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Abstract: We show how SU{hromodynamics, which is the theory of strongrattgons, is a
corollary theory emerging naturally from the comdtilon of nothing other than Maxwell / Weyl
gauge theory with Yang-Mills theory. In the pra;ese show not only the emergence from the
Maxwell / Yang-Mills combination of all that is be expected from SUEghromodynamics,

but additionally, we show how the observed baryamgaining three colored quarks in the
ground state are the magnetic charges of Yang-gdisge theory and how these magnetic
charges naturally confine their quarks and gluons dbo pass mesons in order to interact. That
is, we explain quark and gluon confinement and hasvthat strong interactions are mediated
by mesons but not gauge fields. Additionally, emahstrate how the inherent non-linearity of
Yang-Mills theory may be used to solve the “mags gaoblem and yield a nuclear interaction
that is short range notwithstanding its being basadnassless gluon gauge fields. We further
demonstrate the origin of “chiral symmetry breaKimg strong interactions. We find that the
non-linear nature of Yang-Mills theory containsexursive aspect which provides a useful tool
for solving the Yang-Mills path integral in order ¢xactly, analytically arrive at quantum Yang-
Mills theory. As a result of further developingyVs original geometric view of gauge theory,
we uncover a classical field equation unifying gtavonal theory with Weyl’'s gauge theory
including both its Maxwell / Abelian and Yang-Mwariants, at the level of the Einstein
equation for gravitation. Finally, we use the resive aspects of Yang-Mills theory to develop
and solve an exact, closed recursive path intefmaQuantum Yang-Mills Theory and thereby
prove the existence of a non-trivial quantum Yanijsitheory on R for any simple gauge

group G.

PACS: 12.38.Aw; 12.40.-y; 14.20.-c; 14.40.-n
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1. Introduction

In this paper we study the strong “chromodynaniitéractions for which the Yang-
Mills gauge group isSU(3).. But contrary to how chromodynamic interactions eommonly

approached, we make ra priori supposition about Yang-Mills SU@)eing the theory of
strong interactions. We simply postulate that Malkw U(1).y, electrodynamics is a correct
theory of nature and that any other non-gravitaionteractions have the exact same form as
electrodynamics with the sole exception that theypley gauge groups SU(N) with all
spacetime derivative8” in the Maxwell Lagrangian and the classical fieiflations including

those operating on gauge fields and on the figkhgth replaced by — D* =0 -iG*, and
so are non-Abelian versions of Maxwell’s electroalyrncs.

Starting from this view, we show how chromodynamitshe form of an SU(3)gauge
theory need not be posited at all, but emergesedntas acorollary theory based on positing
Maxwell gauge theory with Yang-Mills extension &g underlyingfundamental theory But in
the process, extending beyond the pedagogicatyutifi this viewpoint, we not only uncover
SU(3k chromodynamics in its usual expected form, butalg® come upon baryons and show
them to be the magnetic monopoles of these YantsMitensions of Maxwell. We further find
out how and why interactions between observed gtnoarticle states such as protons and
neutrons are mediated by mesons, we develop cdrtgiortant connections to gravitational
Riemannian geometry, and we solve the Yang Millssrgap and confinement problems.

In laying out the “Yang-Mills and Mass Gap” problemhich the present paper solves,
Jaffe and Witten point out at page 3 of [1] that:

“. .. for QCD to describe the strong force sucfidls it must have at the
qguantum level the following three properties, eathwhich is dramatically
different from the behavior of the classical thedty It must have a “mass gap;”
namely there must be some constédnt 0 such that every excitation of the
vacuum has energy at leaAt (2) It must have “quark confinement,” that is,
even though the theory is described in terms omefgary fields, such as the
quark fields, that transform non-trivially under @) the physical particle
states—such as the proton, neutron, and pion—af(8)Stvariant. (3) It must
have “chiral symmetry breaking,” which means tha wacuum is potentially
invariant (in the limit, that the quark-bare massasish) only under a certain
subgroup of the full symmetry group that acts andhark fields.”

They further proceed to state that:

“The first point is necessary to explain why thelear force is strong but
short-ranged; the second is needed to explain whgever see individual quarks;
and the third is needed to account for the ‘curedgébra’ theory of soft pions
that was developed in the 1960s.”

They then continue (emphasis added, original rates® renumbered):
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“Both experiment — since QCD has numerous successesnfrontation
with experiment — and computer simulations . . .vehagiven strong
encouragement that QCD does have the propertiest [slnge, confinement and
chiral symmetry breaking] cited above. These prigercan be seen, to some
extent, in theoretical calculations carried outiimariety of highly oversimplified
models (like strongly coupled lattice gauge theamse, for example, [2]).But
they are not fully understood theoretically; thedees not exist a convincing,
whether or not mathematically complete, theoretmaputation demonstrating
any of the three properties in QCD, as opposed $e\erely simplified truncation
of it.”

Moving past a statement of the problemhtiwvthe mass gap might be solved, Jaffe and
Witten later proceed to survey a wide variety otimes used “to show the existence of quantum
fields on non-compact configuration space” and sigatly to demonstrate that “relativistic,
nonlinear quantum field theories exist.” On pageof[1], they finally observe that:

“One view of the mass gap in Yang—Mills theory sesfg that it could
arise from the quartic potentiah (* A)? in the action, wheré = dA + gA™ A, see
[3], and may be tied to curvature in the spaceooinections, see [4].”

This is the view of the Yang-Mills mass gap thall we developed here and used to solve this
problem. It is in accord Occam’s Razor as resthtelinstein [5], that “the supreme goal of all
theory is to make the irreducible basic elementsiaple and as few as possible without having
to surrender the adequate representation of aesidgium of experience.” All of the other
methods enumerated in section 6 of [1] appear tailesupplementing pure Yang-Mills theory
with other devices or suppositions or making tra@daapproximations in order to be able to
explain a nuclear short range coincident with nessslgauge fields, quark and gauge field
confinement, and chiral symmetry breakinBut more importantly than theoretical economy,
this view actually does lead to confinement andlat®n to the mass gap and chiral symmetry
breaking

In other words, we show how confinement and thesmgap and chiral symmetry
breaking can béully explained using no more than a Yang-Mills fieleesgth F = dA + gA* A
via the quartic action terms (A ~ A) This places the mass gap and confinement amdl chi
solutionsentirely on the shoulders of Yang-Mills theory withany supplementBecause the
classical Yang-Mills equations are simply thoseMdixwell extended into the non-Abelian
domain, this would entirely explain nuclear shamge and quark and gauge field confinement
and chiral symmetry breaking on the basis of “Mak&@&quations . . . replaced by the Yang—
Mills equations, 0 =daF = da*F” ([1] pages 1-2), and sceveals Maxwell’'s theory, with the
simple replacement of all ordinary derivatives e Lagrangian and classical field equations by
gauge-covariant derivatives and nothing more, tdhgegoverning theory of nuclear physics.

In sum, by taking a view that the fundamental tleok Yang-Mills electrodynamics
naturally gives birth to SU(3)as a corollary, secondary theory of strong intéwas, we see
how SU(3} naturally emerges such that there is a built am-trivial SU(3): transformation for
elementary quark and gluon fields concurrent with(3c invariance for the physical particle
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states which leads to a naturally-emergent, baiform of quark and gluon confinement, meson
interaction, chiral symmetry breaking, and a mags §J hese features are not easily seen if one
starts out by assuming SU{3Ip be the theory of strong interactions. But they discovered if
one starts out only with Maxwell and Yang-Mills aheén derives QCD as a corollary theory.
The purpose of this paper is to convincingly dentraies this.

What is novel about his paper is the following:ld)section 7, we are able to obtain a
classical unification of gravitational theory witfauge theory at the level of the Einstein field
equation, see (7.6). 2) In section 9 we uncowemnénite recursion which does not appear to
have previously been found, and which could proad®ol for carrying out Yang-Mills path
integration in an exact, analytical fashion, anerély quantizing Yang-Mills theory, exactly. 3)
In section 10 we solve the mass gap, see (10.1@)(&AD.13), which explains how nuclear
interactions can have short range yet at the same lbe based on massless gluons. 4) In
section 11 we solve confinement and show how QCibrally emerges as a corollary theory
from Yang-Mills gauge theory, and specifically htdve Yang-Mills monopoles are synonymous
with baryons consisting of three colored quarkshi@ ground state and interacting solely via
meson exchange with individual quarks and gluomsareing strictly confined, see (11.1) and
(11.18) and section 11 generally. 5) In sectidnwe uncover the origins of chiral symmetry
breaking in strong interactions, and particuladfthe vector (V) and axial (A) character of the
phenomenologically-observed mesons. 6) In sed®rwe use the recursive aspects of Yang-
Mills theory earlier uncovered in section 9 to depeand solve an exact, closed recursive path
integral for Quantum Yang-Mills Theory, which previhe existence of a non-trivial quantum

Yang—Mills theoryon R* for any simple gauge group G.

Now, we provide a brief overview of this paper: eTWway one chooses to think about
Yang-Mills, depending on circumstance, can makegadifference in whether a calculation or
conceptualization is reasonably clean and simplejessy and obtuse. So in section 2, we begin
by reviewing Yang-Mills theory from three equivalenewpoints: that of a gauge theory for
non-commuting gauge fields; that of a gauge theatly non-linear interactions between gauge
fields, and that of an Abelian gauge theory “orra@ts” by virtue of a “minimal coupling”
principle through which all ordinary spacetime datives in the Lagrangian and classical field
equations are replaced by gauge-covariant deremtwnd the theory is consequently turned into
a non-Abelian gauge theory.

In section 3, we examine the classical Maxwell ¢éiqua for the electric and magnetic
charge densities, and demonstrate how the non-céimgmature of Yang-Mills theory naturally
gives rise to non-zero magnetic charge densiti&sction 4 begins to show how the Yang-Mills
magnetic charge densities have a number of symnelagacteristics which are reminiscent of
baryons, most notably, that there is no net fluaofang-Mills gauge field across any closed
surface surrounding a Yang-Mills monopole for tkaa same formal reasons that there are no
monopolesat all in an Abelian gauge theory such as that of Maxweéle return to this
discussion in section 11 following further develagrhat which point we are able to formally
identify these Yang-Mills monopoles with baryonsitaning three colored quarks in the ground
state and showing that these monopoles have d@heotequired features of quark and gluon
confinement was well as interactions which traresgia mesons.
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In section 5 we develop a fourth, perturbative vahwang-Mills theory, and in section 6
we develop a fifth view of gauge theory — whichthe original view of Hermann Weyl, the
founder of gauge theory — based on geometric cureah a gauge / phase space. In section 7
we make use of this view to uncover in (7.6) a ftivof the Einstein equation which is the
gravitational field equation of Yang-Mill gauge trg. Because this field equation remains
valid even for Abelian gauge theory, this unifiesawtation with the non-gravitational
interactions including electrodynamics, at the silzed level.

While sections 4 through 7 focus largely on the nedig charge densities, section 8
returns to the electric charge densities. Obsgrthat the magnetic and electric charge densities
are essentially a set of linked equations paramettby the gauge fields, in section 8 we invert
the electric charge density so that the gaugediaftpearing in the magnetic charge density may
be replaced by the source currents form which treynate, which in turn enables us to replace
the source currents with the fermion wavefunctibmsn which they arise and thus “populate”
the monopole densities with fermion wavefunctiohs.section 9 we make use of this inverse to
in fact “populate” the monopole densities with fesmwavefunctions. In so doing, we come to

see that the inversg, defined such thaG, = IwJ’ which is used to replace the gauge fields

with the current densities and then with the femmimavefunctions is actually eecursive
expression which embeds an infinite recursive ngstf gauge fields and thus an infinite
succession of current densities and fermion wawtioims. This finding of an infinite recursion
represents yet a sixth view of the non-linear attaraof Yang-Mills theory which may be of
help in developing an exact, analytical solutiorihi® Yang-Mills path integral and thus yielding
guantum Yang-Mills theory on an exact footing.

Sections 10, 11 and 12 then present the solutmniset three main aspects of the mass
gap problem, namely, the mass gap itself, quarkimement, and chiral symmetry breaking.
Section 10, in equations (10.12) and (10.13) castdhe mass gap solution. Section 11
completes the development first started in secticend shows how and why we are able to
formally identify the Yang-Mills monopoles with hams containing three colored quarks in the
ground state and show that these monopoles haeé ik required features of quark and gluon
confinement was well as interactions which trarespia mesons. Section 12 shows the origin of
chiral symmetry breaking in the quaternion natufehe Dirac gamma matrices, and in the
infinite recursion of gauge fields and current dées developed in section 9.

Finally, in section 13, we use the recursive aspeift Yang-Mills theory earlier
uncovered in section 9 to develop and solve antegkxsed recursive path integral for Quantum
Yang-Mills Theory, which proves the existence afan-trivial quantum Yang—Mills theorgn

R* for any simple gauge group G. Section 14 conalude

2. Classical Yang-Mills Theory: Three Equivalent \fewpoints

Yang-Mills gauge theories, first developed in 196jby C. N. Yang and R. Mills, rest
mathematically upon the generalization of the Pg2li matrices of SU(2) into SU(N) matrices

of any NxN dimensionality. These Pauli matrices ihich o7 =0 =0’ =-icoo,=1 and
which have the commutation relations}{ipi,aj ] =2ig, g, , are in turn the direct descendants

6
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of the quaternions® = j* =k > =ijk = -1 which Hamilton first carved with his penknife intioe
Brougham Bridge in Dublin, Ireland in 1843, pres@gwhat has since become the use of non-
commuting numbers throughout modern physics. Nbzedh such thatTr(/l‘/lj):%é“', the

N?-1 generatorsA';i =1,2,3.N*-: of any Yang-Mills gauge group SU(N) maintain the
commutator relationshpl, A, | =ify A , where f, are the group structure constants. This

generalizes the Pauli relationship which becomes,; | =i

i« 0 for the normalization

Tr(a‘aj):%é”. Each generatorA' is an NxN matrix and so can be written

A e AB=1,2,3..N, but in general it is simpler and more compacstippress thesé\, B
indexes and simply keep in mind at all times thase indexes are implicitly there.

Physically, an SU(N) gauge theory extending Maxwe#lectrodynamics into non-
Abelian domains is developed from these generatattse following way: first, one posits a set

of N?-1 vector potentials (gauge field§'*; i=1,2,3..N? - 1. Next, one sums these with the
generators to fornG*,, =A',,G* which with A B indexes implicit is normally written as
G*=A'G*. This G* is an NxN matrix containing théN®>-1 spacetime 4-vector gauge
potentials. Similarly, one forms a set Nf -1 field strength tensor§'*, each of which is a
bivector containing a “chromo-electric” field; and a chromo-magnetic field; in the usual
manner, aside from thé”-1-fold replication of these fields. We then usesthéo form
F/ = A\ .F'* which is an NxN Yang-Mills matrix of 4x4 antisyminie second rank tensor
bivectors. Finally, in very important contrast to the electrodynamieldi strength
F# =9#G" -0"G", we specify the NxN field strength matrix*” in terms of the NxN gauge
field matrix G¥ as (see, e.g., [7], equation IV.5(16)):

F* =0"G" -9"G*~i[G*,G" |=d"“ G- &, G ]. (2.1)

Because the gauge field3” are NxN Yang-Mills matricesz*,, = A',;G*, this commutator
[G¥,G"|=G'G - G @ is non-vanishing| G*,G’ |#0. Much of what differentiates Yang-

Mills gauge theory from an Abelian gauge theoryhsas QED, originates from the fact that
these gauge field / vector potential matric@$ = A'G* do not commute, i.e., from the fact that
[G.G"]|#0.

Starting with field strength (2.1), there are saVadifferent, fully equivalent ways in
which one can think about Yang-Mills gauge theoriéhe way one chooses to think about
Yang-Mills, depending on circumstance, can makegadifference in whether a calculation or
conceptualization is reasonably clean and simplen@ssy and obtuseThe first way to think
about Yang-Mills is that of (2.1), as a theory ihigh the gauge fields do not commutgs we
shall review momentarily, this leads very diredibynon-vanishing magnetic monopole source
charges that will be central to the developmenghand will eventually become associated with
the observed baryons including protons and neutrons

7
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For a second way to think about Yang-Mills, it isniin being reminded how to expand
(2.1) using F*" =A'F'*, G*=A'G* and [A,A, |=if, A . Renaming summed indexes as
needed, this expansion yields:

/]iFi/;v:au/]iGiv_av/]iG‘/J_i[/]' GH N GV}:) "G =) 0" GH - |[/'1 A }G”GV

e (2.2)
=N0"GY X 3'G  + f9 ) G+ G

The A' are then factored out from all terms, leavingemfnore renaming, the perhaps more-
familiar expression:

Fi =9rGY —0"G# + f* ¥ Y =¥ & + #* G+ &, (2.3)

If we now use (2.3) to form a Lagrangian densitynak the QED£ =-;F*'F,, for a pure
gauge field, we obtain the also familiar (see,, ¢4, equations (VII.1.(1)-(2)):

£=-3F"F oG + GGY)(9, Gy * 1 G, G)

_1
4
=-10“G"9,G, -3 1,0“G"G,G,~1 I [,G" ¢ G G,

[u=v]

,u_

(2.4)

The first term,—49“G"9,,G,,, a “harmonic oscillator” term, is quadratic in thauge fields,
and is fully analogous and indeed identical in faorthe term—4 F*'F, -10“G"9 G, in
the Lagrangian density of electrodynamics. Butrémaining termSH1 f,lka "G“’]G#Ci,, and

-1 f%f, G¥G"G,G,, the “perturbation” terms, represent vertices witiree and four

interacting gauge fields. This is not seen intetetynamics, and makes Yang-Millsian-linear
theory. So the secondiay to think about Yang-Mills theory is that of4(2.in which the gauge
fields do_not act like photons by foregoing intéi@ts with one another like ships passing in the
night. Rather, the Yang-Mills gauge fields fullyeract with one another as well as with their
fermion (current) sources.

As Zee points out in section VII.1 of [7], presemtthods used to calculate in Yang-Mills
theory, such as perturbation theory or lattice gaihgory, are severely truncated methods which
must eventually be replaced by more complete aadtexays of doin@nalytical (as opposed to
numerical) calculations with Yang-Mills theory. rRebation theory, which is highlighted by the
separation of terms in (2.4), in Zee's descripti@n,’an unnatural act as it involves brutally
splitting [the Lagrangian density] L into two parts part quadratic in the fields and the rest.”
Lattice gauge theory [2], in contrast, “does vi@erio Lorentz invariance rather than to gauge
invariance.” Further, as a fundamentally compatstl rather than analytical method based on
small but finite lattice spacing, Lattice gaugedtyeis akin to doing calculus in Yang-Mills
gauge theory using the finite limits that were ubetbre Newton taught us how to do calculus
with infinitesimal limits. This is not an adverseflection on Yang-Mills or QCD, but only on
our ability to calculate with them, analyticallfRetter methods and approaches are needed which

8
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do violence to neither gauge symmetry nor Poinsgrametry, and which fully employ all the
tools of modern calculus. Because doing exacutations with (2.4) is difficult, in general we
will find it unhelpful to split (2.4) into harmoniand perturbative parts as is done in perturbative
gauge theory, or to spoil the Lorentz invariance@restricted by finite limits as in lattice gauge
theory, and will look to other approaches.

