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A new classification of self-similar solutions of the Navier-Stokes system of equations 

is presented here. We consider equations of motion for incompressible flow (of 

Newtonian fluids) in the curl rotating co-ordinate system. Then the equation of 

momentum should be split into the sub-system of 2 equations: an irrotational (curl-free) 

one, and a solenoidal (divergence-free) one. 

The irrotational (curl-free) equation used for obtaining of the components of pressure 

gradient  p. As a term of such an equation, we used the irrotational (curl-free) vector 

field of flow velocity, which is given by the proper potential (besides, the continuity 

equation determines such a potential as a harmonic function). 

As for solenoidal (divergence-free) equation, the transition from Cartesian to curl 

rotating co-ordinate system transforms equation of motion to the Helmholtz vector 

differential equation for time-dependent self-similar solutions. The Helmholtz 

differential equation can be solved by separation of variables in only 11 coordinate 

systems, so it forms a complete set of all possible cases of self-similar solutions for 

Navier-Stokes system of equations. 
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1. Introduction, the Navier-Stokes system of equations. 

 

 

In accordance with [1-2], the Navier-Stokes system of equations for incompressible 

flow of Newtonian fluids should be presented in the Cartesian coordinates as below: 

 

- where u is the flow velocity, a vector field; ρ is the fluid density, p is the pressure,  is 

the kinematic viscosity, and F represents body forces (per unit of mass in a volume) 

acting on the fluid and ∇  is the del (nabla) operator. Let us also choose the Oz axis 

coincides to the main direction of flow propagation. 

 

The system of Navier-Stokes equations is known to be the system of the mixed 

parabolic and hyperbolic type [3]. 

 

 

 

2. The curl rotating co-ordinate system. 

 

 

Using the identity (u∇)u = (1/2)∇(u2
) – u×(∇×u), and then using the curl of the curl 

identity ∇×(∇×u) = ∇(∇·u) − ∇2u, we could present the equation (1.2) in the case of 

incompressible flow of Newtonian fluids as below: 

 

- here we denote the curl field w, a pseudovector field (time-dependent). 
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Let us consider equation (2.1) in the curl rotating co-ordinate system by adding of the 

proper Coriolis force to the equation of motion (2.1) as below 

 

 

 

- where  - is the angular velocity of curl rotation in the vicinity of initial Cartesian 

system of co-ordinates. Thermodynamic variables and the net viscous stress are 

independent of the reference frame; velocity u in the curl rotating co-ordinate system 

coincides with the velocity of flow in previous co-ordinates system (if vicinity of vortex 

rotation is negligible). 

 

Besides, the equality below is valid for the angular velocity of curl rotation in the case 

of Newtonian fluids [2]: 

 

                  =  ( u)/2 

 

So, from the equation (2.2) we obtain 

 

 

 

Let us denote as below (according to the Helmholtz fundamental theorem of vector 

calculus): 
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- where u p is an irrotational (curl-free) field of flow velocity, and u w - is a solenoidal 

(divergence-free) field of flow velocity which generates a curl field w: 

 

- here  - is the proper scalar potential, A – is the appropriate vector potential. For such 

a potentials, we could obtain from the equation (1.1) the equality below 

 

- it means that  - is the proper harmonic function [3]. 

 

 

Thus, equation (2.3) could be presented as the system of equations below: 

 

 

 

- so, if we solve the second equation of (2.5) for the components of vector u w, we could 

substitute it into the 1-st equation of (2.5) for obtaining of a proper expression for 

vector function  p: 

 

 

- where  - is the proper harmonic function, see Eq. (2.4). 
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The system of equations (1.1), (2.5) is equivalent to the Navier-Stokes system of 

equations for incompressible Newtonian fluids (1.1)-(1.2) in the sense of existence and 

smoothness of a general solution. 

 

 

 

3. Classification of exact solutions for Navier-Stokes Eq. 

 

 

For non-stationary solutions / t ≠ 0, the 2-nd of Eq. (2.5) could be solved analytically 

only in the cases below: 

 

1) / t ~ / z - it means that the Oz axis represents a preferential direction 

similar to the time arrow in mechanical processes [4]; 

2) Time-dependent self-similar case, u w = exp(-t)u w (x, y, z),  = const > 0 

(frequency-parameter). 

 

For the time-dependent self-similar case, 2-nd of Eq. (2.5) should be presented as 

 

 

- which is the proper Helmholtz differential equation for vector fields u w [2]. 

 

The Helmholtz differential equation can be solved by separation of variables in only 11 

coordinate systems, 10 of which (with the exception of confocal paraboloidal 

coordinates) are particular cases of the confocal ellipsoidal system: Cartesian, confocal 

ellipsoidal, confocal paraboloidal, conical, cylindrical, elliptic cylindrical, oblate 

spheroidal, paraboloidal, parabolic cylindrical, prolate spheroidal, and spherical 

coordinates [5-6]. Thus, above 11 classes form a complete set of all possible cases of 

self-similar solutions for Navier-Stokes system of equations. 
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4. Discussions. 

 

 

The main result, which should be outlined, is that the initial system of Navier-Stokes 

equations could be reduced to the equivalent system of equations where for time-

dependent self-similar solutions the key equation should be the Helmholtz vector 

differential Eq. For such a reduction we should change Cartesian to the curl rotating co-

ordinate system. 

The Helmholtz differential equation could be solved by separation of variables in only 

11 coordinate systems; so, we have classified all the self-similar solutions. 

Also we should note that for Helmholtz vector differential equation it was proved the 

existence and smoothness of a general solution. 

 

 

 

5. Conclusion. 

 

 

A new classification of self-similar solutions of the Navier-Stokes system of equations 

is presented here. We consider equations of motion for incompressible flow (of 

Newtonian fluids) in the curl rotating co-ordinate system. Then the equation of 

momentum should be split into the sub-system of 2 equations: an irrotational (curl-free) 

one, and a solenoidal (divergence-free) one. 

The irrotational (curl-free) equation used for obtaining of the components of pressure 

gradient  p. As a term of such an equation, we used the irrotational (curl-free) vector 

field of flow velocity, which is given by the proper potential (besides, the continuity 

equation determines such a potential as a harmonic function). 

As for solenoidal (divergence-free) equation, the transition from Cartesian to curl 

rotating co-ordinate system transforms equation of motion to the Helmholtz vector 

differential equation for time-dependent self-similar solutions. The Helmholtz 
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differential equation can be solved by separation of variables in only 11 coordinate 

systems, so it forms a complete set of all possible cases of self-similar solutions for 

Navier-Stokes system of equations. 
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