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Abstract

In this paper, we have used the partial Euler product to examine the validity of the Rie-
mann Hypothesis. The Dirichlet series with the Mobius function M(s) = 72, 1/n® has been
modified and represented in terms of the partial Euler product by progressively eliminating
the numbers that first have a prime factor 2, then 3, then 5, ..up to the prime number p, to
obtain the series M (s, p;). It is shown that the series M (s) and the new series M (s, p,) have
the same region of convergence for every p,. Unlike the partial sum of M (s) that has irreg-
ular behavior, the partial sum of the new series exhibits regular behavior as p, approaches
infinity. This has allowed the use of integration methods to compute the partial sum of the
new series to determine its region of convergence and to provide an answer for the validity
of the Riemann Hypothesis.
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1 Introduction

The Riemann zeta function ((s) satisfies the following functional equation over the complex
plain [1]
C(1 —s) = 2(2m)2 cos(0.5sm)T(5)(s), (1)

where, s = o + it is a complex variable and s # 1.

For o > 1 (or R(s) > 1), ((s) can be expressed by the following series

=1

C(S) = = Ea (2)

or by the following product over the primes p;’s

1 o0 1
C(s)_iHl<1_pf>' 3)

where, p1 = 2, [[:2,(1 — 1/p;®) is the Euler product and [[;_;(1 — 1/p;®) is the partial Euler
product. The above series and product representations of ((s) are absolutely convergent for
o>1



The region of the convergence for the sum in Equation (2) can be extended to %(s) > 0 by
using the alternating series 7(s) where

>  1\yn—1
ns) = 30 @
n=1
and .
C(s) = 5= 1(s)- (5)

One may notice that the term 1 — 217% is zero at s = 1. This zero cancels the simple pole that
((s) has at s = 1 enabling the extension (or analog continuation) of the zeta function series
representation over the critical strip 0 < R(s) < 1.

It is well known that all of the non-trivial zeros of ((s) are located in the critical strip
0 < R(s) < 1. Riemann stated that all non-trivial zeros were very probably located on the
critical line R(s) = 0.5 [2]. There are many equivalent statements for the Riemann Hypothesis
(RH) and one of them involves the Dirichlet series with the Mobius function.

The Mobius function p(n) is defined as follows
p(n)=1,ifn =1.

w(n) = (=1)%,if n = [T¥_ pi, pi’s are distinct primes.
p(n) = 0, if p?|n for some p.

The Dirichlet series M (s) with the Mobius function is defined as

M(s) = i “(f). 6)
n=1

n

This series is absolutely convergent to 1/((s) for R(s) > 1 and conditionally convergent to
1/((s) for R(s) = 1. The Riemann hypothesis is equivalent to the statement that M (s) is con-
ditionally convergent to 1/{(s) for R(s) > 0.5.

Gonek, Hughes and Keating [3] have done an extensive research into establishing a re-
lationship between ((s) and its partial Euler product for (s) < 1. Gonek stated ”Analytic
number theorists believe that an eventual proof of the Riemann Hypothesis must use both
the Euler product and functional equation of the zeta-function. For there are functions with
similar functional equations but no Euler product, and functions with an Euler product but
no functional equation.” In section 4, we will present a functional equation for ((s) using its
partial Euler product. The method is based on writing the Euler product formula as follows

s 1 r 1 e 1
1/“”:2(“1»:)ﬂ(”m)ﬂ(“m)

The above equation is valid for o > 1. To be able to represent ((s) in term of its partial Euler
product for o < 1, we have to replace the term [[.° (1 — 1/pj) with an equivalent one that
allows the analytic continuation for the representation of ((s) for o < 1. Thus, the new term,
that we need to introduce to replace [];° (1 — 1/pf), must have a zero that cancels the pole
that {(s) has at s = 1. In the section 4, we will use the complex analysis to compute this new
term and then represent ((s) in terms of its partial Euler product. In sections (2), (5), (6) and
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(7), we have introduced an alternative method to compute ((s) in terms of its partial Euler
product. This alternative method is based on modifying the Dirichlet series with the Mobius
function. The results of these two methods were then analyzed and used to examine the va-
lidity of the Riemann Hypothesis

In this paper, we claim the the Riemann Hypothesis is invalid. We support our claim by
proving that the series M (o) is divergent for ¢ < 1. We have achieved this result by intro-
ducing a method to represent the Dirichlet series M (s) (defined by Equation (6)) in terms of
the partial Euler product. This task is achieved by first eliminating the numbers that have
the prime factor 2 to generate the series M (s, 2). For the series M (s, 2), we then eliminate the
numbers with the prime factor 3 to generate the series M (s, 3), and so on, up to the prime
number p,. In essence, in sections 2, we have applied the sieving technique to modify the
series M (s) to include only the numbers with prime factors greater than p,. In the literature,
numbers with prime factors less than y are called y-smooth while numbers with prime factors
greater than y are called y-rough. In essence, our approach is to compute the Dirichlet series
over p,-rough numbers. In section 3, we have shown that the series M (s) and the new series
M (s, pr) have the same region of convergence.

So far, the efforts to use the series M (o) to examine the validity of the Riemann Hypothe-
sis have failed due to the irregular behavior of the partial sum of the series M (). In sections
5,6 and 7, we have shown that the partial sum of the new series M (o, p,) exhibits regular be-
havior as p, approaches infinity. This has allowed the use of integration methods to compute
the partial sum of the new series and consequently determine its region of convergence. With
this analysis and using the zeta function representation in terms of its partial Euler product
(section 4), we have been able to show in section 6 that the series M (o, p,) and M (o) are di-
vergent for o < 1. Thus, non-trivial zeros can be found arbitrary close to the line Re(s) = 1.

2 Applying the Sieving Method to the Dirichlet Series M(s).

The Dirichlet series M (s) with the Mobius function is defined as

M(s) = Z H(f)7
n=1

n

where 1(n) is the Mobius function. Thus,

1 1 0 1 1
It should be pointed out that our definition of M(s) is different from Mertins function M (z)
that is commonly found in the literature and defined as M (z) = >~ <, <, p(n).

Next, we introduce the series M (s,2) by eliminating all the numbers that have a prime
factor 2. Thus, M (s,2) can be written as

M1l L 1,0 1 1 1
BT T Ty s Tos T 115 135 159




Our analysis to test the conditional convergence of these series (M (s) and M(s,?2) for
o < 1) is based on comparing correspondent terms of these two series. Therefore, rearrange-
ment and permutation of the terms may have a significant impact on analyzing the region of
convergence of both series. Thus, it essential to have the same index for both series M (s) and
M (s, 2) refer to the same term. Hence, we will represent M (s, 2) as follows

or

M@@%:fimmm, 7)

where
p(n,2) = p(n), if n is an odd number,
wu(n,2) =0, if n is an even number.

The above series M (s,2) can be further modified by eliminating all the numbers that have
a prime factor 3 to get the series M (s, 3) where
1 1 1 1 1 1 1 0

M(,3)=1— — — -~~~ -
5 75 115 135 178 195 235 25°

or more conveniently

and so on.

Let I(p,) represent, in ascending order, the integers with distinct prime factors that belong
to the set {p; : p; > p,}. Let {1,1(p,)} be the set of 1 and I(p,) (for example, {1,1(2)} is the
set of square-free odd numbers), then we define the series M (s, p,) as

M(S,pr) _ Z /L(’I’L,pr)’ (8)
n=1

ns
where
p(n,pr) = p(n), if n € {1, 1(pr)},
otherwise, u(n, p,) = 0.
It can be easily shown that, for every prime number p,, the series M (s, p,) converges

absolutely for R(s) > 1. Furthermore, it can be shown that, for R(s) > 1, M (s, p,) satisfies
the following equation

M(e) = M(s.p) | (1 - 15) . ©

Since

then we conclude that, for R(s) > 1, M (s, p,) approaches 1 as p, approaches infinity.



3 The region of convergence for the series M (s) and M (s, p,).

In this section, we will deal with the question of the relationship between the conditional
convergence of the two series M (s,p,) and M(s) over the strip 0.5 < R(s) < 1. Theorem
1 establishes the the relationship between the conditional convergence of the series M (s, p,)
and M (s) along the real axis (or along the line 0.5 < ¢ < 1) while Theorems 2 establishes
the relationship between the conditional convergence of the two series M (s) and M (s, p;) for
0.5 < R(s) < 1.

Theorem 1 For s = o + i0, where 0.5 < o < 1 and for every prime number p,, the series M (o)
converges conditionally if and only if the series M (o, p,) converges conditionally. Furthermore, M (o)
and M (o, p,) are related as follows

Mio) = M. ]] (1 - {,) . (10)

i=1 (
The proof of Theorem 1 is outlined in Appendix 1.

Theorem 2 For s = o + it, where 0.5 < o < 1 and for every prime number p,, the series M (s)
converges conditionally if and only if the series M (s, p,) converges conditionally. Furthermore, M (s)
and M (s, p,) are related as follows

M(s) = M(s.p) [ <1 - 1) . (11)

S
i—1 D;

The proof of Theorem 2 follows from the fact that M (s) and M (s, p,) are Dirichlet series.
Consequently, the series M (s) is conditionally convergent if and only if the series M (o) is
conditionally convergent. Also, the series M (s, p,) is conditionally convergent if and only
if the series M (o, p,) is conditionally convergent. Using Theorem 1, we then conclude that
the series M (s) is conditionally convergent if and only if the series M (s, p,) is conditionally
convergent.

