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Abstract

In this paper, we have used the partial Euler product to examine the validity of the Rie-
mann Hypothesis. The Dirichlet series with the Mobius function M(s) =

∑∞
n=1 µ(n)/ns has

been modified and represented in terms of the partial Euler product by progressively elimi-
nating the numbers that first have a prime factor 2, then 3, then 5, ..up to the prime number
pr to obtain the series M(s, pr). It is shown that the series M(s) and the new series M(s, pr)
have the same region of convergence for every pr. Unlike the partial sum of M(s) that has ir-
regular behavior, the partial sum of the new series exhibits regular behavior as pr approaches
infinity. This has allowed the use of integration methods to compute the partial sum of the
new series to determine its region of convergence and to provide an answer for the validity
of the Riemann Hypothesis.
Keywords: Riemann zeta function, Mobius function, Riemann hypothesis, conditional con-
vergence, Euler product.
Classification: Number Theory, 11M26

1 Introduction

The Riemann zeta function ζ(s) satisfies the following functional equation over the complex
plain [1]

ζ(1− s) = 2(2π)2 cos(0.5sπ)Γ(s)ζ(s), (1)

where, s = σ + it is a complex variable and s 6= 1.

For σ > 1 (or <(s) > 1 ), ζ(s) can be expressed by the following series

ζ(s) =
∞∑
n=1

1

ns
, (2)

or by the following product over the primes pi’s

1

ζ(s)
=
∞∏
i=1

(
1− 1

psi

)
. (3)

where, p1 = 2,
∏∞
i=1(1 − 1/pi

s) is the Euler product and
∏r
i=1(1 − 1/pi

s) is the partial Euler
product. The above series and product representations of ζ(s) are absolutely convergent for
σ > 1.
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The region of the convergence for the sum in Equation (2) can be extended to <(s) > 0 by
using the alternating series η(s) where

η(s) =
∞∑
n=1

(−1)n−1

ns
, (4)

and
ζ(s) =

1

1− 21−s η(s). (5)

One may notice that the term 1− 21−s is zero at s = 1. This zero cancels the simple pole that
ζ(s) has at s = 1 enabling the extension (or analog continuation) of the zeta function series
representation over the critical strip 0 < <(s) < 1.

It is well known that all of the non-trivial zeros of ζ(s) are located in the critical strip
0 < <(s) < 1. Riemann stated that all non-trivial zeros were very probably located on the
critical line<(s) = 0.5 [2]. There are many equivalent statements for the Riemann Hypothesis
(RH) and one of them involves the Dirichlet series with the Mobius function.

The Mobius function µ(n) is defined as follows
µ(n) = 1, if n = 1.
µ(n) = (−1)k, if n =

∏k
i=1 pi, pi’s are distinct primes.

µ(n) = 0, if p2|n for some prime number p.

The Dirichlet series M(s) with the Mobius function is defined as

M(s) =
∞∑
n=1

µ(s)

ns
. (6)

This series is absolutely convergent to 1/ζ(s) for <(s) > 1 and conditionally convergent to
1/ζ(s) for <(s) = 1. The Riemann hypothesis is equivalent to the statement that M(s) is con-
ditionally convergent to 1/ζ(s) for <(s) > 0.5.

Gonek, Hughes and Keating [3] have done an extensive research into establishing a re-
lationship between ζ(s) and its partial Euler product for <(s) < 1. Gonek stated ”Analytic
number theorists believe that an eventual proof of the Riemann Hypothesis must use both
the Euler product and functional equation of the zeta-function. For there are functions with
similar functional equations but no Euler product, and functions with an Euler product but
no functional equation.” In section 4, we will present a functional equation for ζ(s) using its
partial Euler product. The method is based on writing the Euler product formula as follows

1/ζ(s) =
∞∏
i=1

(
1− 1

psi

)
=

r∏
i=1

(
1− 1

psi

) ∞∏
r+1

(
1− 1

psi

)
.

The above equation is valid for σ > 1. To be able to represent ζ(s) in term of its partial Euler
product for σ ≤ 1, we have to replace the term

∏∞
r (1− 1/psi ) with an equivalent one that

allows the analytic continuation for the representation of ζ(s) for σ ≤ 1. Thus, the new term,
that we need to introduce to replace

∏∞
r (1− 1/psi ), must have a zero that cancels the pole

that ζ(s) has at s = 1. In the section 4, we will use the complex analysis to compute this new
term and then represent ζ(s) in terms of its partial Euler product. In sections (2) and (5), we
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have introduced an alternative method to compute ζ(s) in terms of its partial Euler product.
This alternative method is based on modifying the Dirichlet series with the Mobius function.
In sections (6) and (7) we analyzed the results of these two methods to examine the validity
of the Riemann Hypothesis

In this paper, we claim the the Riemann Hypothesis is invalid. We support our claim by
proving that the series M(σ) is divergent for σ < 1. We have achieved this result by intro-
ducing a method to represent the Dirichlet series M(s) (defined by Equation (6)) in terms of
the partial Euler product. This task is achieved by first eliminating the numbers that have
the prime factor 2 to generate the series M(s, 2). For the series M(s, 2), we then eliminate the
numbers with the prime factor 3 to generate the series M(s, 3), and so on, up to the prime
number pr. In essence, in sections 2, we have applied the sieving technique to modify the
series M(s) to include only the numbers with prime factors greater than pr. In the literature,
numbers with prime factors less than y are called y-smooth while numbers with prime factors
greater than y are called y-rough. In essence, our approach is to compute the Dirichlet series
over pr-rough numbers. In section 3, we have shown that the series M(s) and the new series
M(s, pr) have the same region of convergence (Theorem 1).

So far, the efforts to use the series M(σ) to examine the validity of the Riemann Hypothe-
sis have failed due to the irregular behavior of the partial sum of the series M(σ). In sections
5, 6 and 7, we have shown that the partial sum of the new series M(σ, pr) exhibits regular be-
havior as pr approaches infinity. This has allowed the use of integration methods to compute
the partial sum of the new series and consequently determine its region of convergence.

In section 4, we have used the complex analysis to compute a functional representation
for ζ(s) in terms of its partial Euler product (Theorem 2). We have then used this theorem to
represent the series M(s, pr) in terms of the prime counting function π(x) (Theorem 3, where
π(x) = Li(x) + J(x), Li(x) is the Logarithmic Integral of x and J(x), on RH, is given by
O(
√
x log x)). In section 5, we have used integration methods to compute M(1, pr). We have

then shown that M(1, pr) can be decomposed into two terms (Theorem 4). The first term,
that we have called the regular component, is generated by the Li(x) component of the prime
counting function. The second term is the irregular component. In sections 6 and 7, we have
used the Fourier analysis methods to compute the irregular component for any value of s.
These methods were also used to compute the irregular component in terms of J(x) (Theo-
rems 6 and 7). We have then exploited Theorem 6 to show that non-trivial zeros can be found
arbitrary close to the line <(s) = 1.

2 Applying the Sieving Method to the Dirichlet Series M(s).

The Dirichlet series M(s) with the Mobius function is defined as

M(s) =
∞∑
n=1

µ(s)

ns
,

where µ(n) is the Mobius function. Thus,

M(s) = 1− 1

2s
− 1

3s
+

0

4s
− 1

5s
+

1

6s
....
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It should be pointed out that our definition of M(s) is different from Mertins function M(x)
that is commonly found in the literature and it is defined as M(x) =

∑
1≤n≤x µ(n).

Next, we introduce the series M(s, 2) by eliminating all the numbers that have a prime
factor 2. Thus, M(s, 2) can be written as

M(s, 2) = 1− 1

3s
− 1

5s
− 1

7s
+

0

9s
− 1

11s
− 1

13s
+

1

15s
.....

Our analysis to test the conditional convergence of these series (M(s) and M(s, 2) for
σ ≤ 1) is based on comparing correspondent terms of these two series. Therefore, rearrange-
ment and permutation of the terms may have a significant impact on analyzing the region of
convergence of both series. Thus, it essential to have the same index for both series M(s) and
M(s, 2) refer to the same term. Hence, we will represent M(s, 2) as follows

M(s, 2) = 1 +
0

2s
− 1

3s
+

0

4s
− 1

5s
+

0

6s
− 1

7s
− 0

8s
....,

or

M(s, 2) =
∞∑
n=1

µ(n, 2)

ns
, (7)

where
µ(n, 2) = µ(n), if n is an odd number,
µ(n, 2) = 0, if n is an even number.

The above seriesM(s, 2) can be further modified by eliminating all the numbers that have
a prime factor 3 to get the series M(s, 3) where

M(s, 3) = 1− 1

5s
− 1

7s
− 1

11s
− 1

13s
− 1

17s
− 1

19s
− 1

23s
+

0

25s
....,

or more conveniently

M(s, 3) = 1 +
0

2s
− 0

3s
+

0

4s
− 1

5s
+

0

6s
− 1

7s
− 0

8s
....,

and so on.

Let I(pr) represent, in ascending order, the integers with distinct prime factors that belong
to the set {pi : pi > pr}. Let {1, I(pr)} be the set of 1 and I(pr) (for example, {1, I(2)} is the
set of square-free odd numbers), then we define the series M(s, pr) as

M(s, pr) =
∞∑
n=1

µ(n, pr)

ns
, (8)

where
µ(n, pr) = µ(n), if n ∈ {1, I(pr)} ,
otherwise, µ(n, pr) = 0.

It can be easily shown that, for every prime number pr, the series M(s, pr) converges
absolutely for <(s) > 1 . Furthermore, it can be shown that, for <(s) > 1, M(s, pr) satisfies
the following equation
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M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
. (9)

Since

M(s) =
1

ζ(s)
=
∞∏
i=1

(
1− 1

psi

)
,

therefore we conclude that, for <(s) > 1, M(s, pr) approaches 1 as pr approaches infinity.

3 The region of convergence for the series M(s) and M(s, pr).

In this section, we will deal with the question of the relationship between the conditional
convergence of the two series M(s, pr) and M(s) over the strip 0.5 < <(s) ≤ 1. Theorem 1
establishes this relationship.