A third way to think about Yang-Mills gauge theasyto expand the commutator in (2.1)

and then reconsolidate using gauge covariant der@saD* =0* —iG*, as such: (In general,
for compactness, we scale the interaction chargagthg into the gauge field vimG* - G".
This g can always be extracted back out when explicélgded.):

F* =0"G" -9"G* -iG*G +iG'G' =(0" - iG") G -(0"-iG) @ =D C- DG = I J.(25)

We compareF* =D*G" above to the Abelian field strength*’ =0'“G"! and see that the
only difference is that the ordinary derivative is esmgd by o” - D =90* —-iG*. This is
actually a very pedagogically-useful observatio@onsider that gauge theory first originates
when one has a field equation or a Lagrangian &oadarg or fermion¢ field which includes
atermad, @ or 0,4 . One then subjects the field to theeal gauge (phase) transformation

@ e or g - €y and insists that the field equation or Lagrangiemain invariant

under this transformation. What does one do tarensuch invariance? Make the replacement
0% -~ D# =0* -iG*. So, one then changésy - D, andd ¢ - D with the consequence

that ¢ or ¢ acquires an interaction with the gauge fieid .

So if we start with an Abelian gauge theory susi®Q&D for whichF** =9*G"! , we can
easily turn it into a non-Abelian gauge theory lgplacing 0¥ — D¥ =9* -iG* so that
F* =D¥G", which is (2.5). As a consequence, the gauge @l acquires an interaction with
the gauge fieldG”, i.e., the gauge field now starts to interact hinearly with itself! This says
exactly the same thing as (2.4), with the exceptinat in the form of (2.5), the pure gauge term
in the Lagrangian is the much cleaner (the Y rathan ¥ owes to thél'r(/l‘/lj ) =10

normalization):

£=-1TrF"F, =-1TD¥G"Q,G, . (2.6)

Given that (2.4) and (2.6) staggactly the same physjas should be clear that (2.6) is a much
easier expression to work with than (2.4) and daes'brutally split” anything. This is a third
way to think about Yang-Mills theories: A non-Abelgauge theory is simply an Abelian gauge

theory for which gauge theory has been appliedaogg theory. Or, perhaps with a bit more
color (pun intended), Yang-Mills gauge theory isig@ theory on steroids.

Specifically, in gravitational theory, the prinagpbf minimal coupling suggests that we
merely replace the ordinary derivative&G" of a vector G” with covariant derivatives
a;uG” EONG“ +I" G’ simultaneously with replacing the Minkowski metrgnsors,, with the

v
Lo
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generalized metric tensog,,, for the gravitational field, to migrate from a tflapacetime to
curved one in WhicH'Z,JG” represents the curvature discerned under pataieport (see, e.qg.,

[8] page 259.) In gauge theory, this steroidalaegment ofd” - D* =9* —iG* represents an
analogous principle of minimal coupling, in whidfet-iG* represents the gauge (really, phase)
curvature based on a relative relationship betwesnobservable phases. This curvature view
will be developed at length in sections 6 and 7.

These first and third views of Yang-Mills are thiees laid out by Jaffe and Witten in [1]
at pages 1-2 when they point out that for Yang-$/iauge theory:

“At the classical level one replaces the gauge gfd(l) of electromagnetism by
a compact gauge group G. The definition of the atume arising from the
connection must be modified 6= dA + gA " A, and Maxwell’'s equations are
replaced by the Yang—Mills equations, Q&g = da*F, whered, is the gauge-
covariant extension of the exterior derivative.”

This view of Yang-Mills theory as simply being Maglls theory on steroids with a
0% - D* =0* -iG* replacement throughoutl © da in the above passage) is actually very
attractive and mathematically simplifying. Phydligait says that the weak and strong
interactions which are based respectively on Slaf) SU(3), are just steroidal versions of
Maxwell's electrodynamics in which all spacetimeidatives 0“ including those which act on
gauge fieldsG" or field strengths=* = D'“G"! are replaced wittD*. It tells us that Maxwell
already discovered the governing classical equstfonthe other non-gravitational (weak and
strong) interactions but for the fact that he usethmuting gauge field%G”,G“] =0 rather

than non-commuting oneEG”,G”]iO. And, as (2.5) teachespn-commuting a.k.a. non-

Abelian gauge fields inherently flow from using getcovariant derivatives to define the field
strength asF** = D*G" | i.e., from putting Maxwell on steroids. So frahis view, weak and
strong interactions are simply governed by Maxweklectrodynamics on steroids. The
guestions then become not about the nature of dkerging theory for these interactions, but
about 1) why SU(2) and SU(3) and not some othemgg@re used for these interactions; 2) what
group G serves to unify these interactions and 3) whahésnature of the symmetry breaking
that yields the phenomenological - SU(3). x SU2), x U1), - SU3).x Ul),,. The focus
here will be on the first question, and specificalow it is that everything needed to deduce
SU(3). and explain confinement and chiral symmetry bmegkand solve the mass gap is

embodied in this view of Yang-Mills gauge theoryMaxwell’s electrodynamics on steroids.

3. The Field Equations and Configuration Space Ggrator of Classical
Yang-Mills Theory

Now we turn to Yang-Mills theory at the level diet classical field equations OdzF =

da*F discussed on pages 1 and 2 of [1]. Udngather thard,, these are writtem vacuoas 0 =
DF = D*F. And, for non-vanishing electric and magneticrseaJ (one-form) andP (three-

10
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form), these are respectively written asB*F andP=DF. Expanded into tensor notation, these
classical Yang-Mills equations, with sources, are:

J"=D,F*", (3.1)
P = DYF* + D¥F"” + D'F* = DVF") =9 F") —iGYF). (3.2)

In (3.2), we have also defined a “cyclator” notati@yuv) to represent the cycling of three free
indexes over three terms, as shown, which will eful for compacting the somewhat lengthy
expressions we shall soon be deriving ff. We have also regarded the spacetime to be

curved and so have included the gravitationallyac@ant derivativesd, G" =9,G"+I" /G’

(which become exterior derivatives when used ifedghtial forms). Here in (3.1) and (3.2) too,
we see a “steroidal” minimal coupling in which tkpacetime derivatives of the classical
Maxwell equations are replaced with gauge-covariant derivatives
0¥ - D¥ =0# -iG* - D" =9* -iG* where we also apply the minimal coupling principle
from gravitational theory G* - 0.,,G" =9,G +I'’, G as reviewed in the previous section.
Referring to the “three views” of Yang-Mills justviewed, we shall find that for Yang-
Mills magnetic source®?" of (3.2), it is most helpful to view Yang-Mills ¢ory in the form of
(2.1), as a theory on which the gauge field dodssed-commute, that is, to think about the
“non-Abelian” view of Yang-Mills theory. But, wheit comes to the Yang-Mills electric
sources of (3.1), the more convenient view is tfaf2.6), in which we view Yang-Mills as
gauge theory on steroids. So, as a first stemdake “gauge theory on steroids” view of Yang-
Mills, and employing spacetime-covariant derivasivewe substitute the field strength
represented as*’ =DG" from (2.5) into (3.1), while taking the “non-comtmg gauge
fields” view of Yang-Mills, we substituté=* = §1#G" —i[G”,G"] of (2.1), which is entirely

equivalent to (2.5), into (3.2).

So for the Yang-Mills electric source density (3.d%ing D =0* -iG* and (2.5) and
some well-known index gymnastics, we obtain:

J'=D,F"=D,D"6¢"=D,D"¢' -D,D'E¢ =(¢" D, - ') G (3.3)

(g (0,07 +1)- D) G,

In the final line, we introduce a “Proca mass’for the gauge field, by hand, in the usual way,
using 4,0’ - 8,0° +m*. The Proca mass serves three purposes. Firstcirmstances where

one isnot concerned with gauge symmetry and renormalizghalitd simply wants to know the
effect of massn on the field equation (3.3), this tells us whadttkffect will be. Second, for
circumstances where omeconcerned with preserving gauge symmetry, andsmanbe able to
“reveal” masses from a Lagrangian with gauge symynaa spontaneous symmetry breaking or
some analogous method to reveal masses, the Passmmoperates as a “red flag” to tell us
which masses we want to be able to introduce ndtamyg, but by symmetry breaking. In other
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words, terms with Proca masses eventually nee@ treloed out and replaced with mass terms
hidden in the gauge symmetry, in more completerteeo This will be very important for filling
mass gap in section 10, where we shall eventuatlyhés mass to zero and show how even with
this mass going to zero there will be non-zero melbbson mass eigenstates remaining behind in
the Yang-Mills inverses. Third, withm=0, the configuration space operator of

electrodynamicsg”0,0° —0%0"” in flat spacetime, has no inverse, which requyasge fixing,
see, e.g., [7], chapter IIl.4. Bg"” (606” + m?)—aﬂav with the Proca mass is easily invertible,
as we shall review in section 8.

The above (3.3) should be contrasted]fo:(g’” (a;ga;” + mz)—a?”a?”) G,, which is the

analogous classical equation for Maxwell’'s elegyr@imics, in curved as well as flat spacetime.
We see the gauge theory “minimal coupling principé work here: in (3.3) each ordinary
spacetime-covariant derivative, is replaced by the steroiddd., which is covariant in both
spacetime and in the gauge (phase) space. Thegemtion space operator in (3.3) is
g”V(D;UD?” + mz)— D“ D", in contrast to the analogous operatpf’ (a;ga?ﬂ + mz)—a?”a;” in
electrodynamics. These operators will play an irtgra role in the development here, and in
section 8 we shall be obtaining their inverses.

For the Yang-Mills magnetic source density (3i2ill help to first review how the
monopole density (3.2) behaves in an Abelian galgery for which the field strength is simply

F* =9™“G" . In doing so, we keep in mind that the Riemanrvature tensoiR’,, may be
defined via |0.,,0, |G, =R
derivatives are non-commuting. This can be expfieixpanded to show the Christoffel symbols
via the expressiow, G" =d,G" +I",,G” for the covariant (;) derivative of a vector fieldVe
also keep in mind that one of the important geoimédentities satisfied by the Riemann tensor
is the first Bianchi identityR “*) = R** + R + R’ =0, with a cycling of indexes identical
to that which obtains in the magnetic monopoledfieduation (3.2). Writing (3.2) in the Abelian
form P =907F* +9*F"” +0"F* and combining with the Abelian field strength
F* =9“G", this well-known electrodynamic calculation isfaows:

G, as a direct measure of the degree to which spaeeti

auv

P =07 F* +9#F" +9" F%
=07 (9#G" -0 G")+0* (0" G" -0 G')+9" (9° G -9* G
=[07,0%]G" +[9#,0" |G" +[ 0" ,0° | &
=(R™+R™+ R") G=0

(3.4)

This is a very important result, because it teisthat vanishing magnetic monopoles in
Maxwell's theory (and to be discussed later, thafioement of color in QCD), are brought

about not only via the trivial relationsh[p}”,a”] =0 for the commuting of derivatives in flat
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spacetime, but also via the Bianchi identRy**’ =0 in curved spacetimdy the very nature of
the spacetime geometry itselThat is, the non-existence of magnetic monopwldgaxwell’s
electrodynamics is a direct consequence of spaesg@ometry, whereilP®’ =9 “F*) =0 is
geometrically-rooted irR “* = 0. In the language of “differential forms,” (3.4rfP* =0 is

expressed compactly @ =dF = ddG=0, and is discussed in geometric terms by saying tha
“the exterior derivative of an exterior derivatisezero,”dd =0, see, e.g., [9] §4.6.

It will also be of interest here to consider thenmpole equation (3.4) and its non-
Abelian counterparts in integral form. Differemtfarms provide a very helpful way to take
volume and surface integrals while easily apply@auss’ / Stokes theorem, which theorem we

write generally for any differential forrK, as ” dX :<j'> X . Specifically, to express in integral

form the absence of magnetic monopole densitiescifgee in (3.4), one writes
P=dF=ddG=0 as (antisymmetric wedge products in 5 F*dx, Odx = F* dx dx are
considered to already have been summed):

[[[P=[]fdF =[] ddG=dp F=dp P~ ds dx=p dc-0. (3.5)

One may extract Maxwell’'s magnetic charge equaitomtegral form,@émkzo, from the

space-spacg bivector components qﬁS F*dx,dx =0. While magnetic fields may flow across

some surfaces, there is nevanaflux of a magnetic field through argfosedtwo dimensional
surface. In non-Abelian theory, this will tell tlsat there is no net color passing through any
closed two dimensional surface surrounding a Yanigsvhonopole, and will thus be at the root
of how quarks and gluons become confined. Faradaguctive Iawcﬁ Efdl = —ﬂ &é ot h;djﬁ

is extracted from the time-spacé& Bivector components. While magnetic fields areerof
referred to as dipole fields, it is probably bettethink of them aaterminalfields, i.e., as fields
for which the field lines never end at any termiloghle.

With this review of the vanishing of magnetic aes in Maxwell’'s Abelian theory, we
now turn back to the non-Abeliaf* =0%“G" ~i| G*,G" | of (2.1). Using this in the non-

Abelian (3.2), also making use db* =0* -iG*, noting as just reviewed in (3.4) that
(R,””” + R + R”V") G =0, and at the end condensing with the cycldtgv) , we obtain:
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P = DYF* + D¥F* + DV F%
=p(oc" -i[6*,¢'])+D*(d"c" -[[¢.¢ )+ D’ (0" &' - [ &, &)
=(R" +R™+ R™) G- (0”] @, G]+0"[ G, G|+0"[ G, &)
-i(ceatc +cro T+ ga @ )-( G @, ¢+ 8] 667 ]+E (¢, 6]
=0-i(07[6*,G" [+3*[ ", ¢ |+0*[ &, @' ]+ G &' + G G + c'” @)
-(e’[e"e]+e[c, g+ e[ G, @]
=0-i(0*[6",G" |+Ga"c")-G7[ &, O]
=0-i(0*[6*,G"|+G“D“G")
So, in sum, (3.3) is the classical electric sotiede equation of Yang-Mills gauge theory

corresponding to Maxwell’s equatiod’ =0, F* for electric charges, and (3.6) is the classical

magnetic source field equation of Yang-Mills gadlgeory corresponding to Maxwell’s equation
0=0°F* +0*F" +3"F% for (vanishing in U(1)},) magnetic charges.

(3.6)

4. The Magnetic Field Equation of Classical Yang-Mis Theory, and its
Apparent Confinement Properties

The first point to be observed as regards theseg¥ills monopoles (3.6) is that the
term (R,V"”+ R + R‘”") G once again vanishes as in QED with the able assistof the

spacetime geometry itself. As discussed in rafatoo(3.4) and (3.5) above, this is why there are
no magnetic monopoles in QED. But beca[@é’,G”J # 0, we have some non-zero remaining

terms i (a*” [G¥,G" |+Ga%G? ) -@’[ @, @], and consequentlythese magnetic

monopoles are non-vanishing.So if one believes in Maxwell's electrodynamiasdaone
believes in Yang-Mills gauge theory, then one malsb believe that the magnetic monopoles
(3.6) exist somewhere, in some form, in the physwaverse. Indeed, t'Hooft [10] and
Polyakov [11] were among the first to recognize thWhat form they exist in, however, remains
an open question to this day. Whether these mdes@ue topologically unstable objects that
can only be observed for a small fraction of a sdda a high energy accelerator; whether they
can be made stable via spontaneous symmetry bgeakih are hiding in plain sight as baryons
and most notably as protons and neutrons and ar&tiour magnetic charges” referenced by
Cheng and Li [12] at 472-473 (which the author eods in [13] is the case); or whether they are
something else, is an open question at this pdgit the non-commuting nature of the Yang-
Mills gauge fields compels us to take these mores@8.6) seriously and ask: what are they,
physically, and where and how can we find them spiafly?

Second, the above gets even more interesting wbasidered in differential forms
language. The relationship (2.1) now takes onctrapacted formF =dG-iG*=DG. As a
result, (3.6) is written compactly witB =d -iG as:
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P=DF =(d~iG) F= D(dG- iG) =( d- i§( dG- iG)= ddG id&- iGdG ¢

=0-i (dG2+GdG)— G=0- i( dG@+ GDq (4.1)

where (R,”"" + R™ + R””") G is again responsible foid =0, “the exterior derivative of an

exterior derivative is zero.” So that term drops as in Abelian gauge theory, but the remaining
terms are non-vanishing. The correspondences batthe non-zero terms in (3.6) and (4.1) are

dG* - 0“[ ¢, @], GdG -~ G &P, G* -~ G“[G*, G| andGDG -~ G“D¥G?. So
now, via (4.1) and the use of Gauss'/Stokes’ thaoﬁdx :qS X in differential forms, the
Yang-Mills magnetic monopole equation in integi@in is:

f[[p=[[foF =¢f F-[[ficF = [[[{ddG- i(d& + Gdg- &)=[](- { d&+ cdf- &
=ffde-iffc* - [[[(icde+ @) =0- fp &~ [[[(icde+ G) (4.2)
=fpde-iffc*-if[[epc=0-iff G - i[[[ GDG

Importantly, we are able to apply Gauss'/Stokegotem todG* - 6‘("[6“, GV)J but not to
GdG -~ G70% G or G* - GY[G, G| or GDG -~ G“D¥G”. Note also that (4.2)

embeds<ﬁ> dG =0, which in (3.5) for electrodynamics tells us thare is nametmagnetic field
flux across anylosedtwo-dimensional surface. Above, the magnetic gharquation (3.5) of

Maxwell's theory, [[[ P =¢p F =0, now becomeq[[ P = {f F ~i[[[GF = -iff G* ~i[[[ GDG.

