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Abstract 

 

By examining the theory of relativity, as originally proposed by Lorentz and Poincaré, 

the fundamental relationship between space-time and matter is discovered, thus 

completing the theory of relativity and electrodynamics.  As a result, the four-

dimensional theory of general motion and the four-dimensional vortex theory of 

interaction are developed.  It is seen that the electromagnetic four-vector potential and 

strength fields are the four-dimensional velocity and vorticity fields, respectively.  

Furthermore, the four-vector electric current density is proportional to the four-

dimensional mean curvature of the four-vector potential field.  This is the fundamental 

geometrical theory of electromagnetism, which determines the origin of electromagnetic 

interaction and clarifies some of the existing ambiguities.  Interestingly, the governing 

geometry of motion and interaction is non-Euclidean. 

 

1.  Introduction 

 

Maxwell’s theory of electrodynamics is one of the greatest advances in physics.  It is the 

most accurate physical theory known by far, which has passed many tests in a wide range 
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of scales.  This theory has also played a key role in the development of the theory of 

relativity, which unifies the concepts of space and time based on the work of Lorentz on 

space-time transformations.  The Lorentz transformation originally resulted from the 

attempts of Lorentz and others to explain how the speed of light was observed to be 

independent of the reference frame, and to understand the symmetries of the laws of 

electrodynamics.   

 

Based on the Lorentz ether theory, Poincaré in 1905 proposed the relativity principle as a 

general law of nature, including electrodynamics and gravitation.  Although the Lorentz 

transformation is fundamental in this development, Poincaré’s theory of relativity does 

not clearly explain its physical meaning and cannot clarify the relativistic meaning of 

space-time as a single entity.  Despite the fact that Poincaré’s theory shows a relationship 

between pure Lorentz transformation and hyperbolic rotation, it does not specify what is 

rotating.  Thus, Poincaré’s theory does not completely resolve fundamental aspects of 

space-time, including its geometry, and does not give further insight into the Maxwellian 

covariant electrodynamics.  This is the origin of most of the troubles within the theory of 

relativity and electrodynamics, including the geometrization of the theory of relative 

accelerating motion, the explanation of the mechanisms behind the electromagnetic force, 

and the speculation about the existence of magnetic monopoles. 

 

Early investigators of relativity, such as Robb, Varičak, Lewis, Wilson, and Borel [1-5] 

have noticed and extensively investigated the non-Euclidean geometric character of 

uniform relative motion, where hyperbolic geometry governs the velocity addition law.   

Although this non-Euclidean character is very intriguing, its fundamental meaning and its 

relation with space-time and particles has remained a mystery.  In addition, there has not 

been any consistent geometric explanation of accelerating relative motion and the 

geometry of electromagnetism.  Interestingly, Borel [5] has shown that non-Euclidean 

geometry is the origin of the famous Thomas-Wigner rotation.  The importance of this 

non-Euclidean geometry and its affinity with the Minkowskian space-time in a complete 

theory of relativity has not been appreciated. 
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Electromagnetic interaction, known as the Lorentz force, is not a direct consequence of 

Maxwell’s equations; rather this force has to be postulated in an independent manner, 

which is the manifest of the incompleteness of the theory.  Although it has been noted 

that the electromagnetic field strength tensor and Lorentz force are both natural 

consequences of the geometric structure of Minkowskian space-time, its fundamental 

meaning has not been discovered. 

 

In addition, some have argued that the existence of a magnetic monopole is compatible 

with fully symmetrized Maxwell’s equations.  It seems that only a simple modification of 

Maxwell’s equations suffice to allow magnetic charges in electrodynamics.  However, it 

should be noticed that no magnetic monopole has been found to this date.  

 

These difficulties suggest that the theory of relativity of Lorentz and Poincaré needs to be 

modified, such that it explains: 

1. The fundamental meaning of the Lorentz transformation and the geometrical 

structure of Minkowskian space-time; 

2. The non-Euclidean geometry governing uniform relative motion and 

electrodynamics; 

3. The fundamental theory of general accelerating motion; 

4. The mechanism behind the electromagnetic interaction. 

 

To complete the theory of relativity, we develop a fundamental geometrical theory of 

motion and interaction, which shows that the Lorentz force and Maxwell’s equations are 

simple geometrical relations based on four-dimensional rotation.  This development 

clarifies the relativity of space-time and its relationship with matter and the governing 

non-Euclidean geometry.  This also revives the idea of the electromagnetic field as a 

vortex-like motion in a universal entity.   Interestingly, this vortex theory also shows that 

the Lorentz force is a lift-like force perpendicular to the four-vector velocity. 

 

We organize the current paper in the following manner.  In Section 2, we present the 

theory of space-time and the geometrical theory of motion.  This shows that motion of a 

http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
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particle is a four-dimensional rotation of its space-time body frame and clarifies the 

origin of the governing non-Euclidean geometry.  Subsequently, in Section 3, we develop 

the consistent vortex theory of fundamental interaction, which shows that a Lorentz-like 

force is an essential character of every fundamental interaction. Therefore, every 

fundamental interaction is specified by a four-dimensional vortex-like field.  We note that 

this means unification of all forces based on the geometrical theory of motion and 

interaction.  Afterwards, in Section 4, we demonstrate all the details of this geometrical 

theory for electromagnetic interaction. It is seen that the electric charges are the only 

source of electromagnetic field and magnetic monopoles do not exist.  A summary and 

general conclusion is presented in Section 5. 

 

2. Theory of space-time and geometry of motion 

 

Preliminaries and relativistic kinematics of a particle  

As an inertial reference frame, a four-dimensional coordinate system 4321 xxxx  is 

considered such that 321 xxx  is the usual space and 4x  is the axis measuring time with 

imaginary values, such that ictx 4 .  This is shown symbolically in Fig. 1 by 

considering a two dimensional space and one time direction.  Throughout this paper, we 

refer to this as our specified inertial reference frame.  The unit four-vector bases 

 4321 ,,, eeee  are defined by 

 0,0,0,11 e                                                

                                                              0,0,1,02 e                                                      (2.1) 

 0,1,0,03 e  

  1,0,0,04 e  

 

The space-time position four-vector of the particle  P can be represented by 

                                                              ex x                                                           (2.2) 

However, for simplicity, we sometimes write 

                                                 ),,,(,),( 4 ictzyxictx  xxx                                    (2.3) 
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or even 

                                                               ),( 4xx x                                                       (2.4) 

and also often use x  in place of x .  The position of the massive particle in the inertial 

reference frame describes a path known as the world line. 

