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Abstract

In this paper, we have used the partial Euler product to examine the validity of the Rie-
mann Hypothesis. The Dirichlet series with the Mobius function M(s) = 72, 1/n® has been
modified and represented in terms of the partial Euler product by progressively eliminating
the numbers that first have a prime factor 2, then 3, then 5, ..up to the prime number p, to
obtain the series M (s, p;). It is shown that the series M (s) and the new series M (s, p,) have
the same region of convergence for every p,. Unlike the partial sum of M (s) that has irreg-
ular behavior, the partial sum of the new series exhibits regular behavior as p, approaches
infinity. This has allowed the use of integration methods to compute the partial sum of the
new series to determine its region of convergence and to provide an answer for the validity
of the Riemann Hypothesis.
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1 Introduction

The Riemann zeta function ((s) satisfies the following functional equation over the complex
plain [1]
C(1 —s) = 2(2m)2 cos(0.5sm)T(5)(s), (1)

where, s = o + it is a complex variable and s # 1.

For o > 1 (or R(s) > 1), ((s) can be expressed by the following series

=1

C(S) = = Ea (2)

or by the following product over the primes p;’s

1 o0 1
C(s)_iHl<1_pf>' 3)

where, p1 = 2, [[:2,(1 — 1/p;®) is the Euler product and [[;_;(1 — 1/p;®) is the partial Euler
product. The above series and product representations of ((s) are absolutely convergent for
o>1



The region of the convergence for the sum in Equation (2) can be extended to %(s) > 0 by
using the alternating series 7(s) where

>  1\yn—1
ns) = 30 @
n=1
and .
C(s) = 5= 1(s)- (5)

One may notice that the term 1 — 217% is zero at s = 1. This zero cancels the simple pole that
((s) has at s = 1 enabling the extension (or analog continuation) of the zeta function series
representation over the critical strip 0 < R(s) < 1.

It is well known that all of the non-trivial zeros of ((s) are located in the critical strip
0 < R(s) < 1. Riemann stated that all non-trivial zeros were very probably located on the
critical line R(s) = 0.5 [2]. There are many equivalent statements for the Riemann Hypothesis
(RH) and one of them involves the Dirichlet series with the Mobius function.

The Mobius function p(n) is defined as follows
p(n)=1,ifn =1.

w(n) = (=1)%,if n = [T¥_ pi, pi’s are distinct primes.
p(n) = 0, if p?|n for some p.

The Dirichlet series M (s) with the Mobius function is defined as

M(s) = i “(f). 6)
n=1

n

This series is absolutely convergent to 1/((s) for R(s) > 1 and conditionally convergent to
1/((s) for R(s) = 1. The Riemann hypothesis is equivalent to the statement that M (s) is con-
ditionally convergent to 1/{(s) for R(s) > 0.5.

Gonek, Hughes and Keating [3] have done an extensive research into establishing a re-
lationship between ((s) and its partial Euler product for (s) < 1. Gonek stated ”Analytic
number theorists believe that an eventual proof of the Riemann Hypothesis must use both
the Euler product and functional equation of the zeta-function. For there are functions with
similar functional equations but no Euler product, and functions with an Euler product but
no functional equation.” In section 4, we will present a functional equation for ((s) using its
partial Euler product. The method is based on writing the Euler product formula as follows

s 1 r 1 e 1
1/“”:2(“1»:)ﬂ(”m)ﬂ(“m)

The above equation is valid for o > 1. To be able to represent ((s) in term of its partial Euler
product for o < 1, we have to replace the term [[.° (1 — 1/pj) with an equivalent one that
allows the analytic continuation for the representation of ((s) for o < 1. Thus, the new term,
that we need to introduce to replace [];° (1 — 1/pf), must have a zero that cancels the pole
that {(s) has at s = 1. In the section 4, we will use the complex analysis to compute this new
term and then represent ((s) in terms of its partial Euler product. In sections (2), (5), (6) and
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(7), we have introduced an alternative method to compute ((s) in terms of its partial Euler
product. This alternative method is based on modifying the Dirichlet series with the Mobius
function. The results of these two methods were then analyzed and used to examine the va-
lidity of the Riemann Hypothesis

In this paper, we claim the the Riemann Hypothesis is invalid. We support our claim by
proving that the series M (o) is divergent for ¢ < 1. We have achieved this result by intro-
ducing a method to represent the Dirichlet series M (s) (defined by Equation (6)) in terms of
the partial Euler product. This task is achieved by first eliminating the numbers that have
the prime factor 2 to generate the series M (s, 2). For the series M (s, 2), we then eliminate the
numbers with the prime factor 3 to generate the series M (s, 3), and so on, up to the prime
number p,. In essence, in sections 2, we have applied the sieving technique to modify the
series M (s) to include only the numbers with prime factors greater than p,. In the literature,
numbers with prime factors less than y are called y-smooth while numbers with prime factors
greater than y are called y-rough. In essence, our approach is to compute the Dirichlet series
over p,-rough numbers. In section 3, we have shown that the series M (s) and the new series
M (s, pr) have the same region of convergence.

So far, the efforts to use the series M (o) to examine the validity of the Riemann Hypothe-
sis have failed due to the irregular behavior of the partial sum of the series M (). In sections
5,6 and 7, we have shown that the partial sum of the new series M (o, p,) exhibits regular be-
havior as p, approaches infinity. This has allowed the use of integration methods to compute
the partial sum of the new series and consequently determine its region of convergence. With
this analysis and using the zeta function representation in terms of its partial Euler product
(section 4), we have been able to show in section 7 that the series M (o, p,) and M (o) are di-
vergent for o < 1. Thus, non-trivial zeros can be found arbitrary close to the line Re(s) = 1.

2 Applying the Sieving Method to the Dirichlet Series M(s).

The Dirichlet series M (s) with the Mobius function is defined as

M(s) = Z H(f)7
n=1

n

where 1(n) is the Mobius function. Thus,

1 1 0 1 1
It should be pointed out that our definition of M(s) is different from Mertins function M (z)
that is commonly found in the literature and defined as M (z) = >~ <, <, p(n).

Next, we introduce the series M (s,2) by eliminating all the numbers that have a prime
factor 2. Thus, M (s,2) can be written as

M1l L 1,0 1 1 1
BT T Ty s Tos T 115 135 159




Our analysis to test the conditional convergence of these series (M (s) and M(s,?2) for
o < 1) is based on comparing correspondent terms of these two series. Therefore, rearrange-
ment and permutation of the terms may have a significant impact on analyzing the region of
convergence of both series. Thus, it essential to have the same index for both series M (s) and
M (s, 2) refer to the same term. Hence, we will represent M (s, 2) as follows

or

M@@%:fimmm, 7)

where
p(n,2) = p(n), if n is an odd number,
wu(n,2) =0, if n is an even number.

The above series M (s,2) can be further modified by eliminating all the numbers that have
a prime factor 3 to get the series M (s, 3) where
1 1 1 1 1 1 1 0

M(,3)=1— — — -~~~ -
5 75 115 135 178 195 235 25°

or more conveniently

and so on.

Let I(p,) represent, in ascending order, the integers with distinct prime factors that belong
to the set {p; : p; > p,}. Let {1,1(p,)} be the set of 1 and I(p,) (for example, {1,1(2)} is the
set of square-free odd numbers), then we define the series M (s, p,) as

M(S,pr) _ Z /L(’I’L,pr)’ (8)
n=1

ns
where
p(n,pr) = p(n), if n € {1, 1(pr)},
otherwise, u(n, p,) = 0.
It can be easily shown that, for every prime number p,, the series M (s, p,) converges

absolutely for R(s) > 1. Furthermore, it can be shown that, for R(s) > 1, M (s, p,) satisfies
the following equation

M(e) = M(s.p) | (1 - 15) . ©

Since

then we conclude that, for R(s) > 1, M (s, p,) approaches 1 as p, approaches infinity.



3 The region of convergence for the series M (s) and M (s, p,).

In this section, we will deal with the question of the relationship between the conditional
convergence of the two series M (s,p,) and M(s) over the strip 0.5 < R(s) < 1. Theorem
1 establishes the the relationship between the conditional convergence of the series M (s, p,)
and M (s) along the real axis (or along the line 0.5 < ¢ < 1) while Theorems 2 establishes
the relationship between the conditional convergence of the two series M (s) and M (s, p;) for
0.5 < R(s) < 1.

Theorem 1. For s = o + 40, where 0.5 < o < 1 and for every prime number p,, the series M (o)
converges conditionally if and only if the series M (o, p,) converges conditionally. Furthermore, M (o)
and M (o, p,) are related as follows

M(o) = M) [ (1 - 1J> . (10)

i=1 i
The proof of Theorem 1 is outlined in Appendix 1.

Theorem 2. For s = o + it, where 0.5 < o < 1 and for every prime number p,, the series M (s)
converges conditionally if and only if the series M (s, p,) converges conditionally. Furthermore, M (s)
and M (s, p,) are related as follows

M(s) = M(s,pr) [| (1 - 15> : (11)
i=1 Py

The proof of Theorem 2 follows from the fact that M (s) and M (s, p,) are Dirichlet series.
Consequently, the series M (s) is conditionally convergent if and only if the series M (o) is
conditionally convergent. Also, the series M (s, p,) is conditionally convergent if and only
if the series M (o, p,) is conditionally convergent. Using Theorem 1, we then conclude that
the series M (s) is conditionally convergent if and only if the series M (s, p,) is conditionally
convergent.