Now, focusing on the correspondend&® - a‘”[cf‘, G’)], let us expand the above

differential forms and combine WitrﬂjdG2 = <J'j.f> G’ to formally write (wedge products
3dx, Odx, 0 dy are considered to have already been summed):

-if[[dG* =~i[[[o[G*,G" ] dx, dy, dx
=-i[[[(o"[c".c"]+o*[c",c"|+a" [ &, @' ]) dy dx dx (4.3)
=-3ifp[G*,G" dx,dx =-fp G

Then let us use this with (3.6) to expand some tkesns in (4.2), and thereafter consolidate
using D* = 0* —iG* thus-iGdG - G’ = -iGDG and some summed index renaming as follows:
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P = [ P> o, o o
= l(R+ R + B*") & 5 ax ox
-if[f(ee[c*.6" ]+0*[c",G" ]+d"[ &7, @ ]) dy dx dx
—iJ-H(G"a;[”G”] +GHlGT + G’&'“’G“) dy dy dx
-lile°[e*.e]+a[c. ]+ c[ G, &]) dx dx gx
=0-3fp[G*,G" |dx, dx -3{[[ & D* &' dy dx dx
=fpde-ifp & -if[[cac-[[| &=4p dG- {ff &~ {[] cDC
=0-ifpG* -i[[[coc-[[[ 6*= 0-iff G*~i[[[ 6DG

So we see thansidethe monopole volumef[[(R"* + R* + R**) G dx dx d» describes the

coupling of individual theN?-1 gauge fieldsG'" of G' =A'G" to the spacetime geometry,
and that this coupling vi&R " + R* + R**” =0 conspires to result iKﬁ) dG=0. Thus the
geometry couples to the gauge fields in a manrargtrevents gauge fields fronet flowing in
and out acrosslosedsurfaces enclosing the monopole for exactly tineeseeasons that there are

no magnetic monopoles at all in Abelian gauge theMvhat also does noiet flow across any
closedsurface, but is nonetheless clearly containedimvitie overall volume represented by the

triple integral, is [[[GDG=([[(GdG-iG)=[[[ &" D* & dx dx d» whatever this
represents. This expression simply is not intdgrabith HdX:qSX. But whatever

(4.4)

#GZ = 3@5[6" , G“} dx dx represents, does rfaw across a closed two-dimensional surface.

We shall demonstrate in section 11 that this tezprasents a net flow of mesons through the
closed surfaces.

Third, making (3.6) even more interesting, as diedain section 1 of the author’s [13], if
we perform a local transformatiof — F'=F —dG on the field strengtk, which in expanded

form is written asF* - F*'=F* -9G*(x), then we find from (4.2) as a direct result of

<ﬂ>dG =0 which in electrodynamics includes the Maxwell et'cpmcﬁﬁ B@A=0 and Faraday's

law g{g Efd| = —ﬂ (aélat)Ed:A, see after (3.5), that:

[l[p=gpF - gpF =dp(F-do)=dpF . (4.5)

This means that theetflow of the field strengthfpF =¢pdG-ifp G’ =~ifp G across a closed
two dimensional surface isinvariant under the local gauge-like transformation
F* o F*'=F* -9“GH, and that this invariance is caused by the eqmuaﬁlxiG: 0 which in
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Maxwell theory is responsible for Faraday’s law dinel absence of magnetic monopoles. So in
Yang-Mills theory,cﬂ;dG =0 is responsible for theymmetry principlexpressed in (4.5).

Fourth, we see from (4.4) thsﬁj@ :”j G“[G*, @] dx dy dx is one of the non-

integrable terms. This involves pure antisymmethiee-field cubic interaction&’ 0G* O G’
among the gauge fields. While we shall avoid tee af the term “glueball” to describe this
because this term already has certain technicahimgs for which its use here might cause
confusion, certainly this term contained within tm®nopole volume is an amalgam of pure
interaction gauge fields which nicely displays tiom-linearity of Yang-Mills gauge theory.

Now, as much as the MIT Bag Model reviewed in,,e[$4] section 18 has certain
inelegant features such as th@ hocintroduction of backpressures to force confineméms
model very correctly makes one very important ptiatt deserves utmost attention beyond the
specifics of any particular model of confinemefuicus carefully on what flows and does not
flow across any closed two-dimensional surfadéis is why the integral form of Maxwell’s
equations is so vital to any sensible discussiotoofinement. The confinement of gauge fields

(which in strong SU(3) are represented by the eight gluons&f=A'G" with i =1,2,3...€) is
symbolically specified byﬁﬁ Gluons= (. Similarly, the confinement of individual quarkshich
are represented by the SW{3I)irac wavefunctiony,; A=1,2,3 with three color eigenstatés
G, B) is specified symbolically by{:ﬁ Quarks= (. Different theories may have different ways to

achieve these two symbolic confinements, but inethé, one should pay close attention to the
two-dimensional closed surface integrals and clye@ixamine what does and does not flow
across these closed surfaces. Equations (4.2)ghr¢4.5) contain a lot of information about

what does and does not flow across the clofj_&dsurface of a Yang-Mills monopole, so as

taught by the MIT Bag Model, we should study thegeations carefully to see if these magnetic
monopoles exhibit any attributes of confined gluand quarks, or interactions via mesons.

A first point is made b)d'”(R,V”“ + R + R‘”") G dx dx d»which leads toﬁ} dG=0
in (4.4) and is the exact same expression whichdyi¢he absence of magnetic monopoles
entirely, in Abelian electrodynamics, review (3.4Jhis J“(R}”” + R + R‘”") G dx dx g»

term contains amndividual gauge fieldG" = A'G", zeroed out from any net surface flow as a
direct result of its coupling through the Riemamngeometry in the configuration of the first

Bianchi identity, which upon Gauss’ / Stokes’ irriagpn yields<ﬂ> dG=0. So the question, in

the context of the MIT bag model, is whether tlamt is to be interpreted as telling us that
gauge fields (gluons in SU(3) QCD) are confinedjclwimeans that there is nevenet flow of
gauge fields across armgyosedsurface surrounding a Yang-Mills magnetic monopokecall
that in electrodynamics, magnetic fields can andflda, in net, throughopen surfaces, but
because magnetic fields are aterminal fields, awarna flux over one portion of a closed surface
is always cancelled by an inward flux across anottm@tion of the closed surface. This
interpretation of (4.4) as saying that there isnet flow of gauge fields across a closed Yang-
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Mills monopole surface is strengthened by the asplayed in (4.5) thatﬁi F o <ﬂ> = :ﬁ) F

is invariant under the local transformatidh — F'=F-dG, i.e., F* _ F*'=F* —-9"G*
which renders the gauge field3” (gluons in QCD)not observablewith respect to net flux
through the closed surfac&his may mean as argued in section 1 of [13] treige fields are
confined within the non-vanishing magnetic monopolieY ang-Mills gauge theory for the exact
same geometric reasons that magnetic monopolestdexist at all in Abelian gauge theory.

A second point is made by the ter_fﬂdG2 :# G’ :3@[(}’, G | dy dx detailed in

(4.3). This is only non-vanishing integrable tem{4.4), as so tells us the crux of wilaesnet
flow across closed surfaces of a Yang-Mills magnatonopole: the only thing that does net

flow, are theseS[G“ ,G"] entities. While we still must determine, physigalwhat these
3[G*,G'] entities represent, we do know tl{aﬁ”,GV} # 0is at the heart of the non-Abelian

character of Yang-Mills theories, see (2.1). légh 3[6“,6”] do not turn out to represent

individual quarks, then because there are no atbefvanishing integrable terms in (4.4), what
(4.4) would be telling us, in the sense of the MBQ model, is that neither individual gluons nor
individual quarks net flow across the closed sw$aof a Yang-Mills magnetic monopole, that

is, thatcﬁSGIuons= ( and <ﬁ>Quarks: (. But what we also know is that baryons interdat v

meson exchange, and that mesons have a color watiefu of the formRR+ GG + BB. So
mesonsshould be permitted to flow in and out of baryons, that we should also have

fpMesonsz € So if we can show thafp G =3fp[ G*, G’ ] dx, dx represents meson flow, as

we shall do in section 11, then these magnetic ipoles, in the setting of spacetime geometry,
would forbid net quark and gluon flows but permét meson flow, and we would have some
very strong formal reasons for identifying Yang-lglinagnetic monopoles with baryons.

A third point is made by the factors of “3” whichlsa emerge in
#62:3@5[6&@”]% dy and in jijDezsmc;” DG dx dx dx in (4.3) and (4.4).
Although these arise from the three additive tenmthe various expressions in (4.4), “3” also
signifies the number of colors of quark in QCD, theémber of quarks in a baryon, and the

number of terms in the meson color wavefunctiRR + GG + BB. So this “3” is a very strong
hint — on top of the fact tha®*" itself has three totally-antisymmetric spacetiméexes each
capable of accommodating one of three vector curdensities, and contains three additive
terms — that there is some very definitive “thressi associated with these Yang-Mills
monopoles. This “three-ness” could save us hatongpstulatethat there are three quarks per
baryon as is presently done in QCD, and could atktequire us to have three quarks per baryon
upon which we would then impose QCD as an Excluftonciple. In other words, if this
“three-ness” is telling us that a Yang-Mills montgoontains three quarks and has all the other
required symmetries of a baryon including confinetrend meson interaction, theostulating
Yang-Mills theory would be synonymous with posiudgatQCD and postulating baryons and
postulating that the baryons contain three colomadarks. This would make QCD itself an
unavoidable, purely deductive consequence of Yalg-Blauge theory, and would greatly
strengthen the roots of QCD as a corollary thearyytang-Mills gauge theorylt would at the
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same time answer the unanswered question as tdarygns contain three quarks and not some
other number. These symmetry relationships are wdthtthe author in April 2005 to begin
taking seriously, the thesis that these non-vangsinnagnetic monopoles originating from the
non-commuting gauge fields of Yang-Mills gauge tiyaoight be baryons.

But so far, beyond this number “3,” there is nathn this present development of any
guarks in the Yang-Mills monopole (4.4). So we chée now see if there is some way to
“populate” these magnetic monopoles with quarkisbrings us back to (3.3), which is the

field equation relating Yang-Millelectric charge densities]” to the gauge fieldsG,, and
which we shall be inverting in section 8. Thibecause when (3.3) is inverted to exprégsas

a function of JV, see (9.2) infra, it becomes possible to repldcefahe gauge fields in the
monopole (4.4) by the source currents from whiclytbriginate, and then to replace these
source currents with fermion wavefunctions via Dsal” = ¢y’ , and finally to identify these
fermions with quarks. But at this point, to laye tfoundation for this, it we must first explore
two more views of Yang-Mills theory, namely the fpebative” view to be developed in section
5, and the “curvature” view to be developed in igec6. Not only are these two views helpful
as to how we conceptualize Yang-Mills theory, heyt will greatly simplify the mathematical
development of Yang-Mills theory in order to regdierform the inversion in section 8.

5. The Yang-Mills Perturbation Tensor: A Fourth View of Yang-Mills

In section 2, we described three equivalent “vieafsYang-Mills gauge theory: as a
field theory of non-commuting gauge fields (2.13; atheory of non-linear interactions among
the gauge fields (2.4); and as a minimally-cougadge theory on steroids (2.6), (3.1), (3.2) in
which ordinary derivatives are made gauge-covarént. D¥ =9“ —iG*. Now, we introduce
yet a fourth view of Yang-Mills gauge theory, theetturbative view,” which is motivated by the

field equations (3.1), (3.2) when the field strénigt expressed aB*’ = D'G" in the steroidal
view of (2.5). This “perturbative” view is rooteadl the Klein-Gordon equation

0

(0,07 +m)o=((0, -i6,)(# -i6") + nf)p=(0,0” + i - 5, G - iGO" - G G)o
=(0,0°+m?+V)g |

for an interacting scalar field, where in the finlshe one identifies and defines an
electromagnetiperturbationspacetime scalar:

V =-id,G° -iG,38 - G,G’. (5.2)

In virtually identical fashion, we may use (2.5)daD” =0* —-iG* to rewrite the Yang-
Mills chromo-electric field equation (3.3) as:
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3 :(g““((a;ga;”—i(a;gG”+Gga?”)— G G )+ ni)-(0%0" - (0" G+ Go¥)- & G)) G

(5.3)
(o9 (0.0° +v + i) -(o%0° +w)
where in the final line, we have defined a “perairbn tensor” and its trace scalar:
V* = -i(94G" + G ) - GG, (5.4)
Ve =V,7=-i0,G° —iG,0° -G, G =-0,G; — 1G,,0° — G,o, G- (5.5)

The perturbation scalar identicalin form to (5.2), but in Yang-Mills theory, it en NxN Yang-
Mills matrix of spacetime scalars, as we are reméhebout by the explicit showing of Yang-
Mills indexes in (5.5).

Noting that for any two successive gauge-covartignivatives:

D*D" =(8# -iG*) (9" -iG") = 949" -id*G" ~iG*d" -GG’ =9"0" +V*, (5.6)
we see that in flat spacetime wh%ﬂé”,a;“] = [aﬂ,a“] = 0, the antisymmetric combination:
viel=yw —yw = p# D" ]=[ D", DY ]. (5.7)

So the anti-symmetrize\i[””] is synonymous with the commutator of the Yang-ddbvariant
derivatives. But ircurvedspacetime, using (5.7) to operate on a vectod f& and applying
the Riemann curvature definiti. .0, |G, = R’,,, G,, we obtain:

auv o
[D¥,D* A7 =[0",0" | A+ V" & :( R +5° \}W]) A. (5.8)

Applying (5.8) andF* =D*G" to the magnetic monopole (3.6), the curvature serm
vanish as in (3.4) vik "* + R*" + R** =0, andin both curved and flat spacetimnee obtain:

P* =D’D*G"+ D*D""G? + D' D’ G
=[p”,0*]6" +[ D*, D] & +[ D*, D7 ] & (5.9)
=vlHle +v*le + W@ = VM @
The Yang-Mills electric and magnetic field equatof8.1), (3.2) expressed in the respective
wholly equivalent forms of (5.3) and (5.9), illuste this fourth, “perturbative” view of Yang-

Mills theory. In fact, it is a very useful exerejgo ask about theifferencebetween the physics
of Yang-Mills theory and that of ordinary Abeliarmupge theory, which difference is wholly
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measured by the perturbatiaft” of (5.4) and functions of this perturbatiofit is this fourth
view of Yang-Mills — the perturbative view — thalt enable us to fill the “mass gap.”

To better understand the perturbative view, weodiice the labels “P” to denote
“Perturbative,” “YM” to denote the complete, hoist(see [7] at page 356) physics
encompassing all features of “Yang-Mills,” and “itd denote the “Linear” expressions of
Abelian gauge theories, most notably electrodynami&chematically, YM=L+P, that is, the
complete physics of Yang-Mills YM theory may be tight of and analyzed as the sum of a
perturbative aspect P and a linear aspect L. Thosy (5.3), we can deduce that the

perturbative-only portion of the current densit}};, which is the differencel;,, — J/ between
the complete Yang-Mills current densityd;,, of (5.3) and the linear density

JV :(gﬂv (a;ga?” + mz)—a;"a?“) G, of Abelian theory, is given by:

Jo=Jdy —J :( g” (a;ga?” +V+ n‘i)—(a?”a‘v + \/“’)) (é—( 4’ (a;ga:a + I2n)_awa;v) G

.(5.10)
:(g””V—V””) G,u

In other words, J; :(g”VV—V’”) G, summarizes all of the effects which are addedh® t

current densityd, of Abelian theory by the non-linear perturbati@hs'ang-Mills theory.

For the magnetic monopoles, of courd®’” = R%", because as we are reminded by

(3.4) the monopole densities of Abelian gauge thewe zero,R* =0. We know this of

course from (3.4), but we also see this by inspacfrom (5.9) in which the non-vanishing
magnetic monopole arises completely from the incigotical application of the antisymmetrized
perturbation operatov™! to Yang-Mills gauge fieldsG?, i.e., from P =v{Ha?
V# . 0, clearly the monopole densitié¥ - 0. Yang-Mills monopoles are thus entirely a
creature of perturbation, as they equivalentlyasatures of non-Abelian gauge fields, of non-
linear gauge interactions, and of gauge theorytemisls. Those of course, are the four views of
Yang-Mills theory that we have articulated so fadow we turn to a fifth view, which is the
geometric curvature vieMirst articulated by Herrmann Weyl in the wake Eihstein’s 1915
General Theory of Relativity [15] based on the atuve of spacetime.

6. Hermann Weyl's Gauge Theory and Gravitational Cuvature: A Fifth,
Geometric View of Yang-Mills

Hermann Weyl in 1918 [16], [17] first conceived tidea that electrodynamics might be
unified with gravitation by analyzing a “twistingf vectors under parallel transport to measure
the geometric curvature of a gauge space. Whilglfifst conceived of this as a local “gauge”
symmetry, in 1929 [18] he corrected his originabaanception into the modern view of a local
“phase” symmetry. Notwithstanding, the originalsmomer “gauge” is still used to name
Weyl's theory, perhaps as a reminder to posteh even the most bedrock physical theories
are sometimes properly-conceived in the abstractrisconceived in some details that need to
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be worked out over time. While gravitation opesatea the curvature of a physical, non-

compact configuration spadg* first pioneered by Minkowski [19] based on Einstgi1905
development of Lorentz invariance into Special ety [20], Weyl's theory operates along the

circle of an abstract phase space using a non aislerthe local phasexpié?(x) for Abelian
theory andexpi&(x) = exgA'd (x) with i =1,2,3..N? - I for an SU(N) Yang-Mills theory.

The relationship (5.8) already illustrates Weylis\ature idea very clearly. We see that
the anti-symmetrizedi‘fv[””] plays a role in Yang-Mills theory very similar that played by

the Riemann tensoR " in gravitational theory: each is a “curvature” reedng the degree to

which the spacetime derivatives do or do not conemun fact, lowering all of the indexes on in
(5.8), we see that in going from an Abelian gaugsoty in curved spacetime to a Yang-Mills
theory in curved spacetime, we make tperator replacementR,,, - R,, + 4,Y,,; when

operating on any vectoA’. That is:
O Dy D, A =(Ry + 9y V) A 6.1)

(Note that the ability to apply.,A, =g,0.,A for raising and lowering indexes on a vector

A, =g, A operated on by ; relies on the metricity =0 of the metric tensog,,, and

;,ugva
specifically, on the calculatiod ;A, :a;ﬂ(gmAr) =0,q,A+ g0, A= g0, A This will
be implicitly used in a number of the upcoming wd@anipulations.) So just a&,,

represents curvature in spacetingg,\;,,, represents curvature in Weyl's gauge / phase space

]
We note the leading role of the anti-symmetrizedysbationV, ,,
space. It is also worth noting the superpositibthe symmetric metric tensay,, against the

antisymmetricto indexes in the first two positions of the Riemaansor, which means that the

resulting operatoR ,,, + d,,V,,; iS non-symmetric. But this is absorbed in therapen on A’
which sums out the index, so that both sides of (6.1) have balanpadetime symmetries.

in this curvature connection

In fact, we can and should apply the same curvaamaysis to the gauge-covariant
derivative in curved spacetim®,, = 9., —iG,,, which we now write operating oA, as:

D,A =0,A-iG,A=0,A-T", A-iG A. (6.2)
With minor manipulation, and using,, ,, :%(gm’ﬂ + Oy gwya) , we can reframe this as:

gav D;uAa = ( gava/j _rayv - Igav G/j) A. (63)

So here, the curvature view is highlighted by thet that when going from Abelian to Yang-
Mills gauge theory in curved spacetime, we make tloperator replacement
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Few — Tow +i9,,G, When operating on the vecté¥’. Becausd ,,, captures the effects of

a v
parallel transport in curved spacetime, we seeith)gG, represents Weyl's parallel transport in
gauge (phase) space. As with (6.1), the combinestator ', , +ig,,G,is non-symmetric,

becausd”, , is symmetric ing,v while ig,, G, is symmetric ina,v. And as with (6.1), this is

v
absorbed in the operation oA which sums out ther index. In contrast, however, the

curvature operatorR,, +g,Y,, in (6.1) is a tensor, but the parallel transpoperator
Mew*i9,G, In (6.3) is not becausel,, is not a tensor.  Only the entire

9,9, T, —19,,G, is a tensor operator.