Theorem 1. For s = σ + it, where 0.5 < σ ≤ 1 and for every prime number pr, the series M(s)
converges conditionally if and only if the series M(s, pr) converges conditionally. Furthermore, M(s)
and M(s, pr) are related as follows

M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
. (10)

The proof of this theorem can be achieved either by applying the Cauchy convergence cri-
teria or more conveniently by applying the complex analysis where we take advantage from
the fact that both functions ζ(s) and ζ(s)

∏r
i=1(1− 1/psi ) have the same zeros (and a pole at

s = 1) to the right of the line <(s) = 1/2.

In the following, we will use the complex analysis to prove Theorem 1 by using a method
similar to the one outlined by Littlewood Theorem that shows that RH is valid if and only
if the sum

∑∞
n=1 µ(n)/ns is convergent to 1/ζ(s) for every s with σ > 0.5. The prove of this

theorem can be found in [7, Theorem 14.12, page 369]. This proof is dependent mainly on
Lemma 3.12 of the same reference [7, page 60] which states: Let f(s) =

∑∞
n=1 an/n

s, where
σ > 1, an = O(ψ(n)) being a non-decreasing and

∑∞
n=1 |an|/nσ = O(1/(σ − 1)α) as σ → 1.

Then, if c > 0, σ + c > 1, x is not an integer and N is the integer nearest to x, we have

∑
n<x

an
ns

=
1

2πi

∫ c+iT

c−iT
f(s+w)

xw

w
dw+O

(
xc

T (σ + c− 1)α

)
+O

(
ψ(2x)x1−σ log x

T

)
+O

(
ψ(x)x1−σ

T |x−N |

)

To prove the first part of Theorem 1 (i.e. for s = σ+ it and 0.5 < σ ≤ 1, the series M(s, pr)
converges conditionally if M(s) converges conditionally), we note that for σ > 1,

M(s) =
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
,

and

M(s, pr) =
∞∑
n=1

µ(n, pr)

ns
=

1

ζ(s)
∏r
i=1

(
1− 1

psi

) .
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If we assume that M(s) is convergent for σ > h > 0.5, then ζ(s) has no zeros in the com-
plex plane to the right of the line <(s) = h [7, Theorem 14.12, page 369]. Consequently, the
function ζ(s)

∏r
i=1(1− 1/psi ) has no zeros in the complex plane to the right of the line <(s) =

h. Thus, we may apply Lemma 3.12 [7, page 60] with an = µ(n, pr), f(s) = 1/(ζ(s)
∏r
i=1(1− 1/psi )),

c = 2 and x half an odd integer to obtain (refer to [7, Theorem 14.12, page 369])

∑
n<x

µ(n, pr)

ns
=

1

2πi

∫ 2+iT

2−iT

1

ζ(s+ w)
∏r
i=1

(
1− 1

ps+wi

) xw
w
dw +O

(
x2

T

)

However, by the calculus of residues we have

1

2πi

∫ 2+iT

2−iT

1

ζ(s+ w)
∏r
i=1

(
1− 1

ps+wi

) xw
w
dw =

1

ζ(s)
∏r
i=1

(
1− 1

psi

)+

1

2πi

(∫ h−σ+γ−iT

2−iT
+

∫ h−σ+γ+iT

h−σ+γ−iT
+

∫ 2+iT

h−σ+γ+iT

)
1

ζ(s+ w)
∏r
i=1

(
1− 1

ps+wi

) xw
w
dw

where, 0 < γ < σ − h. The first and third integrals on right side of the above equation are
given by O(T−1+εx2) while the second integral is given by O(xh−σ+γT ε). Hence

∑
n<x

µ(n, pr)

ns
=

1

ζ(s)
∏r
i=1

(
1− 1

psi

) +O(T−1+εx2) +O(xh−σ+γT ε)

Taking T = x2, the O−terms tend to zero as x approaches infinity. Consequently, the partial
sum M(s, pr; 1, x) is convergent as x approaches infinity and it is given by

M(s, pr) =
∞∑
n=1

µ(n, pr)

ns
=

1

ζ(s)
∏r
i=1

(
1− 1

psi

) .
or

M(s) = M(s, pr)
r∏
i=1

(
1− 1

pis

)
.

The second part of the theorem can be also proved by first defining M(s, pr;N1, N2) as the
partial sum

M(s, pr;N1, N2) =
N2∑

n=N1

µ(n, pr)

ns
, (11)

where N2 ≥ pr. Then, we have

M(s, pr−1; 1, Npr) = M(s, pr; 1, Npr)−
1

psr
M(s, pr; 1, N). (12)

Since the series M(s, pr) is conditionally convergent, then the partial sums M(s, pr; 1, Npr)
and M(s, pr; 1, N) are both convergent to M(s, pr) as N approaches infinity. Hence, as N
approaches infinity, we obtain
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M(s, pr−1) = lim
N→∞

M(s, pr−1; 1, Npr) = M(s, pr)

(
1− 1

psr

)
.

By repeating this process r − 1 times, we then obtain

M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
.

4 Functional representation of ζ(s) using its partial Euler product.

In this section, we will use the prime counting function to derive a functional representation
for ζ(s) using its partial Euler product. We will start this task by first writing ζ(s) for σ > 1
as follows

1/ζ(s) =
∞∏
i=1

(
1− 1

psi

)
=

r∏
i=1

(
1− 1

psi

) ∞∏
r+1

(
1− 1

psi

)
. (13)

For σ > 0.5, we have

log
r2∏
i=r1

(
1− 1

psi

)
=

r2∑
i=r1

log

(
1− 1

pis

)
,

or

log
r2∏
i=r1

(
1− 1

psi

)
=

r2∑
i=r1

(
− 1

pis
− 1

2pi2s
− 1

3pi3s
− ...

)
.

Let δp be defined as the sum

δp =
r2∑
i=r1

(
− 1

2pi2s
− 1

3pi3s
− 1

4pi4s
...

)
. (14)

Thus,

log
r2∏
i=r1

(
1− 1

psi

)
= −

r2∑
i=r1

1

pis
+ δp. (15)

Since |δp|<
∑∞
n=pr1

(
1

2n2σ + 1
3n3s + 1

4n4s ...
)

, thus δp = O(p1−2σ
r1 /(2σ−1)). Furthermore, if 2σ−1

is a fixed positive number, then δp = O(p1−2σ
r1 ).

Using the Prime Number Theorem (PNT) with a suitable constant a > 0, the number of
primes less than x is given by [4, page 43]

π(x) = Li(x) + J(x), (16)

where Li(x) is the Logarithmic Integral of x and

J(x) = O

(
xe−a

√
log x

)
, (17)

or
J(x) = O

(
x/(log x)k

)
, (18)
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where k is a number greater than zero.

Using Stieltjes integral [5], we may write the sum
∑r2
i=r1

1
piσ

for σ > 1 as follows

r2∑
i=r1

1

piσ
=

∫ pr2

x=pr1

dπ(x)

xσ
. (19)

Using Equation (18) for the representation of π(x), we may then write the integral in Equation
(19) as [5, Theorem 2, page 57]

r2∑
i=r1

1

pσi
=

∫ pr2

pr1

1

xσ
1

log x
dx+O

(
1

(log pr1)k

)
, (20)

where k is a number greater than zero. Therefore,

r2∑
i=r1

1

pσi
=

∫ ∞
pr1

1

xσ
1

log x
dx−

∫ ∞
pr2

1

xσ
1

log x
dx+O

(
1

(log pr1)k

)
. (21)

Recalling that the Exponential Integral E1(r) is given by

E1(r) =

∫ ∞
r

e−u

u
du,

and using the substitutions u = (σ− 1) log x, du = (σ− 1)dx/x and xσ/x = eu, then for σ > 1,
we may write Equation (21) as

r2∑
i=r1

1

pσi
= E1 ((σ − 1) log pr1)− E1 ((σ − 1) log pr2) +O

(
1

(log pr1)k

)
. (22)

Combining Equations (15) and ((22)) and noting that, for σ > 1, E1 ((σ − 1) log pr2) ap-
proaches zero as pr2 approaches infinity, we may write Equation (13) for s = σ and σ > 1
as

− log ζ(σ) =
r∑
i=1

log

(
1− 1

piσ

)
−

∞∑
i=r+1

1

piσ
+ δp,

or

log ζ(σ) +
r∑
i=1

log

(
1− 1

piσ

)
− E1 ((σ − 1) log pr+1) = ε,

where ε = O(1/(log pr1)k) is an arbitrarily small number attained by setting pr sufficiently
large. Therefore,

ζ(σ)
r∏
i=1

(
1− 1

pσi

)
exp (−E1((σ − 1) log pr+1)) = 1 + ε+O(ε2). (23)

As pr approaches infinity, ε approaches zero. Hence, the right side of the above equation ap-
proaches 1 as pr approaches infinity.

Similarly, for <(s) > 1, we can use the following expression for E1(s)

E1(s) =

∫ ∞
1

e−xs

x
dx,
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to show that

lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1))

}
= 1. (24)

Let the function G(s, pr) be defined as

G(s, pr) = ζ(s)
r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1)) (25)

where, G(s, pr) is a regular function for <(s) > 1. Referring to Equation (24), the function
G(s, pr) approaches 1 as pr approaches infinity. It should be noted that, for every pr, the func-
tion exp (−E1((s− 1) log pr+1)) is an entire function, the function ζ(s) is analytic everywhere
except at s = 1 and the function

∏r
i=1(1− 1/psi ) is analytic for <(s) > 0. Thus, for any σ > 1,

the function G(s, pr) can be considered as a sequence of analytic functions. Furthermore, as
pr (or r) approaches infinity, this sequence is uniformly convergent over the half plane with
σ > 1 + ε (where, ε is an arbitrary small number). Therefore, by the virtue of the Weiestrass
theorem, the limit is also analytic function [6] (Weiestrass theorem states that if the function
sequence fn is analytic over the region Ω and fn is uniformly convergent to a function f , then
f is also analytic on Ω and fn

′
converges uniformly to f

′
on Ω). If we define this limit as G(s),

where
G(s) = lim

r→∞
G(s, pr) (26)

then,G(s) is analytic over the half plane <(s) > 1 and it is equal to 1 by the virtue of Equation
(24).

Next, we will extend the above results to the line s = 1 + it. We will then show that if RH
is valid, then for the strip s = σ + it where 0.5 < σ < 1, the above results will also be valid
with the limit of G(s, pr) is 1 as pr approaches infinity.