The second part of the theorem can be also proved by first defining M (s, p,; N1, N2) as the
partial sum

No
n7
M(SapT;N17N2): Z Lspr)a (12)
n=N1 n
where Ny > p,.. Then, we have

1
M(s,pr—1;1,Np,) = M(s,pr;1, Np,) — EM(&pr; L,N). (13)

s
Since the series M (s, p,) is conditionally convergent, then the partial sums M (s, p,; 1, Np;)
and M(s,p,; 1, N) are both convergent to M (s,p,) as N approaches infinity. Hence, as N
approaches infinity, we obtain

M(S’pr_l) = ]\;EIIOOM(‘g?pT—l; 17Np7") = M(Sapr) <1 - s) .

By repeating this process r — 1 times, we then obtain

M(s) = M(s.p) [ <1 - ;) .

=1



4  Functional representation of ((s) using its partial Euler product.

Theorems 1 and 2 of the previous section provide a relationship between ((s) = 1/M(s) and
the partial Euler product [];_; (1 — 1/p?). In this section, we will use the prime counting func-
tion to derive a functional representation for ((s) using its partial Euler product.

We will start this task by first writing ((s) for ¢ > 1 as follows

B BEDREE)

o T (1 1) = S (1 1),

For o > 0.5, we have

i=rl i=rl pzs
or )
I8 1 1 1
ol (1 1)Ly
zl_r[1< z) 121;1 pi® 2pi% 3pB
Let ¢ be defined as the sum
r2
1 1 1
6= - - — o 15
Z ( 2171‘28 3])2‘35 4pi4s ) ( )

i=rl

Thus,

r2
logH<1—>——Zl+5 (16)

i=rl zrlpl

Since [§|< 2202, (Qn% + ?m% + i ) thus 0§ = O(p}%7 /(20 — 1)). Furthermore, if 20 — 1

is a fixed positive number, then § = O(p!; ).

Using the Prime Number Theorem (PNT) with a suitable constant a > 0, the number of
primes less than «z is given by [4, page 43]

m(z) = Li(z) + J(x), (17)

where Li(z) is the Logarithmic Integral of x and

J(x)=0 (a:e_a\/@) ; (18)
or
J(z) =0 (x/(log x)k) : (19)

where k is a number greater than zero.

Using Stieltjes integral [5], we may write the sum ZQH for o > 1 as follows
A | pr2 dr(x)
Z oo o (20)
i=r1 Pi e=pr1 ¥



Using Equation (19) for the representation of 7(z), we may then write the integral in Equation
(20) as [5, Theorem 2, page 57]

r2
1 Pr2 ] 1 1

IET dx+0<k>, 1)

i=rl pl Pr1 xO’ log x (longl)
where £ is a number greater than zero. Therefore,
>~ 1 1 1
/ / 2l yo <k> . (22)
1 pz Pri1 :L»O' long Pr2 xO’ logx (logp’f’l)

Recalling that the Exponential Integral 1 (r) is given by

e} e_u
B = [ .

u

and using the substitutions v = (0 — 1) log z, du = (0 — 1)dz/z and 27 /Jx = €“, then for o > 1,
we may write Equation (22) as

r2 1 1
2;1 p =FE1 ((c —1)logpr) — E1 ((0 — 1) logpra) + O <(10gpr1)’“> ) (23)

Combining Equations (16) and ((23)) and noting that, for ¢ > 1, E; ((0 — 1) logpr2) ap-
proaches zero as p,o approaches infinity, we may write Equation (14) for o > 1 as

—log((o Zlog(l—)— > ig+5,
i=r+1 Pi

or

log ¢(o) + Zlog (1 - ) Ey ((0 —1)logpri1) = ¢,

where € = O(1/(logp,1)¥) is an arbitrarily small number attained by setting p, sufficiently
large. Therefore,

(1T (1 - ;) exp (~Ei((o — 1) logpr41)) = 1+ €. (24)
=1 1

As p, approaches infinity, e approaches zero. Hence, the right side of the above equation ap-
proaches 1 as p, approaches infinity.

Similarly, for R(s) > 1, we can use the following expression for E(s)

El(s) :/1 ° dl‘,

X

to show that

Jim {C H (1 - p1> exp (—FE1((s — 1) 10ng+1))} L. (25)

i



Let the function G(s, p,) be defined as

G(s,pr) = C(s) ﬁ (1 - p15> exp (—Eq((s — 1) logpri1)) (26)

=1 2

where, G(s,p,) is a regular function for £(s) > 1. Referring to Equation (25), the function
G(s, pr) approaches 1 as p, approaches infinity. It should be noted that, for every p,, the func-
tion exp (—E1((s — 1) log pr+1)) is an entire function, the function ((s) is analytic everywhere
except at s = 1 and the function [];_; (1 — 1/pf) is analytic for #(s) > 0. Thus, for any o > 1,
the function G(s, p,) can be considered as a sequence of analytic functions. Furthermore, as
pr (or ) approaches infinity, this sequence is uniformly convergent over the half plane with
o > 1+ e (where, € is an arbitrary small number). Therefore, by the virtue of the Weiestrass
theorem, the limit is also analytic function [6] (Weiestrass theorem states that if the function
sequence fy, is analytic over the region €2 and f,, is uniformly convergent to a function f, then
f is also analytic on Q and f,, converges uniformly to f on Q). If we define this limit as G(s),
where

G(s) = lim G(s.pr) @)

then, G/(s) is analytic over the half plane }(s) > 1 and it is equal to 1 by the virtue of Equation
(25).

Next, we will extend the above results to the line s = 1 + it. We will then show that if RH
is valid, then for the strip s = o + it where, 0.5 < o < 1, the above results will also be valid
with the limit of G(s, p;) is 1 as p, approaches infinity.

We will start this task by showing that although both ((s) and E;((s — 1) log py+1) have a
singularity at s = 1, the product G(s, p,) has a removable singularity at s = 1 for every p;.
This can be shown by first expanding ((s) as a Laurent series about its singularity at s = 1

(s —1)° (s —1)°
or T BT

()= —— 4y —m(s— 1)+ . (28)

s—1

where v is the Euler-Mascheroni constant and ;’s are the Stieltjes constants. For s = 1 + ¢,
where € = € + i€y, €1 and €3 are arbitrary small numbers, the above equation can be written
as

62 63

+’y—716+72*‘—73f+... (29)

((s) = 1 C—mg

€

Furthermore, for o > 1, using the definition of the Exponential Integral, we may write

Eq(s) as
82 83 84

Thus, for s = 1 + ¢, we have

(elogpr)?  (elogp,)?
551 TR G

exp (—E1((s — 1) logp,)) = €e log p, exp (—elogpr + -

By taking the product ((s) exp (—E1((s — 1) logp,)) and allowing e to approach zero, we then
obtain

tim {((s) exp (~F1((s — D logp))} = ¢ logpr. (32)
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However, it is well known that the partial Euler product at s = 1 can be written as [8]

ilﬁl@_;):big_;«w(aog;)z)' (33)

Multiplying Equations (32) and (33), we may conclude that at s = 1, G(s, p,) approaches 1 as
pr approaches infinity. Furthermore, for s = 1 + it and ¢ # 1, the value of exp(—E (it logp,))
approaches 1 as p, approaches infinity and since

lim {C(S)Z:f[l <1 - pi“"’)} =1,

therefore, for s = 1 + it, we have the following

g&G@@ng&%@ﬁiG—;>wmfﬁw—waHM}=l

i=1 i

So far, we have shown that the function G(s, p,) is uniformly convergent to 1 when R(s) >
1. We have also shown that G(s,p,) is convergent to 1 for R(s) = 1. In the following, we
will show that, assuming the validity of the Riemann Hypothesis, the function G(s,p,) is
uniformly convergent to 1 for every value of s with R(s) > 0.5 + ¢, where ¢ is an arbitrary
small number. Toward this goal, we will first show that the function G(s, p,) is convergent
for any value of s on the real axis with ¢ > 0.5. This can be achieved by first writing the
expressions for G(o, py1) and G(o, py2) (Where 12 is an arbitrary large number greater than 1)

rl

G(Uv prl) = C(U) exp (_El((a - 1) 10gpr1+1)) H (1 - plg> ’ (34)
i=1 ¢
T2

G(0,pra) = ((0) exp (= E1((0 — 1)logprat1)) || (1 - p10> : (35)
i=1 g

Since the function G(s, p,) is analytic that is not equal to 0 for o > 0.5, hence we can divide
Equation (35) by Equation (34) and then take the logarithm to obtain

T2
log (gEZ: Zj;) = Ei ((0 —1)1logpri4+1) — E1 ((0 — 1) log prat1) + log (igﬂ (1 — pj"))
(36)

To compute the logarithm of the partial Euler product in Equation (36), we recall Equation
(16)

T2 1 r2 1
logH 1—}; =— Z — +9,

P41 i i=r141 Pi
where § = O(p};%? /(20 — 1)). Furthermore, on RH, we have
7(2) = Liz) + J(2), (37)
where Li(z) is the Logarithmic Integral of x

J(z) =0 (Vz logz) . (38)
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Using the above equation for the representation of the prime counting function, we may then
obtain (Appendix 2)

r2
1
Y — =Ei((c —1)logpy141) — E1((0 — 1) log pra) + ¢,
i=rig1 Pi

where ¢ = O (p1°°~7 log p,1/(0 — 0.5)?). Hence, Equation (36) can be written as

log (G(U’pﬂ)> =ec+ 0+ Ei1((c — 1)logpr2) — E1((0 — 1) log prat1).

