dt is given by F(0)/s — F(s)/s (note that [[* f(t)dt = [7° f(t)dt — [¢ f(t)dt
The Laplace transform of the integral [/ f(t)dt is given by F(s)/s. The integral [;° f(t)dt is
given by F'(0) and its Laplace transform is then given by F'(0)/s). Consequently, the Laplace
transform of the integral [* f(¢)dt has a removable singularities at s = 0 and its singulari-
ties are the same as the singularities of F'(s). Using these Laplace transform properties, one
may then conclude that, on RH, all the singularities of the Laplace transform of the integral
fyoo dJi(p?)/pz in Equation (96) are on the line 0 = —0.5log p,. Thus, the absolute value of the

integral [ d.Ji(p})/p; grows faster than e 0-5logpr=0 o

/oo de]l(p?) — Q <prée)
y j 2

Similar analysis can be applied to show that if the Laplace transform of a function ¢(z) is
analytic for 0 > 0 with singularities on the line o = 0 then,

/ T oa |~ g (5+)

Dr
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