We will start this task by showing that although both ζ(s) and E1((s− 1) log pr+1) have a
singularity at s = 1, the product G(s, pr) has a removable singularity at s = 1 for every pr.
This can be shown by first expanding ζ(s) as a Laurent series about its singularity at s = 1

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) + γ2

(s− 1)2

2!
− γ3

(s− 1)3

3!
+ ..., (27)

where γ is the Euler-Mascheroni constant and γi’s are the Stieltjes constants. For s = 1 + ε,
where ε = ε1 + iε2, ε1 and ε2 are arbitrary small numbers, the above equation can be written
as

ζ(s) =
1

ε
+ γ − γ1ε+ γ2

ε2

2!
− γ3

ε3

3!
+ ... (28)

Furthermore, for σ > 1, using the definition of the Exponential Integral, we may write
E1(s) as

E1(s) = −γ − log s+ s− s2

2 2!
+

s3

3 3!
− s4

4 4!
+ .... (29)

Thus, for s = 1 + ε, we have

exp (−E1((s− 1) log pr)) = eγε log pr exp

(
−ε log pr +

(ε log pr)
2

2 2!
− (ε log pr)

3

3 3!
+ ....

)
. (30)
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By taking the product ζ(s) exp (−E1((s− 1) log pr)) and allowing ε to approach zero, we then
have

lim
s→1
{ζ(s) exp (−E1((s− 1) log pr))} = eγ log pr. (31)

However, it is well known that the partial Euler product at s = 1 can be written as [8]

r∏
i=1

(
1− 1

pi

)
=

e−γ

log pr
+O

(
1

(log pr)2

)
. (32)

Multiplying Equations (31) and (32), we may conclude that at s = 1, G(s, pr) approaches 1 as
pr approaches infinity. Furthermore, for s = 1 + it and t 6= 1, the value of exp(−E1(it log pr))
approaches 1 as pr approaches infinity and since

lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

pis

)}
= 1,

therefore, for s = 1 + it, we have the following

lim
r→∞

G(s, pr) = lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1))

}
= 1.

So far, we have shown that the functionG(s, pr) is uniformly convergent to 1 when<(s) >
1. We have also shown that G(s, pr) is convergent to 1 for <(s) = 1. In the following, we
will show that, assuming the validity of the Riemann Hypothesis, the function G(s, pr) is
uniformly convergent to 1 for every value of s with <(s) > 0.5 + ε, where ε is an arbitrary
small number. Toward this end, we will first show that the function G(s, pr) is convergent
for any value of s on the real axis with σ > 0.5. This can be achieved by first writing the
expressions forG(σ, pr1) andG(σ, pr2) (where r2 is an arbitrary large number greater than r1)

G(σ, pr1) = ζ(σ) exp (−E1((σ − 1) log pr1+1))
r1∏
i=1

(
1− 1

pσi

)
, (33)

G(σ, pr2) = ζ(σ) exp (−E1((σ − 1) log pr2+1))
r2∏
i=1

(
1− 1

pσi

)
. (34)

Since the function G(s, pr) is analytic that is not equal to 0 for σ > 0.5, hence we can divide
Equation (34) by Equation (33) and then take the logarithm to obtain

log

(
G(σ, pr2)

G(σ, pr1)

)
= E1 ((σ − 1) log pr1+1)− E1 ((σ − 1) log pr2+1) + log

 r2∏
i=r1+1

(
1− 1

piσ

) .
(35)

To compute the logarithm of the partial Euler product in Equation (35), we recall Equation
(15)

log
r2∏
r1+1

(
1− 1

psi

)
= −

r2∑
i=r1+1

1

pis
+ δp,

where δp = O(p1−2σ
r1 /(2σ − 1)). Furthermore, we have

π(x) = Li(x) + J(x), (36)
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where Li(x) is the Logarithmic Integral of x and on RH, we have

J(x) = O
(√
x log x

)
. (37)

Using the above equation for the representation of the prime counting function, we may then
obtain (Appendix 1)

r2∑
i=r1+1

1

piσ
= E1((σ − 1) log pr1+1)− E1((σ − 1) log pr2) + εp,

where εp =
∫ pr2
pr1

dJ(x)/xσ = O
(
pr1

0.5−σ log pr1/(σ − 0.5)2
)
. Hence, Equation (35) can be writ-

ten as

log

(
G(σ, pr2)

G(σ, pr1)

)
= −εp + δp + E1((σ − 1) log pr2)− E1((σ − 1) log pr2+1).

SinceE1((σ−1) log pr2)−E1((σ−1) log pr2+1) approaches zero as pr2 approaches infinity (this
follows from Cramer’s theorem on the gap between primes that states that on RH, the gap
between a prime number pr and pr+1 is less than k

√
p
r

log pr for some constant k), thus

lim
pr2→∞

log

(
G(σ, pr2)

G(σ, pr1)

)
= −εp + δp.

For the above equation, it should be pointed that we have kept pr1 fixed while we allowed
pr2 to approach infinity. Hence G(σ, pr) is bounded as pr approaches infinity. Furthermore,
for σ > 0.5 + ε, the term −εp + δp can be made arbitrary small by choosing pr1 arbitrary large,
thus the limit of G(σ, pr) exists as pr approaches infinity and it is given by

G(σ) = lim
r→∞

G(σ, pr) (38)

This proves that, on RH, G(σ, pr) is convergent as pr approaches infinity and thus G(σ)
exists for σ > 0.5. In Appendix 2, we have shown that, on RH and for <(s) > 0.5, we have

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + εp, (39)

where εp =
∫ pr2
pr1

dJ(x)/xs = O
(

|s|
(σ−0.5)2

pr1
0.5−σ log pr1

)
. Thus, we can follow the same

steps and show that G(s, pr) is convergent as pr approaches infinity and thus G(s) exists for
<(s) > 0.5 (it is worth mentioning here that the term εp in Equation (39) can be determined
in terms of the non-trivial zero if the von Mangoldt function is used in deriving Equation (39)
instead of using the prime counting function).

It should be noted that, while the function sequence G(s, pr) is not uniformly convergent
when the region of convergence is extended all the way to the line σ = 0.5, it is however
uniformly convergent for any rectangle extending from −iT to iT (for any arbitrary large T )
and with σ > 0.5 + ε (for any arbitrary small ε). This follows from the fact that, on RH, εp (or,
the O term) is bounded for any σ > 0.5 + ε. Since G(s, pr) is analytic for <(s) > 0 and it is
uniformly convergent for <(s) > 0.5 + ε, thus G(s) is analytic for the half right complex plain
with <(s) > 0.5+ε (Weiestrass theorem [6]). Since we have shown thatG(s) = 1 for <(s) ≥ 1,
thus on RH, G(s) = 1 for <(s) > 0.5 + ε. Hence, we have the following theorem

11



Theorem 2. For s = σ + it and σ > 0.5, the following holds if RH is valid

lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1))

}
= 1. (40)

lim
r→∞

{M(s, pr) exp (E1((s− 1) log pr+1))} = 1. (41)

It should be also pointed out that Theorem 2 can be generalized to the case where there are
no non-trivial zeros for values of s with <(s) > h (where h > 0.5). For this case, Equation (40)
is valid for every s with <(s) > h and εp in Appendix 2 is given by O

(
|s|

(σ−h)2
pr1

h−σ log pr1
)

.

Equation (40) of Theorem 2 can be written as follows

log ζ(s) + log
r2∏
i=1

(
1− 1

psi

)
− E1 ((s− 1) log pr2+1) = 0,

where the equality of both sides is attained as r2 (or pr2) approaches infinity (or more appro-
priately, for sufficiently large pr, the right side can be made arbitrary close to zero). It should
be noted that while both functions log ζ(s) and E1((s − 1) log pr2+1) have a branch cut along
the real axis where 0.5 < σ < 1, the difference (i.e. log ζ(s) − E1((s − 1) log pr2+1)) does not
have a branch cut. For r < r2, the above equation can be then written as

log ζ(s) = E1 ((s− 1) log pr2+1)−
r∑
i=1

log

(
1− 1

psi

)
−

r2∑
i=r+1

log

(
1− 1

psi

)
.

Since for the region of convergence of the series M(s, pr), we have (refer to Appendix 2)

−
r2∑

i=r+1

log

(
1− 1

psi

)
=

r2∑
i=r+1

1

pis
− δp = E1 ((s− 1) log pr+1)− E1 ((s− 1) log pr2) + εp − δp

where εp =
∫∞
pr
dJ(x)/xs (on RH, εp = O((|s| pr0.5−σ log pr)/(σ − 0.5)2) ) . Therefore, as pr2

approaches infinity, we have

log ζ(s) = −
r∑
i=1

log

(
1− 1

psi

)
+ E1 ((s− 1) log pr+1) + εp − δp. (42)

where for sufficiently large pr, δp is negligible compared to εp (in fact, δp is of the same order
of magnitude as εp2). Taking the exponential of both side, we then obtain the following theo-
rem

Theorem 3. For the region of convergence of the series M(s, pr) =
∑∞

1 µ(n, pr)/n
s, we have

M(s, pr) = e−E1((s−1) log pr+1)−εp+δp , (43)

where εp =
∫∞
pr
dJ(x)/xs, J(x) = π(x) − Li(x) and δp =

∑∞
i=r

(
− 1

2pi2s
− 1

3pi3s
− 1

4pi4s
...
)

. Fur-
thermore, on RH and for sufficiently large pr, we have for <(s) > 0.5

M(s, pr) = e−E1((s−1) log pr)
(
1− εp +O(εp

2)
)
. (44)
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While we have used in this section the complex analysis to compute M(s, pr), in the next
section, we will employ integration methods to compute the partial sum M(s, pr; 1, par). The
results obtained in this section and the following section will be then combined (using the
Fourier analysis methods) in sections (6) and (7) and then used to examine the validity of the
Riemann Hypothesis.

5 The series M(σ, pr) at σ = 1.

In this section, we will first provide an estimate for the partial sum M(1, pr; 1, pr
a) as a ap-

proaches infinity. This estimate will be computed using integration methods and noting that
M(1, pr) equals zero for every pr. Therefore, for every pr, M(1, pr; 1, pr

a) approaches zero as
a approaches infinity.