G(U7 pTl)
Since E1((0 — 1)logpr2) — E1((0 — 1) log pr2+1) approaches zero as p,2 approaches zero, thus
. G(Ua pT'Z)
1 1 — ] = 0.
pratoo 0 (G(U, prl)) =t

For the above equation, it should be pointed that we have kept p,; fixed while we allowed
pr2 to approach infinity. Hence G(o, p,) is bounded as p, approaches infinity. Furthermore,
for 0 > 0.5 + ¢, € + ¢ can be made arbitrary small by choosing p,; arbitrary large, thus the
limit of G(o, p,) exists as p, approaches infinity and it is given by

G(o) = lim G(o.pr) (39)

This proves that, on RH, G(o, p,) is convergent as p, approaches infinity and thus G (o)
exists for o > 0.5. In Appendix 3, we have shown that, on RH and for R(s) > 0.5, we have

r2

> pl,s = Ei((s —1)logpy1) — E1((s — 1) log pra) + ¢, (40)
i=rl £

where ¢ = f;?:f dJ(z)/z® = O (% pr1%97% log pM). Thus, we can follow the same steps
and show that G(s, p,) is convergent as p, approaches infinity and thus G(s) exists for R(s) >
0.5 (it should be pointed out, that the term € in Equation (40) can be determined in terms of
the non-trivial zero if the von Mangoldt function is used in deriving Equation (40) instead of
using the prime counting function).

It should be noted that, while the function sequence G(s, p,) is not uniformly convergent
when the region of convergence is extended all the way to the line ¢ = 0.5, it is however
uniformly convergence for any rectangle extending from —i7" to ¢T" (for any arbitrary large
T) and with ¢ > 0.5 + ¢, where € is an arbitrary small number. This follows from the fact
that, on RH, ¢ (or, the O term) is bounded for any ¢ > 0.5 + €. Since G(s, p,) is analytic for
R(s) > 0 and it is uniformly convergent for R(s) > 0.5 + ¢, thus G(s) is analytic for the half
right complex plain with R(s) > 0.5 + € (Weiestrass theorem [6]). Since we have shown that
G(s) = 1for R(s) > 1, thus on RH, G(s) = 1 for R(s) > 0.5 + €. Hence, we have the following
theorem

Theorem 3 For s = o + it and o > 0.5, the following holds if RH is valid

Jim {C(S) ﬁ (1 - p13> exp (—E1((s — 1) logprﬂ))} =1 (41)
i1 i
Jim {M (s, pr) exp (E1((s — 1) logpr11))} = 1. (42)
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It should be also pointed out that Theorem 3 can be generalized to the case where there are
no non-trivial zeros for values of s with R(s) > a (where a > 0.5). For this case, Equation (41)

is valid for every s with (s) > a and ¢ in Appendix 3 is given by O ((U‘ L)Q pr1%77 log pH).

Equation (41) of Theorem 3 can be written as follows

r2
1
log ((s) +1log [ | (1 — p8> — E1((s = 1)logprat1) = 0,
=1 i

where the equality of both sides is attained as 72 (or p,2) approaches infinity (or more appro-
priately, the right side is arbitrary close to zero as p, approaches infinity). It should be noted
that while both functions log {(s) and E;((s — 1) log pr2+1) have a branch cut along the real
axis where 0.5 < o < 1, the difference (i.e. log((s) — E1((s — 1) log pr2+1)) does not have a
branch cut. For r < r2, the above equation can be then written as

log ((s) = E1 ((s — 1) log pra+1) Zlog (1 - ) Z log (1 - )
p; i=r+1
Since, on RH and for R(s) > 0.5, we have (refer to Appendix 3)

r2
- Z log (1—1> = Y L = B (s D)logpr) — Br (s — 1) logppa) + ¢

i=r+1 Py i= r+1pl

where e = [*dJ(z)/z* = O (%‘5)2 P00 logpr) and § = O(p.=27 /(20 — 1))., therefore

log((s) = — ilog (1 — pls> +Ei((s—1)logpry1) +e+0. (43)

=1 A

where for sufficiently large p,, ¢ is negligible compared to €. Taking the exponential of both
side, we then obtain for sufficiently large p,

C(s) ﬁ (1 - p15> = exp (£ ((s — 1) logpry1 + ¢ +0)), (44)

i

or,
M(s,pr) = exp (—E1 ((s —1)logp,)) (1 — ), (45)
where e = [* dJ(z)/2* and e~ is approximated by 1 — ¢ .
While in this section, we have used the analytical methods to compute M (s, p;), in the
next section, we will employ integration methods to compute the partial sum M (s, p,; 1, p?).

The results obtained in this section and the following section will be then combined in sec-
tions (6) and (7) and then used to examine the validity of the Riemann Hypothesis.

5 The series M (o, p,) ato = 1.

In this section, we will first provide an estimate for the partial sum M (1, p,;1,p,*) as a ap-
proaches infinity. This estimate will be computed using integration methods and noting that
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M (1, p,) equals zero for every p,. Therefore, for every p,, M(1,p,;1,p,*) approaches zero as
a approaches infinity. Our first estimate for M (1, p,; 1, p,®) is given in Appendix 4 where we
have shown that for every p, and N, we have

|M(1,pr;1,N)|= < 2.

al p(n, pr)

n

Before we present the details of our method, it is important to mention that the partial
sum M (1,p,; 1, p,*) can be also generated using y-smooth numbers. The y-smooth numbers
are the numbers that have only prime factors less than or equal to y. These numbers have
been extensively analyzed in the literature [10][12]. In [10], a clever method was presented to
generate the partial sum M (1, p,; 1, p,*). With this method and using the inclusion-exclusion
principle [10, page 248], one can then provide an estimate for the partial sum M(1, p,; 1, p,®).
In this section, we will provide a more general approach to compute M(1,p,;1,p.*). The
main advantage of our approach is the ability to extend it to compute the partial sum for
values of s other than 1. We will present our method in the following two steps.

e In the first step of our approach, we will show that, for every a and as p, approaches
infinity, the partial sum M (1, p,; 1, p,?) is a function of only « (independent of p,).

Toward this end, we define the function f(a,p,) as

pr®
n) T
flapr) = M(Lps1,p %) = Y N<np>
n=1

We will then show that, for every a and as p, approaches infinity, the function f(a,p,) ap-
proaches a deterministic function p(a). In other words; if we plot M(1,p,;1,N) (where
N = p,*) as a function of a = log N/log p,, then for each value of a and as p, approaches
infinity, f(a, p,) approaches a unique value p(a). This is equivalent to the statement

p(a) = lim f(aapr) = p}i_rgo M(LPM 1apra)'

Pr—00

This result can be achieved by first noting that the partial sum M (1, p,; 1,p,.*) for1 < a < 2
is given by

1
M(LPMLPTG) =1- E .
pr<pi<pre Dl
If we define M1 (1,p,;1,p,*) as
o 1
Ml(lapT; lva ) = E 177
a (2

Pr<pi<pr

then, using Stieltjes integral, we obtain

) [ i)
1 prY

M(l’pr;l’pra) :1_M1(17p7";17p7"a) :1_/ x
Pr

On RH, we have
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dr(p,¥) = dLi(p:*) + dO(v/p,¥ log(pr")),

or

Y
dm(prY) dp,? + dO(\/pyYlog(pY)) = %dy + dO(\/pr¥ log(prY)).

~ log(pyY)

Hence, for 1 < a < 2, we have

aCl@/+/1“ dO(v/p:7og(p,Y))

r

M(1L,pyi1,p,%) = 1 —/

=1—- log(a) + 0(91(]% a))?
1y

where

(1 (pr. a)) = /a dO(v/p,7 log(p,*))

1 oY
As p, approaches infinity, O(g1(p;, a)) approaches zero. Consequently,

lim M(1,p.;1,p,%) =1 —loga.

Pr—+00

The terms of the partial sum M(1,p,;1,p,*) for a in the range 1 < a < 3 are either a
reciprocal of a prime or a reciprocal of the product of two primes. Therefore, for 1 < a < 3,
we have

1
M(1,pslp")=1— > —+ >

Pr<p;<pr® pi Pr<pi1<pi2<pi1Pi2<pr

1
o Pi1Di2 ’

where p;; and p;; are two distinct primes that are greater than or equal to p,. Let M>(1, p,; 1, p,%)
be defined as

1 1 1
Ma(1,pr; 1,pr%) = > =5 2 MLpsiLp/p)+

Pr<pi1 <Pi2<pPi1Pi2<pr® pirpi2 pr<pi<pra=1 "

where the factor of half was added since each term of the form 1/(p;1p;2) is repeated twice.
It should be also noted that the second sum of the above equation includes non square-free
terms (notice that, there is no repetition in any of the non square-free terms). The term ry was
added to offset the contribution by these non square-free terms. We will show later that the
contribution by these terms (or r2) approaches zero as p, approaches infinity. Using Stieltjes
integral, we then have

1 el dn(p,y
My(L, pr;1,pp) = 5/1 ;py ! (log(a ~ y) + Olg1 (prea — ) + 7.