The second part of the theorem can be also proved by first defining M (s, p,; N1, N2) as the
partial sum

No
n7
M(SapT;vaNZ) = Z LSPT)’ (12)
n=N1 n
where Ny > p,.. Then, we have
1
M(Svpr—ﬁ 1, Npr) = M(S,pr; 1, Npr) - EM(&pr; 17N)- (13)

T
Since the series M (s, p,) is conditionally convergent, then the partial sums M (s, p,; 1, Np;)
and M(s,p,; 1, N) are both convergent to M(s,p,) as N approaches infinity. Hence, as N
approaches infinity, we obtain

, 1
M(s,pr—1) = lim M(s,pr—1;1, Np,) = M(s, p,) (1 — S) .

By repeating this process r — 1 times, we then obtain

M(s):M(s,pr)ﬁ (1—{9).

i=1



4  Functional representation of ((s) using its partial Euler product.

In this section, we will use the prime counting function to derive a functional representation
for ((s) using its partial Euler product. We will start this task by first writing ((s) for o > 1

as follows
L R ([

i=1 i i=1 Pi) i pi

For o > 0.5, we have

1ogi'11 (1 z) 121;1 log (1 — )

i=rl 1 i=rl

or

Let § be defined as the sum

r2
1 1 1
5= - - - ) 15
g%( 2p;%% 3ps Apits ) (15

Thus,

T2
logH(l—)z—Zi—l—é. (16)

i=rl i=rl £

Since [§|< 2202, (Qn% + 37}35 + i ) thus 0 = O(p}7%7 /(20 — 1)). Furthermore, if 20 — 1
1-20

is a fixed positive number, then § = O(p,; “7).

Using the Prime Number Theorem (PNT) with a suitable constant a > 0, the number of
primes less than «z is given by [4, page 43]

7(x) = Li(z) + J(x), (17)

where Li(z) is the Logarithmic Integral of x and

J(x) =0 (xea\/@> , (18)
or
J(x) =0 (x/(log x)k) , (19)

where k is a number greater than zero.

Using Stieltjes integral [5], we may write the sum 3 /2 for o > 1 as follows

zrlp

Z 1 / " . (20)

rl pZ T=pPri1

Using Equation (19) for the representation of 7(z), we may then write the integral in Equation
(20) as [5, Theorem 2, page 57]

7‘21

Pr2 1 1
Z7=/ —— dr+O(—), 1)
i=rl pz Pr1 7 logﬂs (logprl)
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where £ is a number greater than zero. Therefore,

>~ 1 1 1
——— dz+0 () . (22)
= 1‘1 pz /pTl IO’ logx /p'r2 ‘/1:0- logﬂj (logprl)k

Recalling that the Exponential Integral £ (r) is given by

) e*’M

Eq(r) :/T —du,

u

and using the substitutions v = (0 — 1) logz, du = (0 — 1)dz/x and 27 /x = €*, then for o > 1,
we may write Equation (22) as

r2
Z»;lplf =FE1 ((c —1)logpr1) — E1 ((0 — 1) log pra) + O ((log;rl)’f) . (23)

Combining Equations (16) and ((23)) and noting that, for ¢ > 1, E; ((c — 1) logpr2) ap-
proaches zero as p,o approaches infinity, we may write Equation (14) for o > 1 as

—log((o Zlog(l—)— Z L—i—é
= 7"+1p2

or

log((o) + 2108; (1 - 1) — By ((0 — 1)logpri1) =€,

where ¢ = O(1/(logp,1)¥) is an arbitrarily small number attained by setting p, sufficiently
large. Therefore,

¢(o) f[ (1 - ;) exp (=E1((0 —1)logpry1)) =1+ e (24)
=1 7

As p, approaches infinity, e approaches zero. Hence, the right side of the above equation ap-
proaches 1 as p, approaches infinity.

Similarly, for (s) > 1, we can use the following expression for F(s)

El(S) :/1 ‘ dI,

T

to show that

Tim {<< I (1— ;) exp (- El((S—l)IngrH))} ~ 1. (25)

=1 7
Let the function G(s, p,) be defined as

G(s,pr) = ((s) ﬁ (1 - ;) exp (—E1((s — 1) log pr+1)) (26)

=1 7

where, G(s,p,) is a regular function for R(s) > 1. Referring to Equation (25), the function
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G(s,pr) approaches 1 as p, approaches infinity. It should be noted that, for every p,, the func-
tion exp (—E1((s — 1) log pr+1)) is an entire function, the function ((s) is analytic everywhere
except at s = 1 and the function [];_, (1 — 1/p?) is analytic for £(s) > 0. Thus, for any o > 1,
the function G(s, p,) can be considered as a sequence of analytic functions. Furthermore, as
pr (or r) approaches infinity, this sequence is uniformly convergent over the half plane with
o > 1+ e (where, € is an arbitrary small number). Therefore, by the virtue of the Weiestrass
theorem, the limit is also analytic function [6] (Weiestrass theorem states that if the function
sequence f, is analytic over the region 2 and f,, is uniformly convergent to a function f, then
f is also analytic on 2 and fn/ converges uniformly to f "on Q). If we define this limit as G (s),

where
G(s) = lim G(s.p;) 27)

then, G/(s) is analytic over the half plane }(s) > 1 and it is equal to 1 by the virtue of Equation
(25).

Next, we will extend the above results to the line s = 1 + 7t. We will then show that if RH
is valid, then for the strip s = o + it where, 0.5 < 0 < 1, the above results will also be valid
with the limit of G(s, p;) is 1 as p, approaches infinity.

We will start this task by showing that although both ((s) and E;((s — 1) log py+1) have a
singularity at s = 1, the product G(s, p,) has a removable singularity at s = 1 for every p;.
This can be shown by first expanding ((s) as a Laurent series about its singularity at s = 1

1 (s —1)? (s —1)3

= — -1 _
()= =g +7—mls—D+n—; 3

+ ...

e 28)

where v is the Euler-Mascheroni constant and +;’s are the Stieltjes constants. For s = 1 + ¢,
where € = € + i€g, €1 and e are arbitrary small numbers, the above equation can be written

as
€ e

1
C(S):E+7—71e+725—73§+--- (29)

Furthermore, for ¢ > 1, using the definition of the Exponential Integral, we may write

El(S) as
82 83 84

Thus, for s = 1 + ¢, we have

log p,)? log p,)3
exp (—F1((s — 1) logp,)) = €€ log p, exp (—elogpr + (e (;g;'j ) — (¢ (;)g; ) + ) . (3D
By taking the product ¢(s) exp (—E1((s — 1) logp,)) and allowing e to approach zero, we then
obtain

lim {¢(s) exp (=Ex1((s — 1) logp,))} = e logpr. (32)
However, it is well known that the partial Euler product at s = 1 can be written as [8]
a 1 eV 1
1-— )= + 0 () . 33
z‘:l—[1 ( pi) logpr (long)Q ( )



Multiplying Equations (32) and (33), we may conclude that at s = 1, G(s, p,) approaches 1 as
pr approaches infinity. Furthermore, for s = 1 + it and ¢ # 1, the value of exp(—E (it log p,))
approaches 1 as p, approaches infinity and since

)E{.z{wizﬁl (1- pl)} 1,

therefore, for s = 1 + it, we have the following

lim G(s,p,) = Tli)HQlo {C(s) ﬁ (1 — pls> exp (—E1((s —1) 1ng7n+1))} =1.

r—00 -
=1 ?

So far, we have shown that the function G/(s, p,) is uniformly convergent to 1 when (s) >
1. We have also shown that G(s,p,) is convergent to 1 for R(s) = 1. In the following, we
will show that, assuming the validity of the Riemann Hypothesis, the function G(s,p,) is
uniformly convergent to 1 for every value of s with R(s) > 0.5 + ¢, where € is an arbitrary
small number. Toward this goal, we will first show that the function G(s, p,) is convergent
for any value of s on the real axis with ¢ > 0.5. This can be achieved by first writing the
expressions for G(o, py1) and G(o, p2) (Where 12 is an arbitrary large number greater than 1)

rl

G(o,pn) = C(0) exp (~E1 (0 — 1) logprisn)) [ (1 - p{f) , (34)
=1 7
r2

C(o,pra) = C(0)exp (—Br((0 — 1) logprasa)) [ ] (1 - ;) | (35)
=1 1

Since the function G(s, p,) is analytic that is not equal to 0 for o > 0.5, hence we can divide
Equation (35) by Equation (34) and then take the logarithm to obtain

G(a, p, r2 1
log <GEZ, ;ﬂj;) =F1 ((0 —1)logpri+1) — E1 ((0 — 1) log prat1) + log (i:gﬂ (1 - pﬂ))
(36)

To compute the logarithm of the partial Euler product in Equation (36), we recall Equation
(16)

7’2( 1) T2 1
logH 1—— ] =- Z — +9,

P41 p; i=r1+1 Pi
where § = O(p}1%? /(20 — 1)). Furthermore, on RH, we have

m(x) = Li(x) + J (=), (37)
where Li(z) is the Logarithmic Integral of x

J(x) =0 (Vz logz) . (38)

Using the above equation for the representation of the prime counting function, we may then
obtain (Appendix 2)

r2
1
Y — =Ei((c —1)logpr14+1) — Ei((0 — 1) logpra) + ¢,
i=riy1 Pi



where € = O (p1°°~7 log p,1 /(0 — 0.5)%). Hence, Equation (36) can be written as

G(U7 pTQ)
1 — T4l
©8 <G(U7 prl)

Since E1((o — 1) log pr2) — E1((0 — 1) log pra+1) approaches zero as p,2 approaches zero, thus

) =¢e+6+ E1((o0 —1)logpr2) — E1((0 — 1) log prat1).