Before we present the details of our method, it is important to mention that the partial
sum M(1, pr; 1, pr

a) can be also generated using y-smooth numbers. The y-smooth numbers
are the numbers that have only prime factors less than or equal to y. These numbers have
been extensively analyzed in the literature [10][12]. In [10], a clever method was presented to
generate the partial sum M(1, pr; 1, pr

a). With this method and using the inclusion-exclusion
principle [10, page 248], one can then provide an estimate for the partial sum M(1, pr; 1, pr

a).
In this section, we will provide a more general approach to compute M(1, pr; 1, pr

a). The
main advantage of our approach is the ability to extend it to compute the partial sum for
values of s other than 1. We will present our method in the following two steps.

• In the first step of our approach, we will show that, for every a and as pr approaches
infinity, the partial sum M(1, pr; 1, pr

a) approaches a function that is dependent on only
a (independent of pr).

Toward this end, we define the function f(a, pr) as

f(a, pr) = M(1, pr; 1, pr
a) =

pra∑
n=1

µ(n, pr)

n
.

We will then show that, for every a and as pr approaches infinity, the function f(a, pr) ap-
proaches a deterministic function ρ(a). In other words; if we plot M(1, pr; 1, N) (where
N = pr

a ) as a function of a = logN/log pr, then for each value of a and as pr approaches
infinity, f(a, pr) approaches a unique value ρ(a). This is equivalent to the statement

ρ(a) = lim
pr→∞

f(a, pr) = lim
pr→∞

M(1, pr; 1, pr
a).

This result can be achieved by first noting that the partial sumM(1, pr; 1, pr
a) for 1 < a < 2

is given by

M(1, pr; 1, pr
a) = 1−

∑
pr≤pi<pra

1

pi
.

If we define M1(1, pr; 1, pr
a) as

M1(1, pr; 1, pr
a) =

∑
pr≤pi<pra

1

pi
,

13



then, using Stieltjes integral, we obtain

M(1, pr; 1, pr
a) = 1−M1(1, pr; 1, pr

a) = 1−
∫ pra

x=pr

dπ(x)

x
= 1−

∫ a

y=1

dπ(pr
y)

pry
.

Since

dπ(pr
y) = dLi(pr

y) + dJ(pyr),

therefore
dπ(pr

y) =
1

log(pry)
dpr

y + dJ(pr
y) =

pyr
y
dy + dJ(pr

y),

where on RH, J(pyr) = O(
√
pry log(pr

y)). Hence, for 1 < a < 2, we have

M(1, pr; 1, pr
a) = 1−

∫ a

1

dy

y
−
∫ a

1

dJ(pr
y)

pry
= 1− log(a) + g1(pr, a), (45)

where

g1(pr, a) = −
∫ a

1

dJ(pr
y)

pry
. (46)

As pr approaches infinity, g1(pr, a) approaches zero. Consequently,

lim
pr→∞

M(1, pr; 1, pr
a) = 1− log a.

The terms of the partial sum M(1, pr; 1, pr
a) for a in the range 1 < a < 3 are either a

reciprocal of a prime or a reciprocal of the product of two primes. Therefore, for 1 < a < 3,
we have

M(1, pr; 1, pr
a) = 1−

∑
pr≤pi<pra

1

pi
+

∑
pr≤pi1<pi2<pi1pi2<pra

1

pi1pi2
,

where pi1 and pi2 are two distinct primes that are greater than or equal to pr. LetM2(1, pr; 1, pr
a)

be defined as

M2(1, pr; 1, pr
a) =

∑
pr≤pi1<pi2<pi1pi2<pra

1

pi1pi2
=

1

2

∑
pr≤pi<pra−1

1

pi
M1(1, pr; 1, par/pi) + r2.

Note that, for the second sum, the factor of half was added since each term of the form
1/(pi1pi2) is repeated twice. It should be also noted that the second sum of the above equation
includes non square-free terms (notice that, there is no repetition in any of the non square-free
terms). The term r2 was added to offset the contribution by these non square-free terms. We
will show later that the contribution by these terms (or r2) approaches zero as pr approaches
infinity. Using Stieltjes integral, we then have

M2(1, pr; 1, pr
a) =

1

2

∫ a−1

1

dπ(pr
y)

pry
(log(a− y) + g1(pr, a− y)) + r2.

Hence
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M(1, pr; 1, pr
a) = 1− log(a) + g1(pr, a) +

1

2

∫ a−1

1

log(a− y)

y
dy + g2(pr, a),

where

g2(pr, a) =
1

2

∫ a−1

1

g1(pr, a− y)

y
dy +

1

2

∫ a−1

1
log(a− y)

dJ(pr
y)

pyr
+

1

2

∫ a−1

1
g1(pr, a− y)

dJ(pr
y)

pyr
+ r2.

It can be easily shown that, for any fixed value of a, the three integrals on the right side of
the above equation approach zero as pr approaches infinity. We will also show later that r2

approaches zero as pr approaches infinity. Thus, for 1 ≤ a < 3, we have

lim
pr→∞

M(1, pr; 1, pr
a) = 1− log a+

∫ a−1

1

log(a− y)

y
dy

Therefore, as pr approaches infinity, M(1, pr; 1, pr
a) approaches a function that is dependent

on only a.

Repeating the previous process bac times (where bxc is the integer value of x) and by
using the induction method, we can show that, as pr approaches infinity, the partial sum
M(1, pr; 1, pr

a) approaches a function that is dependent on only a. Specifically, we first write
the partial sum M(1, pr; 1, pr

a) as follows

M(1, pr; 1, pr
a) = 1−M1(1, pr; 1, pr

a) +M2(1, pr; 1, pr
a)− ...+ (−1)jMj(1, pr; 1, pr

a) + ...+

(−1)bac−1Mbac−1(1, pr; 1, pr
a) + (−1)bacMbac(1, pr; 1, pr

a),

where

Mj(1, pr; 1, pr
a) =

∑
pr≤pi1<pi2<..<pij<pi1pi2..pij<pra

1

pi1pi2...pij
.

and pi1, pi2, ..., pij are j distinct prime numbers greater than or equal to pr. If we assume that
Mj−1(1, pr; 1, pr

a) is given by

Mj−1(1, pr; 1, pr
a) = hj−1(a) + gj−1(pr, a)

where hj−1(a) is a function of a and gj−1(pr, a) approaches zero as pr approaches infinity,
then

Mj(1, pr; 1, pr
a) =

1

j

∑
pr≤pi<pra−1

1

pi
Mj−1(1, pr; pr, p

a
r/pi) + rj ,

where the factor of 1/j was added since each term of the form 1/(pi1pi2...pij) is repeated j
times. It should be also noted that the sum of the above equation includes non square-free
terms. The term rj was added to offset the contribution by these non square-free terms. We
will show later that the contribution by these terms (or rj) approaches zero as pr approaches
infinity. Using Stieltjes integral, we then have
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Mj(1, pr; 1, pr
a) =

1

j

∫ a−1

1

dπ(pr
y)

pry
(hj−1(a− y) + gj−1(pr, a− y)) + rj .

Hence

Mj(1, pr; 1, pr
a) =

1

j

∫ a−1

1

hj−1(a− y)

y
dy + gj(pr, a),

where the first term is a definite integral with only one variable y integrated over the range
1 ≤ y ≤ a − 1. Thus, the definite integral is a function of only a. We define this function as
hj(a). The second term is given by

gj(pr, a) =
1

j

∫ a−1

1

gj−1(pr, a− y)

y
dy +

1

j

∫ a−1

1
hj−1(a− y)

dJ(pr
y)

pyr
+

1

j

∫ a−1

1
gj−1(pr, a− y)

dJ(pr
y)

pyr
+ rj .

It can be easily shown that, for a fixed value of a, the three integrals on the right side of
the above equation approach zero as pr approaches infinity. We will also show later that rj
approaches zero as pr approaches infinity. Hence, as pr approaches infinity, we have

lim
pr→∞

Mj(1, pr; 1, pr
a) =

1

j

∫ a−1

1

hj−1(a− y)

y
dy = hj(a)

where h1(a) = log(a). Hence, for every a and as pr approaches infinity, we have

lim
pr→∞

M(1, pr; 1, pr
a) = 1− h1(a) + h2(a)− h3(a) + ...+ (−1)bachbac(a) = ρ(a). (47)

It should be pointed out that the above equation implies that the partial sums M(1, pr; 1, pr
a)

and M(1, pyr ; 1, pr
ay) (where, pyr is a prime number) have the same limit as pr approaches

infinity. Hence,
lim
pr→∞

M(1, pr; 1, pr
a) = lim

pr→∞
M(1, pyr ; 1, pr

ay) = ρ(a). (48)

Equation (48) will be used in the next step to estimate the asymptotic behavior of the function
ρ(a) as a approaches infinity.

As mentioned earlier, the partial sum M(1, pr; 1, pr
a) constructed by this process included

non square-free terms (i.e ri’s). In the following, we will show that, for every a and as pr
approaches infinity, the total contribution by these non square-free terms approaches zero as
well. Toward this end, let S0 be the sum of the terms with the factor 1/p2

r . Therefore, S0 can
be expressed as K0/p

2
r . Let S1 be the sum of the remaining terms with the factor 1/(pr+1)2.

Therefore, S1 can be expressed as K1/(pr+1)2. Let S2 be the sum of the remaining terms with
the factor 1/(pr+2)2 where S2 can be expressed as K2/(pr+2)2, and so on. Let S be sum of all
the terms associated with non square-free terms. Thus, S is given by

S =
1

pr2
K0 +

1

pr+1
2
K1 + ...+

1

pr+L2
KL,
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where pr+L is the largest prime that satisfies the condition pr+L2 ≤ pra. However,

|K0|, |K1|, ..., |KL|< 1 +
1

2
+

1

3
+ ...+

1

pra
.

Thus,

|K0|, |K1|, ..., |KL|= O(a log pr).

Therefore,

S =

(
1

pr2
+

1

pr+1
2

+ ...+
1

pr+L2

)
O(a log pr).

Hence, the contribution by the non square-free terms S is given by,

S = O(a log pr/pr).