Hence

(a—vy)

" 1 re=llo
M@1,pr;1,p.%) = 1*10g(a)+0(g1(pr,a))+§/1 & ) dy + O(g2(pr,a — y)),

where

AO(/plog(pr") |

Olga(prr0)) = 5 .

2.1

1 a—1 0] T 1 a—1
(] 21
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dO(v/pr¥ log(pr¥))

pr

1 ro—1
5[ Olra-y) ra

It can be easily shown that, for any fixed value of a, the three integrals on the right side of
the above equation approach zero as p, approaches infinity. We will also show later that
approaches zero as p, approaches infinity. Thus, for 1 < a < 3, we have

a—1 1 _
lim M(1,pr;1,p.%) =1~ loga+/ Mdy
1

Pr—00 y

Therefore, as p, approaches infinity, M (1, p,; 1, p,*) is only dependent on a.

Repeating the previous process |a| times (where |z] is the integer value of z) and by
using the induction method, we can show that, as p, approaches infinity, the partial sum
M(1,p,; 1,p,*) is dependent on only a. Specifically, we first write the partial sum M (1, p,; 1, p,¢)
as follows

M(l,pr; 1apra) =1- Ml(lapr; 1apra) + M2(1apr§ 17pra) — ...+ (_l)ij(lapM 17pra) + .t

(=D, (1 pe L, pe®) + (=DM (L, s 1,p,),
where

1
M;(1,pp;1,p%) = > T
o Pi1Pi2---Pij

Pr<pi1<pi2<..<pij <Pi1P:i2--Pij <Pr

and p;1, pi2, ..., pi; are j distinct prime numbers greater than or equal to p,. If we assume that
Mj—l(lvpr; 1,p,?) is given by

M;_1(1,p;1,p,") = hj—1(a) + O(gj-1(pr, a))

where h;_1(a) is a function of @ and O(g;_1(pr, a)) approaches zero as p, approaches infinity,
then
a 1 1 a
Mi(LprsLpe®) == > —Mia(L,ps e, 07 /pi) + 7,
pr<p;<pro~! pi

where the factor of 1/j was added since each term of the form 1/(p;1pi2...pij) is repeated j
times. It should be also noted that the sum of the above equation includes non square-free
terms. The term r; was added to offset the contribution by these non square-free terms. We
will show later that the contribution by these terms (or r;) approaches zero as p, approaches
infinity. Using Stieltjes integral, we then have

a1 o tdr(p¥
ML) =5 [ LD (s (0= ) + Olgsa(prea = ) + 1
Hence
1 a—1 h; a —
M;(1,pr;1,p,%) = j/1 jl(yy)derO(gj(pr,a)%

14



where the first term is a definite integral with only one variable y integrated over the range
1 <y < a — 1. Thus, the definite integral is a function of only a. We define this function as
hj(a). The second term is given by

O(gj(pr,a)) = ;/;1—1 O(gj—l(pyr,a — y))dy N ; /1“_1 By (a— y)dO(\/;Tjjéog(pry))+

dO(/pr¥log(p,"))

pr

1 a—1
,7/1 O(gj—1(pr,a—y)) + 7.

It can be easily shown that, for a fixed value of a, the three integrals on the right side of
the above equation approach zero as p, approaches infinity. We will also show later that r;
approaches zero as p, approaches infinity. Hence, as p, approaches infinity, we have

1 fa—1 h,_l(a_y)
lim M;(1,ps;1,p.%) = = 4 T dy=h,
p,»l—r>noo ]( 7p 9 ap ) j/l y y ](a)

where h;(a) = log(a). Hence, for every a and as p, approaches infinity, we have

lim M(1,pr;1,p.%) =1 — hi(a) + ha(a) — hs(a) + ... + (1)1 h 4 (a) = p(a). (46)

Pr—00

It should be pointed out that the above equation implies that the partial sums M (1, p,; 1, p,%)
and M (1,p¥;1,p.*Y) (where, p¥ is a prime number) have the same limit as p, approaches
infinity. Hence,
3 . ay __ 3 Y. ayy\ __
Jm M(1pr 1 %) = lm M(1,pr51,0,%) = pla). (47)
Equation (47) will be used in the next step to estimate the asymptotic behavior of the function
p(a) as a approaches infinity.

As mentioned earlier, the partial sum M (1, p,; 1, p,*) constructed by this process included
non square-free terms (i.e r;’s). In the following, we will show that, for every a and as p,
approaches infinity, the total contribution by these non square-free terms approaches zero as
well. Toward this end, let Sy be the sum of the terms with the factor 1/p?. Let S be the sum
of the remaining terms with the factor 1/ (pr41)?, S2 be the sum of the remaining terms with
the factor 1/(p,+2)?, and so on. Let S be sum of all the terms associated with non square-free
terms. Thus, S is given by

1 1 1
527250—}- 251+...+ QSL,
br Pr+1 DPr+i

where p,; is the largest prime where its square is less than p,“. However,

1 1 1
Sol, [S1], - [SI|I< 14+ s+ 5 + ... )
‘0’7‘1’7 7’l| +2—|-3—|— +p7,a
Thus,
150!, [S1], ..., | Si|= O(alog p,).
Therefore,

15



1 1 1
Sz(—i——i—...—f— >Oalo Dr).
P2 pr+12 Pr+12 ( 87r)

Hence, the contribution by the non square-free terms S is given by,

S = O(alogp;/pr).

Consequently, for every a and as p, approaches infinity, S (or the contribution by the non
square-free terms) approaches zero.

e In the second step, we write the partial sum M(1, p,; 1, p,*) as the sum of two compo-
nents. The first one is the deterministic or regular component and it is given by p(a). The
second one is the irregular component R(1, p,; 1, p,*) givenby M (1, p,; 1, p,*) —p(a). We
will then show that the function p(a) is the Dickman function that has been extensively
used to analyze the properties of y-smotht numbers.

Toward this end, we write the partial sum M (1, p,; 1, p,*) as the following sum

1 1
M(Lp;lLp®)=1— > =MQ,p;l,p/p)— >, —. (48)

1
pr<p;<pr®/? pro/2<p;<p,°

Notice that the above equation is justified by the virtue that M (1, p;; 1, p,*/p;) is comprised
of 1 and the terms of the form 1/n where p; < n < p®/p;. Furthermore, every factor of n is
greater than p;. The second sum was added since the first sum is void of the terms 1/p;’s for
pi¥? < p; < p® One can easily show that every term in the right side of Equation (48) is a
term in the left side and vice versa. Using Stieltjes integral, we can write the above equation
as follows

a/2 y
M1, p;1,p%) =1 */ dn(p.") , (49)

@ dn(pY
(I s - [ )
s

a/2 pg

where, on RH, dr(p,”) is given by dLi(p,¥) + d.J(p,¥)). It should pointed out that while Equa-
tions (48) and (49) provide the value of the partial sum M (s, p,;1,p%) at s = 1, they can be
easily modified to compute the partial sum for any value of s to the right of the line }(s) = 0.5.
This task will be achieved in the next section and it will be the key step to examine the valid-
ity of the Riemann Hypothesis

As p, approaches infinity, M (1, p,¥; 1, p¢~Y) approaches p(a/y — 1) (refer to Equation (47)).
Therefore, as p, approaches infinity, we have

a/2 | a
oy =1~ [" p(y)dy—/ <3 (50)
1 Yy a/2 Y
It is shown in Appendix 4 that |M(1, p,;1,p,*)|< 2 for every p, and a. Hence, |p(a)|< 2.
Consequently, p(a) approaches zero as a approaches infinity (this follows from the fact that
if p(a) does not converge to zero, then the first integral of the above equation diverges as a
approaches infinity which then leads to the divergence of p(a). This contradicts our earlier
statement that |p(a)|< 2). Thus, as a approaches infinity, we have
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a/2 p a1
/ (y>dy—1—MQ. (51)
1 )

A key step in our method to examine the validity of the the Riemann Hypothesis is the com-
putation of the rate at which p(a) decays to zero. This task will be achieved by using Equation
(50) to compute the difference p(a + Aa) — p(a) (where, Aa is an arbitrary small number) to
obtain

(a+Aa)/2 p (422 a2p(2—1 (a+Aa) g a g
1 Yy 1 ) (a+Aa)/2 Y a/2 Y

Since the third integral of the above equation is equal to the fourth integral, therefore

pla+ Aa) — pla) = - y.