. G(Ua pr?))
1 I — ] = .
PT2H—>noo 08 <G(O’, prl) et 5

For the above equation, it should be pointed that we have kept p,; fixed while we allowed
pro to approach infinity. Hence G(o, p,) is bounded as p, approaches infinity. Furthermore,
for 0 > 0.5 + ¢, € + ¢ can be made arbitrary small by choosing p,; arbitrary large, thus the
limit of G(o, pr) exists as p, approaches infinity and it is given by

G(o) = lim G(o,p,) (39)

=00

This proves that, on RH, G(o,p,) is convergent as p, approaches infinity and thus G(o)
exists for o > 0.5. In Appendix 3, we have shown that, on RH and for R(s) > 0.5, we have

r2

> pl,s = E1((s — 1) logpr1) — Ex((s — 1) logpy2) + ¢, (40)

i=rl

where ¢ = f;’:f dJ(z)/z® = O ((UJ% pr1%57% log pM). Thus, we can follow the same steps
and show that G(s, p,) is convergent as p, approaches infinity and thus G(s) exists for R(s) >
0.5 (it should be pointed out, that the term € in Equation (40) can be determined in terms of
the non-trivial zero if the von Mangoldt function is used in deriving Equation (40) instead of

using the prime counting function).

It should be noted that, while the function sequence G(s, p,) is not uniformly convergent
when the region of convergence is extended all the way to the line o = 0.5, it is however
uniformly convergence for any rectangle extending from —i7" to ¢T" (for any arbitrary large
T) and with ¢ > 0.5 + ¢, where € is an arbitrary small number. This follows from the fact
that, on RH, ¢ (or, the O term) is bounded for any o > 0.5 + €. Since G(s, p,) is analytic for
R(s) > 0 and it is uniformly convergent for R(s) > 0.5 + ¢, thus G(s) is analytic for the half
right complex plain with R(s) > 0.5 + € (Weiestrass theorem [6]). Since we have shown that
G(s) = 1for R(s) > 1, thus on RH, G(s) = 1 for R(s) > 0.5 + ¢. Hence, we have the following
theorem

Theorem 3. Fors = o + it and o > 0.5, the following holds if RH is valid

Jim {C(3> ﬁ (1 - pls> exp (—E1((s — 1) logpr-i-l))} = 1. (41)
i=1 i
7,lgrolo {M(s,pr)exp (E1((s —1)logpr41))} = 1. 42)

It should be also pointed out that Theorem 3 can be generalized to the case where there are
no non-trivial zeros for values of s with R(s) > h (where h > 0.5). For this case, Equation (41)
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is valid for every s with R(s) > h and ¢ in Appendix 3 is given by O (% P17 log pn).

Equation (41) of Theorem 3 can be written as follows

log ((s) + logH (1 - ) — By ((s —1)logprat1) =0,

l

where the equality of both sides is attained as 73 (or p,2) approaches infinity (or more appro-
priately, the right side is arbitrary close to zero as p, approaches infinity). It should be noted
that while both functions log ((s) and E;((s — 1) log py2+1) have a branch cut along the real
axis where 0.5 < ¢ < 1, the difference (i.e. log((s) — E1((s — 1)log pr24+1)) does not have a
branch cut. For r < r2, the above equation can be then written as

log ((s) = E1 ((s — 1) log pra+1) Zlog (1 - ) Z log (1 - )

D i=r+1

Since for the region of convergence of the series M (s, p,), we have (refer to Appendix 3)

1 |
- E log (1—) = E — +d=FE1((s—1)logpr+1) — E1((s — 1)logpra) +¢
i=r+1 b; i=r+1 pi®

where ¢ = [ dJ(x)/z* (on RH, e = O((|s| p,*° =7 log p,) /(0 — 0.5)?) and & = O(p; >° /(20 —
1)). Therefore

log((s) = — zr:log (1 — p13> +E1 ((s—1)logpri1) + €+ 0. (43)

i=1 i

where for sufficiently large p,, § is negligible compared to 2. Taking the exponential of both
side, we then obtain the following theorem

Theorem 4. For the region of convergence of the series M (s, p,) = >_7° p(n, pr)/n’, we have

M(s,pr) = exp (=E1 ((s — 1) logpri1 —€ = 9)), (44)
where e = [°dJ(x)/x°, J(v) = 7(v) — Li(z) and § = 3772, ( 2p12s - 3p133 - 4p14s...> . Further-

more, on RH and for sufficiently large p,., we have

M(s,p,) =exp(—E1 ((s —1)logp,)) (1 —e+ 0(82)) , (45)

While in this section, we have used the analytical methods to compute M (s, p,), in the
next section, we will employ integration methods to compute the partial sum M (s, p,; 1, p?).
The results obtained in this section and the following section will be then combined in sec-
tions (6) and (7) and then used to examine the validity of the Riemann Hypothesis.
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5 The series M(o,p,)ato = 1.

In this section, we will first provide an estimate for the partial sum M (1, p,;1,p,*) as a ap-
proaches infinity. This estimate will be computed using integration methods and noting that
M (1, p,) equals zero for every p,. Therefore, for every p,, M(1,p,;1,p,*) approaches zero as
a approaches infinity. Our first estimate for M (1, p,; 1, p,?) is given in Appendix 4 where we
have shown that for every p, and N, we have

|M(1,pr; 1, N)|= <2

n

al :u(nv pr)

Before we present the details of our method, it is important to mention that the partial
sum M (1,p,;1,p,*) can be also generated using y-smooth numbers. The y-smooth numbers
are the numbers that have only prime factors less than or equal to y. These numbers have
been extensively analyzed in the literature [10][12]. In [10], a clever method was presented to
generate the partial sum M (1, p,; 1, p,*). With this method and using the inclusion-exclusion
principle [10, page 248], one can then provide an estimate for the partial sum M (1, p,; 1, p,?).
In this section, we will provide a more general approach to compute M (1,p,;1,p.*). The
main advantage of our approach is the ability to extend it to compute the partial sum for
values of s other than 1. We will present our method in the following two steps.

e In the first step of our approach, we will show that, for every a and as p, approaches
infinity, the partial sum M (1, p,; 1, p,?) is a function of only a (independent of p,.).

Toward this end, we define the function f(a,p,) as

pr?
_ p(n, pr)
f(aupr> :M(lvprvlvpra) :nzzjl n .

We will then show that, for every a and as p, approaches infinity, the function f(a,p,) ap-
proaches a deterministic function p(a). In other words; if we plot M(1,p,;1,N) (where
N = p,*) as a function of a = log N/log p,, then for each value of a and as p, approaches
infinity, f(a, p,) approaches a unique value p(a). This is equivalent to the statement

o . o . X a
p(a’) - p}gnoof(a‘apT) - p}l—l;noo M(lapra 1ap7" )

This result can be achieved by first noting that the partial sum M (1, p,; 1, p,*) for1 < a < 2
is given by

1
M(17p7‘;17p7‘a) - - Z o
pr<pi<pra P
If we define M;(1,p,;1,p,%) as
1
Ml(lapr;lvpra) = Z ]7)
a Pt

Pr<pi<pr

then, using Stieltjes integral, we obtain

prt dT(' X a dﬂ' Yy
M(1,pr;1,p.") = 1= Mi(1,pr; 1,p") = 1—/ i ) :1‘/ (pr?)
T=Dpr y

12



Since
dr(py¥) = dLi(p.Y) + dJ (p}),

therefore

Y
dr(p,?) dp,Y + dJ(p,Y) = %dy +dJ(pY),

~ log(pr¥)

where on RH, J(p¥) = O(y/p,Y log(p,¥)). Hence, for 1 < a < 2, we have

M) =1- [*U - [T g+ O@ipra), 69
where o 4T (pyY)
O(g1(pr,a)) = —/1 pT (47)

As p, approaches infinity, O(gi(p;, a)) approaches zero. Consequently,

lim M(1,p.;1,p.*) =1 —loga.

Pr—>00

The terms of the partial sum M(1, p,;1,p,*) for a in the range 1 < a < 3 are either a
reciprocal of a prime or a reciprocal of the product of two primes. Therefore, for 1 < a < 3,
we have

1
M(lapT;LpTa):l_ Z —+ Z

pr<pi<pr® pi pr<pi1<pi2<pi1Pi2<pr

1
o Pi1Di2 ’

where p;; and p;2 are two distinct primes that are greater than or equal to p,.. Let M»(1, p,; 1, p,%)
be defined as

1 1 1
Ma(1,ppr; 1, ") = > =5 > —M(LpiLp}/pi) + 72

Pr<pi1<pi2<pi1pi2<pr® pipi2 pr<p;<pra=1 "

where the factor of half was added since each term of the form 1/(p;1p;2) is repeated twice.
It should be also noted that the second sum of the above equation includes non square-free
terms (notice that, there is no repetition in any of the non square-free terms). The term ry was
added to offset the contribution by these non square-free terms. We will show later that the
contribution by these terms (or r2) approaches zero as p, approaches infinity. Using Stieltjes
integral, we then have

1 el dn(p,y
Ms(1,pr;1,p,) = 5/1 ;py ! (log(a — y) + Olg1 (prea — ) + 7.

Hence

1 o 1log(a —
ML) = 1~ logfa) + Olgatorsa)) + 5 [ =My 1 0(galpra— ),
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where

O(g2(pr,a)) = ;/la_l O(gl(Pry,a — y))dy N ;/la_llog(a B y)d‘](gry)_i_

T

1ot dJ(p¥)
5 Owpra—y) =i

r

It can be easily shown that, for any fixed value of a, the three integrals on the right side of
the above equation approach zero as p, approaches infinity. We will also show later that
approaches zero as p, approaches infinity. Thus, for 1 < a < 3, we have

a—1] .
lim M(LpysLp?) =1~ loga+ [ log(a =y) ;.
1

Pr—00 y

Therefore, as p, approaches infinity, M (1, p,; 1, p,*) is only dependent on a.