 

  world line of particle P 

     

            

                                                                                         

 

 

 

 

 

 

Fig. 1. World line of the particle in inertial reference frame 

 

 

By considering two neighboring positions x  and xx d  on the world line, we have  

   dticicdtddxd ,, vx  ex                                          (2.5) 

 

The three-vector tvev    is the velocity of particle where te  is the tangential unit three-

vector in the direction of v . The square length of this infinitesimal four-vector 

                        









2

2
222222 1

c

v
dtcdtcddxdxddds xxx                     (2.6) 

is the scalar invariant under all Lorentz transformation. The proper time between the 

events d  is defined by 

                                                       221 cvdtd                                                 (2.7) 

Therefore, 

                                                                icdds                                                    (2.8) 

1x

2x

4x

1e

4e

2e

x
Pu

b

P
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By using the concept of rapidity  , where 

                                                               
c

v
tanh                                                      (2.9) 

we obtain 

                                                         coshddt                                                    (2.10) 

 

The four-vector velocity eu PP u  is the rate of change of the position vector of the 

particle x  with respect to its proper time 

                                                                
d

dP x
u                                                     (2.11) 

In terms of components, this relation becomes 






d

dx
u P                                                        (2.12) 

For simplicity, we may drop the superscipt 
P
 and write eu u .  The space and time 

components of  4,uuu  are 

                      tc
cv

e
v

u sinh
1 22




                                       (2.13) 

and 

                                cosh
1 22

4 ic
cv

ic
u 


                                     (2.14) 

 

Therefore, the four-vector velocity can be represented as 

                                                          coshi  ,sinh tc eu                                      (2.15) 

The length of the four-vector velocity is a constant, since 

                                                  22

4

2 cuuu  u                                          (2.16) 

which shows the four-velocity is time-like. 

 

The four-acceleration eb b  is defined as 
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2

2

 d

d

d

d xu
b                                              (2.17) 

In terms of components, this relation becomes 

2

2






d

xd

d

du
b                                           (2.18) 

 

The four-acceleration is always perpendicular to the four-vector velocity, as shown in 

Fig. 1, where 

                                                           0 bubu                                          (2.19) 

 

It can be easily shown that 

                      














 







 


c
i

c

av
v

av
a  4

2

42 cosh ,coshcoshb                (2.20) 

where  

dt

dv
a                                                       (2.21) 

is the three-vector acceleration of the particle.  The length of the four-vector acceleration 

can be found to be 

                                   

2

6242
coshcosh 







 


c
abb

av
b                         (2.22) 

 

Since bb  is positive, the four-acceleration is space-like.  

 

It should be noticed that all four-tensors in this article are either of first or second order.  

For simplicity, we use the same symbols for their vector and matrix representations.  

Therefore, the relation 

                                                              0bu                                                 (2.23) 

can be written in matrix form 

                                                              0buT                                                 (2.24) 
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What we have presented is the well-known relativistic kinematics of particle.  However, 

it can be shown that the accelerating motion of the particle can be considered as the result 

of a four-dimensional rotation with important consequences as will be shown in the 

following. 

 

Four-dimensional character of particle and vortical theory of motion  

As we mentioned, Poincaré’s theory of relativity can be completed by establishing the 

relation between matter and the Minkowskian space-time.  It is postulated that the 

massive particle specifies its own Minkowskian space-time body frame 4321 xxxx  , in 

which the particle has an attached four-velocity Pu with magnitude c in the time direction 

4x .  Thus, the four-vector velocity of the particle in this system is represented by 

                                                            icu P ,0,0,0
                                                (2.25) 

whereas its representation in our inertial reference frame system 4321 xxxx  is 

    cosh,esinh icxu t
P                                             (2.26) 

 

This is shown in Fig. 2.  Interestingly, we realize that the reference frame 4321 xxxx  is also 

specified with a massive particle, having the attached four-velocity Ru  and magnitude c 

in the time direction 4x , where 

                                           icuR ,0,0,0                                                    (2.27)   

 

The orientation of the body frame of the particle P relative to the inertial reference frame 

system is specified by the orthogonal transformation four-tensor  xΛ  with orthogonality 

condition  

        1 xΛxΛxΛxΛ TT                                          (2.28) 

or 

            ΛΛΛΛ α                                               (2.29) 
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                                                                                Body frame of particle 

 

 

     

               Inertial reference frame 

                                                                                         

 

 

 

 

   

 

Fig. 2. Inertial reference frame and body frame. 

 

where   is the Kronecker delta in four dimension. This variable orthogonal 

transformation  xΛ  is a general Lorentz transformation, which can be written as 

 

                              

 













































coshsinh

sinh)1(cosh
         

coshsinh

sinh)1(cosh

10

0

T

t

t

T

tt

T

t

t

T

tt

i

i

i

i

e

QeeQeQ

e

eee1Q
xΛ

                       (2.30) 

Here Q  is a three-dimensional orthogonal tensor representing spatial rotation of the body 

frame.  The boost part of this transformation depends on the rapidity vector ξ  of the 

particle, even for accelerating motion.  It is seen that the relations among the base unit 

four-vectors of the body frame and inertial systems are  

                                                               ee Λ                                                   (2.31) 

or 

                                                            ee  Λ                                                      (2.32) 

  

Therefore, the angles among these directions are such that 

1x

2x

4x

1e

4e

2e

x
Pu

b
4x

1x
2x

1e
2e

    cosh,sinh icxu t

P
e

Ru

 icu P ,0,0,0


 0,0,0,Ru ic 
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                                                          Λ ee ,cos                                                (2.33) 

                                                          Λee ,cos                                                 (2.34) 

The inertial reference frame and the body frame of the particle both have attached four-

vector velocities Ru  and Pu  in their own space-time frames, respectively.  The attached 

four-vector velocity Pu  is rotating with the body frame of the particle, such that between 

its components in this frame and the inertial frame, we have  

   xuxΛu PP                                                  (2.35) 

We may drop the superscipt 
P
 and write 

   xuxΛu                                                     (2.36) 

or in terms of components as 

 uΛu                                                        (2.37) 

 

The Lorentz transformation (2.37) relates the components of four-vector velocity u  of 

particle P in its frame and its components of four-vector velocity u  in the inertial 

reference frame of particle R.  