(a+Aa)/2 p (LA“ — 1) a/2 p (9 — 1)
e A Ml

1 Y
If we define z = y/(1 + Aa/a), then we have

((a+Aa)/2)/(1+Aa/a) o (& — q a/2pl2—1
Ma+A®—pw%=—/ png+/ (y)dy
1/(14+Aa/a) z 1 Y
Thus,
1 a_ 1
pla+ Aa) — p(a) = —/ Mdz.
1/(1+Aa/a) z

Dividing both sides of the above equation by Aa and letting Aa approach zero, we then
obtain

da a

dp(a) _ pla—1) 52)

where p(a) = 1—1log(a) for 1 < a < 2. Equation (52) is a first order delay differential equation
that has been extensively analyzed in the literature [10][12]. The function p(a) is known as
the Dickman function. As a approaches infinity, p(a) can be given by the following estimate

[10] )
pla) = (200 (53)

aloga

For sufficiently large values of a (a > 20), we have p(a) < a™%.

To compute the irregular component of M (1,p,;1,p%), we notice that R(1,p,;1,p,*) is
given by

R(lva; 17p7“a) = M(LPT? 1>p?) - p(a)

Thus, R(1,p,;1,p,*) can be computed by subtracting Equation (50) from Equation (49) to
obtain

VBT los(e: ) [+ AP lox(e:")

u a/2 dO
Rt = [ plapy -1 P

r

dm(py)

a/2
/1 R(lapTy;lvpg y) p%

(54)
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In sections 6 and 7, we will derive the regular and irregular components of M (o, p,; 1, p%)
for values of o # 1 and we will then analyze them to examine the validity of the Riemann
Hypothesis.

So far, we have shown that the regular component of M (1, p,; 1, p?) is given by p(a). Since
J{dp(z) = p(a) — p(1) = p(a) — 1, therefore the regular component of M (1, p,; 1, p%) can be

also written as " “
= / dp(z)+1=1 +/ o' (z)dx
1 0

Similarly, for values of s # 1, we can consider that M (s, p,; 1, p?) is comprised of two com-
ponents. The first component is the regular component defined as F'(«, a) (where o = (s —
1) log p,) and is given by

aa—l—l—/

F(aya) =1+ /a e/ (z)dz, (55)
0

_1+/ ls)x/()dx’

or,

while the irregular component is given by M (s, p,; 1,p%) — F(c, a). Notice that for s = 1, we
have a = 0 and F'(0,a) = p(a). We now define F'(«) as

F(a)= lim F(a,a) =1+ e *p/( (56)

a—o0

Thus, for R(s) > 1, o is a complex variable in the complex plane to the right of the lme
R(s) = 1. Hence, the integral [;* e~ **p/(x)dz is the Laplace transform of the function p ( )
and is given by F(a) — 1 (where F(« ) is the regular component of the series M (s, p,), i
M((s,pr; 1,00)). Since the Laplace transform of p(z) is given by e=#1(5) /s [11, page 569][12],
therefore the Laplace transform of p'(z) is then given by s£(p(z)) — p(0). Hence

F(a)= e Er(a)

Remarkably, these results agree with what we have obtained in Theorem 3. In Theorem 3,
we have shown that

dim {M (s, pr) exp (E1((s — 1)logpri1))} = 1,

or referring to Equation (45), we have

M(s,p,) = e 1) (1 —€(p,,s)), (57)
where e(p,, s) = [ dJ(z)/z* = O (Lspr’* logp, ) and J(z) = n(z) - Li(z). Conse-
quently, for (s) > 1, we then obtain

M(s,pr) = F() (1 = €(pr, 5)) - (58)

where F'(«) is the regular component of the series M (s, p,) and —F(«)e(py, s) is the irregular
component of the series M (s, p,). It should be emphasized here that the regular component
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F(«) is the value of M (s, p;) due to the Li(z) component of the prime counting function 7 (z).
It is also important to note that the irregular component is not the same as the difference
between the partial sum M (s, p,; 1, p,*) and the series M (s, p,).Therefore, except for s = 1
(where the irregular component €(p,, s) is zero for every p,), €(p,, s) may have values differ-
ent from zero although it approaches zero as p, approaches infinity

Notice that on RH, the previous analysis should also hold for R(s) > 0.5. This analysis
and its application to examine the validity of the Riemann Hypothesis will be presented in
the following two sections.

6 The regular component of M (s, p,;1,p%) for s # 1.

In the previous section, Equation (48) was used to compute M(1,p,;1,p,%). In this section,
we will modify this equation to compute M (s, p,; 1, p,*) for s # 1 as follows

1 1
M(s,pplp®)=1— > =M(s,piLps%/pi) — Y. = (59)

pr<pi<pr®/2 " pra/2<p;<pp> "

Using Stieltjes integral, we can write the above equation as

" /2 dx(p,Y u @ dr(pY
M(s,pr;1,p%) = —/ %)M(svpry;l,pw/pzﬂ)—/ #- (60)
1 a/2 Pr

On the real axis (i.e. s = ¢), we then have

@ dr(p.Y)
2 it

a/2 y
M(Uaph 1,]97«(1) =1- / dﬂ.(pr ) (61)

1 p?y M(O—7p7‘y; 1ap?_y) - /a

Using Theorem 3, on RH and for ¢ > 0.5, the partial sum M (o, p,; 1, p,*) is convergent as
a approaches infinity and its value is given by

ali_)Iglo M(o,pr;1,p%) = M(o,p,) = exp (—E1(—=p)) (1 — e(pr, s)) , (62)

where f = —a = (1 — o) log p, (note that 5 > 0 for o < 1). Therefore, as a approaches infinity,
the left side of Equation (61) can be split into the regular component exp (—E;(—f)) and the
irregular component —e(p,, s) exp (—E1(—f3)). Similarly, the right side of Equation (61) can be
also split into regular and irrugular components. Toward this end, we write the first integral
in Equation (61) as follows

a/2 d Y a/2 d Y
[ e TR — [ R (o - Do oy - )T
1 T 1 T

a/2 d Y
[ oy e, (63)
1

r

The first integral on the right side of Equation (63) can be then written as

“/? dr(p¥) _ o/ dLi(p,?
/1 F((oc —1)logp¥, a/y —1) ;fy ):/1 F((U—l)logpﬁ,a/y—l)lg)Jr

T s
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a/2 4 (p,?
[ Fo - s oy - B,

where J(x) = m(z) — Li(z) and
F((oc—1)logp,,a)=1 +/ P (z)e” =) 108 Pr g — 1 —i—/ P (x)eP%dz,
0 0

and

a/y—1 a/y—1

F((oc—1)logp!, a/y—1) = 1+/ )e?1= o)logpr gy — 1—|—/ (z)eP¥da.

Hence, the first integral on the right side of Equation (63) can be then written as

a/2 d Ty a/2 dLi 7ny a/2 dLi 7“y a/y—1
/ F((o—1)logp!, a/y—1) ﬂlffy ) :/ ;(ﬁ, )—l-/ ;(UZ; )/ o (z)ePY® da+
1 r 1 r 1 r 0

dJ (pry)
oy -

T

a/2
| Fllo=Dtogpt afy—1) (64)

Therefore, the right side of Equation (61) is given by

a/2 dr(pr¥) @ dr(pY)
- o M s Pr 71 / o =
\/1 pry ( 7P p ) a/2 pry
a/2 i Y a/y—1 a i(p..Y
[ [ g [ )
1 DPr 0 1 Dr
S P = tomnt apy - [ D [ R
1 " pr? a2 prY 1 w1, pr?

Consequently, as a approaches infinity, the regular component of M (o, p,;1,p?) is given

by
a/2 (Y a/y—1 a i(n..Y
~Ei(-) _ 1 7/ dLl(o]z/r )/ p,(x)eﬁyzdxf/ dngzr ) (65)
1 pr 0 1 Pr

and the irregular component of M (o, p,; 1, p%) is given by

a/2 Y
R0, pri L") = —elprs0)e P = = [T (0~ 1)logpl afy - et
1 p

r

@ dJ(p, o dn(pt
/ . / Rio.p?i Ly ) TP (g5)

/2 pr Pr
where ~ 4 . 17 (o
e(pho‘) :/ Efm) :/ eﬁy# (67)
z=p, L y=1 Dr
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For the Riemann hypothesis to be valid, Equations (65), (66) and (67) have to be satisfied
for o > 0.5 as a approaches infinity. For the remaining of this section, we will analyze the
convergence of the right side of Equation (65) as a approaches infinity. In the next section, we
will analyze the convergence of Equations (66) and (67) and examine their implication on the
validity of the Riemann hypothesis.