Repeating the previous process |a] times (where |z is the integer value of z) and by
using the induction method, we can show that, as p, approaches infinity, the partial sum
M (1,p,; 1, p,*) is dependent on only a. Specifically, we first write the partial sum M (1, p,; 1, p,%)
as follows

M(lapr7 17p7“a) =1- M1(17p1”; 17p1”a) + MZ(]-apT; 17p7“a) — ..t (_1)]M](17p7“7 17p7“a) + ...+

(_1)LGJ_1M\_aJ—1(17pT§ 17p7‘a) + (_1)LGJM|_(1J (Lpr; 17pra)>
where

1
M;(1,pri 1, pr®) = > pitpig--pij
a PilPi2---Pijg

Pr<pi1<pi2<..<pij <pi1Pi2--Pij <Pr

and p;1, pi2, ..., pi; are j distinct prime numbers greater than or equal to p,. If we assume that
M;_1(1,pr;1,p,?) is given by

M;_1(1,pr; 1, pr%) = hj—i1(a) + O(gj-1(pr,a))

where h;_1(a) is a function of @ and O(g;_1(pr, a)) approaches zero as p, approaches infinity,
then
a 1 1 a
Mi(LpysLpe®) == > =M (1, pespr, 0 /pi) + 75
pr<pi<pre=t

where the factor of 1/j was added since each term of the form 1/(p;1ps2...p;j) is repeated j
times. It should be also noted that the sum of the above equation includes non square-free
terms. The term r; was added to offset the contribution by these non square-free terms. We
will show later that the contribution by these terms (or ;) approaches zero as p, approaches
infinity. Using Stieltjes integral, we then have

1
M;(1,pr;1,p%) = f/
] J1

a—1 dﬂ'(pry)

o,y (hj_l(a - y) + O(gj—l(pm a— y))) + 75

Hence

14



1 o1 h: q(a—vy
Mj(17p7‘;17p7‘a) = ]/1 jl(y)dy—i_O(g](pTua))?
where the first term is a definite integral with only one variable y integrated over the range
1 <y < a — 1. Thus, the definite integral is a function of only a. We define this function as
hj(a). The second term is given by

1 (a1 O(gj-1(pr,a —y)) 1 ot dJ(pY)
O(g;(pr,a)) = —,/ J - dy + f,/ hj—1(a — +
(95(pr,a)) il " vt j—1(a —y) .

dJ (pry)
pr

1 a—1
j/l O(gj-1(pr,a —y)) + 75

It can be easily shown that, for a fixed value of a, the three integrals on the right side of
the above equation approach zero as p, approaches infinity. We will also show later that r;
approaches zero as p, approaches infinity. Hence, as p, approaches infinity, we have

@t hji(a—y)
y

1
lim M;(1,pp1,p,%) = f./
1

Pr—00 j

dy = hj(a)

where h;(a) = log(a). Hence, for every a and as p, approaches infinity, we have

lim M(1,pr;1,p.%) =1 —hi(a) + ha(a) — hg(a) + ... + (—1)L‘”hw (a) = p(a). (48)

Pr—00

It should be pointed out that the above equation implies that the partial sums M (1, p,; 1, p,*)
and M (1,p¥;1,p,"Y) (where, p¥ is a prime number) have the same limit as p, approaches
infinity. Hence,

lim M(L,pi1,p%) = lim M(Lp51,p%) = pla). (49)

Pr—>00

Equation (49) will be used in the next step to estimate the asymptotic behavior of the function
p(a) as a approaches infinity.

As mentioned earlier, the partial sum M (1, p,; 1, p,*) constructed by this process included
non square-free terms (i.e r;’s). In the following, we will show that, for every a and as p,
approaches infinity, the total contribution by these non square-free terms approaches zero as
well. Toward this end, let Sy be the sum of the terms with the factor 1/p?. Therefore, Sy can
be expressed as Ko/p?. Let S; be the sum of the remaining terms with the factor 1/(p,41)2.
Therefore, S can be expressed as K/ (pr41)?. Let Sy be the sum of the remaining terms with
the factor 1/(p,12)? where S5 can be expressed as K/ (pr12)?, and so on. Let S be sum of all
the terms associated with non square-free terms. Thus, S is given by

1 1 1

Pr Pr+1 Pr+L

2KL7

where p, 1 is the largest prime where its square is less than p,.“. However,

2 3 @

T

1 1 1
|Kol, [K1|, -, |[KL|< 14+ =+ = + .. + ot
Thus,
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|Kol, | K1), ..., |Kr|= O(alogp,).

Therefore,

1 1 1
S:<+ —|—...+>Oalogp .
pr2 pr+12 pr+L2 ( T)

Hence, the contribution by the non square-free terms S is given by,

S = O(a logpr/pr)'

Consequently, for every a and as p, approaches infinity, S (or the contribution by the non
square-free terms) approaches zero.

e In the second step, we write the partial sum M(1, p,; 1, p,*) as the sum of two compo-
nents. The first one is the deterministic or regular component and it is given by p(a). The
second one is the irregular component R(1, p,; 1, p,*) givenby M (1, p,; 1, p,*) — p(a). We
will then show that the function p(a) is the Dickman function that has been extensively
used to analyze the properties of y-smooth numbers.

Toward this end, we write the partial sum M (1, p,; 1, p,*) as the following sum

1 1
M(Lp;lLp®)=1— >  =MQ,p;l,p*/p)— >, —. (50)

7 pl
pr<p;<pr®/? pro/2<p;<p,°

The second sum was added since the first sum is void of the terms 1/p;’s for P2 < p; < pd. It
can be easily shown that every term on the right side of Equation (50) is a term on the left side
of the equation and vice versa. Furthermore, there is no repetition of any term on the right
side of Equation (50). Using Stieltjes integral, we can write the above equation as follows

/2 dr (pry)
pr

a ¢ dr(p,”
Mg - [T

, 51
a/2 pg ( )

M1,p;1,p%) =1— /1

where dr(p,Y) = dLi(p,Y) + dJ (p,Y). It should pointed out that while Equations (50) and (51)
provide the value of the partial sum M (s, p,;1,p%) at s = 1, they can be easily modified to
compute the partial sum for any value of s to the right of the line (s) = 1 (and on RH, to the
right of the line R(s) = 0.5). This task will be achieved in the next section and it will be a key
step to examine the validity of the Riemann Hypothesis

For any fixed a, as p, approaches infinity, M (1, p,¥;1,p¢"Y) approaches p(a/y — 1) (refer
to Equation (49)). Therefore, as p, approaches infinity, we have

pla) = 1—/1a/2 p@_l)dy—/aa W, (52)

Y /2y

It is shown in Appendix 4 that |M(1, p,;1,p,%)|< 2 for every p, and a. Hence, |p(a)|< 2.
Consequently, p(a) approaches zero as a approaches infinity (this follows from the fact that
if p(a) does not converge to zero, then the first integral of the above equation diverges as a
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approaches infinity which then leads to the divergence of p(a). This contradicts our earlier
statement that |p(a)|< 2). Thus, as a approaches infinity, we have

a/2 p a1
/ (yy>dy =1-1log2. (53)
1

In the following, we will show that p(a) is the Dickman function that has been extensively
used in the analysis of the y-smooth numbers. This task will be achieved by using Equation
(52) to compute the difference p(a + Aa) — p(a) (where, Aa is an arbitrary small number) to
obtain

(a+Aa)/2 p (a-l—Aa
pla+Aa) = pla) = - [

-1 a/2 p a1 (a+Aa) g a
1 Yy 1 ) (a+Aa)/2 Y a/2 Y

Since the third integral of the above equation is equal to the fourth integral, therefore

atla _ a a _
plat Ba) - pla) = — [ ’wdy " PGy,

1 Y
If we define z = y/(1 + Aa/a), then we have

((a+Aa)/2)/(1+Aaja) o (& — q a/2pl2—1
pla+ Aa) = pla) = —/ p(z)dz-i-/ (y)dy.
1/(14+Aa/a) z 1 Y

Thus,

1 a_q
pla+ Aa) — p(a) = —/ Mdz.
1/(14+Aa/a) z

Dividing both sides of the above equation by Aa and letting Aa approach zero, we then

obtain
dp(a)  pla—1) (54)

da a

where p(a) = 1—1log(a) for 1 < a < 2. Equation (54) is a first order delay differential equation
that has been extensively analyzed in the literature [10][12]. The function p(a) is known as
the Dickman function. As a approaches infinity, p(a) can be given by the following estimate

[10] )
pla) = (200 (55)

aloga

For sufficiently large values of a, we have p(a) < a™.