 

This relation can also be written as 

   uxΛxu  T                                                    (2.38) 

 

By taking the derivative of (2.28) with respect to the invariant proper time of the particle, 

we obtain 

 0
Λ

ΛΛ
Λ


dτ

d

dτ

d T
T

                                              (2.39) 

Now by defining the four-tensor Ω  

Λ
Λ

Ω
dτ

d T

                                                       (2.40) 

we can see that the relation (2.39) becomes 

0ΩΩ  T                                                       (2.41) 
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In term of components, this relation can be written as 

0  ΩΩ                                                       (2.42) 

which shows that Ω  is an anti-symmetric four-tensor.  From our knowledge in non-

relativistic rigid body dynamics, we realize that the four-tensor Ω  represents the four-

tensor angular velocity of the space-time body frame of the particle measured in the 

inertial reference system.  Interestingly, by using the relation (2.39), we rewrite the 

equation (2.40) as 

ΛΩ
Λ


dτ

d
                                                        (2.43) 

which is the equation of motion of the body frame of the particle in terms of its four-

tensor angular velocity  xΩ .   

 

The anti-symmetric tensor  xΩ  in terms of elements in the inertial reference frame is 

written 

                                      



























0

0

0

0

321

312

213

123

cicici

ci

ci

ci









Ω                                 (2.44) 

 

This is the general form of the four-tensor angular velocity Ω . By introducing three-

vectors ω  and η , this four-tensor can be symbolically represented by  

                                                    




















0
1

1

T

c
i

c
i

η

ηRω

Ω                                                (2.45) 

where the anti-symmetric matrix ωR , corresponding to the three-vector  321 ,, ω , 

is defined by  

                                                 

























0

0

0

12

13

23







R                                          (2.46) 
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It should be noticed that, from (2.45), the elements ciΩΩ iii  44  are imaginary. 

The components of Ω can be formally interpreted as follows: 

 The angular velocities 1 , 2  and 3  generate the space rotation of the body 

frame  4321 xxxx   in the planes 32xx , 13xx  and 21xx , respectively. 

 The imaginary angular velocities 1
c

i
, 2

c

i
 and 3

c

i
 generate hyperbolic 

rotation of the body frame 4321 xxxx   in the planes 41xx , 42xx  and 43xx , 

respectively.  The quantities 1 , 2  and 3  are the rate of change of boost of the 

body frame, along the 1x , 2x  and 3x  axes, respectively. 

 

Therefore, the space-time body frame of the particle rotates relative to the inertial system 

with angular velocity tensor Ω , which is a combination of circular and hyperbolic 

angular velocities ω  and η
c

1
.  Note that these interpretations of three-vector velocities 

are not completely compatible with our notion of rotation in non-relativistic kinematics.  

Although we still use the notations ω  and η
c

i
, and call these angular velocities, these 

vectors cannot be taken as proper angular velocity vectors.  Basically these 

interpretations are consistent only for an inertial co-moving observer, who measures the 

components of 

 ΩΛΛΩ βμα                                               (2.47) 

where 

                                      
























0
1

1

T

c
i

c
i

η

ηRω

Ω                                               (2.48) 

This co-moving observer can consider the vectors ω  and η
c

i
 as proper angular velocity 

vectors.  

 

The inverse tensor transformation of (2.47),  
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 ΩΛΛΩ βα
                                                (2.49) 

shows that a combination of the circular and hyperbolic angular velocities ω  and η
c

1
 

gives the vectors ω  and η
c

1
 under a non-Euclidean geometry transformation.  One can 

see the appearance of apparently paradoxical effects similar to Thomas-Wigner 

precession [6] in this transformation.  However, we now know there is no paradox at all 

and these effects are simply the result of the governing non-Euclidean geometry.  

 

By noticing that the four-vector velocity of the particle is attached to its own body frame 

in its time direction, we realize that the four-acceleration of the particle is the result of the 

four-dimensional rotation of its body frame.  Let us derive an expression for four-

acceleration of the particle in terms of the four-tensor angular velocity  xΩ .  By taking 

the proper time derivative of (2.38), we obtain  

   
u

xΛxu


 d

d

d

d T

                                            (2.50) 

and by substituting from (2.36), we have 

   
   xuxΛ

xΛxu

 d

d

d

d T

                                      (2.51) 

Using the definition of four-tensor angular velocity Ω  in (2.40), we finally obtain 

 
   xuxΩ

xu


d

d
                                               (2.52) 

                                                      




uΩ

d

du
                                                     (2.53) 

 

It is seen that the four-acceleration 
 
d

d xu
 is the result of the instantaneous four-

dimensional rotation of the four-vector velocity u  attached to the body frame and 
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rotating with four-tensor angular velocity  xΩ .  The space and time components of this 

equation are  

                                                        4u
c

i

d

d
ηuω

u



                                             (2.54) 

                                                            uη
c

i
d

du 14


                                                (2.55) 

 

However, we notice that the more complete equation of motion for particle is the 

equation of instantaneous four-dimensional rotation of its space-time body frame (2.43), 

that is  

0ΛΩ
Λ


dτ

d
                                                (2.56) 

which can also be written as 

0 


ΩΛ

dτ

dΛ
                                           (2.57) 

 

General relative motion and the velocity addition law 

 

Consider two particles A and B moving with velocities  tAA vv   and  tBB vv   

relative to the inertial reference system 4321 xxxx .  The four-vector velocities Au  and Bu  

are attached four-vectors to the body frames 4321 xxxx   and 4321 xxxx   of  A and B, such that 

                                                         A A AA
u Λ u                                                 (2.58) 

             B B BB
u Λ u                                                 (2.59) 

This is depicted in Fig 3.  Let  
AAu  and  B B

u  be representations of the two four-vector 

velocities Au  and Bu  measured by observers attached to their corresponding body frames 

A and B, where  

       icAAA ,0,0,0uu                                                      (2.60) 

   icBBB ,0,0,0uu                                             (2.61) 
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                                  Body frame of particle A                              

 

                                                                Body frame of particle B                 

             

               

            Inertial reference frame 

                                                                                         

 

 

 

 

  

   

 

Fig. 3. Body frames in relative motion.  

 

Therefore, we have the interesting relation 

                                                             0,0,0,A BA B
ic u u                                                   (2.62) 

 

However, we notice that an inertial observer in the inertial reference frame measures 

different components for four-vectors Au  and Bu .  The equality (2.62) for components of 

 
AAu  and  B B

u  is the origin of the non-Euclidean character of relative motion, which 

we next explore. 