Since the regular component is void of the function J(x), one may expect that Equation
(65) is not only valid for o > 0.5 but it is also valid for o > 0. This requires the convergence of
the right side of converges as a approaches infinity for values of o > 0. A necessary condition
for the convergence of the right side of Equation (65) is that its derivative with respect to a
should approach zero as a approaches infinity. In other words; we have

. d [ dLi(p,Y) d [a/? dLi(p,Y) a/y—1 ,
1 o () ePY% d —0.
“"l © (da /1 pgy da /1 P?y /0 ( )e . 0

To show that the above limit is valid for o > 0, we first write the derivative of the first integral
as follows

p " da

d /adLi(pry) d /a 1 pldy d [oev  efo
1 1 %Yy da J1 'y a

- —
The derivative of the second integral can be computed as follows

d (/2 dLi(pY) [o/v—1 -
%/1 p(?y )/0 p'(m)eﬁy dr =

Lo /(a+Aa)/2 By /(a+Aa)/y1 /() | d /“/2 e’ /a/y1 ()P dz | d
m —— 7 B Ty ‘
Jm (] e plajeide fdy = [ == | p(x)eP¥dz | dy

Since p/(x) = 0 for 0 < z < 1, therefore

d ra/2 Py a/y—1 , 1 a/2 Py (a+Aa)/y—1
B0y ) dy — lim —— / e / ()P dr | d
xT)e X 1m xT)e X s
da /1 Yy (/[) P ( ) > Y Aa—0 Aa < 1 Y a/y—1 P ( ) Yy

or
d ra/2 By a/y—1 . . 1 a/2 Py @ Aa
%/1 7 </0 p/(x)eﬁy dm) dy = AI(IIIEOE (/1 7p/<a/y _ 1)659( /v 1)ydy> )
Therefore,

d a/2 By a/y—1 a/2 -1
7/ e (/ p/(x)eﬁyxda;> dy = eaﬁ/ My?)dy.
da J1 Y 0 1 Y

The integral on the right side of the above equation can be simplified by substituting u for
a/y — 1 to obtain

o2p'afy=1) (b p)(ut+1)?® —adu 1 po7l _pla—1)-1
/1 y? dy = /cH a? (u+1)2  a /1 plu)du = a '
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Therefore,

d { (%2 dLi(p¥ dLi(p, pa
. (/ P = Dozt ofy 1)+ [ T )—e pla=1).
1 r

It is clear that the above derivative with respect to a approaches zero for any value of /3. Fur-
thermore, the integral [>°(e%p(x — 1)/x)dx is finite for a > 1. Since p(a) decays to zero faster
than e~¢1°8%, therefore as a approaches infinity, the difference between the regular component
of M(o,pr;1,p%) and its limit decays to zero faster that e~“* for any positive number c. In the
next section, we will analyze the convergence of Equations (66) and (67) and then examine
their implication on the validity of the Riemann hypothesis.

7 The irregular component of M(s,p,;1,p?) and the Riemann Hy-
pothesis.

The irregular component of M (s, p,; 1,pf) is given by Equation (66)

dJ(p
R(s,pr; 1,pr) = / F((s—1)logp!, a/y —1) p(y )
a  dJ(pY a/2 a—u A (DY
/ (sy ) _/ R(S DPr 71>p y) (sy )7
=a/2 Pr y=1 br

and for s = 1, it is given by Equation (54)

a/ a
R(1,pr;1,p07) = —/12 (a/y—1) dj(py) —/y dJ(py)

P —a/2 DY
d Y
/ R(1,pY;1,prY) W(fr)-
Dr

Furthermore, using Stieltjes integral, we also have
a
R(s,pri 1,pp") = / MAR(1,pri 1, pY).
y=1

where 5 = 1 — s. Referring to Equation (67), we then have

R(S7p7‘; 17p7‘a> - _e_El(_ﬁ)G(pT7 S) = —e_El(_/B)/
Yy

Hence
oo . y
/ ePYdR(1,p,1,pY) = —e_El(_ﬁ)/ eﬂyM. (68)
y=1 y

Equation (68) establishes the relationship between the Laplace transforms of R(1, p,; 1, p,%)
and J(p¢). With this relationship, we will be able to establish a much simplified relationship
between R(1,p,;1,p,*) and J(p?) than that given by Equation (54). Before we proceed with
task, we will first show that on RH, R(1,p,;1,p,*) (or more accurately, the maximum value
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of |[R(1,p,;1,pY)| for y > a) decays at a rate slower than that of p~%/27¢ and faster than that
of p~%/?%¢ for any arbitrary small e. Toward this end, we first recall that on RH, M (0,z) (or
the Mertens function) is given by [7]

T

M(0:1,2) = 3 ju(n) = O(°7) = (2057

n=1

where € is an arbitrary small number. Using the partial summation, we may then have

M(1;1,2) = Z p(n O(z705+¢) = Qa5

It can be easily shown that the above bounds for M (0;1,x) and M(1;1, z) are also valid for
M(0,pr;1,2) and M (1, p,; 1, z) for any p,. Thus, for sufficiently large x, we have

M(0,pr;1,2) = ZM (n,pr) = O(z%5+€) = Q(205-¢)

and

(1) = - 00 = a0

Similarly, one can extend these results for the case where non-trivial zero are located on or
arbitrary close to the line R(s) = h and there are no zeros to the right of this line. For this
case, 0.5 is replace by h in the above bounds.

Since M (1, p,; 1, p?) is given by

M(1,p;1,p.%) = p(a) + R(1,pp; 1, pp%)

and since p(a) decays to zero faster than e~“* for any arbitrary large ¢, hence as a approaches
infinity, we have on RH

R(1,p;1,p.%) = O(pT_“/2+€) _ Q(pr—a/Q—e).

Therefore, on RH, both R(1, p,; 1, p,*) and J(pf)/p¢ of Equation (68) decay at rate slower than
that of p~%/2—¢ and faster than that of p~/2¢,

Our examination for the validity of the Riemann Hypothesis is based on establishing
a relationship between R(1,p,;1,p,%) and J(p?)/p% (such as Equation (54)). Using such a
relationship, we assume that J(p2)/p? = O(p,~¥*T¢) = Q(p,~*/?>7¢) and then verify that
R(1,p,;1,p.) is also given by O(p,~%/?*¢) = Q(p,~%/?>~¢). Such an attempt is difficult using
Equation (54) due to the presence of the term fyaﬁ R(1,p,Y;1,p%Y)dn(p¥)/pY. Fortunately,
Equation (68) provides a simpler relationship between R(1,p,;1,p,*) and J(p})/p%. First, we
note that for sufficiently small /3, Equation (68) can be written as follows

o0 8y d
/ eﬁydR(lva LpY) = _676/ I pr
y=1
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By differentiating the above equation with respect to 5 and allow /3 to approach zero, we then
have
> dJ(py)

-1 pr

/ ydR(L,py: 1, pY) = —eW/
y=1 Y

where the term ¢” = [;° p(y)dy signifies the importance of the Dickman function in estab-
lishing the relationship between R(1, p,; 1, p,*) and J(p%)/p%. This relationship will be estab-
lished by substituting « for § = 1 — s in Equation (68) to obtain

(o) 0o y
/ e”"dR(1,py; 1, pY) = —e_El(“)/ e‘aydj(f’“).
y=1 y=1 r

(69)

Let fi(y) and f2(y) be defined as

fl(:U) _ dR(l,pT; 1’pry)

and

Thus, Equation (69) can be written as

Lfi(y) = —e L L(y).

Since £~ Te1(®) = p/(y) + 6(y), therefore

fily) = = ((p' +9) * f2) (y)

Since f1(y), f2(y) and p/(y) are zero for y < 1, hence

y—1
hw==[" d =)@ - )

Consequently,

/ya Aily)dy = — /yal dy /:_11 Py — @) folx)de — /a S )%

Thus,

a a y—1 dJ piﬁ
/ dR(1,pr;1,pY) = —/ dy/ Py —x) 2?)
Y y=1 =1

(70)
-1 Dy

Simplifying the above equation, we may then have

. “ d.J (.
R(Lpr; 17p7“ ) = _/ p((l - y) (y )
y=1 Dr

(71)

For RH to be valid, R(1,p,;1,p,*) should be given by O(pf“/ 2+¢) for any arbitrary small

number e. Since J(p¥)/pY = Qp,~*/?>7¢) and since there are always values of y such that
pla —y) > p;y/QH (or (a — y)log(a —y) < (y/2 — 1)logp,), therefore the integral on the
right side of the above equation is given Q(p,~%/?*!) which contradicts our assertion that

R(1,pr;1,p.%) = O(p,~%?*¢). This infers the invalidity of the Riemann Hypothesis.
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Appendix 1

To prove the first part of Theorem 1 (i.e. for s = 0 4+ i0 and 0.5 < ¢ < 1, the series M (o, p;)
converges conditionally if M (o) converges conditionally), we first start with proving that
M (0, 2) is conditionally convergent if M (o) is convergent. Since M (o) is convergent, then for
any arbitrary small number §, there exists an integer IV such that for every integer N > N

= o)

Let the sums M (0;1, N), M(0; N+1,2N), M (0;2N+1,22N), M (0;22N+1,23N), ..., M (co; 2F "I N+
1,2EN) be defined as

|M(o; N,00)| = <d (72)

N
M(o;1,N) = Z

n=1

A17

M(o; N +1,2N) Z pln
n=N+1

22N
M(o;2N +1,22N) = Y “
n=2N+1

2N u(n)
M(o;2°N +1,2°N) = = Js,
n=22N+1

L )
M(o; 2" IN +1,25N) = =0y,

n=2L—1N+1

Throughout the analysis in this appendix, NV will be a fixed number (that is larger than Ng)
while the test for the convergence will be achieved by letting L approach infinity.