To compute the irregular component of M (1,p,;1,p%), we notice that R(1,p,;1,p,*) is
given by

R(lva; 17p7“a) = M(1>p7’7 1>pg) - ,O(Cl)

Thus, R(1,p,;1,p,*) can be computed by subtracting Equation (52) from Equation (51) to
obtain the following theorem
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Theorem 5. The partial sum M (1,p,;1,p%) = E’fg u(n, pr)/n can be expressed as

M, pri1,pp) = pla) + R(1,pri 1, pr%) (56)
where p(a) is Dickman function and the reqular component of M (1, p,; 1, p?) is given by
pla) = Tim_ M(L,ps;1,p}) (57)

while R(1,pr; 1, p,%) or the irreqular component of M (1, p,; 1, p%) is given by

a/2 dJ(pry) @ dJ pr dﬂ(py)
Rlvpr;lvpra :7\/ a yil 7/ / Rlpr a]-ap .
( ) ;P (af ) pr a2 Dr ) ¥ 59

The term J(x) on the right side of Equation (58) is given by Q(2?°~¢) (where ¢ is an
arbitrary small number). This follows directly from the Riemann explicit formula where
J(x) = w(x) — Li(z) is given by the sum of terms of the form Li(z”) (where p’s are the
non-trivial zeros) and many of these terms grow at least as fast as \/z/logz [1]. Thus, we
have unconditionally J(z) = Q(z%57¢) (In fact, in 1914, Littlewood have shown that J(z) =
Q- (2% logloglog x/log x))

In the following, we will show that, for sufficiently large a, R(1,p,;1,z) is given by

Q(2%°7¢) and on RH, it is given by O(z2%57¢). Toward this end, we first recall that on RH,
M (0;1, x) (or the Mertens function) is given by [7]

0, 17$ Z M 0.5+5) — Q(.%‘O'5_€)
where € is an arbitrary small number. Using the partial summation, we then have

M(1;1,7) = Z M) _ o(a=07+) = 0a=07)

Similarly, we can show that for sufficiently large =, we have
M(0,pr;1,2) = Z“ (n,pr) = O(z%5+€) = Q(205-¢)

and

M 1 D 17 x _ —0.5+e) — Q(x_0'5_€)_

These results can be extended to the case where non-trivial zero are located on or arbitrary
close to the line R(s) = h and there are no zeros to the right of this line. For this case, 0.5 is
replace by h in the above bounds.

Since M (1, p,; 1, p?) is given by

M(1,p;;1,p.%) = p(a) + R(1,pr; 1, p%)

and since p(a) decays to zero faster than e~“* for any arbitrary large ¢, therefore on RH, we
have the following theorem
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Theorem 6. On RH and as a approaches infinity, we have
R(l,pr; 1,p7~a) = O(pr*a/QJraE) — Q(prfa/Qfae)‘

where € is arbitrary small number.

Our examination for the validity of the Riemann Hypothesis is based on establishing
a relationship between R(1,p,;1,p,*) and J(p%)/p? (such as Equation (58)). On RH, we
have J(p?)/p® = O(p,~%/?*t%) = Q(p,~%/?7%). If RH is valid then R(1,p,;1,p,*) should
be also given by O(p,~%/?*%€) and Q(p,~*/?>~). For Equation (58), the presence of the term
Sy~ a/2 1R, p Y 1, pt~Y)dm(pY)/pY hinders our attempts to achieve this task. In the rest of this
sectlon and sections (6) to (7), we will use the Fourier analysis to provide simpler expressions
for R(1,p,;1,p,%) in terms of J(p?)/p?.

So far, we have shown that the regular component of M (1, p,; 1, p?) is given by p(a). Since
[{dp(z) = p(a) — p(1) = p(a) — 1, therefore the regular component of M (1, p,; 1, p%) can be

also written as u u
= / dp(x)+1=1+ / o (x)dx
1 0

Similarly, for values of s # 1, we can consider that M (s, p,; 1, p?) is comprised of two com-
ponents. The first component is the regular component defined as F(«, a) (wWhere a = (s —
1) log p,) and is given by

aa-l—f—/

Fla,a) =1+ /Oa e/ (z)dr, (59)

=1 —i—/ (=92 )/ () d,

or,

while the irregular component is given by M (s, p,; 1,p%) — F(c, a). Notice that for s = 1, we
have o = 0 and F(0,a) = p(a). We now define F'(«) as

F(a) = lim F(a,a) =1+ e “p'( (60)

a— o0

Thus, for R(s) > 1, o is a complex variable in the complex plane to the right of the lme
R(s) = 1. Hence, the integral [;* e~ *%p/(x)dz is the Laplace transform of the function p ( )
and is given by F(a) — 1 (where F(a ) is the regular component of the series M(s,p,), i

M (s, pr;1,00)). Since the Laplace transform of p(z) is given by e B1() /5 [11, page 569][12],
therefore the Laplace transform of p'(z) is then given by s£(p(z)) — p(0). Hence

F(a)=e 5 ()

Remarkably, these results agree with what we have obtained in Theorem 3. In Theorem 3,
we have shown that

dim {M (s, pr) exp (E1((s — 1)logpri1))} = 1,

or referring to Equation (45), we have
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M(s,py) = e @) (1 —g(p,,s)), (61)

where e(p,, s) = [¥ dJ(z)/2° and J(z) = 7(x) — Li(z) (note that we have ignored the term
O(?) since its contribution is negligible in the following analysis). Consequently, for R(s) >
1, we then obtain

M(s,pr) = F(a) (1 —e(pr, ) - (62)

where F'(«) is the regular component of the series M (s, p,) and —F(«)e(py, s) is the irregular
component of the series M (s, p,). It should be emphasized here that the regular component
F(«) is the value of M (s, p,) due to the Li(xz) component of the prime counting function 7 (z).
It is also important to note that the irregular component is not the same as the difference
between the partial sum M (s, p,; 1, p,*) and the series M (s, p,).Therefore, except for s = 1
(where the irregular component £(p;, s) is zero for every p,), €(pr, s) may have values differ-
ent from zero although it approaches zero as p, approaches infinity

Notice that on RH, the previous analysis should also hold for R(s) > 0.5. This analysis

and its application to examine the validity of the Riemann Hypothesis will be presented in
the following two sections.

6 The regular component of M (s, p,; 1, p%) for R(s) < 1.

In the previous section, Equation (50) was used to compute M(1,p,;1,p,%). In this section,
we will modify this equation to compute M (s, p,; 1, p,*) for s # 1 as follows

1 1
M(37p7‘;17p7‘a> =1- Z 75M(S7pi;17p'ra/pi> - Z s (63)
pr<pi<pra/2 pro/2<p;<pr® pi
Using Stieltjes integral, we can write the above equation as
a/2 dr(p,Y @ dn(p,Y
M(S,pr;l,pra) = _/ (s; )M(S7pry;l,p?/p%{) _/ (s; ) (64)
1 Pr a/2 Pr
On the real axis (i.e. s = 0), we then have
a/2 dm(p,Y _ o dm(p,Y
M(o,pr;1,p:") = 1—/ #M(a,pry;l,pﬁ Y) —/ (55 ) (65)
1 Dr a/2 Pr

Using Theorem 3, on RH and for ¢ > 0.5, the partial sum M (o, p,; 1, p,*) is convergent as
a approaches infinity and its value is given by

ali_)ngo M(o,pr;1,p:%) = M(0,p,) = exp (—E1(—5)) (1 —e(pr, 8)), (66)

where f = —a = (1 — o) log p, (note that 5 > 0 for o < 1). Therefore, as a approaches infinity,
the left side of Equation (65) can be split into the regular component exp (—E;(—0)) and the
irregular component —¢(p,, s) exp (—E1(—/f)). Similarly, the right side of Equation (65) can be
also split into regular and irrugular components. Toward this end, we write the first integral
in Equation (65) as follows

20



a/2 d Y a/2 d Y
/1 M(o,py?: 1,01 ”ij ):/1 F((o—1)logp?, a/y —1) ”p(fy )y

T T

a/2 d Y
[ Bopi, T8, &
1

r

The first integral on the right side of Equation (67) can be then written as

af (.Y a/ I\p
/1- QF((U_l)logpg’a/y—l)dp(gp;)_‘/l 2F((a—1)logp a/y_l)de(y)

s

a/2 d.J (p,Y
[ Fo - v oy - B,

where J(z) = w(x) — Li(z) and
F((oc—1)logp,,a)=1 +/ P (z)e” =) 108 Pr g7 — 1 —i—/ P (x)eP%dz,
0 0

and

a/y—1 Lol a/y—1
F((c—1)logp?, a/y—1) = 1+/ P (z)e*(1=7) O8PF g — 1—}—/ o ()P da.

Hence, the first integral on the right side of Equation (67) can be then written as

a/2 d Y a/2 dLi Y a/2 dLi Y a/y—1
[ F(e-11ogpt, afy-1) W;ﬁ’y ):/ ;(jz )+/ ;(ﬁi, )/ §()ePeda+
1 r 1 r 1 r 0

dJ(pY
@) (68)

T

/ F 0—1)long,a/y—1)

Therefore, the right side of Equation (65) is given by

/2 dm rY a— ¢ dr(py?
_/1 p(cry )M(U br 7]->p y) / (0 ) =

/2 pry
a/2 dLi Y a/y—1 a dLi(p,Y
[ T e l(fi )
1 Pr 0 1 Dr
a/2 dJ(p¥) (@ dr (py)
F((o—1)logp?,a/y—1 = —/ / R(o,p:Y;1,pp~ T
|- e QR

Consequently, as a approaches infinity, the regular component of M (¢, p,;1,p¢) is given

by
a/2 1 Y a/y—1 a i v
~Ei(-) _ 1 _/ dLl(U]?yr )/ p/(x)eﬁymdx_/ dLl(U];r ) (69)
1 Dr 0 1 Pr

and the irregular component of M (o, p,; 1, p?) is given by
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. dJ(pyY
R(0,pr; 1,pr%) = —&(pr, o) B1=P) / F((oc—1)logp¥, a/y —1) p(o]'?y )_

T

“ der o\ dm(pY
/ / Rio.p¥ 1y 0D o)

/2 pr DPr
where 0 () dJ( )
oo €T o0 4
)= [ S [T e 7
z=p, L y=1 pr

For the Riemann hypothesis to be valid, Equations (69), (70) and (71) have to be satisfied
for o > 0.5 as a approaches infinity. For the remaining of this section, we will analyze the
convergence of the right side of Equation (69) as a approaches infinity. In the next section, we
will analyze the convergence of Equations (70) and (71) and examine their implication on the
validity of the Riemann hypothesis.