Consequently, for every a and as pr approaches infinity, S (or the contribution by the non
square-free terms) approaches zero.

• In the second step, we write the partial sum M(1, pr; 1, pr
a) as the sum of two compo-

nents. The first one is the deterministic or regular component and it is given by ρ(a). The
second one is the irregular componentR(1, pr; 1, pr

a) given byM(1, pr; 1, pr
a)−ρ(a). We

will then show that the function ρ(a) is the Dickman function that has been extensively
used to analyze the properties of y-smooth numbers.

Toward this end, we write the partial sum M(1, pr; 1, pr
a) as the following sum

M(1, pr; 1, pr
a) = 1−

∑
pr≤pi<pra/2

1

pi
M(1, pi; 1, pr

a/pi)−
∑

pra/2≤pi<pra

1

pi
. (49)

The second sum was added since the first sum is void of the terms 1/pi’s for pia/2 ≤ pi ≤ par . It
can be easily shown that every term on the right side of Equation (49) is a term on the left side
of the equation and vice versa. Furthermore, there is no repetition of any term on the right
side of Equation (49). Using Stieltjes integral, we can write the above equation as follows

M(1, pr; 1, pr
a) = 1−

∫ a/2

1

dπ(pr
y)

pyr
M(1, pr

y; 1, par/p
y
r)−

∫ a

a/2

dπ(pr
y)

pyr
, (50)

where dπ(pr
y) = dLi(pr

y) + dJ(pr
y). It should pointed out that while Equations (49) and (50)

provide the value of the partial sum M(s, pr; 1, par) at s = 1, they can be easily modified to
compute the partial sum for any value of s to the right of the line <(s) = 1 (and on RH, to the
right of the line <(s) = 0.5). This task will be achieved in the next section and it will be a key
step to examine the validity of the Riemann Hypothesis

For any fixed a, as pr approaches infinity, M(1, pr
y; 1, pa−yr ) approaches ρ(a/y − 1) (refer

to Equation (48)). Therefore, as pr approaches infinity, we have

ρ(a) = 1−
∫ a/2

1

ρ
(
a
y − 1

)
y

dy −
∫ a

a/2

dy

y
. (51)
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In the following, we will show that ρ(a) is the Dickman function that has been extensively
used in the analysis of the y-smooth numbers. This task will be achieved by using Equation
(51) to compute the difference ρ(a + ∆a) − ρ(a) (where, ∆a is an arbitrary small number) to
obtain

ρ(a+ ∆a)−ρ(a) = −
∫ (a+∆a)/2

1

ρ
(
a+∆a
y − 1

)
y

dy+

∫ a/2

1

ρ
(
a
y − 1

)
y

dy−
∫ (a+∆a)

(a+∆a)/2

dy

y
+

∫ a

a/2

dy

y
.

Since the third integral of the above equation is equal to the fourth integral, therefore

ρ(a+ ∆a)− ρ(a) = −
∫ (a+∆a)/2

1

ρ
(
a+∆a
y − 1

)
y

dy +

∫ a/2

1

ρ
(
a
y − 1

)
y

dy.

If we define z = y/(1 + ∆a/a), then we have

ρ(a+ ∆a)− ρ(a) = −
∫ ((a+∆a)/2)/(1+∆a/a)

1/(1+∆a/a)

ρ
(
a
z − 1

)
z

dz +

∫ a/2

1

ρ
(
a
y − 1

)
y

dy.

Thus,

ρ(a+ ∆a)− ρ(a) = −
∫ 1

1/(1+∆a/a)

ρ
(
a
z − 1

)
z

dz.

Dividing both sides of the above equation by ∆a and letting ∆a approach zero, we then
obtain

dρ(a)

da
= −ρ(a− 1)

a
, (52)

where ρ(a) = 1− log(a) for 1 ≤ a ≤ 2. Equation (52) is a first order delay differential equation
that has been extensively analyzed in the literature [10][12]. The function ρ(a) is known as
the Dickman function. As a approaches infinity, ρ(a) can be given by the following estimate
[10]

ρ(a) =

(
e+ o(1)

a log a

)a
. (53)

For sufficiently large values of a, we have ρ(a) < a−a.

To compute the irregular component of M(1, pr; 1, par), we notice that R(1, pr; 1, pr
a) is

given by

R(1, pr; 1, pr
a) = M(1, pr; 1, par)− ρ(a).

Thus, R(1, pr; 1, pr
a) can be computed by subtracting Equation (51) from Equation (50) to

obtain the following theorem

Theorem 4. The partial sum M(1, pr; 1, par) =
∑bparc
n=1 u(n, pr)/n can be expressed as

M(1, pr; 1, par) = ρ(a) +R(1, pr; 1, pr
a) (54)
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where ρ(a) is Dickman function and the regular component of M(1, pr; 1, par) is given by

ρ(a) = lim
pr→∞

M(1, pr; 1, par) (55)

while R(1, pr; 1, pr
a) or the irregular component of M(1, pr; 1, par) is given by

R(1, pr; 1, pr
a) = −

∫ a/2

1
ρ (a/y − 1)

dJ(pr
y)

pyr
−
∫ a

a/2

dJ(pr
y)

pyr
−
∫ a/2

1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
.

(56)

The term J(x) on the right side of Equation (56) is given by Ω(x0.5−ε) (where ε is an
arbitrary small number). This follows directly from the Riemann explicit formula where
J(x) = π(x) − Li(x) is given by the sum of terms of the form Li(xρ) (where ρ’s are the
non-trivial zeros) and many of these terms grow at least as fast as

√
x/log x [1]. Thus, we

have unconditionally J(x) = Ω(x0.5−ε) (In fact, in 1914, Littlewood have shown that J(x) =
Ω±(x1/2 log log log x/log x))

In the following, we will show that, for sufficiently large a, R(1, pr; 1, x) is given by
Ω(x0.5−ε) and on RH, it is given by O(x0.5+ε). Toward this end, we first recall that on RH,
M(0; 1, x) (or the Mertens function) is given by [7]

M(0; 1, x) =
x∑

n=1

µ(n) = O(x0.5+ε),

and
M(0; 1, x) = Ω(x0.5−ε),

where ε is an arbitrary small number. Using the method of partial summation, we then have

M(1; 1, x) =
x∑

n=1

µ(n)

n
= O(x−0.5+ε),

and
M(1; 1, x) = Ω(x−0.5−ε).

Similarly, we can show that for sufficiently large x, we have

M(0, pr; 1, x) =
x∑

n=1

µ(n, pr) = O(x0.5+ε),

and
M(0, pr; 1, x) = Ω(x0.5−ε),

Using the method of partial summation, we then have

M(1, pr; 1, x) =
x∑

n=1

µ(n, pr)

n
= O(x−0.5+ε),

and
M(1, pr; 1, x) = Ω(x−0.5−ε).
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These results can be extended to the case where non-trivial zero are located on or arbitrary
close to the line <(s) = h and there are no zeros to the right of this line. For this case, 0.5 is
replace by h in the above bounds.

Since M(1, pr; 1, par) is given by

M(1, pr; 1, pr
a) = ρ(a) +R(1, pr; 1, pr

a)

and since ρ(a) decays to zero faster than e−ca for any arbitrary large c, therefore on RH, we
have the following theorem

Theorem 5. On RH and as a approaches infinity, we have

R(1, pr; 1, pr
a) = O(pr

−a/2+aε),

and
R(1, pr; 1, pr

a) = Ω(pr
−a/2−aε).

where ε is arbitrary small number.

Our examination for the validity of the Riemann Hypothesis is based on establishing a re-
lationship between R(1, pr; 1, pr

a) and J(par)/p
a
r (such as Equation (56)). On RH, J(par)/p

a
r

is given by O(pr
−a/2+aε) and Ω(pr

−a/2−aε). If RH is valid then R(1, pr; 1, pr
a) should be

also given by O(pr
−a/2+aε) and Ω(pr

−a/2−aε). For Equation (56), the presence of the term∫ a/2
y=1R(1, pr

y; 1, pa−yr )dπ(pyr)/p
y
r hinders our attempts to achieve this task. In the rest of this

section and sections (6) to (7), we will use the Fourier analysis to provide simpler expressions
for R(1, pr; 1, pr

a) in terms of J(par)/p
a
r .

So far, we have shown that the regular component of M(1, pr; 1, par) is given by ρ(a). Since∫ a
0+ dρ(x) = ρ(a)− ρ(0+) = ρ(a)− 1, therefore the regular component of M(1, pr; 1, par) can be

also written as
ρ(a) =

∫ a

0
dρ(x) + 1 = 1 +

∫ a

0
ρ′(x)dx.

Similarly, for values of s 6= 1, we can consider that M(s, pr; 1, par) is comprised of two com-
ponents. The first component is the regular component defined as F (α, a) (where α = (s −
1) log pr) and is given by

F (α, a) = 1 +

∫ a

0

pr
x

prsx
dρ(x) = 1 +

∫ a

0
pr

(1−s)xρ′(x)dx,

or,

F (α, a) = 1 +

∫ a

0
e−αxρ′(x)dx, (57)

while the irregular component is given by M(s, pr; 1, par)− F (α, a). Notice that for s = 1, we
have α = 0 and F (0, a) = ρ(a). We now define F (α) as

F (α) = lim
a→∞

F (α, a) = 1 +

∫ ∞
0

e−αxρ′(x)dx. (58)
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Thus, for <(s) ≥ 1, α is a complex variable in the complex plane to the right of the line
<(s) = 1. Hence, the integral

∫∞
0 e−αxρ′(x)dx is the Laplace transform of the function ρ

′
(x)

and is given by F (α) − 1 (where F (α) is the regular component of the series M(s, pr), i.e.
M(s, pr; 1,∞)). Since the Laplace transform of ρ(x) is given by e−E1(s)/s [11, page 569][12],
therefore the Laplace transform of ρ

′
(x) is then given by sL(ρ(x))− ρ(0). Hence

F (α) = e−E1(α)

Remarkably, these results agree with what we have obtained in Theorem 2. In Theorem 2,
we have shown that

lim
r→∞

{M(s, pr) exp (E1((s− 1) log pr+1))} = 1,

or referring to Equation (44), we have

M(s, pr) = e−E1(α) (1− εp(pr, s)) , (59)

where εp(pr, s) =
∫∞
pr
dJ(x)/xs and J(x) = π(x)− Li(x) (note that we have ignored the term

O(εp
2) since its contribution is negligible in the following analysis results). Consequently, for

<(s) ≥ 1, we then obtain

M(s, pr) = F (α) (1− εp(pr, s)) . (60)

where F (α) is the regular component of the seriesM(s, pr) and−F (α)εp(pr, s) is the irregular
component of the series M(s, pr). It should be emphasized here that the regular component
F (α) is the value ofM(s, pr) due to the Li(x) component of the prime counting function π(x).
It is also important to note that the irregular component is not the same as the difference
between the partial sum M(s, pr; 1, pr

a) and the series M(s, pr).Therefore, except for s = 1
(where the irregular component F (0)εp(pr, 1) is zero for every pr), F (α)εp(pr, s) may have
values different from zero although it approaches zero as pr approaches infinity

Notice that on RH, the previous analysis should also hold for <(s) > 0.5. This analysis
and its application to examine the validity of the Riemann Hypothesis will be presented in
the following two sections.