Given this curvature view of Yang-Mills, and espdgi (6.1), we now note the two
geometric Bianchi identite®R,,+R,,+ R, =0 andd R, +90, ,R,,+0, R, =0. The
former was already employed in (3.4) to yield vamg magnetic monopoles in Abelian gauge
theory and a vanishing tern(uR,V"”+ R + R‘”") G =0 in the non-vanishing magnetic

monopole (3.6) of Yang-Mills theory, which “0” iesponsible for the confinement of gauge
fields with respect to any closed surface, as wasudsed at length toward the later part of
section 4. The latter Bianchi identity, when mangped into the contracted form

a, (R‘” -2 0° R) =0 and then connected to a locally-conserved enenggord., T =0, is at

the center of classical gravitational field theor§o we certainly want to inject these identities
into Yang-Mills theory to the greatest degree passbecause they are at the center of both the
magnetic monopolesnd gravitational theory.

First, let's takeR ) = R, + R, + B, =0. Because (6.1) contairg,,, which is

the first term of this identity, let use rewrite.1p two more times with a simple renaming of
indexes to match the other two terms iRy, +R,,,+ R,, =0. Then, let's add these all

together to write:

(9.[D,.D,]+9,[D,.D,]+0,[D,.D,]) A
“(Row * Ruo * R * GV * A Va* 81%)
:O+(gm\/[w] * G Noa + G Vo ) A : (6.4)
= gr(a[D;w D:v)] A= 0o A
:[D:w’ D:v} Ay = Vi M

Above we have applieﬁa,(gw) =0 to zero out the terms that contain the Riemansaerso (6.4)

now incorporates this first Bianchi identity. Oragain the perturbation and the curvature views

converge together. In fact, here, in contrast6t@)(and (6.3), wean slice off the A" operand
from the next-to-last line above and simply wrhie bperator equation:
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gr(a [ [);/1' D;V):I = gr(av[,uv]) : (65)

This is allowed because the spacetime index synesebn the left and right side of the above
are fully matched, and so we do not need to sumiraléx ther index to obtain matching

spacetime symmetries. Contrasting to (5.8) writiehD,,,D,, | = [6;#,6;V]+V[W] , we see that
(6.5) is an alternative way of stating the Biandeintity R ow) = 0 using Yang-Mills theory.

Let us now absorb the spacetime indexes in (6.4)wer the indexes on the generalized
vector A", and then rename this into tBpecificvector A, - G, :/]‘Gp with represents the
Yang-Mills gauge field. With this, also combiniing(5.9), equation (6.4) becomes:

P/JvaZI:D;,U'D;V]GJ-'-I:D;V'D;aiIGﬂ+[D,U’D,ﬂ]GI:Y/lV] (%+ V/Uj (}31+ [\‘/7/4 (;

6.6
Z[D;(#’D;VJGU):V G o

([uv] ~0o)

Contrasting, this isotally identicalto equation (5.9) for the Yang-Mills monopole, pignwith
covariant rather than contravariant indexes. He¥esee a stark convergence of the perturbative
and curvature views: The Yang-Mills monopole dgnsg no more and no less than the

geometric operator identity, , [ D, D;V)] =0,y ©f (6.5) —which is the Yang-Mills version
of R, + R, *+ R, =0 —applied to the Yang-Mills gauge fiel@".

Next, because (6.5) is valid standing alone agpmnator equation, let us multiply this (in
the expanded form of (6.4)) from thedt by a general vectoA”. Thus we now write:

A(9[D,0,]+9,[D. 0]+ a0 D)= A(G Y+ 4 ¥+ 8 ¥%). 67
Upon lowering indexes this becomes:

A[D,.D,|+A[D,.,D, |+ A[D,.D,[= AV, + AV + AV,

(6.8)
=A, [ D, D:v)} = Ao\

Contrasting to the identity (6.4) written 88, ,,D,, | A,) =V, A, , We see thaany vector A,

may be commuted withy,,, to obtain the “twin” identity A, [ D,,, D,) | = A, V., when the

[av]
spacetime indexes are cycled W(tb[uv). This will lead us to a “twin” of the Einstein @agion

in (7.6) infra, and is an important commutativiglationship to have in mind when we regard
A  as an NxN matrix of vectors in Yang Mills theosyich as the gauge field@, .
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Speaking of which, let us do just that. If we iagset A, — G, :AiG'ﬂ as we did for
(6.6), then (6.8) becomeisg[Dw, DV)] =G,V which is a “twin” of the magnetic monopole

(o )
equation (6.6) in which the gauge fields appeathenleft rather than the right. But because the
gauge fields are contained withib , =0, -iG,, let us set the vectoA, — D, in both the

bottom line of (6.4) and in (6.8), and then use f#aeobian (determinant-related) identity
[a[b.d]+[b[cd]+[ ¢[ ah]=0 to combine the twins (6.4) and (6.8) into the king
relationship:

[P Py [Py =Vgai Dy = Do [ B0 Dy ] = DY

(v =

e (6.9)
Because this commute,, to the left of the commutatdrD,,,D,, | in D,,[D,,,D,, |, this
sets up the ability to now incorporate the remaninBianchi identity
0. Riopw)=0,Rpn 9, Ry v9, R, =0 which underpins the expression
a, (R‘” -1 0° R) =0 that is at the heart of gravitational theory. this second Bianchi identity
0.,Ruy) =0, we define the notatiofro | as a “wall” to seal off theo indexes (this isiot an
absolute value symbol as used here) from(th@’) cycling of the remaining free indexes. But
before we do this, let us work from the final exgsien in (6.6), uséD,, =i0., +G, inverted into

G, =iD,, —id,, to replaceG
result is:

»» and then the final line apply the Jacobian idgr(®.9). The
Favo :[D(”’ ?V}G”) = M G”) :[ Diws DVJ( iDﬂ) - ia;ﬂ) ) = Vi (iDa) a ia;0) )
al ([D;(ﬂ'D;V]DU) _I:D;(l/’DW}a;U)) =i (V([wlDa) _V([w]a;a)) : (6.10)

=i (D;(U [D:/f’ D;V)] _[D:(/J’D:VJG:U)) al (DJ(UV[,UV]) Vw99 )
In this form, we have now turned the magnetic mat®pensity itself, entirely into an operator!

Now, let's move on to the second Bianchi identy,R,,,=0. We start with (6.1)

written in the form[ D, D;V] A, =R,, A+VY,, A. We operate on all three terms from the left
using D,. Thus, D, ([Dw, D;V}Aj) =D, ( Row A()+ Da(\(w] %). Then we replicate this
expression two more times via a simple renamingagxes with a cycling of,v,a . We then
add all of these together, and in the final linasmidate with the(a,uv) cyclator to fashion:
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D, ([D,.D,]A)+D,([D,.D,]A )+ D,([D,.D,] A)
=D, (Ryw A)* D, (Ros A)* D( Ry A+ (¥ A+ D( My A+ DY A-(6:11)
=D,, ([D;,,.D;w]pb): Do (R A)* Do (Vo 4)

It should be clear how the term,, (RTJW)A’) sets up the ability to apply and thereby embed
the second Bianchi identi§, ,R,,,,, =0 into Yang-Mills theory. So now let's proceed.

We can slightly expand the compacted form in theétdmo line of (6.11) using
D, =90, ~iG,, take the spacetime derivatide, using the product rule, and make use of the

Bianchi identityd, ,R,,,,, =0 to write d (RWWAT) =0+ R,,9,, A, thus obtaining:

D;(a ([D;ﬂ’ D;V)}Aﬂ) = a;(ﬂ ( I:ﬁml,uv) A() a iGtﬂ ( FiﬂlW) A) + D@( va]) /9\)
=0, Rty A+ Bou0a) A= iG(a( Roww) A)+ IRa( Yo 60‘) (6.12)
=0+ R0, A ~iG, Ry At D ( Y '9‘)

That is it! We have now incorporated the Biandfentity 9, ,R,,,, =0 which underlies the

geometric heart of gravitational theorg,, (R‘” -1g” R) =0, directly into Yang-Mills. Now
what remains is to rework (6.12) to make somesfrieanings more transparent.

Continuing with (6.12), in the third line below weommute G, R, .., = Ry G
because whileR , is a spacetime fourth rank tensor, it is simpl§xd matrix in Yang-Mills
theory. In other words, whil&s, and areD, andV,,, are all NxN matrices which do not

mutually commute with one another or even with teelves when the spacetime indexes are
different, R, and (when it appearsy,, can be freely moved to any left-right position as

desired. In the fourth line we consolidate thstfand second term usirg, =d.,, -iG,,. In
the fifth line we useD,,, =0.,, —iG,, to expand theD,, (vapph) term. In the sixth line we

apply the product rule for the ordinary derivatiamd in the seventh line we reconsolidate the
second and fourth terms usimy, =0, —iG, . The resultis:
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D (0,00 JA) =00 (R A) = G ( R A)+ B (Vo )
= R0 A ~1G, Ry A+ Dy ( vy ’3‘)
= Row0a A ~ Ry Gy A+ D, ( Yy ’9‘)
=Ry Doy A+ D (\{wl) AA) ' (6.13)
= Rou Doy A +00 (Vup B) = 1Ga Yun A
= Row Py A 406Ny B+ YO0 A~ 1G My &
=R Doy A+ Da Ny B+ Y90 A

Now the “odd duck” is theV,,0., A, which contains the only remaining ordinary
covariant derivatived ,, amidst all the otheD, . But from (6.10) rearranged and right-

multiplied by A :

V([/A/]a;a) Af = D,(a\{uv]) A& + iF/)jva '%' (614)

which is why we wanted to make the one final cotioacin (6.10) before turning to
0., Rioywy =0. So we use (6.14) in (6.13) to finally write (8)in terms ofP,,, as:

PucA = 1Ry Dy A= 1D, ([ D, B,y ] A)+21D Vo A- (6.15)

This is our final result for the magnetic sourcensigéy written as an operator operating on any
vector A, and it embeds both of the Bianchi identities al as the Jacobian identityWe also

manipulate indexes (implicitly using g, =0) to clearly display the spacetime symmetries:

go-r F,)uvaAr = iRa(uv Da) A - Ig'r D(a ([ D,u’ DV):I A)-'-2 Ig'r Qa Yuv]) A (616)

Of course, A" represents anything that transforms like a fowtae in spacetime.
Among the specific vectors which may be of interast yet a fourth gauge covariant derivative

AY - D*, and a gauge fieldy - G* (which is implicit in A“ - D#). Thus, it helps to
rewrite and reorder (6.15) with” - D* to form:

D, ([D,:Dy D, ) = Ry Doy D" + iR, D, + 2D, (6.17)

(a Tuv]) Zo s

In particular, this is now an operator identity wahnitells us what happens when we take four
successive gauge covariant derivatives in ED](;([DW,D;VJD;U) cyclic combination, as a
function of the Riemann curvature, the monopolesdgnand the perturbation!
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Finally, in flat spacetime, wher& ,, =0 and D, -~ D, , (6.15) reduces in view of
(5.7), namelyv,,,, =[ D,, D, |, see also (6.10), simply to:

Puo Ay ==iD, ([ D, D, | A )+ 2D,y A =-iD, ([ D,.D,] A)+20,[ D,.D, ] A

_ . (6.18)
=|(D(a[Dﬂ,DV)]—[D(ﬂ,DV}Ga))AU
For A, — D,, contrast (6.10), this becomes:
P,.,D, =-iD, ([Dﬂ, D, ] DU) +2DV,,,, D, =-iD,, ([Dﬂ ,DV)]DU) +20,[D, D, |D, 619

=iD,[D,.D,, |D, =i[D(,.D, |8,D,

Alternatively and equivalently, explicitly showing@ succession of four gauge-covariant
derivatives in flat spacetime, the above becomestfast (6.17) for curved spacetime):

D[ D,:D,) D, =([ DD, ]34 =iP,, ) D, (6.20)

uva

So Hermann Weyl's curvature view of Yang-Mills tihedeaches us quite a bit, in
particular, about the nature of the Yang-Mills mpale densities. This ought not to be
surprising, ~ because the two Bianchi densiteR, ,+R,,+ R, =0 and

d,R,,+0,R,,+9,R,, =0 contain cyclic index structures just as do the opmfes.

Above, we have illustrated the curvatuaealogy between gauge theory and gravitation, and
embedded these two important identities of spaeetgaometry in the Yang-Mills identity
(6.15), i.e., (6.16). Based on this embedding, dwv@r, we can go even further, to fully unify
classical Yang-Mills gauge theory with classical\gtation.

7. The Classical Gravitational Field Equation for Yang-Mills Gauge
Theory, Inclusive of Maxwell's Electrodynamics

Because the second Bianchi identdy,R,, +0.,R,,, +d, R, =0 is embedded in
(6.15) aka (6.16), there should be some manipulahat will reveal a Yang-Mills analog to the
equationd,, (R"” -1 0° R) =0 which underlies gravitational theory. We now deslthat.

We start by reconfiguring (6.16) according to fodowing sequence of steps which

apply D, =0.,, —iG,, and the product rule for differentiation. Thetbat line consolidates the
second and fourth terms in the next-to-last line:

28



J. R. Yablon

gar Pyva AT = iRa(yv Da) A - Igﬂ D(a (I: Dll' DV)] A)+2 Ig'r Qa Y,uv]) A
=Ry Doy A ~9,,0,4 ([ D, D;v)] Ar) O Qa[ D, B )] A+2ig, Dy Yy A (7.1)
= iRZU(/IV D;a) A - ig(ﬂa;(a I: D;,u’ D;V)j| A - Iga‘rl: D,(/I’ D;I/):Ia;a) K- gUTG(D/ I: D;,U’ D;V)j| A+ 2'907 D,(D’\{/JV]) A
=Ry Dy A’ ~i0,, D, [ D,.. D, | A —ig,, [ D, D, ]0.,) A +2ig,, D, Yy A
Now, becauseA’ is just a dummy operand which can be any foureredét us just lop it off of

(7.1) entirely. The equations on each side of égaal sign will no longer have matching
symmetries becausg,, is symmetric whileR,,,, is antisymmetric in these same two indexes.

So we shall use a “=" sign, that is, an equal sigguotes to designate the equality of the left and
right sides of (7.1) when operating o which acquires a mismatched symmetry when the
operandA’ is removed. Thus, we now write:

Oor Pua" =" Ry Doy = 18, Do [ D, D,y | =i, [ Dy D, [0, +2i6, Dy Yoy - (7.2)

The two sides of this equation are only equal wihey operate on a vectdX' as in (7.1), or if
the symmetries can be restored in some other \Baywe will need to now manipulate this such
that the symmetries on both sides once again beawaehing and the equality is restored.

First, we fully expand the cyclators in (7.2) totan:

9or Pva " =" 1Ry Dy + 1R,e D, + 1Ry, D,
-ig,,D, D, D, |-ig,,D,[D,.D, ]~ig,D,[D,.D, ]
-ig..[ D,..D, Jo,, -ig..[ D, .D, ]0,,~ig,,[ D,,.D, ],
+219, DMy *219,: D, Mugy + 219, D, Yoy

(7.3)

Next, we use the termR D, and the like as a guide and engage in the saméeufations
normally used to deriveé,, (R"“ -19” R) =0 fromo,R,, +0.,R,,+0, R, =0. We raise

7o indexes everywhere to put the Riemann tensorrmked form so we can extract the Ricci
tensor. Then we contract one pair of indexes Iiyngev =7 and we start to reveal the Ricci

tensor viaR” , = R, including revealing one sign reversal \R¢,, =-F’,. This yields the
intermediate result:

9% P, "="IR,D,-iR,D,+IiR?, D
-ig”D,|D,.D,|-ig"D,[D,,D,]|-ig"D,[D,.D,]
-ig”[p,,D, J0,, ~ig”[D,,D, Jo.,~ig” [D,,D, o,
+2ig” DV, + 297 DM, + 297 D, Y,

(7.4)
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Now we do a second index contraction by setting o. This yields the Ricci scalaR’, = R
and allows another application &7, =—-R, with a second sign reversal. We then usegfie

to raise indexes. Now we have:

PTTa = IRDIJ - IRJ(J I:);O' - IR-G DT
-ip,[D",D, |-iD"[D,,D,]-iD,[D,D"]
-i[p”,p, 0, -i[D,.D,]0"-i[D,D"]0,
+2iD V', + 2DV, + 2D V,"

(7.5)

1a)

Above, we have now removed the quotes from thelesiga, because now the only free
index is @ and there is no longer a mismatched symmetry. t hahe symmetry became
mismatched when we looped off from (7.1) and it became restored when we contdadtevn
to (7.5) which is a vector equation containing dree index a . But given the commutation

properties in the aboveR’,, =0 because it is a third-rank totally antisymmetgador, and all

of the other terms in the second, third and folirtes also cancel out by inspection because of
the various antisymmetries. So all that we havié ile (7.5) after some very simple

rearrangement, and applying the Einstein equation”” = R -1 g R, is:
-kT*'D, =(R* -1 ¢" R D, =0. (7.6)

This is the gravitational field equation of YangHbli theory! It resembles the usual
-0, TH :a;V(R"”—% g” Q:O, but here, we have an operator equation, the aterer is

moved to the right (it does not operate to difféigr R“" -4 g““ R and so is a free derivative),

and it is a gauge-covariant derivativerhis is a “twin” of the Einstein equation. Ifevwwant to
highlight the nexus to Yang-Mills theory in the atest way possible, we may expand the above
into the form:

-«1* (9, -iG,) =(R" -1 g* R(d, - iG) =0. (7.7)

The latter expressiorﬁ R -3 g" R)(a;v - iq) =0 fully marries Einstein’s curvature view of

spacetime with Weyl's curvature view of gauge theand is a geometric identity of Yang-Mills
(and even Abelian) gauge theory arising from inooaping both Bianchi identitieR,(W) =0

and 0,,R,,,,,, =0 and the Jacobiaha,[b,c |+[ b[ ¢ d|+| ¢ a b]= 0 into the development

of section 6 to arrive at (6.15). And, if we these this to operate on some arbitrary vedpr
we may further expand this to:
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0=-«T*(0,A -G A)=(R" -3 ¢" §(9, A~ iG A)

=-«T*(0,A,-T", A-iG A)=(R" -1 ¢" B(3, A-T",, A~ i A

=-KT# (07,9, -1, ~i07,G,) A = (R -1 ¢" §(0, A-T",y A= iG 4)
( ( _% gzv l?( gal/_rrva_ Ig g‘) F

(7.8)
=-kT"{9,,0,-T,,,—19,G, )

By the connection-«T* =R -3 g R to T*Y (sans cosmological constant, which one can

also inject into the development if desired), weHar come to understand the coupling between
gauge fields and source matter.