 

The transformations  A A tΛ Λ  and  B B tΛ Λ  represent the orientation of the body 

frames of particles A and B relative to the inertial reference frame.  For these 

transformations, we explicitly have 

                              
(cosh 1) sinh

 
sinh cosh

T

A A A tA tA A A tA

A T

A tA A

i
t

i

 

 

  
  

 

Q Q e e Q e

e
Λ              (2.63)  

and 

1x

2x

4x

Au

1x

2x

4x

1x 

2x 

4x 
Bu

2x

Ru
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                              
(cosh 1) sinh

 
sinh cosh

T

B B B tB tB B B tB

B T

B tB B

i
t

i

 

 

  
  

 

Q Q e e Q e

e
Λ               (2.64) 

 

By using (2.62) to combine (2.58) and (2.59), we obtain  

                                                               T

A A B Bu Λ Λ u                                              (2.65) 

 

The orientation of the body frame B relative to A at time t is denoted by B AΛ  where 

                                                               B A B AΛ =Λ Λ                                               (2.66) 

From this relation, we have 

                                                           T

B A A BΛ Λ Λ                                               (2.67) 

 

Therefore, (2.65) becomes 

                                                           A B A Bu =Λ u                                                (2.68) 

which can also be written as 

                                                           T

B B A Au =Λ u                                                (2.69) 

 

We notice that B AΛ  is the relative Lorentz transformation from body frame A to body 

frame B measured by the inertial reference frame at time t.  Therefore, all the relations are 

relative to this observer at time t.   

 

Now we derive the relations relative to the observer attached to the body frame A.  For 

this, we notice that the velocity of particle B relative to particle A measured by the 

observer in the body frame of  A  is 

                                              B B A A BA A
 u u Λ u                                           (2.70) 

 

By substituting for Bu  from (2.59), we obtain 

                                            T

B B A A B BA BA
 u u Λ Λ u                                   (2.71) 
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We also have the obvious relation 

                                        A B A B AA A A
u Λ u                                          (2.72) 

which can be written as 

                                                          
T

B A B A A AA A
u Λ u                                          (2.73) 

 

By comparing (2.71) and (2.72) and using (2.70), we obtain the relation 

                                                      
T

T

B A A B
A
Λ Λ Λ                                                (2.74) 

which can be written as 

  T

B A B A
A
Λ Λ Λ                                                          (2.75) 

By using the relation (2.67), we obtain  

                                                       T

B A A B A A
A
Λ Λ Λ Λ                                             (2.76) 

Interestingly, this is the transformation for tensor B AΛ  from the inertial reference frame 

to the body frame A.  What we have is the development of the general theory of relative 

motion.  This transformation clearly shows that the geometry governing the attached 

three-vector and three-tensors is non-Euclidean. 

 

Explicitly from (2.70), we have            

                  
sinh(cosh 1) sinh

coshsinh cosh

T
B tBA A A tA tA A A tA

B A TA
BA tA A

ci

ici

 

 

    
    

   

eQ Q e e Q e

e
u         (2.77) 

 

From this, we obtain the relations 

         tBB

T

tAtAAAtAABAAABtAB eee1QeQe  sinh])1(cosh[coshsinhsinh /   (2.78) 

                                 tBtABABAAAB ee   sinhsinhcoshcoshcosh                  (2.79) 

 

These relations are the manifest of hyperbolic geometry governing the velocity addition 

law, which applies even for accelerating particles. This property holds for all attached 

four-vectors and four-tensors. Inertial observers relate components of attached four-

vectors and four-tensors by Lorentz transformations.  This is the origin of non-Euclidean 
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geometry governing the three-vector and three-tensors.  As we saw, the addition of three- 

vector velocities follow hyperbolic geometry.  Thus, 

 

  

/sinh

     (cosh 1)sinh sinh cosh sinh

B A t B A
A

A A B tA tB A B tA B tB



          

e

Q e e e e
   (2.80) 

                                 tBtABABAAAB ee   sinhsinhcoshcoshcosh                  (2.81) 

If the relative rapidity  
AAB  is nonzero, we can divide (2.80) by (2.81) to obtain 

 

 

/tanh

(cosh 1) tanh sinh tanh
        

cosh sinh tanh

B A t B A
A

A B tA tB A tA B tB

A

A A B tA tB



   

  

     
 

e

e e e e
Q

e e

         (2.82) 

 

Finally, it should be noticed that these relations hold despite the fact that the 

transformation  

                                                                xΛx                                                    (2.83) 

is not valid among accelerating systems. The general transformation must be written for 

four-vector velocities, not positions.  What we have developed here is the completion of 

Poincare’s relativity for accelerating systems. 

 

3. Vortex theory of fundamental interaction 

 

After completing the theory of accelerating motion, we are ready to develop the theory of 

fundamental interaction.  Symmetry of nature suggests a common mechanism for all 

fundamental interactions.  Therefore, based on the established four-dimensional theory of 

motion in Section 2, in this section, we develop the general theory of fundamental 

interaction.  

 

The equation of motion for a particle in the inertial reference frame system is given by                                                

                                                               F
d

d
m
u

                                                       (3.1) 
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where F  is the four-vector Minkowski force.  This force is the result of interaction of the 

particle with a field, such as an electromagnetic field.  By substituting from (2.52) in 

(3.1), we obtain  

uΩ mF                                                         (3.2) 

which can be written in terms of components as 

                                                    umΩF                                                      (3.3) 

 

Since Ω is anti-symmetric, we have the relation 

                                           0  uumΩuFuF                                       (3.4) 

which means the four-vector Minkowski force F  is perpendicular to the four-vector 

velocity u .  The relation (3.2) shows that this force depends on the four-vector velocity 

u  and the four-tensor angular velocity Ω  of the body frame.  Therefore, the four-tensor 

angular velocity Ω  must depend on the field strength.  The simplest admissible field 

strength is characterized by a four-tensor  xΘ  such that  

                                                          xΘxΩ ~~
m                                                      (3.5)     

where x~  denotes the position of the particle and the scalar   is a property of the 

particle, called the charge of the particle, which depends on the type of interaction.  