6 The regular component of M(s, pr; 1, p
a
r) for <(s) < 1.

In the previous section, Equation (49) was used to compute M(1, pr; 1, pr
a). In this section,

we will modify this equation to compute M(s, pr; 1, pr
a) for s 6= 1 as follows

M(s, pr; 1, pr
a) = 1−

∑
pr≤pi<pra/2

1

psi
M(s, pi; 1, pr

a/pi)−
∑

pra/2≤pi<pra

1

psi
. (61)

Using Stieltjes integral, we can write the above equation as

M(s, pr; 1, pr
a) = 1−

∫ a/2

1

dπ(pr
y)

psyr
M(s, pr

y; 1, par/p
y
r)−

∫ a

a/2

dπ(pr
y)

psyr
. (62)

On the real axis (i.e. s = σ), we then have

M(σ, pr; 1, pr
a) = 1−

∫ a/2

1

dπ(pr
y)

pσyr
M(σ, pr

y; 1, pa−yr )−
∫ a

a/2

dπ(pr
y)

pσyr
. (63)
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Using Theorem 2, on RH and for σ > 0.5, the partial sum M(σ, pr; 1, pr
a) is convergent as

a approaches infinity and its value is given by

lim
a→∞

M(σ, pr; 1, pr
a) = M(σ, pr) = exp (−E1(−β)) (1− εp(pr, s)) , (64)

where β = −α = (1 − σ) log pr (note that β > 0 for σ < 1). Therefore, as a approaches
infinity, the left side of Equation (63) can be split into the regular component exp (−E1(−β))
and the irregular component −εp(pr, s) exp (−E1(−β)). Similarly, the right side of Equation
(63) can be also split into regular and irregular components. Toward this end, we write the
first integral in Equation (63) as follows∫ a/2

1
M(σ, pr

y; 1, pa−yr )
dπ(pr

y)

pσyr
=

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dπ(pr
y)

pσyr
+

∫ a/2

1
R(σ, pr

y; 1, pa−yr )
dπ(pr

y)

pσyr
. (65)

The first integral on the right side of Equation (65) can be then written as∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dπ(pr
y)

pσyr
=

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dLi(pr
y)

pσyr
+

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
.

where J(x) = π(x)− Li(x) and

F ((σ − 1) log pr , a) = 1 +

∫ a

0
ρ′(x)ex(1−σ) log prdx = 1 +

∫ a

0
ρ′(x)eβxdx,

and

F ((σ − 1) log pyr , a/y − 1) = 1 +

∫ a/y−1

0
ρ′(x)ex(1−σ) log pyrdx = 1 +

∫ a/y−1

0
ρ′(x)eβyxdx.

Hence, the first integral on the right side of Equation (65) can be then written as∫ a/2

1
F ((σ− 1) log pyr , a/y− 1)

dπ(pr
y)

pσyr
=

∫ a/2

1

dLi(pr
y)

pσyr
+

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eβyxdx+

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
. (66)

Therefore, the right side of Equation (63) is given by

1−
∫ a/2

1

dπ(pr
y)

pσyr
M(σ, pr

y; 1, pa−yr )−
∫ a

a/2

dπ(pr
y)

pσyr
=

1−
∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eβyxdx−

∫ a

1

dLi(pr
y)

pσyr
−
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∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
−
∫ a

a/2

dJ(pr
y)

pσyr
−
∫ a/2

1
R(σ, pr

y; 1, pa−yr )
dπ(pyr)

pσyr
.

Consequently, as a approaches infinity, the regular component of M(σ, pr; 1, par) is given
by

e−E1(−β) = 1−
∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eβyxdx−

∫ a

1

dLi(pr
y)

pσyr
(67)

and the irregular component of M(σ, pr; 1, par) is given by

R(σ, pr; 1, pr
a) = −εp(pr, σ)e−E1(−β) = −

∫ a/2

1
F ((σ − 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
−

∫ a

a/2

dJ(pr
y)

pσyr
−
∫ a/2

1
R(σ, pr

y; 1, pa−yr )
dπ(pyr)

pσyr
. (68)

where

εp(pr, σ) =

∫ ∞
x=pr

dJ(x)

xσ
=

∫ ∞
y=1

eβy
dJ(pyr)

pyr
(69)

For the Riemann hypothesis to be valid, Equations (67), (68) and (69) have to be satisfied
for σ > 0.5 as a approaches infinity. For the remaining of this section, we will analyze the
convergence of the right side of Equation (67) as a approaches infinity. In the next section, we
will analyze the convergence of Equations (68) and (69) and examine their implication on the
validity of the Riemann hypothesis.

Since the regular component is void of the function J(x), one may expect that Equation
(67) is not only valid for σ > 0.5 but it is also valid for σ > 0. This requires the convergence
of the right side of Equation (67) as a approaches infinity for values of σ > 0. A necessary
condition for the convergence of the right side of Equation (67) is that its derivative with
respect to a should approach zero as a approaches infinity. In other words;

lim
a→∞

(
d

da

∫ a

1

dLi(pr
y)

pσyr
+

d

da

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eβyxdx

)
= 0.

To show that the above limit is valid for σ > 0, we first write the derivative of the first integral
as follows

d

da

∫ a

1

dLi(pr
y)

pσyr
=

d

da

∫ a

1

1

prσy
pr
ydy

y
=

d

da

∫ a

1

eβy

y
=
eβa

a
.

The derivative of the second integral can be computed as follows

d

da

∫ a/2

1

dLi(pr
y)

pσyr

∫ a/y−1

0
ρ′(x)eβyxdx =

lim
∆a→0

1

∆a

(∫ (a+∆a)/2

1

eβy

y

(∫ (a+∆a)/y−1

0
ρ′(x)eβyxdx

)
dy −

∫ a/2

1

eβy

y

(∫ a/y−1

0
ρ′(x)eβyxdx

)
dy

)
.
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Simplifying the above equation and noting that ρ′(x) = 0 for 0 ≤ x < 1, we then have

d

da

∫ a/2

1

eβy

y

(∫ a/y−1

0
ρ′(x)eβyxdx

)
dy = lim

∆a→0

1

∆a

(∫ a/2

1

eβy

y

(∫ (a+∆a)/y−1

a/y−1
ρ′(x)eβyxdx

)
dy

)
,

or

d

da

∫ a/2

1

eβy

y

(∫ a/y−1

0
ρ′(x)eβyxdx

)
dy = lim

∆a→0

1

∆a

(∫ a/2

1

eβy

y
ρ′(a/y − 1)eβy(a/y−1) ∆a

y
dy

)
.

Therefore,

d

da

∫ a/2

1

eβy

y

(∫ a/y−1

0
ρ′(x)eβyxdx

)
dy = eaβ

∫ a/2

1

ρ′(a/y − 1)

y2
dy.

The integral on the right side of the above equation can be simplified by substituting u for
a/y − 1 to obtain∫ a/2

1

ρ′(a/y − 1)

y2
dy =

∫ 1

a−1

ρ′(u)(u+ 1)2

a2

−adu
(u+ 1)2

=
1

a

∫ a−1

1
ρ′(u)du =

ρ(a− 1)− 1

a
.

Therefore,

d

da

(∫ a/2

1

dLi(pr
y)

pσyr
F ((σ − 1) log pyr , a/y − 1) +

∫ a

a/2

dLi(pr
y)

pσyr

)
=
eβa

a
ρ(a− 1).

It is clear that the above derivative with respect to a approaches zero for any value of β. Fur-
thermore, the integral

∫∞
a (eβxρ(x− 1)/x)dx is finite for a > 1. Since ρ(a) decays to zero faster

than e−a log a, therefore the integral
∫∞
a (eβxρ(x − 1)/x)dx approaches zero as a approaches

infinity. Thus, as expected, the regular component of M(σ, pr; 1, par) is convergent as a ap-
proaches infinity for any value of β > 0. In the next section, we will analyze the convergence
of Equations (68) and (69) and then examine their implication on the validity of the Riemann
hypothesis.

7 The irregular component of M(s, pr; 1, p
a
r) and the Riemann Hy-

pothesis.

The irregular component of M(1, pr; 1, par) for values of a > 1 is given by Equation (56) of
Theorem 4

R(1, pr; 1, pr
a) = −

∫ a/2

y=1
ρ (a/y − 1)

dJ(pyr)

pyr
−
∫ a

y=a/2

dJ(pyr)

pyr
−

∫ a/2

y=1
R(1, pr

y; 1, pa−yr )
dπ(pyr)

pyr
.