This brings Hermann Weyl full circle back to Alb&instein, as there is no more concise
way to express the role of geometry in spacetinteiamgauge space than through the “Einstein-

Weyl” unified field equation(R’” -1 g”VR) D =0. The termR* -5 g R emerges from
Einstein’s understanding of parallel transport andvature in spacetime, whil®, =4, —iG,

emerges from Weyl's understanding of parallel tpansand curvature in gauge (phase) space.
The contracted combination fR* -1 g R} D, =0 marries the two together into one!

While we have developed the foregoing based on ¥\itlg gauge theory and generally
regardedD, =0, -iG, =d,, —iA'G, to be an NxN matrix, this is not an absolute reguient.
Weyl developedD, =9, —iG, twenty five years before Yang and Mills came os shene. So
we can also take the gauge group to be {J(@h electrodynamics, and we may regard the gauge
field G, as Maxwell's electrodynamic vector potenti&) (here we arenot taking A, to be
arbitrarybut making a specific association with the electrgnetic potentigl When we do so,
the geometric operator equatic(rR”” -19” R)(a;v - iAV\) =0 now becomes the classical unified

field equation for gravitation and electromagnetisAnd becauseéR‘” -1 0° R)(a;v - iq) =

can be applied to SU()and SU(3}, we now have a complete classical unificationhef field
equations for all four known interactions: electegnetic, weak, strong and gravitational! All of
classical field theory is geometry! While recodnig the challenges dfactable calculation
unified quantum field theory then emerges,principle, from the functional path integration

Z :I quexpijfd“xzj Dy expiS of the actionSzIﬁBd“ x for with the classical field equation
(R -19“R(8, - iG)=0 over all possible configurationdDg of the classical fields

»=9,,,G".

8. The Configuration Space Inverse of the Electri€harge Field Equation
of Classical Yang-Mills Theory

Much of the focus in the last two sections wastex@d on the classical Yang-Mills
magnetic charge densit},, , primarily because this has the same index-cyaltisymmetric
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tensor properties as the two Bianchi identiteR ,+R,,+ R, =0 and
0,R,, *+9,R,,*+9,R,, =0 which along with the Jacobian identity

[a[b.d]|+[b[cd]+[ [ ab|=0 which were central to the development of the otabs

unified field equation in the various formulatioos (7.6) to (7.8). Now it is time to return our
focus largely to the field equation (3.3) of thasdical Yang-Mills electric charge density.

If we compareld’ = (gW ( D, D’ + mz) - D D”) G, which is the electric charge density

field equation (3.3) side by side witlﬁ”ﬂvz—i(aiw[eﬂ,c;")} e D“’G"D) which is the

magnetic charge density field equation (3.6) wikiéeping in mind that the gauge-covariant

derivative D* =9* —iG*, then we notice a remarkable thing: Mathematycaliese two non-
Abelian Maxwell's equations can be thought ofaagair of parametric equations in which the

gauge fieldG” is itself the parameter These means in turn that there is a precisépitied,

albeit complicated relationship between the monemnsity P and the charge density’ .
As such, we should endeavor to find out more ablustrelationship. Keep in mind, this would
never become a consideration in Abelian electroohyos, because there, the magnetic sources

P =0. But this isnotthe case in Yang-Mills theory.

Additionally, the magnetic densitp™” :—i(a;(”[G“,GV)]+ e D“’G’]’) of (3.6) aka

(4.1) looks on the surface like a bundle of glu@'s. (Again, we avoid the term “glueball” to

avert confusion with specific meanings that haveaaly been given to this term.) But if we take
a conservative view of field theory, wherein gadigéds always originate from some source,
then the natural progression from (3.6), (4.1) #hde to inquire about the sources from which

these gauge field&* originate. Other than the monopole souR#®’, the only other logical
source ofG* is the electric source densidy .

Furthermore, in Dirac theory, an electric soureedity J* may in turn be expressed in
terms of fermion wavefunctiong . Specifically, Dirac’s equation says ti(a'ty”aﬂ —m)t// =0.
For the adjoint spinory =¢'y° the field equation isiaﬂay" +my =0. Adding vields
ad, (Ey”w) =0 as is well known. And because the conserved otuiseexpressed by J* =0,
we identify the current density witd“ =@y*w . In Yang-Mills theory, for a compact, simple
gauge group SU(N), this generalizes 36 = A}, J* = AL ;Wc A W = Wy W, with Yang-

Mills adjoint i and fundamental,B,C,D indexes explicitly shown for illustration, and whe
Y=Y, is an N-component column vector of 4-componentmelgary Dirac fermion

wavefunctions /. Thus, Y)'y = (g‘”(D;U D7 + mz)— D* D?”) G, becomes another way to

write (3.3). With this progression from* — Wy*W , the gauge fields* now is the parameter

which specifies a relationship between the magresiiccesP*” and the Dirac fermionsp .
Because we already seen based on some of the syigsrmitlined in section 4 that thefg"
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have attributes reminiscent of baryons, this pataneation may provide a way to “populate”
these magnetic monopoleB*” with fermion eigenstateg/. |If, in turn, these fermion
eigenstates exhibit the same symmetries as thé&gjudnich we know reside inside baryons, this
would provide support for regarding thege as quark wavefunctions, and tR" themselves
as baryon densities. So, we shall now proceedyalmese lines to populate the monopoles with

fermions by developing the inverse field equati@)s=1,,J" = |ﬂy’w.

Specifically, we nowdefinean inversel , such thatG, = IwJT. Then, we can insert
G,=1,J"=1,,¥y/W¥ into P™ = —i(a;(” [G”,GV)]+ G’ D* G’]’) for each occurrence of the

gauge fieldG*, thereby populatind®®” with fermions. As we shall now do, it helps twieav
how this inversion is done in electrodynamics, tepare for the more complicated calculation
required for Yang-Mills theory.

In U(1)em electrodynamics, we use the classical field equatnentioned between (3.3)
and (3.4) to specify this inverss, = ILw.J’, namely:

2 =(g”" (0,07 + mz)—a;ﬂa;V) G=06,J s( ¢” (9,07 + rﬁ)—a;”a;”) J. (8.1)

I!r,u
We have specifically denoted this inverise, with a “L” subscript to keep note of the fact that

this is thelinear inverse of Abelian gauge theory. We will shordigrive a more complicated
inversel,,,, which includes all the effects of Yang-Mills thgdyoth linear and non-linear, and

then from this will form al, =1, -1, which tells us the precise portion of the complete

Pru
Yang-Mills inversel,,, , arising from theperturbativeeffects which account for the difference

betweenl,,,,, and | This follows the approach introduced prior tol(® where we found

Lz -

that the perturbative-only contribution to the ewtrdensity isJ; :(g"”V— V‘”) G,. So now,
we are effectively seeking the inverse of this.

Dropping J* from the last two terms above with index renaraligws us to sift out:

&, =(g" (0,07 +n?)-0"0*) | (8.2)

Lvr *

Looking at the configuration space operatgf” (a;ga?”+mz)—a;fa;ﬂ, we see that in flat
spacetime this is symmetric in i{8,7 indexes, but in curved spacetime it is not. Imved

spacetime, the Riemann tens[cﬁw,aw]Ga =R, G is non-zero as noted just prior to (3.4),
and so left-right ordering matters. Especiallycsitthe non-AbeIiarg‘”(Da D7 + n12)— D* D’

in (3.3) with D* =0* —iG* where G" = A,,G* is an NxN matrix for SU(N) is manifestly not

M, T symmetriceven in flat spacetimigecause ot/ [~ :[D”, D”} in (5.7), it will be important
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to pay attention right away to commutativity issu€3ne will also discern from this, that except
in flat spacetime for Abelian gauge theory, theerse |,. will be non-symmetric between its

v,T indexes. Thus, the definitional choi =1_,J" where the left index in the inverse is

summed with the current density is different thha teversed-index definitio®, =1,J" in
which the right index is so-summed.

Based on the terms in (8.2), we may surmise khat=g,,A+0.d.. B will be the general
form of the inverse, witH , defined to have the same index orderingad.,, and withA and

B being unknowns we shall now deduce. We defirmndB to the right, so that when we insert
I, . into (8.2) to specify:

Lvr
&, =(g" (0,07 +nf)-0"0") (g, A+a,0, B, (8.3)

the A andB will not come between the known terms. Agains tkipart of our desire to pay very
close attention to commutativity order right at tbhetset, because this will be especially
important when we progress to Yang-Mills theory.

Now we expand (8.3) to obtain:
5", =", (0,07 +m?) A-3,0% A+ ((0,,0° + ), 0% ~079%0,9, ) E, (8.4)

where we may freely commutg”’, and where we then make usedf = g’ g, and also use
the remaining metric tensors to raise or lower xadeas appropriate. The first step is to
eliminate thed”, (6;06?” + mz) A term by setting(a;ga?” + m2) A=1, and more precisely, by left-

multiplying with (6;00;" + mz)_1 to write:
A=(0,07+nt)" (0,07 +nt) A=(0,07 + )", (8.5)

Becaused.,0° +n7 is not a matrix (shortly, its Yang-Mills counterpavill be), the use of

inverses is not required and we can employ the foomemon A:1/(a;ga?”+ mz). But this

“overkill” will be important for Yang-Mills theory. Inserting (8.5) back into (8.4) while
maintaining all the “overkill” of ordering and talg inverses yields, with some rearrangement:

0*0% (0,07 +m?)” =((0,,07 + n)0*0* -0,0%0%07) B. (8.6)

Multiplying from the left by((a;ga?” + mz)a?va?” —a,a;ﬂawa?f) ' then yields:

B=((0,07 +n?)a"0* -0,040*07 ) 9*0% (0,07 + n¥) " 8.7)

34



J. R. Yablon

Now using (8.5) and (8.7) ih_, =g,,A+0d.,0., B we obtain:

Lvr
|VT=[gvr+awa,((aﬂaﬂ-+nf)aﬂaﬂ-aﬂaﬁaﬂa”)ﬂaﬂaﬁ}(aﬂaﬂv+nﬁ)*. (8.8)

Since these inverses have a Yang-Mills dimensfdixiN=1x1, they are not Yang-Mills
matrices and may be placed into denominators itbomery manner. Thus (8.8) becomes:

9,0,079%
(0,07 +m*)0"0% -0,,0¥9 0"
v 9,07 +m’ '

gl/l' +

(8.9)

In flat spacetime where the derivatives may beljreemmuted, we can factor out the& 9"
terms to leave @.,0” —0.,0° =0 which also zeros out. Then, we convert to monmangépace

via i0” - k¥ and add thetie prescription to yield the inverse for a massivetgeboson::
0,0, __ ,kk

0, k k
+ -+
| gl/T m2 _ gl/T rr]2 +1& g/T rrf

W e kK- kK- i+ 4 (8.10)

We make note of the fact that up to a factor, dfis inverse is identical to the QED propagator
., ie., thatr, =il . Finally, we return to use the above@ =1,,,J" (note reversed index
ordering versus (8.10) traceable to (8.2)), whiiehdg:

Kk
G _ _grv+ m2 Jr B 1 J m=0 1 (8 11)
T T T Y '

After a final flat spacetime commutatida,,d,]=~[k,.k ] =0, the final reduction occurs via

conservation of charge densidyJ” =0, which in momentum space, isJ* =0 (e.g., [7] after
1.5(4)).

Now, it is easy to see from (8.10) as— 0, via k k / nf - o, thatl , — . Thisis
why the configuration space operatgf“d.,0” -9#9" for a masslessvector particle inflat

spacetiméhas no inverse (e.g., [7] section 3.4). But wiggipens in curved spacetime when we
use +i¢, and setm - 0? This will be instructive for our momentary cafesiation of Yang-

Mills. In this circumstance, using (8.9) i@, =1,,,J", the inverse equation corresponding to
(8.11), becomes:
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9.,0,079% 9.,0,079%
gn/ + . \ .’ . . . . gn/ + . ’A ’A . . .
(0.,07 +m*)0"9¥ -0,,0790 __meo 9., (67097 -079°9*)
G, = | R = ’ — J. (812
0,07 +m +ie 0,07 +i¢

Even with m=0, none of the reductions of (8.10) or (8.11) occlin obtaina;va?”a;"}a;r\lf =0
from 9.,0,,0°0”J" using 8,J" =0, one would need to commut®, to the right past all of
a;va?”a;ﬁ, generating several new non-vanishing terms coimigithe Riemann and Ricci tensors.

But of particular interest is what happens if we 88=0 (and also addri¢), as we have done
on the rightmost expression above. This, of cquiescribes the photon. Even with=0, so
long as we use +ig, the inverse is only singular in the circumstangéere
0'909” =990"9” -0#0"d? =0, i.e., in flat spacetime. In curved spacetime,dcbmmutator
01?9701 20, and so while the inverse aj*'d,0 -9*8" will still become very large in
relatively flat regions of spacetimegp long as there is a modicum of gravitational atuve,
formally speaking, the inverse will never becominite. In the real physical world — as
opposed to the mathematical idealization thatasdpacetime — anywhere there is matter there is
gravitation. So in the real physical world whergea@annot escape at least some modicum of
matter which inherently gravitates, the invers€8ri2) will always be finite. Of course, we still
need to add+ie in the bottom denominator, because for a masspgsston on-shell,
0.,0° = -k, k? =0, this inverse will still become singular even umged spacetimeWe point
this out because these types of non-infinite behsviue to non-commuting derivatives will
manifest very pervasively in Yang-Mills theory, awilil actually fill the mass gap.

Now we turn back to the Yang-Mills inverses. Hese start with the classical Yang-
Mills electric field strength (3.3) which we casta form analogous to (8.1), namely:

3 =(g”(D,D7+nf)-D'D’)G =0, T=(¢"(Q I+ M)~ O B) },, I, (813)

wherel,,,,, is now the Yang-Mills inverse and wefineG, = ,,,,J" to includeall the effects
of Yang-Mills, both linear and perturbative,,,, =1, +I The calculation then proceeds

exactly in the manner of (8.2) to (8.8), but nove tloverkill” of being very careful about
inverses and left-right ordering is essential. @lately analogously to (8.8), but with the Yang-
Mills “minimal coupling” discussed in relation thé “gauge theory on steroids” view of (2.6),

with the simple replacement of' - D* =0 —iG*, we obtain:

Pru *

Ly, = |:gw +D,,D, (m*D? D” + D, D’ D’ D - D, D D* D) D D* J( D, D +nt) " .(8.14)

Here, not only is the left-right ordering essentigcause th&s* = A,,G* are all Yang-Mills

matrices, but so is the specification of matrixarses which areot ordinary denominatorsTo
express (8.14) in a way that facilitates visual panson to (8.9) for Abelian gauge theory, we
shall now adopt a “quoted denominator” notation rebg we represent the inverse of any matrix
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M according tol/"M"=M™. And to keep track of the proper placement ofrarse in the
overall series of matrix multiplications, we usé @” down-arrow as a placement marker. In
this notation, (8.14) now is written as:

.\ D,D, ,D“D¥
_ "m2D? D¥ + D;a D° D¢ D# - D;a DD?D?" o
IYMVZ' - n D;JD;J+m2|| .

Oy
(8.15)

By comparison to (8.9), we see in stark relief h@nner in which classical Yang-Mills gauge
theory is simply Gauge theory on steroids with tm@inimal coupling principle

0¥ - D¥ =0 -iG*. One should note two factorizations which areilalse in the upper
denominator of (8.15). The first two terms may wetten as(m2+ D, D?") D“D¥# which

matches up with th®“D* in the top numerator. But these do not simplydiaout as they did
going from (8.9) to (8.10) because of the Yang-Mithatrices and the inverses involved. And

the latter two terms in the upper denominator maynmitten asD;J(D?”D?”D?/” - D?ED?”D?”).

As discussed after (8.12), this helps avert a samgumerator even if we set =0, because this
will remain finite to the degree thdd“D“D”* -D*D“D” =D¥D“D” 0. In section 10,
this elimination of the Proca mag®, - O, will be of particular interest for filling the rea gap.

We note finally, referring back to sections 6 andhat the symmetries of sequences of
covariant derivatives is integrally connected te thurvature view” of Yang-Mills theory and
helped us to derive the Einstein-Weyl equation)(7 Along the way, beginning with (6.9), we
obtained several useful identities involving thenoautativity properties of taking three or four
successive covariant derivatives. Clearly, based tleese identities, as a general rule,
DD“D# 20. Thus,8.15) will not become infinite even if we set 0 and even if we do not
include +ie and even if the gauge particles for which (8.15)he inverse are placed on shell
without +ie. These properties of (8.15) will become esseftidlilling the mass gap.

9. Populating Yang-Mills Monopoles with Fermions, ad the Recursive
Nature of the Yang-Mills: A Sixth View of Yang-Mills which may Aid in the
Quantum Path Integration of Yang-Mills Theory

We will examine (8.14) and (8.15) much more clgselthe next section when we finally
turn directly to the mass gap solution. But far thoment, let us return to the complete the goal

established at the start of the last section, whi¢h “populate” these magnetic monopok%”
with fermion eigenstateg . Via G, = IYMer, we now use the final line of (3.6) to populate th

magnetic monopole density (3.6) with inverdgg,, and current densitied”, and we further

make use of the Dirac relationship between fermianefunctions and chromo-electric current
source densities as discussed at the outset of thst section, namely

I =Wprp = A3 = AL We A AW to write:
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P = —i(0 [ 1943, 163, ]+ 1503, D¥1403 )
==i(0 15wy, W )Wy, W ]+ Wy uD U 2 Wy,w) . (9.1)

(07 (1 Wy, .1 5y, ] 0¥ [1 5y, 0.1 50y, 0] 0" [| 5,01 %80

+lim Py, WD S Wy, W 1 5 Wy WD 1 Wy, W+ Wy uD 0 YWy, v

M

The Yang-Mills monopole is now fully populated wifiermion wavefunctions. We now
explicitly can see the fermion sources from whibh gauge fields originateAll of the linear
plus non-linear/perturbative (L+P) aspects of Yafitls gauge theory are fully included in the
above. This is the complete Yang-Mills monopole with alhtinearity included. Now we shall
study this monopole from a range of viewpoints.