Consequently, we can postulate a fundamental interaction to be an interaction 

characterized by an anti-symmetric strength tensor field  xΘ .  At the position of the 

particle x~ , the space-time body frame of particle rotates with four-tensor angular 

velocity  xΩ ~
, such that 

   xΘxΩ
~~

m


                                                   (3.6) 

                                                           x
m

Ω ~



                                                  (3.7) 

This shows that the angular velocity Ω  depends on the particle through the ratio 
m


.   As 

a result, the equation of motion for the four-dimensional rotation of the space-time body 

frame of the particle becomes 

                 xΘΛ
Λ ~


md

d 


                                           (3.8) 
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This is the complete form of the equation of motion for the particle.  However, we are 

more familiar with the equation of motion in the form 

                                                F
d

d
m
u

                                                    (3.9)  

 

where F  is the Minkowski force defined as 

 uxΘ ~
F                                                     (3.10) 

It is seen that this force looks like the Lorentz force in electrodynamics, which depends 

on the charge   of the particle and its four-vector velocity u .  Therefore, the equation of 

motion becomes  

                                                 uxΘu ~





d

d
m                                                 (3.11)  

In terms of components, this equation can be written as 

                                         





ux

d

du
m ~                                             (3.12) 

 

One can see that the anti-symmetric strength tensor Θ  looks like a four-dimensional 

vorticity field analogous to the three-dimensional vorticity in rotational fluid flow.  Thus, 

we consider a four-vector velocity-like field   eVV  4,VV  induced to the space-time 

of the inertial reference frame.  It is seen that the vorticity-like strength tensor 

 eeΘ  is the four-dimensional curl of this four-vector velocity, where 

   VVx                                              (3.13) 

 

The general form of this anti-symmetric vorticity-like tensor in terms of elements is 

                            

3 2 1

3 1 2

2 1 3

1 2 3

0

0

0

0

w w ih c

w w ih c

w w ih c

ih c ih c ih c

  
 

 
 
  
 
 

Θ                               (3.14) 

with three-vectors w  and h .  Thus, this four-tensor can be represented symbolically by  
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


















0
1

1

T

c
i

c
i

h

hRw

Θ                                            (3.15) 

where the anti-symmetric matrix wR corresponds to the three-vector  321 ,, wwww  and 

is defined by  

                                                 

























0

0

0

12

13

23

ww

ww

ww

wR                                        (3.16) 

 

It should be noticed that the elements cihiii  44  are imaginary.  By 

decomposition of the four-tensor vorticity defined by (3.13), we obtain  

                                                      4

11
Vi

tcc







V
h                                                (3.17) 

                                                            Vw                                                       (3.18) 

 

We recognize that the vector w  is analogous to the vorticity of the three-vector velocity 

in fluid mechanics.  The components of Θ can be interpreted as follows: 

 The components 1w , 2w  and 3w  are the vorticity-like components of the four-

vector velocity-like V  in planes 32xx , 13xx  and 21xx , respectively. 

 The imaginary components 1h
c

i
, 2h

c

i
 and 3h

c

i
 are the imaginary vorticity-like 

components of the four-vector velocity-like V  in planes 41xx , 42xx  and 43xx , 

respectively.  

 

Therefore, the vectors w  and ch  are the circular and hyperbolic vorticity of the four-

vector velocity field V , respectively.   

 

By taking the curl of (3.17) and divergence of (3.18), we obtain the compatibility 

equations 
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t




w
h                                                    (3.19) 

                                                            0 w                                                     (3.20) 

These equations are the necessary condition for consistency of given three-vector 

vorticity fields w  and h .  The covariant form of these equations is the consistency 

condition 

                0                                        (3.21) 

which is the necessary condition to obtain the four-vector velocity V  from the four-

dimensional vorticity field  .  However, the four-vector V  is not uniquely 

determined from compatible four-tensor vorticity  .  Indeed, the new field  

                                                            VV                                               (3.22) 

does not change the vorticity field  .  Such transformation is called a gauge 

transformation, in which the function   is a function of position coordinate x .  This 

gauge freedom allows us to choose the gauge constraint 

                                                     0 V                                                      (3.23) 

This constraint can be interpreted as an incompressibility condition on the four-vector 

velocity field V . 

 

It seems that defining a quantity, which represents a measure of curvature of the four- 

velocity field V , is also important in our development of the fundamental interaction.  

An analogy with continuum mechanics suggests that the four-vector   can be taken 

as a measure of curvature of the four-vector velocity field V  [7, 8].  Actually, it turns 

out that the four-vector mean curvature of this four-velocity field may be defined as  

 
6

1
K                                               (3.24) 

where eK K .  The coefficient
6

1
 is chosen such that the definition of the mean 

curvature four-vector is compatible with the definition of the mean curvature in higher 
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dimensions [9].    The space and time components of the mean curvature four-vector can 

be written in terms of circular and hyperbolic vorticities as  4,KKK  with 















tc

h
wK

2

1

6

1
                                    (3.25) 

h
c

iK
6

1
4                                             (3.26) 

 

However, in terms of the four-vector velocity V , the mean curvature four-vector 

becomes 

  VVK 
6

1
                                    (3.27) 

 

By using the gauge constraint (3.23), we obtain the form 

 VK 
6

1
                                             (3.28) 

 

From this, the space and time components of the mean curvature four-vector are seen to 

be 















2

2

2

2 1

6

1

tc

V
VK                                        (3.29) 

2
2 4

4 4 2 2

1 1

6

V
K V

c t

 
    

 
                                     (3.30) 

It should be noted that the components 1K ,  2K , 3K  and 4K  at each point in the inertial 

system 4321 xxxx  are the mean curvature of the hyper-planes parallel to the coordinate 

hyper-planes 432 xxx , 143 xxx ,  214 xxx ,  and 321 xxx  caused by the four-vector velocity 

components 1V ,  2V , 3V  and 4V , respectively. 

 

Although we have investigated the kinematics of the four-vector velocity V  by defining 

the vorticity field Θ  and mean curvature K , we have not specified how this four-vector 
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velocity field V  is created by charges.  We develop this theory by defining the current 

density as follows. 

 

Let A  be the volume density of charges moving with the three-vector velocity field A
v .  

The charge current density AJ  is defined as 

                                            ),(,, 4 icciJ A

AAAAAA vJJ  J                               (3.31) 

which satisfies the continuity equation 

                                               0





t
J A

AA


 J                                        (3.32) 

 

It is postulated that the four-vector charge current density AJ  induces the four-vector 

fundamental interacting velocity field ),( 4VV V eV  to the reference inertial space-

time, such that AJ  is proportional to the mean curvature four-vector K .  Therefore, we 

have 

        
1

6
A K J                                                 (3.33) 

       
1

6
AK J                                                  (3.34) 

   

where   is a constant depending on the interaction type and can be either positive or 

negative.  By using the defintion K  in (3.24) we can rewrite the relation (3.34) in the 

form 

                                                            AJ                                                     (3.35) 

 

This equation can be considered as the equation of motion for vorticities.  In terms of 

four-vector velocity, it becomes 

       AV V J                                                    (3.36) 

After using the gauge constraint (3.23), this reduces to  

           AV J                                                        (3.37) 
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4.  Geometry of electrodynamics 

 

Vortex Theory of Electromagnetic Interaction 

One can see that the electromagnetic interaction is completely compatible with this 

geometrical vortex theory of interaction, where the coupling quantity   in (3.5) is 

recognized as the electric charge q .  This shows that the Maxwellian theory is actually a 

model for any other fundamental interaction.  