Using the Fourier analysis methods,M(1, pr; 1, par) was then computed in the previous section
for any value of s in the region of convergence of the series M(s, pr)
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R(s, pr; 1, pr
a) = −

∫ a/2

y=1
F ((s− 1) log pyr , a/y − 1)

dJ(pr
y)

pσyr
−

∫ a

y=a/2

dJ(pr
y)

psyr
−
∫ a/2

y=1
R(s, pr

y; 1, pa−yr )
dπ(pyr)

psyr
,

As mentioned earlier, the presence of the term
∫ a/2
y=1R(1, pr

y; 1, pa−yr )dπ(pyr)/p
y
r hinders our

attempt to exploit the above equations to examine the validity of the Riemann Hypothesis.
Theorem 3 provides a simpler expression for the irregular component of M(s, pr; 1,∞). With
the aid of this theorem, we have shown that (refer to Equation (69))

R(s, pr; 1,∞) = −e−E1(−β)εp(pr, s) (1 +O(εp(pr, s))) ,

where εp(pr, s) =
∫∞
y=1 e

βy dJ(pyr )
pyr

and for sufficiently large pr, the term (1 +O(εp(pr, s))) can
be made arbitrary close to one. Thus

R(s, pr; 1,∞) = − (1 +O(εp(pr, s))) e
−E1(−β)

∫ ∞
y=1

eβy
dJ(pyr)

pyr
.

where β = 1− s. Using Stieltjes integral, we also have

R(s, pr; 1, pr
a) =

∫ a

y=1
eβydR(1, pr; 1, pr

y).

Hence ∫ ∞
y=1

eβydR(1, pr; 1, pr
y) = − (1 +O(εp(pr, s))) e

−E1(−β)
∫ ∞
y=1

eβy
dJ(pyr)

pyr
. (70)

Equation (70) establishes the relationship between the Laplace transforms ofR(1, pr; 1, pr
a)

and J(par). With this relationship, we will establish a much simplified relationship between
R(1, pr; 1, pr

a) and J(par) than that given by Equation (56). First, we note that for sufficiently
small β, Equation (70) can be written as follows∫ ∞

y=1
eβydR(1, pr; 1, pr

y) = − (1 +O(εp(pr, s))) e
γ(β +O(β2))

∫ ∞
y=1

eβy
dJ(pyr)

pyr
.

By differentiating the above equation with respect to β and allow β to approach zero, we can
easily show that∫ ∞

y=1
y dR(1, pr; 1, pr

y) = − (1 +O(εp(pr, 1))) eγ
∫ ∞
y=1

dJ(pyr)

pyr
. (71)

Using the method of integration by parts for the integral on the left side of the above equa-
tion (and noting that the term R(1, pr; 1, pr

a) decays to zero faster than 1/y), we then have the
following theorem
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Theorem 6. For sufficiently largeN and for every pr > N , the mean value of the irregular component
R(1, pr; 1, par) of the partial sum M(1, pr; 1, par) is given by∫ ∞

y=1
R(1, pr; 1, pr

y)dy = −
∫ ∞
y=1

y dR(1, pr; 1, pr
y) = (1 +O(εp(pr, 1))) eγ

∫ ∞
y=1

dJ(pyr)

pyr
. (72)

The term eγ =
∫∞

0 ρ(y)dy signifies the importance of the Dickman function in establishing
the relationship between R(1, pr; 1, pr

a) and J(par)/p
a
r . We will show later in this section that

this term has a profound implantation on the validity of the Riemann Hypothesis.

Another interesting relationship between R(1, pr; 1, pr
a) and J(par) can be established by

substituting −α for β = 1− s in Equation (70) to obtain for sufficiently large pr∫ ∞
y=1

e−αydR(1, pr; 1, pr
y) = −e−E1(α)

∫ ∞
y=1

e−αy
dJ(pyr)

pyr
. (73)

where the term (1 +O(εp(pr, s))) was ignored because of its negligible contribution to the
following analysis. Let f1(y) and f2(y) be defined as

f1(y) =
dR(1, pr; 1, pr

y)

dy
,

and

f2(y) =
dJ(pyr)/p

y
r

dy
.

Thus, Equation (73) can be written as

Lf1(y) = −e−E1(α)Lf2(y).

Since L−1e−E1(α) = ρ′(y) + δ(y), therefore

f1(y) = −
(
(ρ′ + δ) ∗ f2

)
(y)

Since f1(y), f2(y) and ρ′(y) are zero for y < 1, hence

f1(y) = −
∫ y−1

1
ρ′(y − x)f2(x)dx− f2(y)

Consequently, ∫ a

y=1
f1(y)dy = −

∫ a

y=2
dy

∫ y−1

x=1
ρ′(y − x)f2(x)dx−

∫ a

y=1
f2(y)dy

Thus, ∫ a

y=1
dR(1, pr; 1, pr

y) = −
∫ a

y=2
dy

∫ y−1

x=1
ρ′(y − x)

dJ(pxr )

pxr
−
∫ a

x=1

dJ(pxr )

pxr
. (74)

The right side of the above equation can be written as the following sums,
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∫ a

y=2
dy

∫ y−1

x=1
ρ′(y − x)

dJ(pxr )

pxr
+

∫ a

x=1

dJ(pxr )

pxr
=

lim
N→∞

lim
M→∞

 M∑
j=b2M/ac

∆y

j−bM/ac∑
i=bN/ac

ρ
′
(yj − xi)

J(p
xi+1
r )− J(pxir )

pxir
+

M∑
i=bN/ac

J(p
xi+1
r )− J(pxir )

pxir


where ∆y = 1/M , yj = ja/M , ∆x = 1/N and xi = ia/N . From the above sum, we notice
that, for every xi, the term

(
J(p

xi+1
r )− J(pxir )

)
/pxir is multiplied by ρ

′
(yj − xi)’s for values of

yi’s in the range xi ≤ yi ≤ a. Since ρ(z) = 1 +
∫ z

0 ρ
′(x)dx, thus ρ(a − x) = 1 +

∫ a
x ρ
′(y − x)dy.

Consequently, we have the following theorem

Theorem 7. For sufficiently large N and for every pr > N , the relationship between the irregular
component R(1, pr; 1, par) of the partial sum M(1, pr; 1, par) and J(x) is given by

R(1, pr; 1, pr
a) = −

∫ a

x=1
ρ(a− x)

dJ(pxr )

pxr
. (75)

where R(1, pr; 1, par) = M(1, pr; 1, par)− ρ(a) and J(x) = π(x)− Li(x).

In the following, we will examine the validity of the Riemann Hypothesis by analyzing
Equation (72) with sufficiently large values for pr so that the integral

∫∞
y=1 dJ(pyr)/p

y
r is deter-

mined by the values of y in the vicinity of one. More specifically, referring to Appendix 1, on
RH, we have ∫ ∞

y=1

dJ(pyr)

pyr
= O

(
pr
−1/2 log pr

)
.

Note that, on RH and due to the presence of non-trivial zeros on the line <(s) = 1/2, it can
be easily shown that for any arbitrary small ε, we have∫ ∞

y=1

dJ(pyr)

pyr
= Ω

(
pr
−1/2−ε

)
.

Therefore, for sufficiently large N and for some constant k, there are an infinite number of
pr’s (that are greater than N ) such that∣∣∣∣∫ ∞

y=1

dJ(pyr)

pyr

∣∣∣∣ > kpr
−1/2−ε > 0.

Furthermore, for any positive number h, we also have∫ ∞
y=1+h

dJ(pyr)

pyr
= O

(
(1 + h)pr

−hpr
−1/2 log pr

)
.

Thus ∫ ∞
y=1

dJ(pyr)

pyr
=

∫ 1+h

y=1

dJ(pyr)

pyr
+O

(
(1 + h)pr

−hpr
−1/2 log pr

)
.
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Therefore, on RH and for sufficiently small h, we can always choose sufficiently large pr so
that the integral

∫∞
y=1 dJ(pyr)/p

y
r is determined by values of y in the vicinity of one. In other

words; we have ∫ ∞
y=1

dJ(pyr)

pyr
=

∫ 1+h

y=1

dJ(pyr)

pyr
+

∫ ∞
y=1+h

dJ(pyr)

pyr
.

where, ∣∣∣∣∫ ∞
y=1

dJ(pyr)

pyr

∣∣∣∣ > kpr
−1/2−ε > 0,

and ∣∣∣∣∫ ∞
y=1+h

dJ(pyr)

pyr

∣∣∣∣ < k1(1 + h)pr
−hpr

−1/2 log pr,

for some constant k1. Therefore, for any h, we can always find sufficiently large pr such∫ ∞
y=1

dJ(pyr)

pyr
= (1 + δ1)

∫ 1+h

y=1

dJ(pyr)

pyr
,

where δ1 can be made arbitrary close to zero by choosing pr sufficiently large.

For the integral
∫∞
y=1 y dR(1, pr; 1, pr

y), we note that by the virtue of Theorem 7, on RH and
for sufficiently large pr, the integral

∫∞
y=2 y dR(1, pr; 1, pr

y) becomes negligible compared to the
integral

∫ 2
y=1 y dR(1, pr; 1, pr

y). Therefore, as with the case for the integral
∫∞
y=1 dJ(pyr)/p

y
r , on

RH and for any h < 2 and sufficiently large pr, we have∫ ∞
y=1

y dR(1, pr; 1, pr
y) = (1 + δ2)

∫ 1+h

y=1
y dR(1, pr; 1, pr

y).

where δ2 can be made arbitrary close to zero by choosing pr sufficiently large. Hence (refer
to Equation (72) ) ∫ 1+h

y=1
y dR(1, pr; 1, pr

y) = −(1 + δ3)eγ
∫ 1+h

y=1

dJ(pyr)

pyr
. (76)

where δ3 can be made arbitrary close to zero by choosing pr sufficiently large and∣∣∣∣∫ ∞
y=1

dJ(pyr)

pyr

∣∣∣∣ = (1 + δ1)

∣∣∣∣∣
∫ 1+h

y=1

dJ(pyr)

pyr

∣∣∣∣∣ > kpr
−1/2−ε > 0.

However, referring to Equation (46), we also have

R(1, pr; 1, pr
1+h) =

∫ 1+h

y=1
dR(1, pr; 1, pr

y) = −
∫ 1+h

y=1

dJ(pyr)

pyr
. (77)

Subtracting Equation (77) from Equation (76), we then have∫ 1+h

y=1
(y − 1) dR(1, pr; 1, pr

y) = −(1 + δ3)(eγ − 1)

∫ 1+h

y=1

dJ(pyr)

pyr
. (78)

Referring to Theorem 5 (where we showed that R(1, pr; 1, pr
y) is given by O(p

−a/2+aε
r ) and

using the method of integration by parts, we then obtain for some constant k2 and an arbitrary
small ε
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∫ 1+h

y=1
(y − 1) dR(1, pr; 1, pr

y) = hO(p−0.5+ε
r ) < k2hp

−0.5+ε
r .