First, it is critically-important to observe thatwe wish to do so, to obtain an even more
detailed expression we may explicitly substitut®i(®.1), thel,,,,, of (8.14) with a renaming
and raising of some indexes. And then, we can eynphe gauge-covariant derivative
0¥ - D* =0* —-iG* throughout the inverses teintroduce additional gauge fieldsAnd then,
we can us€G, = Iy, J* to replace these new gauge fields with currensities and additional

inverses and then usd” =Wy*W to add more fermion wavefunctions and then use

0¥ - D* =0* -iG* to again replace gauge fields and repeat thisedyetatively, recursively,
ad infinitum! So while (9.1) represents this Yang-Mills mon@piol its most compact form, this

is arecursiveexpression because of the fact that if we use}8rlG, = 1,,,,,J" to write gauge
field G, in terms of the current densit}/’ via (contrast the Abelian (8.12)):

G, :[gw+ D, D, (nf D? D + D, D’ D* D” - D, D D“ D°) " D° Dﬂ}( D, D7+ )" 7, (92)

we obtain a host of terms with” =0” —iG* which specify the gauge fiel@“ recursively in
terms of itself. Then, viaG, = 1,,,,,J°, we may generate a similar recursion embedding the

current densities)” and more gauge fields.

In other words, it is very important to observattf9.2), and so (9.1), isot a closed
expression, becaus€, is self-definedrecursivelyin terms of itself. To obtain a closed

expression, one would have to repeatedly inggjt into itself, ad infinitum And via

G, = lyy,J", this in turn cascades into an infinite nestingwirent densities and thus fermion

wavefunctions. It may well be possible to discdra patterns and develop a closed form of
(9.2), but for the moment, we simply note that tt@sursion is yet aixth viewof Yang-Mills
gauge theory. To summarize: Yang Mills field the@ 1) non-commuting, 2) non-linear, 3)
steroidal, 4) perturbative, 5) geometrically-curvadd now 6), based on (9.2), recursivgll of
these views are alternative, equivalent, and comghdary. The
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P = —i(a?(”[l "y, Ifh;)\]ﬁ]+ I ”(”JTD;“’I%DJ[,) of (9.1), is the compact, irreducible kernel of

the recursive specification of the Yang-Mills moontgy with all non-linear aspects of Yang-
Mills inherently included to infinite recursive ad This is the same monopole (6.16) used in
section 7, starting with (7.1), to derive the cieals unified Einstein-Weyl field equation

-kT*'D, =(R* -1 g R D, =0 of (7.6).

Having found this recursive aspect to Yang-Miledry, we now return to Jaffe and
Witten who on page 7 of [1], state:

“Since the inception of quantum field theory, twentral methods have
emerged to show the existence of quantum fieldes@mcompact configuration
space (such as Minkowski space). These known methogl (i) Find an exact
solution in closed form; (i) Solve a sequence ppraximate problems, and
establish convergence of these solutions to thieedielemit.”

The foregoing suggests a third method which islyemlhybrid of (i) and (ii): find an exact
recursive kernein closed form, and then expand that kernel ircessive iterations to see how
the recursion behaves (if it is convergent or djeet) in the limit of infinite recursive nesting.

It will of course be of great interest to examihe behavior of (8.14) a.k.a. (8.15) to see
if it is exhibits suitable convergence under irtnrecursive nesting, and how this relates to
expressions obtained during efforts to quantizeg¥islils. If we look at the numeratdd in

(8.15) and raise one free index to tugp into §," which is a unit matrix, we see that this has
the skeletal mathematical forfMl =1+ A/ B. Noting that one definition of* includes the
similar form € =lim (1+ x/ n)”, and noting for example howe®" expresses the continuous

n- oo

growth of a “principal’P at a rateR for a timeT which principal is, in essence, recursively fed
into itself for compounding, we may think & as the quintessential, self-feeding, recursive

mathematical function. So we ask if there is a@mcexplicitlyrecursivedefinition for €*which
might give some insight into how to tame expressieuch as (9.2) into closed form. If we
define a dummy variabl& =1+ Bx/ n and feed this into itself, each time settmtp the number

of the nesting level, it turns out that as the ingsapproaches infinity, we obtagf :

Bx B(1+B4X)
Bx B1+—) BA+——)
Bx B(l+ ) Bl+—3) B(L+ 3
x=1+-2 _, 1+ 2 1+ 2 1+ 2 (9.3)
1 1 1 1
S1+Br B+ S BB XL &
2! 3! 41

In other words, the infinite recursive nesting &1+ Ax/ n with n set to the nesting level is
another way to defin@®. This is not to say that (8.15) will necessarilyrt out to have an
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exponential form, but rather to point out how a Madn series fore® may be recursively
defined from the recursive kerngl=1+ Bx/ n wheren is the nesting level.lt would seem a
fruitful mathematical exercise to develop simila&cursive definitions for other mathematical
functions via their Maclaurin seriegnd then, armed with those definitions, to takeeah look

at (9.2) and see if that provides further insigitbiunderstanding this recursive series and the
circumstances under which this series divergesaatably-converges, and what it looks like in
truly closed form.

The other very important insight to carry awaynfréhe recursive expression (9.2), in
light of (9.3), which is a mathematical insight kvftossible physical implications is this: In (9.3)
x is a “dummy” variable that gets stripped away he infinite application of recursion. This
means that in (9.2) the gauge figB] is the dummy variable that will get stripped avimythe
recursion as the nesting reaches infinity, andwleit will remain behind is the singlg, on the
left of (9.2) expressed as an infinite recursiveesewith up to infinite powers of the source
currentsJ”. Possibly analogously, when we take a path iateguch as in QED:

z=[DG, expi[ d*x(3 G,( g (0,07 + ni)-0"0") G- ¥ g

K
d*k jgﬂ”r? o 64

J
2n) " kK-t

= cexp(iw (J)) = ¢ ex —%II(

the gauge fieldG, is the “dummy” variable of integration, it alsotgestripped away as the
integration takes place, and what is left behin@nsamplitude expression with up to infinite
powers of the source currenis.

With this in mind, using what Zee [7] in Appendixrafers to as the “central identity of
guantum field theory” (we have reversed the signifbecause we are using the electrodynamic

convention in which the units of charge (electroas) negative whereas Zee uses a positive
charge sign convention):

ID¢exp(—%¢[lK -V (¢) - Ip) =c ex{V(J /5J)) expt JOK*0J), (9.5)

it would be a very interesting mathematical exer¢essee whether the core Gaussian integral:
jdxexp(—% AR - I=(-211 A" ex 3 /2 (9.6)
can be fully reformulated in terms of a recursivadtion. As a start toward this, it helps to

develop what may be a new mathematical notatiorepoesent this sort of recursive nesting.
Analogously to how series are summarized usingsyrabol Z*_ , we shall now create an

infinite nest symbol represented by a pair of negtarenthesig()),.,. In the function to be
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nested, we shall enclose the dummy variable (whiabx in (9.3)) in the form((x)). Thus, in
this (possibly new) notation, we may write (9.3cmmpact form as:

() (2+B((%) 7/ ©9.7)

This means that the Gaussian integral (9.6) mag@ersivelywritten as:

B

e

()
fdxexp(—%Af— J>) (271 A° exd J /2%)\ (zr /}\ ) L oan (9.8)
where x (an abstracted gauge field), which islammy variableof integration is what gets
stripped away during the infinite recursion adwsmmy variableof recursion It is not at this
point clear whether this sort of recursive analgsis be helpful in breaking through to enable an
exact, analytical path integral quantization of YyaMills theory in closed form, but it is
worthwhile to see what contributions can be madea Ibgcursive analysis in which the physical
field to be subjected to path integration is indteegarded as a dummy variable in a recursive
expansion. What is absolutely clear, howevehas ¥ang-Mills theory, in the form of (9.1) and
(9.2), forces upon us the need to analyze, undetsend better develop its recursive features,
which are yet a sixth view of Yang Mills in whicll af the non-linearities are expressed and
developed through recursive mathematics. One dhauidst this analysis, be looking for ways
to analytically calculate the exact Yang-Mills pattegral with the aid of the recursive kernel in
(9.2) which does mirror the types of terms that fget into the Yang-Mills path integral. In
section 13, we shall do exactly that. All of tleedoing also applies to gravitation theory, which
from a “gravitation gravitates” view possessesnailar sort or recursive non-linearity.

It is also worth observing that the magnetic maie9.1), now populated with fermions
(which in section 11 we will show are quarks) iallg at bottom, a non-Abelian combination of
both of Maxwell’s classical equations (3.1) and (3.2piasingle equation Specifically, the
Yang-Mills electric charge equation combined withird@ wavefunction theory via

J'=D,F" =D, D¥G” = WP W is represented in inverse form via (9.2) and tneerted into

the monopole density (3.6) to arrive at (9.1). SEm, in his final paper [21] at page 159 points
out the “surprising” finding that Maxwell's two egtions, taken together, possess a field
strength z =12 which is the exact same strength as the equaRgn=0 for pure geometry.

This would suggest that (9.1), which is a field atipn relating all three ofi¥ = Wy*'y, p*

and G* (two sources and one gauge field) to one ano#gmetwhich merges both of Maxwell's
equations together into opwvill also have a strengtlz, =12 interrelating itsi =1,2,3..N* - !

Abelian sources]", P*” and fieldsG*, and so also have the same strengtRgs=0.

The final, very important point to note is that dese of its origin in (3.2) and (3.6) as a
Yang-Mills monopole, (9.1) contairthree additive termn index-cyclic(o;uv) configuration

of the form 6?(”[ A Iﬂ“)leﬁ ] and similarly 117 Wy, WD &V Wy, w.  Further,
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Y=Y, is anN-component column vector of 4-component Dirac spimavefunctionsy for

whatever gauge group SU(N) we choose to employ.thiBomoment, we have been exploring
Yang-Mills gauge theoryn genera) but have made no selection of any specific gagrgep.
Now that is about to change. Becau®®’ is the density of aingle magnetic monopoleP™"
must be regarded as a system which contains ties& ,. But by virtue of the three additive

terms, it would appear to contain three such YansNermions W . This was the source of the
“three-ness” discussed at some length toward tdeoésection 4. Dirac-Fermi-Pauli exclusion
tells us to make certain that that the fermionsanh of these terms are in different eigenstates,
so that this monopole system does not contain\aaydrmions in the same state. Because there
are three additive terms, tlsenallestgroup we are permitted to choose is SU(3). Byddts
Razor, we make this smallest permitted selectod,so do choose SU(3)

Once we choose SU(3), we place each of the nowe-tireof W =W ,, A=1,2,3 into a

distinct eigenstate. In order to discuss thisneed to name these states. So we will name them
Red, Green and Blue, and denote thgm ¢, and ;. And with that, we move from Yang-

Mills gauge theory generally, to Chromodynamicscd#pzlly. And while we start with three
fermions ¢, ¢, and ¢, which we shall soon establish may be interpretedjaarks, the

recursive nature of (9.1) via (9.2) aff' =0“ -iG* andG, =1, J" = uﬁyfw ensures us the

monopole system of (9.1) will be teeming with nore&r physics and many additional quarks
and antiquarks and amidst a sea of gluons tha atithe first, second, thousandth, and millionth
recursive order. This will all be developed inalkein section 11.

In this light, as stated in the introduction, arslvae shall detail in the forthcoming
development of section 11, QCD is not a theoryimst forinciple, it iscorollary theory The
theory of first principle is Maxwell’s electrodynaes as extended into non-Abelian domains by
Yang-Mills gauge theory. QCD is theterived by deductioms a consequence of enforcing
exclusion for the fermions contained in the nonisiaimg magnetic monopoles of Yang-Mills
gauge theory, and choosing a gauge group no l#ngearis necessary to enforce this exclusion.
In the process, we fully explain why nature choa$eee quarks per baryon (in the “ground”
state of zero-recursive order) rather than someratamber.

Now we turn to make three specific showings: Firstsection 10, we shall show how
the relationship (8.14) which vi&, =1, J" is contained to infinite recursive order in

monopole (9.1) via (9.2), fills the mass gap. Tevew: if we setm=0 in (8.14), due the non-
commuting nature of Yang-Mills theory, we still agt terms which create mass-like effects and

which, because of the specific matrix inversi@D;UD?")_l in (8.14), yield a mass eigenvalue

spectrum, which one expects will come to be astegtiavith the non-zero masses of the
observed mesons such as those catalogued in R2¢ond, in section 11, as has already been
developed to some degree in section 4, we shall $lmm a more formal standpoint how and
why (9.1) contains all of the expected color symmastof a baryon, and at the same time
confines its fermions (which we shall identify wittuarks) and its gauge fields (which will
identify with gluons), while permitting the flux @olorless quark combinations that we observe
in the form of mesons. It is by this means thatskell identify the magnetic monopoles of
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Yang-Mills gauge theory as baryons, which naturpthgsess three colored quarks at the lowest
recursive order and only permit a flow of meson®sg their closed surfaces. Finally, in section
12 we shall examine the natural origin of chiraingyetry breaking, and particularly, of the
various vector (V) and axial (A) meson states wtaoh phenomenologically-evidenced in strong
interactions.

10. The Mass Gap Solution

Let us now show how the solution to the mass dap is embedded in equation (8.14)
which in the form (9.2) yields an infinite recumnsio We shall develop this solution using the
more “user-friendly” representation (8.15).

The configuration space inverse,, in (8.15), upon expansion of ea®f =9* —iG*

followed by reapplication of (9.2), represents of the non-linear, recursive features of Yang-
Mills theory. As we have done previously, let wswidentify how much of this inverse arises
strictly from the perturbations P which represdrg tdifference” between Yang-Mills gauge
theory and an Abelian gauge theory such as Maxsveléctrodynamics. As we did earlier with
(5.10), we use the framework YM=L+P (total Yang-slieffects are the sum of linear effects

plus perturbative effects) to calculatg, =1.,,,, —! ,,, Which is simply the difference between
the entire, holistic ([7], page 356) inverse (8.a8y the linear inverse (8.9). So what we shall
now be studying is what Yang-Mills theory bringsthe table (perturbations in the perturbative
view), above and beyondhat Abelian gauge theories such as electrodyreaiready bring to
the table. So that we can studwly the impact of Yang-Mills theory separated from anpact
due to spacetime curvature, we represent both.8j éhd (8.15) in flat spacetime, and so turn

the gravitationally-covariant derivativeés’ into ordinary one®’. Thus, we form:

IPvr = IYMvr _I wr
anAg anp
o + D,D, ,DD o+ 0,0,0°0 (10.1)
"m’D’D’+ D,D° DD’ - D,D’D D" ©_ nfo?9” +9,0°0°0” - 9,009

n D0D0'+m2|| aaaa'+m2

The ordinary derivatives in the right hand term omme and the denominators are real
denominators, not matrix inverses. So the aboadilsereduces to (see (8.9) to (8.10) where we
did the same reduction earlier):

IPvr = IYMvr _I wr

o + D,D, ,DD”? ,0.0, . (10.2)
72 m2 Da Dﬂ + DJ DU DH Dﬁ - Da D/J’ D” DU" D_ gvr m2
n DJDJ +m2|| aaacf + rrF

The term on the right, of course, is the invergeafmassive spin-1 vector field (vector boson), it
is identical to what we found in (8.10), and whe& eonvert over to momentum space, it is the
same thing as the vector boson propagator up tactorf ofi, 7z, =il The QED path

Lvr *
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integration which establishes thatz, =il ., is displayed in (9.4). The term
D,DD“D” =D,D’D“D” -D,D?D“D’, which will be at the heart of the discussion to
follow, contains a succession of four covariantdgives, and as we can see from the identities
developed in section 6 and especially (6.9) anti7jto (6.20), this ternD,D“D“D” is non-
vanishing everywhere there are non-zero perturbstas defined in (5.3) to (5.5)..

Now let us return to (5.6) for two successive gauagvariant derivatives, and write this
perturbatively in momentum space in flat spacetiaed” — k*, as

D#D" =-k*k" +V* =-K'K-K G- G k- G G, (10.3)
which also means that:
V¥ =-kiG -G K-G3G. (10.4)

So we expand the variou3”D" = -k#“k” + V#" in (10.2) and convert into momentum space, to
obtain:

IPVZ' = IYMVZ' _I r

(kvkr _er)D(_w K + Vw)

__gvr+..m2(_kakﬂ+v0ﬂ)+(|$|€— \40)( R K- \7'5)_( (k/f(_ y)( k% V)"D . (105)
= "k k7 =V, 7 =t

_gVT+kV|:T
T mt

k, k7 = nt

We of course see the perturbative-only invetsg — 0 if all the perturbations are

turned off,V* _ 0, as is to be expected. Again, we are now largelgking in the perturbative
view of Yang-Mills.

What we now wish to consider is this: In the fudng Mills inversel,,,,, in (10.5), the

m® is the Proca mass of the Yang-Mills gauge bosmtisgduced by hand back in (3.3). That

mass has followed us all the way through the dgret since, but as originally pointed out, it

is a red flag mass that we want to eventually be &b zero out and — if there are massive
particles to be found in the physics we are desagibbe able to reintroduce in some other way
without ruining the gauge invariance and renornadlilzty of the theory. So now, the time has

come to set the Proca massliy,, to zero. But we shall leave the Proca mass as lis,, to

keep one “red flag” in place as will be momentadigcussed. With setting’ =0 in I,,,, , the
above now reduces to:
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Pvr = IYMVT _I Lr

) (k= Vo) o (- K K+ V) 10.6
R T | (L G B (L 0| LS i e A
KK =V, kK-

This means that (3.3) is now revertede:(g”V D,D? - D* D;“) G,, so that the Yang-Mills

gauge bosons are now massless. This means, fopéxamat if our gauge group is SU£3)hen
these gauge bosons will be massless gluons.