Let 6(l) be defined as the maximum of |0, |0;+1], |0142]s -, [0L], |01 + d1c1], |0 + dpe1 +
O142)s -5 |61 + 0141 + ... + 61|, then by the virtue of the convergence of M (o),

1611, 621, |03, -, |OL], |01 + G2, [61 + G2 + 85|, .., [61 + 02 + &5 + ... + 6L |< 5(1) < 26.
We also have
1] [0141s [O142]s - 1L, 101 + 151 ], |60 + Oup1 + Sig2|s ooy |01 + 11 + ... + 01| < (D),

where by the virtue of the convergence of M (c), §(I) can be set arbitrary close to zero (since
9, defined in Equation 72, can be set arbitrary close to zero by setting Ny arbitrary large).

Furthermore, let the sums M (o,2; 1, N), M (0,2; N+1,2N), M (c,2;2N+1,22N), M (0, 2; 22N+
1,23N), ..., M(0,2; 257N +1,2E N) be defined as

=

Bl7

Y 7 Y

n=1
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X p(n,2)
M(o,2;N +1,2N)= Y -

= €1,
n=N+1 n
22N
2
M(o,2;2N +1,22N) = “("; ) _ €,
n=2N+1
2 3 N p(n, 2)
M(0,2;2°N +1,2°N) = > T = e,
n=22N+1
-1 L 2N p(n,2)
M(o,2;2"7'N +1,25N) = Y = =€,
n=2L-1N+41 n
Since
2N 2N N
p(n) _ Z p(n, 2) _ Z p(n, 2)
= n° — n’ — (2n)°
thus

1
M(o;1,2N) = M(0,2;1,2N) — Z—UM(U,Q;LN).

Similarly, since

2N 2N 2'N
Z p(n) _ Z p(n, 2) _ Z p(n, 2)
ne ne - (2n)e’
n=2lN+1 n=2N+1 n=2l"1N+1

thus

1
M(o;2'N +1,2%IN) = M(0,2;2'N + 1,2 N) — —M(0,2; 271N +1,2!N).

20
Rearranging the previous equations, we then have
1
A+ =Br+ea— 5B, (73)
1
02 = €2 — €1,

1
03 = €3 — 50 €2

1
0 =€, — 30 €L-1

where [01], [02], 03], ..., [0L], [01 + 62|, |01 + 62 + 3], [61 + 02 + 63 + ... +01|< 6(1) < 20 and J can
be set arbitrary close to zero. Hence

1
€0 = 2761 + 09,
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1 1 1
€3 = 2762-}-(53 = 2%61-%7524-53,

1 1
64227634-54 930 €1+ 524-*(53—{—54,

1
2(L—2)o

€1 + 0o + 03+ ...+ 0r.

B B 1
€L = 5p€L-1+ 0L = 5T 1)

2(L—3)o

Therefore,

1 1
€1+e+e+...tep = <1+2U+ +...+(L_DU>61+(52+53+...+5L)+

220 2

1 1 1
2—0(52 +03+ ... +00-1) + 2@(52 +03+ ... +0p2)+ ...+ QULT)U‘;?‘

Since |02|< 0(1), | |02 + 63|< 6(1), ..., |01 + d2 + 3 + ... + 1| < 6(1), hence

1 1
|02+ 03+ .. +5L’+7|52+53+ A1+ —|—2 |(52’_’ (1) + 27(5(1)—1—...—}—2@7)05(1) ,

or
20'
|02 + 03 + .. +5L|+ \52-1-534— A Op—1]+-.. +2 \52\_ 20_1\5(1)’-
Therefore ) ) 1
61+62+€3+...+6L:<1+20+2 + .. +2 )61+717

where 7 is of the same order as that of §(1) (where 6(1) can be set arbitrary close to zero by
setting J, defined in Equation 72, arbitrary close to zero).

As L approaches infinity, we then obtain

Zez— 90 61‘{"71

Therefore, if the series M (o) is convergent, then the sum M (o, 2; N + 1, 0o) (which is equal to
€1 + €2 + €3 + ... ) is bounded by the sum M (o,2; N + 1,2N) (which is equal to €).

The previous process can be repeated with the substitution of A; and B; in Equation (73)
with As and By, where As = M(0;1,2N) and By = M (0,2;1,2N), to obtain

Ay + 0y =By + e — UB2-

Thus,

1 1
Ay = By — 2732 + 2761.

Following the same process, we can show that the sum M (o, 2;2N + 1, 00) is given by

ZQ— o — 11 T2
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where 7, is of the same order as that of §(2) (where 6(2) can be set arbitrary close to zero by
setting 9, defined in Equation 72, arbitrary close to zero).

If we repeat the process [ times, we obtain

1 1
Al = Bl — 273[ + mEl,

where A; = M(0;1,2'N) and B; = M (0,2;1,2'N) and the sum M (o, 2;2!N + 1,00) is given
by

1
Ze,: (1— 2)020_1614_%

where ~; is of the same order as that of §(/). Since by the virtue of the convergence of M(o),
(1) tends to zero as [ approaches infinity, therefore ~; and the above sum approach zero as !
approaches infinity.

Thus, we conclude that M(c,2;2'N + 1,00) (given by 322, ¢;) approaches zero as [ ap-
proaches infinity. Furthermore, as [ approaches infinity, B = lim;_,., B; approaches its limit
given by

(1 _ 21U> B = M(o:1,0).

Hence,

(1 - 210_) M(0,2) = M(0).

Similarly, following the same steps, we can show that

1
(1 — 30) M(0,3;1,00) = M(0,2;1,00).

or

(1 _ 210) (1 _ 310) M(0,3: 1,00) = M(: 1,00).

This task can be achieved by first defining

=

Ala

7 )
n=1

M(0,2; N +1,3N) Z wn.2) _ s
n=N-+1
32N
M(0,2;3N +1,3°N) = 3 wn.2) _ s
n=3N+1

2
M(O’,2;3L71N+1,3LN) — Z [L('I’L, ) :5L7



and

> u(n,3)
M(0,3;1,N) =Y —1= =By,

M(o,3; N +1,3N) =

M(0,3;3N +1,3°N) =
n=3N+1

M(o,3;3" "N+ 1,3"N) = >

Since
32% p(n,2) _ & p(n,3) i pn.3)
= I = (3n)?
thus
M(0,2:1,3N) = M(0,3: 1,3N) — %M(a,& 1L N)
Similarly,

1
M(0,2;3'N +1,3%IN) = M(0,3;3'N + 1,31 N) — 3—0M(a, 3;37IN +1,3'V)

Following the same process, we can show that

% 30
Zﬁi = 307_161 + 71,
1=1

where 7, is of the same order as that of 6(1) (6({) is defined as the maximum of |0;|, [6;+1], |0i+2],
i41]s |61 + S1 + Sipals ooy [0 + Gr1 + oo + L)

Similarly, if we define Ay = M (0,2;1,3N) and By = M(0,3;1,3N), then

1 1
AQ = BQ — 370_32 + 370_61.
Therefore

> 1
=g ot
=2

where 73 is of the same order as that of 4(2).
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Repeating the steps 1 times, we then obtain

1
Zel_ (= 2)0_30._ €1+’7l

where ~; is of the same order as that of (/). Hence the above sum approaches zero as [ ap-
proaches infinity

Thus, we conclude that M (o, 3;3'N + 1,00) (given by 3%, ¢;) approaches zero as [ ap-
proaches infinity. Furthermore, as [ approaches infinity, B = lim;_,., B; approaches its limit
given by

1
(130)B:M(0,2;1,oo).

Hence,

(1 _ 310_> M(0,3) = M(c,2).

Repeating the process r times, we then conclude

M(o) = M(o.p) <1 - 1) .

-1 pi°
The second part of the theorem can be proved by recalling

1
M(s,pr—1;1,Np;) = M(s,pr;1,Np,) — EM(s,pr; L,N).

T

If both series M (s, p,—1) and M (s, p,) are convergent, then as N approaches infinity, we obtain

M(s,pr_1) = M(s,py) (1 _ 1)

p;

Repeating the process r times, we then conclude

Mo = o IT (1)

i=1 pi?

Appendix 2
Assuming RH is valid and for ¢ > 0.5, to show that
r2 1
Z ZF = FEi((c —1)logpr1) — E1((c — 1) logpra) + €
i=rl £

where, e = O (W P17 log pﬂ), we first recall that

Pr2 d DPr2 ]_ DPr2 1
/ m(@ = dx + / —dO (vzlog ).
= ,,,1 pz Pr1 Pr1 x?