However, this result contradicts Equation (78) where by choosing h sufficiently small and pr
sufficiently large with an arbitrary small ε, the absolute value of the right side of Equation
(78) can made arbitrary larger than the absolute value of the left side.

Similar contradiction is also attained if we assume that there are no zeros to the right of
the line <(s) < σ for any σ < 1. This follows from the fact if non-trivial zeros don’t exist to
right of the line <(s) < h for any h > 1, then J(x) is given by O(x1−h+ε) and this will lead to
similar contradiction. Hence, we conclude that non-trivial zeros can be found arbitrary close
to the line <(s) = 1.

Appendix 1
Assuming RH is valid and for σ > 0.5, to show that

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + εp

where, εp =
∫ pr2
pr1

dJ(x)/xσ = O
(

1
(σ−0.5)2

pr1
1/2−σ log pr1

)
and J(x) = π(x) − Li(x), we first

recall that

r2∑
i=r1

1

pσi
=

∫ pr2

pr1

dπ(x)

xσ
=

∫ pr2

pr1

dLi(x)

xσ
+

∫ pr2

pr1

dJ(x)

xσ
,

or

r2∑
i=r1

1

pσi
=

∫ pr2

pr1

dπ(x)

xσ
=

∫ pr2

pr1

1

xσ log x
dx+

∫ pr2

pr1

1

xσ
dO

(√
x log x

)
.

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain∫ pr2

pr1

1

xσ
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2σ

−
O
(√
pr1 log pr1

)
pr1σ

−
∫ pr2

pr1
O
(√
x log x

)
d

(
1

xσ

)
Since x > 0, thus∫ pr2

pr1

1

xσ
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2σ

−
O
(√
pr1 log pr1

)
pr1σ

−O
(∫ pr2

pr1

√
x log x d

(
1

xσ

))
With the substitution of variables y = log x, we then obtain∫ pr2

pr1

√
x log x d

(
1

xσ

)
= −

∫ pr2

pr1
σye( 1

2
−σ)ydy.

Since ∫
xeaxdx =

(
x

a
− 1

a2

)
eax,
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therefore∫ pr2

pr1

√
x log x d

(
1

xσ

)
= −σ

(
log pr2
0.5− σ

− 1

(0.5− σ)2

)
pr2

0.5−σ+σ

(
log pr1
0.5− σ

− 1

(0.5− σ)2

)
pr1

0.5−σ.

Hence, for σ > 0.5, we have∫ pr2

pr1

1

xσ
dO

(√
x log x

)
= O

(
pr1

0.5−σ log pr1
(σ − 0.5)2

)
(79)

For σ ≥ 1, the integral
∫ pr2
pr1

1
xσ log xdx can be computed directly from the definition of the

Exponential Integral E1(r) =
∫∞
r

e−u

u du (where r ≥ 0) to obtain∫ pr2

pr1

1

xσ log x
dx = E1((σ − 1) log pr1)− E1((σ − 1) log pr2)

It should be pointed out that although the functions E1((σ− 1) log pr1) and E1((σ− 1) log pr2)
have a singularity at σ = 1, the difference has a removable singularity at σ = 1. This follows
from the fact that as σ approaches 1, the difference can be written as

E1((σ − 1) log pr1)−E1((σ − 1) log pr2) = − log ((1− σ) log pr1)− γ + log ((1− σ) log pr2) + γ

or,

lim
σ→1

∫ pr2

pr1

1

xσ log x
dx = lim

σ→1
{E1((σ−1) log pr1)−E1((σ−1) log pr2)} = − log log pr1 +log log pr2

To compute the integral
∫ pr2
pr1

1
xσ log xdx for σ < 0, we first use the substantiation y = log x

to obtain∫ pr2

pr1

1

xσ log x
dx =

∫ log pr2

log pr1

e(1−σ)y

y
dy =

∫ log pr2

ε

e(1−σ)y

y
dy −

∫ log pr1

ε

e(1−σ)y

y
dy

where, ε is an arbitrary small positive number. With the variable substantiations z1 = y/log pr1
and z2 = y/log pr2 , we then obtain∫ pr2

pr1

1

xσ log x
dx =

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2 −

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1.

With the variable substantiations w1 = (1 − σ)(log pr1)z1 and w2 = (1 − σ)(log pr2)z1 and by
adding and subtracting the terms −

∫ (1−σ) log pr2
(1−σ)ε

dw2
w2

+
∫ (1−σ) log pr1

(1−σ)ε
dw1
w1

, we then have

∫ pr2

pr1

1

xσ log x
dx =

∫ (1−σ) log pr2

(1−σ)ε

ew2 − 1

w2
dw2 −

∫ (1−σ) log pr1

(1−σ)ε

ew1 − 1

w1
dw1+

∫ (1−σ) log pr2

(1−σ)ε

dw2

w2
−
∫ (1−σ) log pr1

(1−σ)ε

dw1

w1
.

Using the following identity [9, page 230]∫ a

0

et − 1

t
dt = −E1(−a)− log(a)− γ
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where a > 0, we then obtain for σ < 1,∫ pr2

pr1

1

xσ log x
dx = E1((σ − 1) log pr1)− E1((σ − 1) log pr2)

Hence, for σ > 0.5, we have

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + εp

In general, if there are no non-trivial zeros for values of swith <(s) > a, then by following
the same steps, we can also show that for σ > a, we have

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + εp

where, εp =
∫ pr2
pr1

dJ(x)/xσ = O
(
pr1

a−σ log pr1/(σ − a)2
)
.

Appendix 2
Assuming RH is valid and for σ > 0.5, to show that

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + εp

where, εp = O
(
|s|+1

(σ−0.5)2
pr1

1/2−σ log pr1
)

, we first recall that

r2∑
i=r1

1

pis
=

∫ pr2

pr1

dπ(x)

xs
=

∫ pr2

pr1

1

xs log x
dx+

∫ pr2

pr1

1

xs
dO

(√
x log x

)
.

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain∫ pr2

pr1

1

xs
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2s

−
O
(√
pr1 log pr1

)
pr1s

−
∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)
The integral on the right side of the above equation can be then written as∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)
= −s

∫ pr2

pr1
O
(√
x log x

)
x−s−1dx.

Hence, ∣∣∣∣∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)∣∣∣∣ ≤ |s|∫ pr2

pr1
O
(√
x log x

)
|x−s−1|dx.

Consequently, ∫ pr2

pr1

1

xs
dO

(√
x log x

)
= O

(
|s| pr1

0.5−σ log pr1
(σ − 0.5)2

)
.
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For <(s) ≥ 1, the integral
∫ pr2
pr1

1
xs log xdx can be computed directly from the definition of

the Exponential Integral E1(z) =
∫∞

1
e−tz

t dt (where <(z) ≥ 0) to obtain∫ pr2

pr1

1

xs log x
dx = E1((s− 1) log pr1)− E1((s− 1) log pr2)

To compute the integral
∫ pr2
pr1

1
xs log xdx for <(z) < 1, we first write the integral as follows∫ pr2

pr1

1

xs log x
dx =

∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx− i

∫ pr2

pr1

e−σ log x sin(t log x)

log x
dx.

The first integral on the right side
∫ pr2
pr1

e−σ log x cos(t log x)
log x dx can be computed by using the sub-

stitution y = log x to obtain∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr2

pr1

e(1−σ)y cos(ty)

y
dy,

or ∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr2

pr1

e(1−σ)y cos(ty)

y
dy +

∫ pr2

pr1

e(1−σ)y

y
dy −

∫ pr2

pr1

e(1−σ)y

y
dy.

Hence,∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr1

ε

e(1−σ)y(1− cos(ty))

y
dy −

∫ pr2

ε

e(1−σ)y(1− cos(ty))

y
dy−

∫ pr1

ε

e(1−σ)y

y
dy +

∫ pr2

ε

e(1−σ)y

y
dy

where, ε is an arbitrary small positive number. With the variable substantiations z1 = y/log pr1
and z2 = y/log pr2 , we then obtain∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1(1− cos(t(log pr1)z1))

z1
dz1−

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2(1− cos(t(log pr2)z2))

z2
dz2−

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1 +

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2

By the virtue of the following identity ([9], page 230)∫ 1

0

eat(1− cos(bt))

t
dt =

1

2
log(1 + b2/a2) + Li(a) + <[E1(−a+ ib)],

where a > 0 , we then obtain the following∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)] + Li((1− σ) log pr1)−
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<[E1((s− 1) log pr2)]− Li((1− σ) log pr2)−∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1+

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2

With the variable substantiations w1 = (1 − σ)(log pr1)z1 and w1 = (1 − σ)(log pr1)z1 and by
adding and subtracting the terms −

∫ (1−σ) log pr2
(1−σ)ε

dw2
w2

+
∫ (1−σ) log pr1

(1−σ)ε
dw1
w1

, we then have

∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)] + Li((1− σ) log pr1)−

<[E1((s− 1) log pr2)]− Li((1− σ) log pr2)+∫ (1−σ) log pr2

(1−σ)ε

ew2 − 1

w2
dw2 −

∫ (1−σ) log pr1

(1−σ)ε

ew1 − 1

w1
dw1+

∫ (1−σ) log pr2

(1−σ)ε

dw2

w2
−
∫ (1−σ) log pr1

(1−σ)ε

dw1

w1
.

Using the following identity [9, page 230]∫ a

0

et − 1

t
dt = Ei(a)− log(a)− γ

where a > 0, we then obtain for σ < 1,∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)]−<[E1((s− 1) log pr2)]

Similarly, using the identity [9, page 230]∫ 1

p0

eat sin(bt)

t
dt = π − arctan(b/a) + =[E1(−a+ ib)],

where a > 0 , we can show that for σ < 1, we have

−
∫ pr2

pr1

e−σ log x sin(t log x)

log x
dx = =[E1((s− 1) log pr1)]−=[E1((s− 1) log pr2)].

Therefore, for <(s) > 0.5, we have

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + εp

where, on RH, εp = O
(

|s|
(σ−0.5)2

pr1
1/2−σ log pr1

)
and if we write π(x) = Li + J(x), then εp is

also given by

εp =

∫ pr2

pr1

dJ(x)

xs
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