 

The four-vector current density EJ  is defined as 

                                           4, , ( , )E E E E E E EJ i c ic   J J vJ                               (4.1) 

where E is the electric charge density moving with three-velocity field Ev  in space.  This 

four-vector density satisfies the continuity equation 

                                               0





t
J E

EE


 J                                           (4.2) 

In the theory of electrodynamics, electric charges, through the four-vector electric current 

density EJ , induce the electromagnetic four-vector potential ),( 4AA A eA  in the 

space-time corresponding to the inertial reference frame.  The space component A  is the 

magnetic vector potential and the time component 4A  is related to the electric scalar 

potential   as 

                                                                
c

iA
1

4                                                       (4.3) 

 

Based on the vortex theory of interaction developed here, A  is the four-vector 

electromagnetic velocity created in the space-time.  Obviously, the four-dimensional 

vorticity of this four-velocity field is the electromagnetic strength four-tensor 

 eeFF , where 

                                                         AAxF                                            (4.4) 

The gauge freedom allows us to have 

                                                     0
1

2







tc
A


 A                                          (4.5) 
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which is the Lorentz gauge constraint.   

 

 By considering the electric and magnetic fields E and B  

                                                            





t

A
E                                                 (4.6) 

                                                               AB                                                        (4.7) 

we obtain 
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E
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c
i

c
i

ciEciEciE

ciEBB

ciEBB

ciEBB
T

B

F              (4.8) 

 

We can see that the electromagnetic vorticity four-tensor field F  is a combination of 

hyperbolic electromagnetic vorticity E
c

1
 and circular electromagnetic vorticity B .  

This is an amazing result explaining the geometrical character of the six components of 

the electromagnetic field F , as follows: 

 The components 1B , 2B  and 3B  are the circular vorticity-like components of 

the electromagnetic field in planes 32xx , 13xx  and 21xx , respectively. 

 The components 1

1
E

c
, 2

1
E

c
 and 3

1
E

c
 are the hyperbolic vorticity-like 

components of the electromagnetic field in planes 41xx , 42xx  and 43xx , 

respectively.  

 

For a particle with mass m  and electric charge q  at position x~ , the four-tensor vorticity 

F  is transformed to the four-tensor angular velocity Ω  of the space-time body frame of 

particle, such that  

                                     xFxΩ
~~

m

q
                                                    (4.9) 
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One can see that this is a linear transformation with mapping constant 
m

q
.  Therefore, the 

effect of electromagnetic interaction on the charged particle is nothing but the 

instantaneous four-dimensional rotation of its body frame.  The hyperbolic and circular 

angular velocities of the body frame are  

                                                             x
mc

q

c

~E
η
                                                     (4.10) 

and 

                                                             x
m

q ~Bω                                                    (4.11) 

respectively.    

 

The equation of motion for rotation of the space-time body frame of the particle is  

                 xFΛ
Λ ~


m

q

d

d


                                              (4.12) 

However, the classical equation of motion for the particle is 

                                                      




uxqF

d

du
m ~                                               (4.13) 

where the right hand side is the electromagnetic four-vector Lorentz force.  The space 

and time components of this equation are 

                                         BvE
vu

















 q

cv

m

dt

d

dt

d
m

22 /1
                              (4.14) 

                                                      vE 


q
cv

mc

dt

d

22

2

/1
                                         (4.15) 

respectively.  The first equation is the equation of motion, where its right hand side is the 

familiar Lorentz force.  The second equation is the rate at which the electromagnetic field 

does work on the particle and changes its energy.  Now we realize that the 

electromagnetic strength field tensor and Lorentz force vector are both natural 

consequences of the geometric structure of relative space time. 

 

The compatibility equation for F  is 
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                                                   0  FFF                                       (4.16) 

 

This equation is the covariant form of Maxwell’s homogeneous equations 

                                                                0 B                                                      (4.17) 

                                                           0





t

B
E                                                (4.18) 

 

Equation (4.17) is known as Gauss’ law for magnetism and equation (4.18) is Faraday’s 

law of induction.  Therefore, Maxwell’s homogeneous equations are the necessary 

kinematical compatibility equations for the circular and hyperbolic vorticities.   

 

Now we consider the relation between electric charges and the electromagnetic field that 

these charges create.  The covariant form of the governing equation for strength or 

vorticity tensor F  due to the electric current density is 

                                                            EJF 0                                                    (4.19) 

which is the compact form of Maxwell’s inhomogeneous equations  

                                                0E E                                                   (4.20) 
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                                            (4.21) 

  

Equation (4.20) is Gauss’ law and (4.21) represents Ampere’s law with Maxwell’s 

correction.  The constants 0  and 0  are the permittivity and permeability of free space, 

respectively.  As we know, the relation 2

00

1
c


 holds.  

 

The non-homogeneous equation (4.19) expresses the relation between the derivative of 

the four-dimensional vorticity and electric density current four-vector.  As a result, it can 

be taken as the equation of motion for electromagnetic vorticities.  This relation may also 

be written as 
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                                                          EE JK 0
6

1
                                                 (4.22) 

where EK  is the mean curvature four-vector of the electromagnetic four-vector velocity 

A .  Therefore, Maxwell’s inhomogeneous equations turn out to express the mean 

curvature four-vector of the four-vector electromagnetic velocity.  This is an amazing 

result in the theory of electrodynamics, which shows that the four-vector density current 

EJ  is a measure of the four-vector mean curvature of electromagnetic four-vector 

velocity A .  This is the geometrical explanation of Maxwell’s inhomogeneous 

equations.  The space and time components of (4.22) are  

                                                        EE JK 0
6

1
                                                   (4.23)                                                        

EE
c

iK 
 0

4

1

6

1
                                                (4.24) 

Interestingly, we notice that the electric charge density is proportional to the imaginary 

mean curvature of the scalar potential   in the time direction. 

 

The mean curvature four-vector EK  in terms of the vorticity field and four-vector 

velocity becomes 

 FKE 
6

1
                                               (4.25) 

  AAKE 
6

1
                                    (4.26) 

respectively.   If we use the Lorentz gauge in (4.5), this relation reduces to 

 AKE 
6

1
                                               (4.27) 

Therefore, for the space and time components of the mean curvature four-vector, we 

obtain 
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These components can also be written in terms of circular and hyperbolic electromagnetic 

vorticities as 


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E
c

iKE
6

1
4                                           (4.31) 

 

Therefore, point charges, such as electrons, create concentrated mean curvature of the 

electromagnetic four-vector velocity field.    