Since the regular component is void of the function J(z), one may expect that Equation
(69) is not only valid for o > 0.5 but it is also valid for o > 0. This requires the convergence
of the right side of Equation (69) as a approaches infinity for values of o > 0. A necessary
condition for the convergence of the right side of Equation (69) is that its derivative with
respect to a should approach zero as a approaches infinity. In other words; we have

. d [ dLi(p,Y) d /‘1/2 dLi(p,Y) /a/yl )
| - - —_— Byr g | — 0.
4300 (da/l 7 T a ) S p'(x)e’¥ dx 0

To show that the above limit is valid for o > 0, we first write the derivative of the first integral
as follows

d/a dLi(pry)_d/“ 1 p¥dy d eﬁy eba
1 pr%Y oy " da Y a

da )i  plY da -

The derivative of the second integral can be computed as follows

a/2 J14i Y ra/y—1
d/ d l(p )/ pl(x)eﬂyxdm:
0

da Jy pr?

1 (a+Aa)/2 eﬁy (a+Aa)/y—1 a/2 eﬁy a/y—1
lim — v / Byx _ / A / / Byx )
Aim = </ " </0 p(x)e dm) dy . ; ( ; p (x)e’¥*dx | dy

Since p/(x) = 0 for 0 < = < 1, therefore

d a/2 oPy a/y—1 , 1 a/2 ePy (a+Aa)/y—1
a e BYr g | dy = 1 / - / '(2)eP¥dx | d
T ( [ e a:) y= lim Aa( S\ L, Py

or

d a/2 By a/y—1 a/2 By
7/ < </ p’(x)eﬁyzda:) dy = lim 1 (/ c p(a)y — 1)ePvie/v= 1 Ba dy) i
da J1 Y 0 1 Y Y




Therefore,

a/2 By a/y—1 a/2 o -1
d/ e (/ p/(x)eﬁywdx> dy = edﬁ/ Lyz)dy.
da J1 Y 0 1 Y

The integral on the right side of the above equation can be simplified by substituting u for
a/y — 1 to obtain

/2 pl(a/y — Ly (u)(u 2 —adu a—1 a—1)—
[l [ a1 am )2

y? a? (u+12 a a
Therefore,
d ( [/2dLi(pY) @ dLi(p,Y) efe
- S F((o— D logp?, afy — 1 / & =" pla—1).
70 ( /1 o P = 1logpy, afy = 1)+ e Pl —pla—1)

It is clear that the above derivative with respect to a approaches zero for any value of /3. Fur-
thermore, the integral [>°(e#*p(z — 1)/x)dx is finite for a > 1. Since p(a) decays to zero faster
than e~21°2¢, therefore as a approaches infinity, the difference between the regular compo-
nent of M(o,p,;1,p%) and the regular component of M (o, p,;1,00) (i.e. M(o,p,) ) decays to
zero faster that e™“* for any positive number c. In the next section, we will analyze the con-
vergence of Equations (70) and (71) and then examine their implication on the validity of the
Riemann hypothesis.

7 The irregular component of M(s,p,;1,p?) and the Riemann Hy-
pothesis.

The irregular component of M (s, p,; 1, pf) is given by Equation (70)

a a/2 dJ p’!’y
R(S,pr;l,pr ):_/ lF((S—l)longi,a/y—l) p(ay )_
Y= r

@ dJ(pY a/2 dor (Y
/ (Zj ) - / R(Svpry; 1apg_y) ﬂ-(s]?jr)7
y=a/2  DPr y=1 Dr

and for s = 1, it is given by Equation (58)

a2 dJ(py) [+ dI(pY)
R 1’p1“;17p1“a :*/ a yil s 7/ -
( ) Jy=1 p( / ) pg y=a/2 p%y
a/2 d Y
/ R(1,pY;1,p87Y) W%)T)-
y=1 Dr

Furthermore, using Stieltjes integral, we also have
a
R(s7p'r; 17p7“a) = / eﬁydR(Lpr; 17p'ry)-
y=1

where 5 = 1 — s. Referring to Equation (71), we then have

R(s,p;1,p,%) = —e e (p, ) = —e F1F) /OO eﬁydji(f’q)-
y=1

r
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Hence

[e.e] 0o y
/ PYdR(1,pr; 1, pY) = —e_El(_ﬁ)/ eﬁyM_ (72)
y=1 y=1

Equation (72) establishes the relationship between the Laplace transforms of R(1, p,; 1, p,%)
and J(p%). With this relationship, we will be able to establish a much simplified relationship
between R(1,p,;1,p,%) and J(p¢) than that given by Equation (58). First, we note that for
sufficiently small 3, Equation (72) can be written as follows

pr

/ ¥ BVAR(Lpri 1,p,Y) = —1(B + O(5?)) / 7 e
Yy y=1

=1

By differentiating the above equation with respect to 5 and allow 3 to approach zero, we then
have

0o o 1.J(nY
/ ydR(1,pr;1,p,Y) = *67/ (pr)- (73)
Y

=1 y=1 p%

Using the method of integration by parts for the integral on the left side of the above equa-
tion (and noting that the term R(1, p,; 1, p,*) decays to zero faster than 1/y), we then have the
following theorem

Theorem 7. As p, approaches infinity, the mean value of the irreqular component R(1, p,; 1, p%) of
the partial sum M (1, p,; 1, p¢) is given by

00 ) e) d Y
/ R(1,pr; 1,p.Y)dy = —/ ydR(1,p,;1,pY) = 67/ J(fr). (74)
y=1 y=1 Dr

The term e” = [;° p(y)dy signifies the importance of the Dickman function in establishing
the relationship between R(1,p,;1,p,*) and J(p%)/p?. We will show later in this section that
this term has a profound implantation on the validity of the Riemann Hypothesis.

Another interesting relationship between R(1,p,;1,p,*) and J(p?) can be established by
substituting —a for 8 = 1 — s in Equation (72) to obtain

[e%¢] e o] d Yy
/ e dR(1,p,; 1,p,Y) = —e F1(@) / e~ ‘](ff”). (75)
y=1 y=1 T

Let f1(y) and fa2(y) be defined as
dR(1,pr; 1, pr¥)

fily) = i ,
and 0 (o)
faly) = “TEDEE,

Thus, Equation (75) can be written as
Lfi(y) = —e L),
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Since L™l F1(®) = p/(y) + §(y), therefore

fity) = = ((p' +9) * f2) (y)

Since f1(y), f2(y) and p/(y) are zero for y < 1, hence

y—1
fily) = - /1 Py — 2) folw)dz — fo(y)

Consequently,

Thus,

a y—1 z a Y
[ arp ) ——/ ay [Ty R g
y=1 pr y=1 Pr

Simplifying the above equation, we then have the following theorem

Theorem 8. As p, approaches infinity, the relationship between the irreqular component R(1, p,; 1, p%)
of the partial sum M (1,p,;1,p%) and J(x) is given by

a dJ(pY
R(1,py;1,p,%) = —/ 1p(a—y) p(ff ) (77)
y= i

where R(1,ps1,p2) = M(1,p,31,p%) — p(a) and J(x) = () — Li(x).

In the following, we will examine the validity of the Riemann Hypothesis by analyzing
Equation (74) as p, approaches infinity. Referring to Appendix 2, we have

> dJ(p}) —1/2
=0 log p,
/yl I ( & )

For any positive number h, we also have

> dJ(p}) ~1/2
—==0((1+h log p, ) .
| S =o(as . oz )
Thus
> dJ(p¥ Ith qJ
/ (5r) / (v )+O(( 1+ h)p, 1plogm).
y=1 DPr y=1 pr

Therefore, on RH and for any arbitrary small &, as p, approaches infinity, we have

/°° dJ(p}) /”" dJ(pY)
y=1 p% y=1 p% '

Similarly, , on RH and for any arbitrary small A, as p, approaches infinity, we have

=1

%) 1+h
/ ydR(1,pr;1,pY) =/ ydR(1,pr;1,p,Y).
Yy Yy
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Hence

1 dJ (pf)
g

1+h
/ ydR(1,py:1,pY) = & /
Yy Yy

=1

However, for arbitrary small h, we have

1+h
/ . ydR(LPN 17p7"y) = R(lvpﬁ 17pr1+h)7
y:

or

1+h
1“?(1,29r;1,pr1+h)267/+ dj(fg)-
y=1 Pr

However, this result contradicts our earlier statement that for ~ < 1 we have (refer to
Equation (47) )

1+h g7 pY
R(lapT;lapT1+h) :/ <y )
y=1 Dr

Similar contradiction is also attained if we assume that there are no zeros to the right of
the line R(s) < o for any o < 1. Hence, we conclude that non trivial zeros can be found
arbitrary close to the line (s) = 1.

Appendix 1

To prove the first part of Theorem 1 (i.e. for s = ¢ 4+ i0 and 0.5 < ¢ < 1, the series M (o, p;)
converges conditionally if M (o) converges conditionally), we first start with proving that
M (0, 2) is conditionally convergent if M (o) is convergent. Since M (o) is convergent, then for
any arbitrary small number §, there exists an integer IV such that for every integer N > N

— A(n)

Let the sums M (c; 1, N), M(0; N+1,2N), M(0;2N+1,22N), M (0;22N+1,23N), ..., M(0; 2F" 1N+
1,2EN) be defined as

|M(o; N,00)| = <4é (78)

Y p(n)
M(O-;laN):Z no = Ay,
n=1

X pun)
M(o;N+1,2N)= > == =0,

n=N-+1 n
&)
M(o;2N +1,2°N) = ) — =0y,
n=2N+1 n

25N
.02 3 p(n) _
M(o;2°N 4+ 1,2°N) = E 70_53,
n=22N+1
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2L N
M(o;2" 'N+1,25N) = )
n=2L-1N+4+1

Throughout the analysis in this appendix, N will be a fixed number (that is larger than Ng)
while the test for the convergence will be achieved by letting L approach infinity.