While we are at it, let us even go a step furthogr,setting the now-massless gauge
bosons inl,,,,, to be on mass shell, witk k? =0 (which means that the terkg k”k” K’ - 0
because the&k’ can commute since we have assumed flat spacetinsolate the effects of
Yang-Mills all by itself), while at the same timéding +i¢ to the linear inverse, , and also
introducing the gauge numbdtr, which for { =1 is the Feynman gauge and fé=0 is the
Landau gauge. This gauge number is associated théthFaddeev-Popov method and was
originally developed by Feynman, see, e.g., [7}lisac lll.4. The latter{ =0 is the gauge of
(10.6). Let us also raise the freeindex everywhere. Thus, (10.6) now becomes:

= B

_5 (K'k =V ) o (- K+ V) o 10.7
T T (VI k) OV -V R K —5”r+(1—f)km|§’ wen
) oy kK-t E

To simplify our consideration off . a bit, let us choose the Feynman gafigd which is what

transpires anyway the moment one contracts theseve”, with a current density vik, J* =0,
see (8.11). Thus, (10.7) now becomes:

(k“k,—V”,)D(—k"’ K+ \f’ﬂ)

+
I i 4 L T el A e LTI SN
Pr~'YM 1 L7 I'_V(T‘T" kgkg_ nf+ E ' |

Now we arrive at the point: Even after we setRneca mass to zero to keep the Yang-
Mills gauge bosons massless and preserve renoahbdiiy, and even after we further set those

zero-mass gauge bosons to be on-shell, so lorfegsetturbationy ¥ andV,? are not zero —

which means that so long as Yang-Mills theory isngosomething more than Abelian gauge
theory — the inversé,,,,, remains entirely finite and well-behaved. We ad need the Proca

mass at all, and we do not even neeid to avoid the pole that occurs ih, when
kk’-nf=0 (or when kk’=0 with m*=0). Referring to (10.4), the
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1/"VJ”":(VJ”)_1:(kUG"+ GK-G G’)_l term keepsl,,,,, well-behaved in exactly the

same way thak_ k’ - nf + i keeps the lineal , well-behaved. But — at the heart of the

Lvr

ag
no artifice from the essential non-linear core of Yang-Milkeary. In contrast, in the linear
inversel,” , in the denominatok k’ — nf + ig, the m* is a renormalization-destroying Proca
mass which has us asking why, for example, thengtnmteraction can be a short range

interaction even though its gauge boson massegesicewhich means we cannot introduce a
Proca mass even though we need a Proca mass totheak&ong interaction short range and

make the inverse / propagatay, =il ,, non-infinite. And in further contrast:ice is another
artifice introduced by hand, to avoid the pole ofan-shell boson. Similarly, as we even saw
following (8.12), the moment we set’ =0, the numerator ternk k / nf - o in |, unless

the spacetime is curved. Here, where we are cernsgl Yang-Mills alone and have removed

any effects of gravitational curvature, the cormgpng “denominator” in (10.7),
-1

(Vg" (V"’/”— k”kﬁ)+ k KV7—- V' V7 + \f & 12) , plays the analogous role to the spacetime

matter -1/"V, 7" = (V ")_l = ( kG +GK-G G’)_l is an NxNmatrix inversethat arises with

curvature , and is perfectly well-behaved so losdghe perturbations’” andV,? are not zero,
which is exactly what Yang-Mills theory is all aliou

So, now, to the mass gap: The Klein Gordon eqndb.1) for a massless scalar fietd

with gauge symmetry, plus a hand-added Proca neassfor a vector boson with mass, has an
associated Lagrangian density (every Lagrangiarsijeims multiplied by 2 in Yang-Mills

because of the generator normalizatTcrrﬁ/l‘/l" ) =179, see (2.6)):

£=(0,0) (09) 6,6 =¢{ 0,16, |(0° - i&")p-mi G &
(10.9)

= 90,/ 0"~ 1¢G*d 9190, G* p-¢G,G'p- i G, G

Above, we use((aﬂ —iGﬂ)qo)T = w(éﬂ—ieﬂj due to the hermicity of the gauge fielGg =A'G,
which is in turn due tol' = A'" for the Yang-Mills generators, and we also usefadperating

5,,. (While we are here, contra@D#(p)T D“@ above to one possible use of the Einstein-Weyl

equation (7.6) so as to operate on a scalar friﬁsimely,(R”V -2 0° R) D¢ =0.) Although the
only ingredients we start with in (10.9) are a acab for which we take the gauge-covariant
derivativeD“g, we end up with a terngG,G"@. When we then expand the scalar around the
vacuum using a Higgs fields in the forg=v+h(x) +... and rescaleG, - gG, to explicitly
show the gauge coupling, this gauge-created term:
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-0’06, G'p=-F(w h.) GC&(w k.)=-( W 66 Y2 vh’k.) G (10.10)

reveals the term—(vg)2 G,G". So now (10.9) contain's(vg)2 G,G' - nf G G. But the term

—mZGﬂG“ was introduced by hand with a Proca mass andnsrilie gauge symmetry. The term

—(vg)2 G,G", on the other hand, is a direct result of the gasgmmetry. In fact, the gauge
symmetry would be ruined if we dibt have this term. So we remove the Proca mast (eet
zero) and in its place we regard the te1=|(n/g)2 G,G" to represent the massive boson agdto
represent the mass of the boson. The experimentdirmation of electroweak theory, of
course, validates this result, and at the same ti)lylelsing—(vg)2 G,G" rather thann' G,G as

the boson mass term, we keep the gauge theorymsmenormalizable. The benefit of having
—mZGﬂG“ in (10.9) is that it represents an “anticipatedds® against which we compare the

emergent—(vg)2 G, G to identify the renormalizable masg in lieu of the Proca mass

The exact same sort of thing is happening in (10.Based on what we know from
Abelian gauge theory, we have come to expect tlagsive vector bosons will have a propagator

. =il .. The terml  =-i7,_ in (10.8) is completely analogous to the tenﬁGﬂG"in

(10.9). Each contains a hand-added, renormalizat&stroying, “anticipated” Proca mass. And
(10.8) does (10.9) one better, because it als@ ed-added-ie to ensure that the world does
not come to an end when a boson is on-shell. iBstrong interaction theory, we expect the
gauge bosons to be massless. Were we to<gin thel , of (10.7) before we gauged out this

term with £ =1 in (10.8), everything would blow up. Were we & the boson on-shell ih ,

and not usetie added in (10.7), everything would blow up. But tompete inverse in Yang-
Mills theory is I,,,,, notl, , =-m, . Sol,,,notl  ,is the inverse in which we should set

m=0. By keepingn explicitly in I ., we keep the “red flag” of what is “anticipatedy that we
can see how this anticipated mass arises figp, , just as when we kept the Proca mass in
(10.9). And while we are at it, if we want the gaubosons to be on-shell,,,,, is also the

Lvr

inverse in which we should skfk? =0. In (10.7) we have already done all of this. Tieess is

zero, the bosons are on-shell, and we have dorengoby hand that is artificial. And what
great catastrophe has befalléy,,, in (10.7)? Absolutely none! This remains a coetgly

finite, well-behavednatrix expression, so long as“ #0 andV,” #0. But where and how,
exactly, mathematically, do we fill the mass gap?

This is where the matrix expressions and the segcome in. Written out expressly in
terms of matrices and inverses with matrix indeXBs(10.8) really says:
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v v 1 Vv —
IP 7 AB IYM T AB I L75AB_

(- (K -V ) (T (V- KK+ RV Y KR ke LV))(— ) -(1011)
~(=0", )1 (k,k* =P + ) 3,

We have taken special pains to make explicit, thBl Katrix structure, noting thdt,,”, .z iS a
complete, non-commuting, rather complicated NxN ¢dfills matrix for SU(N), and that
1Y, =-0", /(kgk” - + 15) is not a Yang-Mills matrix . Rather, when we sabt | “, from
I.”,, we must putl ”, (which is related to the linear propagator Agy =il ) into the diagonal
positions of the Yang-Mills unit matri®,g, thus formingl,”.J,s.

But (10.11) is in the form of an eigenvalue ecuatfor the matrix |,,,", ,5, With
|7, =—i, representing the eigenvalueslQf’, .. So if we use this to operate on any Yang-
Mills column vectorV;, then | ", =-i7’, will represent the eigenvalues, i.e., the propagat

observablesof the matrixl,,,”, ,5- But we don’t even need to posit a vedigrbecause we may

obtain these eigenvalues directly from (10.11) vithe eigenvalue equation
|M - I)I| = det(M ol )I) = 0 which uses the determinant of a matviXxo compute its eigenvalues

J. For (10.11) this eigenvalue equation takes oinenf

P 7AB YM 1 AB L7

(SO IS I N EX (10.12)

That is it! This is the mass gap solution! Once deduce a non-zero eigenvalyé, = -z,

via the above from some perturbations” #0 andV,” #0 in 1,,,", .5, We then know that the
observable, anticipated masswill be related to this by:

_5VT

S S 10.13
k k% —nf + i (10.13)

=17 =4, .
In this way, we may deduce both the m@asand, if an eigenvalug ”, is acomplex numbewith

an imaginary component (which it may be because/the;]enerators systemically generate
complex numbers once one takes a maitrsersesuch as( ) ), the imaginary magnitude

+ig corresponds not to the mass — but lablife. (See, e.g., [23], page 150.)
So, we now turn directly to the mass gap probleii], which states at page 3:
. for QCD to describe the strong force sucfidhs. . . It must have a “mass

gap;” namely there must be some constant0 such that every excitation of the
vacuum has energy at least
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and which at page 6 then sets forth the problem:

“Prove that for any compact simple gauge group Gormtrivial quantum

Yang—Mills theory exists ofiR* and has a mass gap > 0 . . . namely there must be
some constamk > 0 such that every excitation of the vacuum hesgy at least
AT

The solution to the mass gap is as follows: Foompact simple gauge group G which
may be any” gauge group SU(N) with\ = 2 and generatord' and gauge bosorG@* =A'G*,
the complete, holistic, non-Abelian, non-linearssiaal inversel,,,,, associated with these

gauge fieldsG* and defined byG, = l,,,,,J°, with a hand-added Proca masswill be the
lyw,, INCluded in (10.1) generally, and included in @)0in flat spacetime. As pointed out

already, the ternD,D!D?D#' in (10.2) is non-vanishing. To maintain the remalizability of

gauge group G, wenustset this Proca mass to zero, as we do in (10T®)s means that the
gauge bosons are now massless. If one takes tige gaoup to be SU(@)then the gauge
bosons are gluons and these gluons are now mas&assve are in no way restricted to SW{3)
or to any other specific gauge group G. Theseteapply to ‘any compact simple gauge group
G.” For good measure, though not essential, wa glace the gauge bosons on-shell as in
(10.7).

Now that the gauge bosons are massless, the qudsticomes how “therenust be
constantA > 0 such that every excitation of the vacuum hreesgy at leash.” The “excitations
of the vacuum,” in Yang-Mills, are the perturbason” = kG’ + G'K - G' G of (10.4). For
every such perturbation / excitation)” # 0 andV,_? # 0, by definition. Wherevef <V* <o

and 0<V,? <o, the matrixl,,,,, will be finite and well behaved, and the eigenealof I,,,”,

obtained through the eigenvalue equation (10.1R)beifinite and non-zero and given By’ .
These eigenvalues, which are physical observabétsted to the linear propagator by
", =—im’,, may, in the process, also be complex. Theseneaues in turn, are related to

boson masses and lifetimes via (10.13). This m#atghe “anticipated” massin (10.13) will
also be non-zero, that is, will have a valua whereA is some non-zero valueptwithstanding
the fact that we have set m=0 in (10.8nd because this mass is contained within an sever

I 1%

., Which is an eigenvalue of,,,”,, this mass is deducible (as are possible nontafin

lifetimes) via (10.13). This works f@any compact simple gauge group G, which is to sappat
point in this completely generatlevelopment have we assumed or needed to assume one
particular group over any other. (Though as weehpointed out toward the end of the last
section based on (10.1), Yang-Mills monopoles gixe reason for regarding SU(3) as a
particularly important group, which will be devetapfurther in the next section.)

The massn which we did maintain as a red flag fift, in (10.13) is similar tcszﬂG“

which we maintained as a red flag in (10.9). & isand-added version of a mass that we observe
in the physical world but may not put into the thedoy hand without ruining the
renormalizability of the theory. So we look for ygafor this “anticipated” mass to be revealed
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by the theory in some other way. In (10.12), thsss which fills the mass gap is revealed in the
theory because the excitations in (10.11) giverass non-zero eigenvalues via (10.13) and the

non-zero eigenvaluek”, are the reciprocals of what then becomes a finib@-zero, possibly
complex, well-behaved_k’ - nt + i, even though the gauge boson masses have beem set

zero. If we setk_k? =0, then these eigenvaluds’, are simply the reciprocals ofn’ +ic,

which is a pure mass number with infinite lifetirggtable particle) for real eigenvalues, and a
pure mass number and finite lifetime (unstableiplajtfor complex eigenvalues. The mass gap
is filled, and we then have the basis for explajnivhy Yang-Mills interactions — most notably
the strong interaction — are able to have a slamge which requires massivector bosonsand

at the same time haymugebosonswhich are massless. The mass gap is filled becdis12)
“reveals” a non-zero mass in the inverse (10.13haout ever introducing that mass by hand, in
exactly the same way that (10.10) reveals a noo-peaiss in the Lagrangian density (10.9)
without ever introducing that mass by hand.

Having now filled the mass gap, we return to shaetw it is that the Yang-Mills
monopoles (9.1) have all the chromodynamic colonmegtries required of a baryon, and at the
same time confine their quarks and its gauge fieldisle permitting the flux of colorless quark
combinations that we observe in the form of mesdas/en that the mass gap is now filled, this
in turn would mean that the nuclear forces assediatith these monopole baryons have short
range. And, as we shall see, the specific magsarticles which emerge in the mass gap
solution (10.12), physically, are the mesons obegte be the mediators of strong interactions.

11. Populating Yang-Mills Monopoles with Fermions ¢ Reveal that Yang-
Mills Monopoles have the Chromodynamic and Confinemnt Symmetries of

Baryons and Emit and Absorb Objects with the Chromalynamic Symmetries
of Mesons

Let us return to the monopole (9.1) which we hpepulated with the fermion sources
W from which its gauge fields arise. As we didhe last section, we write the inverses in the
form 1., =1, +! to show the sum of the linear plus perturbativatgbutions to the

complete Yang-Mills inversel,,,,,. And, we stay in flat spacetime and thereby dkt a
spacetime-covariant derivatives to ordinary deiest, ., -~ 0,. And, we keep in mind that

P = P 5 is an NxN matrix for SU(N). So, substituting,,, =1

Pvr

+1,,, into (9.1) yields:

Lvr
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P = =i [ 144 Wy, W, 47 Wy, W ] +1 By, uD 1 G Wy, )
=—%M{O?+ﬂqmnWﬂf”H?ﬂmﬁW}%{WHgﬂ@h%ﬂ”(@ﬁ{@WG%W)
==i(0C[1 Wy, W,1 Wy, W ]+ [ By 4D U M By, )
—i(0C[1 Wy, W, £ Wy, W ]+ 11 Wy, WD £ By, ) (11.1)
=i (a“[l wQy Y| f’")myﬁw]ﬂ KWy yp 4 f"”@yﬁw)
-i(0C[12 Wy, w1 £7Wy,W ] +1 K7Wy D U 20 By W)
= R + R + R + R
At the end, we have respectively denoted eacheofdbr main terms a® 7, B%Y, B and

Pr¥ to specify the four combinations of linear (L) aperturbative (P) inverses they contain.

Because our goal is to understand the symmetryeptiep of P, let us zero in on th&?"
terms, which we segregate out as:

P2 ==i(0 [17Wy, W1 2 By, w41 [OWy,uD 1 Py, W) = +P Y. (11.2)

We have further use®?/ and B, to separately denote each of the terms in the eabov
Zeroing in even more, let’s look at:

RYY =10 [179,,1073,]==i0“ [ 1wy, w1 Yy w |, (11.3)

where we have also uselj =Wy, W to consolidate back to show a source density. Netws
substitute the linear inverse derived in (8.10)ss&@ into the above, to obtain:

—oH a | M _ V) y)
PLT_ﬂlV =_ia(a[|f_w\]a,||_ﬁv)\]5:|=_ia(g|: g + k7 k /an gE + |€ K/ rﬁJlBi|

Kk -nf " K K-m

6|3 3 L6 Wrv  wpw '
kK7 —nf 'k K- kR- m kKk-

(11.4)

The termsk?k / nf etc. are eliminated via the conserved curiehl, =0, see (8.11), and then

we raise the index on the current and trgf” absorbed into the current flips the overall sign.
Finally, let us expand the cyclator in the finapsession of (11.4) as such:
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pow _i[ go| WYY WP [ ol WYY WY | WY Wy
- k, k™= nf "l K~ of f - gk w ke TRk )

_i 5 Y gy iy Yy e Yyowyyd g
k k- nt k I - k K- rh k%= f

where, for example, we compad¢P*WWy W =W Yy - Yy y - Now, let's
develop the above in some depth. The developneefdllow parallels sections 2, 3 and 5 of
[13], but streamlines and simplifies that developtne&onsiderably and, perhaps more
importantly, puts that development in the overalhtext of the complete set of non-linear
behaviors which are the hallmark of Yang-Mills gaugeory.