 

It is also interesting to note that in regions of space, where there is no charge or current, 

the electromagnetic field has no mean curvature 

0EK                                                        (4.32) 

Accordingly, plane electromagnetic waves, which are the solution to homogeneous 

Maxwell’s equations, have no mean curvature anywhere in space. 

 

What we have shown is that the electrodynamics is compatible with the four-dimensional 

vortex theory of interaction, where  

                                                               q                                                         (4.33) 

EA JJ                                                        (4.34) 

                                                        AV                                                         (4.35) 

                                                                          FΘ                                                                    (4.36) 

   Bw                                                        (4.37) 

                                                             Eh                                                         (4.38) 

 

It is amazing to note that that the theory of electrodynamics is based on geometrical 

concepts, such as the four-tensor vorticity and the four-vector mean curvature.  

Consequently, one can realize that the theory of electrodynamics is a treasure, which 

contains all clues for understanding space, time, motion and interaction. 

 



 31 

Now it is time to explore more about the universal fundamental entity in which particles 

create their space-time and interact through vorticity fields.  It turns out that the study of 

the electromagnetic energy-momentum tensor and Maxwell stress tensor is significant in 

this investigation. 

 

Electromagnetic Energy-Momentum Tensor 

Relative to the space-time inertial reference frame, the Lorentz force per unit volume on a 

medium with a charge density E  and current density EJ  is given by  

                                                            BJEf  EE                                              (4.39) 

 

The generalization of this force in covariant electrodynamics  is 

                                                                 EJFf                                                   (4.40) 

where  4, ff f  is the force-density four-vector with  

                                                              EJ  E
c

i
f4                                                  (4.41) 

 

We note that 

                                                             EJ 



E

t

w
                                                    (4.42) 

 

is the work done per unit time per unit volume by the electric field on moving charges. 

Therefore 

                                                               
t

w

c

i
f




4                                                      (4.43) 

 

By substituting EJ  from the equations of motion of the electromagnetic field 

                                                               EJF 0                                                (4.44) 

and some tensor algebra, we obtain 

                                                                 Tf                                                      (4.45) 

where T  is the electromagnetic energy-momentum tensor, defined by 
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The explicit form of the components of this four-tensor in terms of E  and B  are the 

Maxwell stress tensor 
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the electromagnetic energy density 
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and 
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where the Poynting vector S  is defined by 

                                                                BES 
0

1


                                                (4.50) 

 

Therefore, the symmetric four-tensor T  can be written in schematic matrix form as 
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The traction or force exerted by this field on a unit area of a surface in space with unit 

normal vector in  is 

                                                                    n

ijij TnT                                                   (4.52) 

Through this analogy with continuum mechanics, we can take T  as a four-stress tensor. 

The time-space components of (4.45) are 
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Integrating these relations over a volume V  bounded by surface A , and using the 

divergence theorem, we obtain 
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In addition, we note that the relation 
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looks like a constitutive relation for four-stress tensor T  in term of the four-tensor 

electromagnetic vorticity F  in the universal entity.  In linear continuum mechanics, the 

constitutive equations relate the stress tensor linearly to strain or strain rate, but the 

energy density is a quadratic function of strain or strain rate tensor.  However, what we 

are dealing with here is the four-dimensional analogous case in which the stress four-

tensor T  is a quadratic function of the vorticity four-tensor Ω  in the universal entity.  

Thus, the universal entity behaves like a continuum in which charged particles create 

stresses and electromagnetic vorticities. Interestingly, the point charged particles, which 

create concentrated curvature of the four-vector electromagnetic velocity, are 

singularities of these vorticities and four-stress tensors.  Therefore, we realize that the 

Minkowski-Lorentz forces exerted on these point particles can be considered as four-

dimensional lift-like forces.  Although the idea of using vorticity looks very interesting, 

historical accounts show that it is not completely new.  This development is similar to the 

efforts of investigators of ether theory.  Ether was the term used to describe a medium for 

the propagation of electromagnetic waves.  Whittaker
 
[10] gives a detailed account of 

these investigations through which we learn that Maxwell considered a rotational 

character for the magnetic field and a translational character for the electric field.  We 

also learn that Larmor
 
[11] considered that the ether was separate from matter and that 
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particles, such as electrons, serve as source of vortices in this ether.  What we have 

developed here can be considered the completion of Larmor’s ether theory. 
  
 

 

Interestingly, we have used similar ideas about stress and vorticity as in continuum 

mechanics, but here in a four-dimensional context.  In our development, the magnetic 

field has the same character as circular rotation, but the electric field has the character of 

hyperbolic rotation. It is well justified to call our fundamental universal entity the 

historical ether out of respect, which now is represented by four-dimensional space-time 

systems.  Therefore, in the new view, particles specify their space-time body frames in 

the ether and interact with each other through four-vorticity and four-stress that the 

particles create in the ether.  As we mentioned, the Lorentz force  

                                                                           uxqFF ~                                                          (4.58) 

is analogous to the lift force in fluid dynamics.  The lift on an airfoil is perpendicular to 

the velocity of flow past the surface.  This is the mechanical analogy of the four-vector 

electromagnetic Lorentz force. 

 

Clarifying the concepts of ether and space-time and the development of the vortex theory 

of electromagnetism are important steps in the completion of Poincaré’s theory of 

relativity and covariant electrodynamics.  These achievements enable us to understand 

more about modern physics and resolve some difficulties, even in a classical view.  

Interestingly, the geometrical theory of electromagnetic interaction resolves the 

speculation about magnetic monopole, which is addressed in the following section.  

 

Magnetic Monopole Does Not Exist 

As mentioned in Section 2, the existence of magnetic monopole is apparently compatible 

with the fully symmetrized Maxwell’s equations.  It seems only modification of 

Maxwell’s equations suffices to permit magnetic charges to exist in electrodynamics.  

However, the geometric vortex theory of electromagnetic resolves this quest by showing 

the impossibility of the existence of magnetic monopole in the universe as follows. 

 

http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
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The magnetic field B  is the space electromagnetic vorticity induced to the ether relative 

to the inertial reference frame.  This is analogous to the vorticity field in a rotational fluid 

flow.  From non-relativistic fluid mechanics, we know that the vorticity is the curl of the 

velocity field of the fluid, which equals twice the angular velocity of the fluid element.  