Let 0(l) be defined as the maximum of |0, |d;11],|d;+2]

S0Ll 160 + Gigals 100 + di1 +
Sisaly ey

|07 + 0141 + ... + I1|, then by the virtue of the convergence of M (o),

|01],102], [03], -y [OL], |01 4 O2[, |01 + d2 + O3], ..., |01 + d2 + 03 + ... + | < 0(1) < 26.

We also have

1] [011s [O142]s - 1L, 101 + 151], |60 + Oup1 + Sigals ooy |01 + 11 + .. + 01| < (D),

where by the virtue of the convergence of M (), §(1) can be set arbitrary close to zero (since

9, defined in Equation 78, can be set arbitrary close to zero by setting Ny arbitrary large).

Furthermore, let the sums M (0, 2; 1, N), M (0,2; N+1,2N), M(0,2;2N+1,22N), M(0,2;2° N+
1,22N), ..., M(0,2; 257N +1,2EN) be defined as

N
y 4y dy = Bl7
n=1
M(0,2; N +1,2N) pn.2) _
n=N+1
22N
M(0,2:2N +1,22N) = pn.2) _
n=2N+1
25N
2
M(0,2: 22N +1,23N) = “’(n; ) _ e,
n=2N41
L1 L 2N p(n,2)
M(o,2;2" "N +1,2"N) = ) = =€,
n=2L-1N+1 n
Since
2N 2N N
Z p(n) _ Z p(n,2) _ Z p(n, 2)
— n° — n? — (2n)e’
thus

1
M(o;1,2N) = M(0,2;1,2N) — 2—0M(0,2;1,N).

Similarly, since
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2l+1 N 21N 2UN
p(n) _ p(n, 2) _ Z p(n, 2)
ne ne - (2n)e ’
n=2N+1 n=2lN+1 n=2"1N+1

thus

1
M(0;2'N +1,24IN) = M(0,2;2'N + 1,27 N) — 5 M(0.2; 271N +1,2'N).

Rearranging the previous equations, we then have

1
Ay +01=B1+e — 2731, (79)
1
0o = €3 — 50 €1
03 = €3 — 50 €2

op = €L — 0 €L-1;
where ‘(51’, ‘52|, ’53‘, cees ‘5L‘7 ‘(51 +52|, ’(51 + 09 +53\, ‘(51 + 09 + 93 + ... +5L]§ (5(1) < 2§ and 6 can
be set arbitrary close to zero. Hence

1
€2 = 55 €1 + 09,

1 1 1
€3 = 2762-}-53 = 2%61-}- 27524-53,

1 1 1 1
— 0 ——02+ —d03+ 0
€4 = 2063—1-4 230 1+2202+203+ 4

1

1 1 1
€, = 276[/ 1+6L = (L—1)061+ 2(L—2)052+ 2(L—3)053+"'+5L'

Therefore,
+e+e+ ...+ = +—1+—1 + +71 + (09 + 03+ ...+ 05)+
€1 €2 €9 €1, = 1 90 220 2(L71)0' €1 ( 2 3 L)

1
02+ 03+ ... +0-2) + ... + ——5—"00.

1
2—0(62 + 034 .. +051) + o(I—2)0

220'(
Since [d2]< 8(1), | |62 + 03|< 8(1), ..., |81 + O3 + 65 + ... + 6,|< 5(1), hence

1 1

1
|62 +034 .. +5L|+—|52+63+ AOp—1 |+ 5T

or
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20'

1 1
|02 4+ 3 + ... + 6L|+2—U|62 + 034+ .. +0p—1]+... + ST |92| < 5o =1 |0(1)].
Therefore ) . .
=14+ —
€1 +e+e3+ ... +e€r ( +20+2 + .. +2 )51+’y1,

where 7 is of the same order as that of §(1) (where 6(1) can be set arbitrary close to zero by
setting J, defined in Equation 78, arbitrary close to zero).

As L approaches infinity, we then obtain

ZGZ 50 — 1! + 71

Therefore, if the series M (o) is convergent, then the sum M (o, 2; N + 1, 0o) (which is equal to
€1 + €2 + €3 + ... ) is bounded by the sum M (o,2; N + 1,2N) (which is equal to €).

The previous process can be repeated with the substitution of A; and B; in Equation (79)
with As and By, where Ay = M(0;1,2N) and By = M (0,2;1,2N), to obtain

1
A2+52:B2+62—2732-

Thus,
1

20!
Following the same process, we can show that the sum M (o, 2; 2N + 1, 00) is given by

Zez— 90 €1+’72

where 7, is of the same order as that of §(2) (where 6(2) can be set arbitrary close to zero by
setting §, defined in Equation 78, arbitrary close to zero).

1
AQZBQ_2TTB2+

If we repeat the process [ times, we obtain

1 1
Al = Bl — 273[ + mEl,
where A; = M(0;1,2'N) and B; = M(0,2;1,2'N) and the sum M(c,2;2'N + 1,00) is given
by

1
Zel_ (I— 2)0’20’_161—1_’7[

where ~; is of the same order as that of §(!). Since by the virtue of the convergence of M (o),
(1) tends to zero as [ approaches infinity, therefore +; and the above sum approach zero as !
approaches infinity.
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Thus, we conclude that M(c,2;2'N + 1,00) (given by 322, ¢;) approaches zero as [ ap-
proaches infinity. Furthermore, as [ approaches infinity, B = lim;_,., B; approaches its limit
given by

Hence,

(1 _ 210) M(0,2) = M(o).

Similarly, following the same steps, we can show that

1
(1 — 30> M(o0,3;1,00) = M(0,2;1,00).

or

<1—21U) <1—310) M(0,3;1,00) = M(0;1,00).

This task can be achieved by first defining

=

Ala

7 )
n=1

M(0,2; N +1,3N) Z wn.2) _ s
n=N-+1
32N
M(0,2;3N +1,3°N) = 3 pn2) 5
n=3N+1

L—1 L 3N p(n,2)
M(o,2;3" "N+ 1,3"N) = ) !

n=3L-1N+1

= 5L7

nO’

and

=

5Ly Bl7

n=1

M(0,3: N +1,3N) = Z wn3) _
n=N+1

32N
M(0,3;3N +1,3°N) = ) _
n=3N+1

w(n

= €2,

L L N p(n, 3)
M(o,3;3" 'N+1,3"N) = Y ’

n=3L-1N+1

no = €L,
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Since

342 3~ _ g uln3)
=t n—=1 w1 Bn)?
thus
M(5,2;1,3N) = M(c,3;1,3N) — %M(U,& 1,N)
Similarly,

1
M(0,2;3'N +1,3*IN) = M(0,3;3'N + 1,3N) — 3—O_M(J, 3;37IN +1,3'V)

Following the same process, we can show that

Zez— 30— 1% + 71,

where 1 is of the same order as that of §(1) (§(!) is defined as the maximum of |&], [0;41], [0142], ---,

Or411, 101 + G11 + Sigal, s |00 + Gigr + o+ 6L])-
Similarly, if we define Ay = M (0,2;1,3N) and By = M(0,3;1,3N), then
1 1
Ay = By — 3732 + 3061

Therefore

Zez— 30 €1+’Y2

where 73 is of the same order as that of §(2).

Repeating the steps 1 times, we then obtain

1
Zel_ = 2)030_ €+

where ~; is of the same order as that of (/). Hence the above sum approaches zero as [ ap-
proaches infinity

Thus, we conclude that M (o,3;3'N + 1,00) (given by 3°7°, ¢;) approaches zero as [ ap-

proaches infinity. Furthermore, as [ approaches infinity, B = lim;_,., B; approaches its limit
given by

(1—310>B:M(0,2;1,oo).
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Hence,

(1 _ 310_> M(0,3) = M(c,2).

Repeating the process r times, we then conclude

M(o) = M(o.p) [ <1 - 1) .

i=1 pi?
The second part of the theorem can be proved by recalling
1
M(s,pr1; 1, Npp) = M(s, pri 1, Npr) = Zc M (5, pri 1, N).
I

If both series M (s, pr—1) and M (s, p,) are convergent, then as N approaches infinity, we obtain

M(s,pr—1) = M(s,p,) (1 - 1(9) .

Repeating the process r times, we then conclude

M(o) = M(o,p) [ <1 - 1) .

i=1 pi?