. x%logx
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We will first compute the integral with the O notation. This can be done by integration by
parts to obtain

Pr O \/ Pr 1 r (@] \/ Pr 1 r Pr
/ 2%6[0(\/510%.%): ( pg:gp 2) O plfgp ) —/ 2O(\/:Elogyc)al(wlg>
p p

r1 L Dr2 DPr1 1

Since z > 0, thus

Pr2 /Dy 1 - /Dy 1 - Pr2
/ %dO(\/Elogx):O( pz:gpg)_O( p1:gp 1)—0( ﬁlogwd(é))
p

1 L Pr2 Pri1 Pr1

With the substitution of variables y = log x, we then obtain

Dr2 1 Pr2 1
Vrxlogzd <x”) = —/ oye27Ydy.
P

Pri 1

1
/xe“mdaz = (:n — 2) e,
a a
therefore

1 log Pr2 1 ) 0.5— ( logprl 1 ) 0.5—
logzd(—)=— - 5o _ 50
Valogz (x") 0<0.5—a 05—02)P? 1T \05-6 05-0p2)P"

Since

Pr2

Pri
Hence, for o > 0.5, we have

prz 1 prn %7 logpr
—d 1 = —_— 74

Pr2 1
pr1 z° logz

For o > 1, the integral

dx can be computed directly from the definition of the
Exponential Integral E;(r) = [7° %du (where r > 0) to obtain

r

DPr2 1
/ xalogxdif:El((U_ 1)logpr1) — E1((0 — 1) log pr2)
Pbr1

It should be pointed out that although the functions E((c — 1) logp,1) and E1((o — 1) log py2)
have a singularity at o = 1, the difference has a removable singularity at o = 1. This follows
from the fact that as o approaches 1, the difference can be written as

Eyi((0 —1)logpr1) — E1((0 — 1) logpra) = —log ((1 — o) logp,y1) — v +log ((1 — o) log pr2) +

or,

DPr2 1
lim / dz = lim Ey((0 —1)logpy1) — E1((0 — 1) log py2) = —loglog pr1 + loglog pyo
o=1Jp., ¢ log o—1
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To compute the integral [ dx for o < 0, we first use the substantiation y = log

to obtain

Pra 1 log pr2 o(1—0)y logpra o(1=0)y logpr1 e(1=0)y
/ dx :/ dy :/ dy —/ dy
pr 27 logx log pr1 Y € Y € Y

where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1
and z3 = y/log p,2 , we then obtain

r1 X% logm

pr2 ] 1 (1—0)(log pr2)22 1 (1-0)(logpr1)z1
[ P
P

X
. x%logx €/10g pro 22 ¢/logpr1 <1

With the variable substantiations w; = (1 — o)(log pr1)21 and we = (1 — o)(log pr2)z1 and by
adding and subtracting the terms — f( (- U logp 2wy f((l o) logprs w1, we then have

Pr2 (1=0)logpra cw2 _ 1 (1-0)logpr1 gw1 _ 1
/ = / dwy — / dwi+
1 L7 IOgJU w2 (1—o0)e w1

/(1—0) log pr2 dwo /(1—0) log pr1 dw
( (

1-0)e w2

1-0)e w1

Using the following identity [9, page 230]

ael —1
/ . dt = —FEy(—a) —log(a) — v
0

where a > 0, we then obtain foro < 1,

Pr2 1
/ xalogxd:E:El((U_ 1)logpr1) — E1((0 — 1) log pr2)
Pbr1

Hence, for o > 0.5, we have

Z — = E1((c —1)logpr1) — E1((0 — 1) logpra) + €
i= r1p7’

In general, if there are no non-trivial zeros for values of s with R(s) > a, then by following
the same steps, we may also show that for o > a, we have

r2
1
Z ZF =E((c —1)logpr1) — Ei1((o — 1) logpr) + €
i=r1 £

where, e = O (p;1477 log pr1 /(0 — a)?).

It should be pointed out that if we write 7(z) = Li + J(z), then € can be also given by
. /pTQ dJ(.:U)
Pri x7
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Appendix 3

Assuming RH is valid and for ¢ > 0.5, to show that

Z p— 1((s —1)logpr1) — E1((s — 1) logpre) + €
i=rl £t

where, e = O (( ‘S‘S';)Q 1277 log prl), we first recall that

Pr2 d Pr2 1 Pr2
Z 1 e dn(a) -/ do+ [ —2d0 (Valoga).
p pr1 L

- pi® pra TP 1 2% logw

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain

/ppr —dO (Valogz) = O (y/pr21og pr2) 0 (v/Prilogpri) — /;T2 O (Vzlogz)d (;)

rl x® p7’28 p"’ls r1

The integral on the right side of the above equation can be then written as

DPr2 ]_ DPr2
/ O (Vzlogz)d (S> = —s/ O (Vzlogz) z~* 1da.
Pri x p

1

Hence,
Pr2 1 DPr2

/ O (Vzlogz)d ()’ < \s|/ O (Vzlogz) |x~ 5 |dx.

Pri €T Pri
Consequently,

pra 1 pr®° "7 log pry
—dO (Vxlogz) = —|.
[ a0 (Varoxa) (H e )
For R(s) > 1, the integral [’ — 1ngda: can be computed directly from the definition of

the Exponential Integral E(z) = [/ e_tz dt (where R(z) > 0) to obtain

DPr2 1
de = FE —1)logps) — F — 1) log p,
L7 oozt = Fal(s = Dlogpr) — Bi((s — 1)logpra)

To compute the integral ["* gxda: for R(z) < 1, we first write the integral as follows

/JDT2 1 dr — /1‘”2 e7198% cos(t log ) dp i/pr2 e~ 18T gin(t log ) Iz,
pe1 TSlogx D1 log x D1 log x

—ologx COS(

The first integral on the right side [P © Tog

stitution y = log = to obtain

t10£2) 13- can be computed by using the sub-

/Pr? e~7198 cos(t log x)d /7’7"2 e(1=9)y cos(ty)d
L= - ay,
P P

1 log x r1 y
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or

/p'r2 eiU log z Cos(t log :C)d /p'r2 e(lfo-)y Cos(ty)d " /prQ e(lfa)yd /pr2 e(lfo-)yd
r=| ——"tdy y — Y.
pri log x p Y p Y p

1 r1

Hence,

/PT2 e~71987 cos(t log x)dx B /Prl ell=2)y (1 — cos(ty))d B /Pr? e1=9)y (1 — cos(ty))d B
pri log x e y a? Y Y

pr1 p(1—0)y pro o(1=0)y
/ ¢ dy + / ¢ dy
€ ) € Y

where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1
and z3 = y/log pr2 , we then obtain

/pr? e~7198% cos(t log ) dx /1 e(1=o)(logpr1)z1 (1 cos(t(logprl)zl))dz
pr— 1_
Pri logx 6/lngrl Z1
/1 e(l_")(logp”)”(l — cos(t(log pr2)z2))
dzo—
e/log pro z2
1 6(1—0)(10gpr1)z1 1 e(l—a)(logprg)zg
/ ——dzn + I dzp
e/log pr1 sl €e/log pra z2

By the virtue of the following identity ([9], page 230)

/01 eat(l —tCOS(bt))dt _ %log(l + b2/a2) + Li(a) + §R[E1(—a + Zb)],

where a > 0, we then obtain the following

pro ,—0logzT
/ e cos(tlogx)dx = R[E1((s — 1)logpr1)] + Li((1 — o) log pr1)—
p

- log x
R[E1((s — 1) log pro)] — Li((1 — o) log pra)—

1 e(lfa)(logprl)zl 1 €(170')(10g;lJr2)ZQ
[,
e/log pr1 21 e/log pro z2

With the variable substantiations w; = (1 — o)(logpy1)2z1 and w; = (1 — o)(log py1)21 and by

adding and subtracting the terms — | ((lljg)elog e dus 4 | ((11:;))61og Pt 4L we then have

pro ,—0logT
/ 2 e cos(tlog x)dx = R[E1((s —1)logpr1)] + Li((1 — o) log pr1)—
p

- log x
RIE1((s — 1) log pr2)] — Li((1 — o) log pra)+

(1—0)logpro ew2 — 1 (1—0)log pr1 ewl _ 1
/ dwy — / dwi+
(1—0)e w2 (1—0)e w1

1—0)e w2

/(1—0) logpra s /(1—0) logpr1 dayy
( (1—0)e w1



Using the following identity [9, page 230]

a et _ 1
/ ¢ ; dt = Ei(a) — log(a) — v
0

where a > 0, we then obtain for o < 1,

/Pr'z e 7187 cos(t log ) g — R[E1((s — 1) log pr1)] — R[E1((s — 1) log pr2)]

- log x

Similarly, using the identity [9, page 230]
/1 e sin(bt)
P

; dt = m — arctan(b/a) + S[E1(—a + ib)],
(0]

where a > 0, we can show that for 0 < 1, we have

B /prz e—0ologz sjn(t logm) de — %[El((s o 1) logprl)] _ S[El((s — 1) 10gpr2)].

- log x

Therefore, for R(s) > 0.5, we have

r2 1

i Ei((s —1)logpr1) — E1((s — 1) logpra) + €
i=rl £

where, e = O (%pﬂl/g_g logprl) and if we write 7(x) = Li + J(x), then € can be also

given by

. /pr? dJ(z)
P

rl 3:8
Appendix 4
To show that
Y. uln,pr)
Z ol <9
n=1 n

we first note that

Zd/n N(dJ)r) = 11 ifn = 11
> d/n p(d, pr) = 1, if all the prime factors of n are less than p,,
> a/n 1(d,pr) = 0, if any of the prime factors of n is greater than p,.

Adding all the terms }°;/,, u(d, pr) for 1 < n < N, we then obtain

0< %u(n,pr) VZJ <N,

n=1

where |z | refers to the integer value of z. Define r,, as

w5
™m = ——1|—1,
n
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where 0 < r,, < 1. Hence, we have

N N N N N
> ) < - plnpe) ||+ 3 prn < 3
n=1 n=1

n

Since

n=1
thus, for every p, we have
—-N < g:u(n pr)ﬁ <2N
n=1 ’ no ’
or
n=1 n B
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