By definition, the vorticity field is source-less, which is the necessary compatibility 

condition for a realistic fluid flow.  We notice the same character for the electromagnetic 

vorticity B .  The magnetic field B  is the curl of the electromagnetic velocity vector field 

A .  Thus, 

                                                               AB                                                       (4.59) 

 

This definition requires 

                                                                 0 B                                                      (4.60) 

which is the kinematical compatibility equation stating that the magnetic vorticity field 

has no source.  This equation is the necessary condition for the existence of vector 

potential A  for a given magnetic field B .  Existence of a magnetic monopole would 

violate this trivial kinematical compatibility equation with bizarre consequences as we 

illustrate further. 

 

Let us assume that there is a point magnetic monopole of strength mq  at the origin.  

Therefore, in SI units 

                                                           )(3

0 xB  mq                                             (4.61) 

 

and the static magnetic field is then given by 

  rB ˆ
4 2

0

r

qm




                                                    (4.62) 

 

However, the relation (4.61) contradicts the kinematical compatibility (4.60).  The 

magnetic field of a magnetic monopole cannot be represented by a vector potential A .    

Interestingly, based on the Helmholtz decomposition theorem, this field can only be 

represented by a scalar potential [12, 13] 
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where the  magnetic field B  is given by 

                                                                mB                                                      (4.64) 

But this is absurd, because the electromagnetic vorticity vector field B  has to be always 

represented by curl of the electromagnetic velocity vector A .  Therefore, magnetic 

monopoles cannot exist.  We realize that the magnetic field B  is only generated by 

moving electric charges.  

 

It has been long speculated that magnetic monopoles might not exist, because there is no 

complete symmetry between B  and E .  This is due to the fact that B is a pseudo-vector, 

but E  is a polar vector.  What we have here is the confirmation of this correct 

speculation that there is no duality between E  and B  in electrodynamics.  We have 

shown that the magnetic field B  has the character of a circular vorticity field and is 

divergence free.   

 

However, we realize that the electric field E  has the character of a hyperbolic vorticity 

with electric charges as its sources, where 

                                                          0E E                                                     (4.65) 

This explanation is actually the clarification of Larmor’s ether theory. 

 

As mentioned previously, the electric charge q  of a particle has the property of a 

kinematical coupling, which maps the four-dimensional electromagnetic vorticity at the 

position of the particle to the angular velocity of its body frame.  We have shown that 

electric charge is the only coupling present.  Furthermore, there is no need for any other 

coupling.  Based on the developed geometry of electromagnetism, it is naïve to assume 

that a simplistic modification of Maxwell’s equations suffice to allow the existence of 

magnetic charges in electrodynamics.  
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5. Conclusions 

 

The theory of relativity has been completed by establishing the fundamental relation 

between space-time and particles.  This theory shows that every particle specifies a 

Minkowskian space-time body frame in a universal entity, here referred to as ether, and 

moves in the time direction with speed c in that frame.  The relative motion of particles is 

actually the result of relative four-dimensional rotation of their corresponding space-time 

body frames.  This aspect of space-time shows that the pure Lorentz transformations 

represent the relative four-dimensional orientation among the space-time body frames of 

uniformly translating particles.  Inertial observers in these frames relate the components 

of four-vectors and four-tensors by Lorentz transformation.  This is the origin of non-

Euclidean geometry governing the three-vector and three-tensor components.  The 

hyperbolic geometry of the velocity addition law for uniform motions is the manifest for 

this fact.  

 

We also realize that the orthogonal transformations are not restricted to relative uniform 

motion.  The relative motion of accelerating particles is also represented by varying 

orthogonal transformations.  This establishes the general theory of motion and 

fundamental interaction.  The acceleration of a particle is the result of the instantaneous 

rotation of its space-time body frame in the ether.  This instantaneous rotation is specified 

by a four-dimensional angular velocity tensor in the inertial reference frame.  The 

hyperbolic part of this rotation is in fact the accelerating motion.  However, there is also a 

circular space rotation, which is observed in some phenomena, such as the spin 

precession of a stationary charged particle in a magnetic field.   

 

Based on the theory of motion, the geometrical character of fundamental interaction has 

also been discovered.  This development shows that a Lorentz-like Minkowski force is an 

essential feature of the simplest model for every fundamental interaction, which is 

represented by an anti-symmetric strength four-tensor field with characteristics of a 

vorticity field.  This four-vorticity tensor is a combination of three-vector circular and 
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hyperbolic vorticities.  Particles interact with each other via the four-vorticity, which the 

particles induce in the ether. 

 

This vortex theory gives a clear geometrical explanation of electrodynamics, which is a 

model for any other interaction.  We realize that the electromagnetic strength field is a 

four-dimensional vorticity field. The magnetic and the electric fields are the circular and 

hyperbolic vorticity-like fields, respectively.  Through this theory, we realize that the 

homogeneous Maxwell’s equations are the necessary compatibility equations for the 

electromagnetic vorticity vectors, whereas the inhomogeneous Maxwell’s equations 

govern the motion of these vorticities.  Geometrically, the inhomogeneous Maxwell’s 

equations are the relation for mean curvature four-vector of electromagnetic velocity 

field.  The charge current density four-vector is proportional to the mean curvature four-

vector of electromagnetic four-vector velocity. 

 

Moreover, the energy-momentum four-tensor has the character of a four-stress tensor and 

its expression in terms of electromagnetic vorticities is a constitutive relation.  This 

reveals the mechanical character of the Lorentz force as a four-dimensional lift-like force 

perpendicular to the four-vector velocity.  The circular vortical character of magnetic 

field clearly shows why magnetic monopole cannot exist.  Therefore, electric charges are 

the only source of the electromagnetic field. 

 

It should be emphasized that in this paper nothing has changed in the original Maxwell’s 

equations.  We have just shown that the theory of electromagnetism is much more 

important than previously thought.  Our theory of space, time, motion, interaction and the 

governing geometry is the result of understanding the apparently subtle characteristics of 

this theory.  We have discovered the fascinating fundamental geometry of 

electromagnetism by understanding the relation between particle and space-time, four-

dimensional rotational motion, and vortex characteristics of the interaction field. 

Continuum mechanics has played an essential role in this achievement.  Vortex theory in 

fluid mechanics and rigid body dynamics enable us to reveal the true character of space-
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time, motion, and interaction.  Amazingly, everything in electrodynamics and the theory 

of relativity is about rotation, which has not been recognized completely before.   
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