Appendix 2

Assuming RH is valid and for ¢ > 0.5, to show that

r2
1
> P Ey1((0 —1)logpr1) — E1((0 — 1) logpr2) +¢
7

1=rl

where, e = [>dJ(z)/27 = O (m prt/?7 logpﬂ) and J(x) = mw(z) — Li(x), we first
recall that

r21

Z B /pr? dm(xz) /pr? dLi(x) n /pr? dJ(z)
i=rl pg Pri1 7 Pri x? Pri x? 7
or

T2 1

Pr2 d DPr2 ]_ DPr2 1
27:/ m(x) :/ daH—/ —dO (Vxlogx).
p p pr1 L

g g
i=rl pz r1 € r1 &€ log €

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain

/ppr2 %dO (Valog ) = O(Ml:gprQ) B O(\/mi)gprl) —/pI)TQO(\/:Elogx)d( 1 )

r1 L Dr2 Pri1 1 z?
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Since z > 0, thus

" r2 log pr \/Pr1 log p, v
/pQ%dO(\/Elogiv) = OlvPralogprz) _ O (vprilogpn) —O( p2\/§10g:1:d<10>>
p T

1 L pr20 prla Pri

With the substitution of variables y = log x, we then obtain

Pr2 1 Pr2 1
/ Vrxlogzd () = —/ oye2=)Yqy.
p 2 P

r1l r1l

1
/xe“mdw = (a: — 2) e,
a a
therefore

Pra 1 log pr2 1 > 0.5— < log pr1 1 > 0.5—
1 dl— ) =— - 5—0 o S5—0o
- Velogx (w) ’ <0.5 o (05-02)P? T \05—6 (05-02)P"

Since

Hence, for o > 0.5, we have

pr2 ] pr10'5_a log pr1
1 —
/pr1 o dO (Vzlogz) = O ( (0 —05)2 (80)

Dr2 1
pr1 29 logx

For o > 1, the integral dx can be computed directly from the definition of the

Exponential Integral E; (r) = [7° %du (where r > 0) to obtain

r

Pr2 1
dr=F —1)logpr) — E —1)logp,
|7 g = Bulle — Dlogpn) — Bi((o ~ 1)logpra)

It should be pointed out that although the functions E((c — 1) logp,1) and E1((o — 1) log py2)
have a singularity at o = 1, the difference has a removable singularity at ¢ = 1. This follows
from the fact that as o approaches 1, the difference can be written as

Ey((0 —1)logpr1) — E1((0 — 1) log pr2) = —log ((1 — o) log py1) — v +log ((1 — o) log pr2) + v

or,

. Dr2 1 .
lim /pT1 o 1ngdx = lim By ((0 —1)logp1) — Ei((0 — 1) log pra) = —loglog pr1 + loglog pr2

To compute the integral [P"2 —L _dx for o < 0, we first use the substantiation y = log x

- pr1 z° logx
to obtain

Pr2 1 log pr2 e(l—a)y log pra e(l—d)y log pr1 6(1_U)y
/ do = dy = / dy — / dy
pri 27 log x log pr1 ) € Yy € Y

where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1
and z3 = y/log pr2 , we then obtain

Pro 1 1 e(1=0)(log pr2)2z2 1 e(1=0)(log pr1)21
P
pr1 L ].Og T €/log pra 22 e/log pr1 ?1
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With the variable substantiations w; = (1 — o)(log py1)2z1 and wa = (1 — o)(log py2)2z1 and by
adding and subtracting the terms — |, ((11 :))elogp | ((1 o) logpr1 w1 we then have

Dr2 1 (1—0)logpra cw2 _ 1 (1-0)logpr1 gw1 _ |
/ dx :/ : dws —/ c dwr+
D ( (

. x%logx 1—0)e wa 1—0)e w1

1—0o)e w2

/(10) log pro dwo /(10) log pr1 dwq
( (1—o0)e w1

Using the following identity [9, page 230]

ael 1
/ —dt = ~Fy(~a) ~ log(a)
0

where a > 0, we then obtain for o < 1,

Pr2 1
dr =FE —1)logpr) — E —1)logp,
[ gz = Bulle ~ Dlogpn) — Bi((o ~ 1)logpra)

Hence, for o > 0.5, we have

Z — = FEi((0 —1)logpr1) — E1((0 — 1) logpr2) + €

In general, if there are no non-trivial zeros for values of s with R(s) > a, then by following
the same steps, we may also show that for ¢ > a, we have

Y — =Ei((c —1)logp,1) — Er((0 — 1) logpra) + ¢

where, e = O (p;1477 log pr1 /(0 — a)?).

It should be pointed out that if we write w(x) = Li + J(x), then € can be also given by
Pr2 dJ(x)

loa
Ppri1 T

€ =

Appendix 3

Assuming RH is valid and for ¢ > 0.5, to show that

Z p— = E1((s — 1)logpr1) — E1((s — 1) log pra) + €
=rl (2

where, e = O (( |5 ‘H)Q pp /20 long) we first recall that

DPr2 d Pr2 ]_ Pr2 1
Z — = m(@) :/ dx—i—/ —dO (V/zlog ).
p pr1 L

S S
i=rl pl Pr1 x r1 L logﬂf
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We will first compute the integral with the O notation. This can be done by integration by
parts to obtain

Pr O r 1 r (@] \/ Pr 1 r Pr
/ i %dO (Vzlogz) = (vpr2 :)gp 2) _ Oy ;)gp 1) —/ "0 (Vzlogz)d (;)
p p

1 Dr2 Pri1 rl

The integral on the right side of the above equation can be then written as

DPr2 1 DPr2
/ O (Vzlogz)d (ﬁ) = —s/ O (Vzlogz) z~*da.
p p

1 1

Hence,

/zopr2 O (Vxlogz)d <;)' < \s‘/pm O (Valogz) |z~ |dz.

1 1
Consequently,

pr2 1 pr1°577 log py1
~d 1 = ST — P
/m pr 0 Vrlogr) =0 (‘S‘ (0 —0.5)2

For R(s) > 1, the integral [P? —-L_dz can be computed directly from the definition of

pr1 xSlogx

the Exponential Integral E(z) = [/ e_ttz dt (where R(z) > 0) to obtain

Pr2 1
/ 5 logxdm = FEi1((s—1)logpr1) — E1((s — 1) log py2)
Ppri1

Pr2 1
pr1 z5logx

To compute the integral dx for R(z) < 1, we first write the integral as follows

Pr2 1 pr2 0 logz t1 pr2 e~ 08T i (¢]
/ : dr — / e cos(tlog x) dr — Z/ e sin(t log x) .
1 TSlogx Pr1 log x P log

ologx

The first integral on the right side [Pr2 <" =" cos(tlog) g, can he computed by using the sub-

Pri logz
stitution y = log x to obtain

/Pr? e~71987 cos(t log Jr)d /Pr? e(1=9)y cos(ty)d
T = ‘ Y,
P p

1 log x r1 y

or

/p'rQ e_UIOgmcos(t log J;) dl. _ /pr2 e(l_a)y Cos(ty) dy n /pr2 6(1_0)y dy B /p'r2 e(l_g)y
p p p p

1 logm 1

Hence,

- log x e B

/107"2 ¢~ 0 logw cos(tlog x>da: B /p""1 6(1*”)9(1 — Cos(ty))dy B
P

/pr2 e(lfo)y(l — COS(ty)) d
Yy

€

pr1 o(1=0)y pro o(1=0)y
/ ¢ dy + / ¢ dy
€ Yy € Yy
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where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1
and z3 = y/log pr2 , we then obtain

le—

/1’7'2 e~7198% cos(t log ) P /1 e(1=o)ogpr)z1(1 — cos(t(log pr1)21))
xTr =
Pr1 log z c

/log pr1 21

/1 e(l=o)(ogpr2)22 (1 _ cos(t(log pro)22))

de—
/log pra 22
1 e(l—a)(logpﬂ)zl 1 e(1—0)(log pr2)z2
/ —dz + —dx»
e/log pr1 21 ¢/log pra 22

By the virtue of the following identity ([9], page 230)

/01 e _tcos(bt))dt = £ loa(1 +17/a?) + Li(a) + RE) (~a + it)],

where a > 0, we then obtain the following

pro ,—0logx 1
/ 2 e COS(t Og[E) dr — %[El((s — 1) logprl)] + Ll((l — O') logprl)_
p

log

RIEL((s — 1) log pro)] — Li((1 — o) log pro) —

1 e(1=0)(logpri)z1 1 e(1=0)(logpr2)22
[
€/log pr1 21 e/log pro 22

With the variable substantiations w; = (1 — o)(log p,1)2z1 and wy = (1 — o)(log p,1)21 and by

adding and subtracting the terms — [ ((11:;))610g Predus  f ((11:(;)€l°g Pri e, we then have

pro ,—0logT
/ e cos(tlogz) , R[E1((s — 1) logpr1)] + Li((1 — o) log pr1) —
P

- log
RIE1((s — 1) log pra)] — Li((1 — o) log pr2)+

(1—0)logpre gw2 _ 1 (1-o)logpr1 ew1 _ 1
/ de - / dw1+
(1=0)e w2 (1—0)e w1

1—o0)e w2

1—0)e w1

/(1_0) log pr2 dw2 /(1_0) log pr1 dU}l
( (

Using the following identity [9, page 230]

aet _ 1
/ ¢ ; dt = Ei(a) — log(a) — v
0

where a > 0, we then obtain for o < 1,

/Pr? e~7198% cos(t log )
P

e dz = R[E1((s — 1) log pr1)] — R[E1((s — 1) log pr2)]

1
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Similarly, using the identity [9, page 230]

1 pat b
/ Ln(t)alt = m — arctan(b/a) + S[Eq(—a + ib)],
p

o t

where a > 0, we can show that for 0 < 1, we have

dz = S[E; (s — 1) logpr1)] — S[E1((s — 1) log py2))-

/pr? e~7198 % 5in(t log )
Pr1 log x

Therefore, for R(s) > 0.5, we have

Z pif 1((s = 1)logpr1) — E1((s — 1) logpy2) + ¢
i=rl £

where, ¢ = O (%pml/%g logprl) and if we write 7(x) = Li + J(x), then € can be also

given by
_ /pr2 dJ(l')
‘= Pr1 ¥
Appendix 4
To show that
N
n=1 n -

we first note that

Zd/n /’L(d7p’r’) = 1/ ifn= 1/
>d/n p(d, pr) = 1, if all the prime factors of n are less than p,,
> d/n #(d; pr) = 0, if any of the prime factors of n is greater than p,.

Adding all the terms >, /n w(d,py) for 1 < n < N, we then obtain

0<Zunpr {NJSN,

n=1

where |z | refers to the integer value of z. Define r,, as

|5
'm = ——|1—/1,
n n
where 0 < r,, < 1. Hence, we have
N N N N N
>, pr)rn < pu(n,pr) {J + Y pln,pr)r > pln,pr)r
n=1 n=1 n n=1 n=1

Since



thus, for every p, we have

NS Y <ow,
n—1 n
or
_q o N ) <o
n=1 "
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