To start, we note the spin sum relationship whishoften normalized such that

N?=E+m. Here, we shalhot use this normalization but will use the spin spnor to
normalizationwhich is (see, e.g., [23] exercise 5.9):

. 2

N
ZspinsUU = E + m(p+ m) ' (116)

Also seeing the emergemm =UU in each of the three terms in (11.5), we takethe =UU
in all three of these terms in (11.5), and then(4e6) to write:

auv —
I:)LLl =1

1 N? ag@y[”(p+m)y’“v+aﬂmy“(,p+ n)y"]l.lJ+an;}U(/p+ my! ¥ (11.7)
k,k? - nf E+ k K- k&= m K%k m

Next, we keep in mind that the fermion propagator

p+m _ p+ m -1

ey g el UL

(11.8)

while also noting the appearance(qf+ m)/( k K- rﬁ) throughout (11.7) which is very similar
in form to the first expression in (11.8). Sow# can find some rationale (see section 3 of [13])
to associate thé&” with p” which is the four-momentum of the fermion, then wil have
established that there are propagating fermion fuaetions populating the monopole term
R?. Observing thatl/ (krkf - mz) represents propagation for a Proca-massive vécson
with three degrees of freedom and that fermions héue degrees of freedom, we shift one
degree of freedom from the Ieadiﬂg(krkf - mz) over to the fermions by setting=0 to turn

that leading term into massles®oson propagator. That is, for each term in (1ivé shift:

1w ey 1y () (11.9)
k k™ — nt kK- m k k pp- f

T
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and now takep’ to represent the fermion four-momentum. It shdaddclear that both parts of
(11.9) contain a total of six degrees of freeddmeythave just been shifted from a 3+3 to a 2+4
configuration not dissimilarly to how a degree ofddom is shifted from a Higgs scalar to a
massless gauge boson to create massive vectordasong the Goldstone mechanism. Thus,
following this shifting of degrees of freedom, (Z)lbecomes:

auv
PLLl -

1 N2 [agmy“’(wm)y”‘PmuW”(AM My o Y (e ’T)Vw}(ll.m)
k,k? E+m RPE-m p p- PP M

If we now normalize such that?® = ( E+ m) k. K, then via (11.8) we can reduce (11.10) to:

Ry =i(07 (Wpe (p=m)" ) wo (W (o= )"y o (W7 (o " 4w

(11.11)
(07 (W (p-m) 1w, ) 0 (Wop (o= m "y, w0 (Wop” (o= )W)

which contains three additive terms each contaiaipgopagating fermion wavefunction. But in
the bottom line above, we resume the developmevdrtb the end of section 9 where we noted

that because”?" is the density of &ingle magnetic monopoleP*" must be regarded as a
system which contains thesg =% ,, with A=1..N for SU(N). Since each of the three terms

in (11.11) represents a fermion propagating withi@ B7; system, in an important step, we
designate (define) each term as containing a disemgenstate¥,, ¥,, ¥, of the SU(N)

wavefunctionW =% ,, A=1..N. Specifically, Dirac-Fermi-Pauli exclusion tells to make

certain that the fermions in each of these thremndeare in different eigenstates. Thus, as
already stated, because there are three additines tehesmallestgroup we are permitted to
choose is SU(3), and by Occam’s Razor, we makesthallest permitted selectioand so do
choose SU(3) So let us now implement this.

As already stated at the end of section 9, oncehleese SU(3), we place each of the
now-threeyy of W =¥,, A=1,2,3 into a distinct eigenstate. In order tcdss this, we need to

name these states. So we will name them Red, GreerBlue, and denote thegh,, ¢, and
W, . The generators ard';i =1,2,3...§, the eight gauge bosons & = A'G*, and the three
fermion eigenstates atg., ¢, andy,. Specifically, we define these eigenstates inl(1)las:

7 0 0
wls\/ﬁ:%;/\?’:@: 0 ;wzs‘Agz—z—jé;A3=%>= Yo W, = Agz—ﬁ-s;/l?’:—gz o |- (11.12)
0 0 Yy
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This, together with having set=0 in (10.6), means that th@* = A'G'* may now be interpreted
not just as generalized gauge bosons, but spdbifiGes the bi-colored massless gluons of
chromodynamics. It also means that we may cortstruc

YWy 0 0 0 O 00 O
YW= 0 0 0; W,W.=|0 g S WW;=l 00 0 (11.13)
0 00 0O 0 O© 0 0 ¢,

We then use (11.13) to display the explicit 3x3 nmatharacter of RY) = RYY . Of
(11.5) with successivé,, W,, W, assigned as in (11.11) to each of the three tasssich:

aU ‘ﬂRV[#l//R‘//RVV]‘/JR 0 0
k k® - nt
o
R s = iﬁ 0 il 294 I:’;%g Ye 0 (11.14)
4 JBV[J‘//BZB M‘/’B
° 0 O K -

Then, repeating the same steps that brought us(ft@rd) to (11.11), we may turn this into:

o (e (p-m)" ') 0 0
R s =1 0 o (EG P (p-m)” yJ]l/IG) 0 (11.15)
0 0 o (¢ (p=m)" y'wsc)

The trace equatioirRT} = R/ .1 is then easily deduced to be:
TrR7Y = i(a"(tZRy“’(p— m)" V]wR)+aﬂ(¢ZG;}V(p— n)‘lyﬂ¢6)+a”(z/73;}0(/rr r@‘lwa)) .(11.16)

This is now the fully-developed Yang-Mills magnetimonopole term TrR7Y ..

populated with three colored quarks, and it is faliynequivalent to [5.5] of [13]. There are of
course other terms that we see in (11.1) and (1b®)we are working with this specific term
because it most clearly displays the chromodynayimmetries of the monopolB?" . And,

although we are working with the one termPR7},; out of the eight terms in (11.1), the

assignment (11.12) is systemic: with (11.12), ewséngle W in the complete monopolE?" of
(11.1) has been turned into an SU(3) column vegtthr three color eigenstates.
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If we now associate each color wavefunction with sipacetime index in the relatéd
operator in (11.16), i.,e.g~R, p¢~G and v~B, and keeping in mind thaTrR7} is
antisymmetric in all spacetime indexes, we may espthis antisymmetry with wedge products
as cOuOv~ROGOB=RGB+ ¢ BR BRE This is the exact colorless

wavefunction that is expected of a barydndeedthe antisymmetric character of the spacetime
indexes in a magnetic monopole should have beaod gpoff that magnetic monopoles would
naturally make good baryonsWe now may assert that this Yang-Mills monoduds the exact
colorless antisymmetric QCD symmetry required baayon.

Furthermore, if we apply Gauss’ / Stokes’ theoren(ltl.16) and also include from (4.3)
in trace form the finding thafp TrG* =3{f Tr[ G*, G’ | dx, dx, we find that:

jﬂTrPLLl = <ﬁ>TrFLL1 = —i@ TIG* = —3i<ﬁf> Tr[G",G“]LLl dx, dx

. (11.17
Zi@(lZRy{ﬂ(p_m)_lyﬂwR +IZGJ’UI(p_ m)_lyV]l//G 'HZBJ}/J(/p_ n)_lV”lﬂB) d),( q% ( )
What is the color wavefunction for thesi[G#,G'] entities? By inspectionRR + GG + BB.
But this is the colorless symmetric wavefunctionraaheson! Saquarks do_not net flow in and
out of closed two-dimensional surfaces surroundi)g, except in the colorlesBR + GG + BB
combination of a mesonln this way, (11.17) validates the suspicion esged at the end of
section 4 that the appearance of a “3” in fron[@!’, G"} has something to do with there being

three colors of quark inside the magnetic monopalk interactions mediated by mesons.

Of course, (11.17) does beg the question of wimatsf in and out of the complete
monopole (11.1), because (11.17) only considergeim B, ,. So if we go back to (11.1) to

apply Gauss’/Stokes’ theorem, we obtain:
[P =qb| 1 Wy, w1 4, Wy, W [dx,dx, + [[] 157 Wy, WD 14D Wy, wdx, dx, dy.  (11.18)

The first term in (11.1), because of the I8 in (11.1), is fully integrable via Gauss'/Stokes
theorem. The second term in (11.1)h integrable, and so it tells us about all of thggats
that is confined inside the overall volume of thenopole. But the point made by (11.17), is

that whatever does flow across a closed surfacsuput tosﬁﬁ NAAN %@yELIdeﬂdx, in
the (11.18), will have the color wavefuncti®R + GG + BB of a meson!

So returning to the MIT bag model as discussedeiction 4, we now see that for the
magnetic monopole (11.1) with surface flux showrlﬁecﬁ} AN é’(ﬁ)@yﬁ‘vdxyd& term in
(11.18), 1) the color wavefunction is that of ayuar, namehR[G, B+ d B R+ B R § 2)
from (4.4) and (4.5),<ﬁ>GIuons: G; 3) from (11.17),<ﬁ>Mesonst ( and 4) @Quarkszc
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except in the colorless combinatid®R + GG + BB of a meson. Thus, on a formal basis, with
the MIT Bag Model telling us to look at what flowsd does not flow across the surface of any
theoretical entity proposed to be a baryon, andseethat the Yang-Mills magnetic monopole
hasprecisely the formal color symmetries and boundkys required for a baryon.

Again, on page 3 of [1], Jaffe and Witten note Q&ID:

“. .. must have “guark confinement,” that is, ewbough the theory is
described in terms of elementary fields, such asahark fields, that transform
non-trivially under SU(3), the physical particleatsts—such as the proton,
neutron, and pion—are SU(3)-invariant.”

Equation (11.16) shows how the magnetic monopolésYang-Mills, with an
antisymmetric color wavefunctioR[G, B+ ¢ B R+ B R ¢, are indeed SU(3) invariant,

notwithstanding that the individual fermion eigexies transform non-trivially under SU(3).
This makes the monopoles well-suited to repredemtphysical particle states such as protons
and neutrons, and makes the fermion eigenstatelsswidd to represent quark fields. We
further see from (11.17) that all the flux acroszlased surface of the monopole has the

symmetric color wavefunctioRR + GG + BB which is also SU(3) invariant. Consequently, the
physical particle states which the spacetime gegnudes permit to net flow across closed
surfaces are well-suited to represent mesons imgutie pion. And in the process, QCD itself
is fully reproduced. But again, QCD is not a theof first principle, but rather a corollary
theory derived by deduction from Maxwell's electyodmics as extended into non-Abelian
domains by Yang-Mills gauge theory. But in thegass, we solve confinement and the mass
gap and come to understand symmetric colorless mfese.

Of course, if we wish to associate these magnetinapoles with physical baryons, we
still need to make them topologically stable and Bew to use them to represent protons and
neutrons which are the most important baryonsseset@on 6 through 8 of [13], and we need to
calculate their energies to see if they make senssation to empirical data, see sections 11 and
12 of [13] which shows how the energies calculdteth the linear-linear field strength,  , in

g%.[)TrFLL1 in (11.17) appear to track very closely with engair nuclear binding energies, see

also [24]. Insofar as topological stability, wenply note that the trace equation (11.16) is non-
vanishing, but thafrP*" :Tr(ALBP"’””) =0 if we regard the gauge group as SU(Because

all of A' are traceless. In other wordlsye assume the simple group SU @Bk left and right
sides of (11.16) do not match up because one sittadeless and the other is not. It is on this
basis that we introduce the product group St{B)1)s.., and then obtain the monopole (11.16)
(and generally, (11.1)) from the spontaneous symniwtaking of larger SU(4) gauge groups
with a B- L (baryon minus lepton number) generator along ithesllaid out by Weinberg in
[25] at 442 and [12] at 472-473, which in view @&6] Section 12.2.2 and [27] yields the
guantum numbers required to turn these monopolgoharinto proton and neutrons and ensure
that they are topologically stable. These detzfilall of this are in sections 6 through 8 of [13],
and fully apply to the development here with liifl@any elaboration or modification needed.

56



J. R. Yablon

12. Chiral Symmetry Breaking

Referring back to Jaffe and Witten at page 3 ¢fifilsection 10 we showed how Yang-
Mills theory leads to a “mass gap” notwithstandiraying massless gauge gluons, and in section
11 we demonstrated “quark confinement” of all bé tcolor-neutral meson combinations

RR+GG + BB. Now let us briefly explore the origins of “chliymmetry breaking,” which is
the third leg of the mass gap problem

In (11.17) we identified the mesons which flowaimd out of the magnetic monopoles
And in (11.16) we showed how theBe by virtue of theirR[G, B+ d B R+ B R § color

wavefunctions and the net flow only of mesons aotting else, may be interpreted as baryons.
Let us now rewrite (11.17) for the meson flow indaout of the monopole baryons with

CC= RR+ GG+ BE representing a compacting<Color, not charge conjugation) of the three
additive terms into a single shorthand term, as:

J-”Trpl_u l@(lﬂcy{” D m) V. )d& dy = {ﬁ)[ E)pfrr:)vacj dy dx
(12.1)

This also makes use ¢fp—m) " =( p+ n)/( g - rﬁ). In the second line we separate the two
additive terms that emanate fropv+ m while applying p = p,)y” and expressly introducing the
Dirac bilinearg* =1i [y y"} . Now let’s look at what these two terms represent

The latter term for which the core structurej:’#@ca’”wcdxﬂ dx , contains the second-

rank antisymmetric tensquCo"”gl/C which, becauseCC = RR+ GG+ BE, is understood to

represent a spin-2 vector (V) meson. So thisriétten represents the flow of a spin-2 tensor (as
opposed t@xial tensoj meson across the closed monopole / baryon sytfaateis, it represents

the flow of aCC = RR+ GG+ BE meson with spin 2 and positive parity. In padiplarlance,
this hasJ® =2*, see, e.g., [28] pages 2-4. But what about theroterm with the)**y” y"!
combination? For this, we expand the main strattieérm into:

PV VW = BV W+ BY SV W+ B S PV W+ pp SV VP (12.2)

Then, we evaluate each of the six independent casms for yv =010203122331. The
terms where either the or v index is equal to the middkeindex drop out because of thev

antisymmetry. Applying the Dirac relatiop® =iy°y'y?y® in various combinations to the
remaining terms while usingy,, =7, to lower indexes, the result can be covariantly-
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summarized via the Levi-Civita tensor in a basiewmete,,,;=+/—9 and in flat spacetime where

£9% = -1, by the expression:

WY We = RSV VY W = 2iEMT DY P e (12.3)

This means that the first term in (12.1) has a «&recture —25””‘”456( pgﬁcyrys(//c)d&, dx .

BecausegTJCyryE(,Z/C has a single vector index i together with ay”, this represents a spin-1
axial vector (A) mesofiowing in and out of the monopole baryon. ThisiJ” =1 meson! So

in (11.17) we established that nothiather thanmesons withCC = RR+ GG+ BE net flow
across closed surfaces of the monopole baryomsv iN (12.1) and (12.3) we see that the spin-

parity characteristics of the particular mesonglihl) areJ” =2 and J” =1". But what about

other mesons, such as the pseudoscalar (axiat)sosaons withJ” =0~ which includes ther
mesons which play a central role in strong intéoast between nuclei, as well as the whole
panoply of mesons catalogued by [28], [29]?

Now we keep in mind thaﬂjTrPLLl in (11.17) only draws from the?" term in (11.1),

which is the linear-linear term for flow across l@sed monopole / baryon surface. More
generally, the meson flow across the surface is ergiv by the term

ﬁ[l?ﬁmyaw,lf&myﬁw]dxﬂd& in (11.18) which contains all of the non-lineapasts of
Yang-Mills theory. But look at what is containedthis term: this tem contains the full inverses
Iy Of (8.14), (8.15) which we showed in (9.2) themaeslbring in additional gauge bosons /
gluons in an infinitely recursive, non-linear fashivia the fact thaD” =9* —iG*. So, if we
take the G* which enter (8.14), (8.15) vidD” =0“-iG" and then useG, =1, J" to
introduce current densitie3” and inversed,,, , as we did in (9.1) and then use these to in turn

populate the monopole baryons with fermions ¥ta= Wy*W¥ as we also did in (9.1), then in
the process, given the infinite recursion, we wilv have terms involving™; N=2..c0. That

is, (9.1) can be recursively expanded to contHire Wy#W , multiplied by a like-current density
to up to infinite order. We also keep in mind thgcussion from (9.4) to (9.8) and note that path
integration also is expected to introduce highewgrs J"; N=2..0 of J¥*. This is what we
use Green'’s functions and Wick contractions to kesgk of when we do path integrals.

However, as we saw in (11.6), each time we aree dbl suitably-commute the
J¥ =WYprY in @[I?ﬁmyaw,lfamyﬁw]dxﬂd& of (11.8) to a position where we have two
spinors adjacent to one another in the fo## , we may seWW -, UU and then use (11.6) to
remove those spinors and introduce - m)~ =( p+ n)/( g- rﬁ) in their place. And we

then saw in (12.1) and (12.3) how this yields thie/parity characteristics of these mesons. But
what we learn more generally from (12.1) and (1&3pat each time we have a current density
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for which we do this sequence of operations, we adeing Dirac vertexesy” to
ﬁ[l?ﬁmyaw,lfhjmyﬁw]dxﬂd&, and asJ"; N=2..0, we will simultaneously be creating

(V")N ;N =2...0 combinations of self-multiplied Dirac gammas whieimerge following
suitable commutation operations and then the agpdic of (11.6).

But, of coursey” =iy°y'y?y*, so even though there may be a very large (upfiiite)
sequence o, we have a closed group consisting of o, )/*, 2,2, y°, and so the terms
with up to infinite multiplicative combinations gf will nonetheless cycle in a closed manner

via (yoylyzy3y5)N = (—i)N . So depending on the particular order (power) aff any given term
in ﬁ)[lfﬁ@yaw, I %Gyﬁw]dxﬂd)g , one will find V and A meson terms of the formsy,

(scalar0"), ZC VY. (pseudoscalad”), 47/C Yy, (vectorl’), ZC V'V, (axial vectorl"),

Wl vy Jwe (tensor2”), we|y*.y’ |V, (axial tensor2”), as well as spin 3 and spin 4
vector and axial mesons which can always be resaatspin 0, 1 or 2 meson wa =iy’ y'y*y>.
Any higher powers of thg* will recycle to one of these V or A mesons witlnsp, 1, 2, 3 or 4.

So we now see that because of the infinite reeairsesting of the full inversel;, of

(8.14), (8.15), and also because path integraéisualts in principle in similad™; N=2..00
powers of current densities, that Yang-Mills themraccompanied by an infinite

(y")N ;N =2..00 range of vertex multiplications which will recyoléa (y°y1y2y3y5)N =(-i)",
and so via the terr@[lgﬂyaw,l %GyﬂWdeﬂdx, in (11.18), will yield a flux of mesons with
the full set ofJ” characteristics that are observed in the mescrtrspe as catalogued, for
example, by [28], [29].

So the third and final leg of the mass gap prollElnnamely the “chiral symmetry
breaking” which is “needed to account for the ‘emtralgebra’ theory of soft pions that was
developed in the 1960s,” is accounted for and éxpthby the presence in (11.18) of terms

which contain productéy”)N , N=2..00 of Dirac gamma matrices which are then evaluated

and reduced withy®y'y?y®/°=1 to yield the entire observed meson spectrum, in terms of

their spin / parity characteristics. (We do nothis paper attempt to explain meson flavors,
which is a function of the quark generations u,d; tb.)

This brings us full circle back to the discussioth& start of section 3, in which we
observed that Yang-Mills theory is rooted in thentilfonian quaternions® = j* =k * =ijk =-1
dating back to 1843. The modern representatidtiaohilton’s quaternions is of course
embodied in the 2x2 Pauli spin matrice$= 0’ =0’ =-ic,go,=1 developed circa 1925,

which are Hermitian, which have the commutatioatiehship[ai 0, ] =2ig, 0, , and which

59



J. R. Yablon

form the basis for Yang-Mills theory in whidh,, A, | =if, A with Tr(A'A7)=14". But these
guaternions and spin matrices are also embeddedlirfknown fashion into Dirac’y* defined
to reproduce the Minkowski metric ten&dilag(/y””) = (1,— 1- 17 ) via %(y”;/’ —y”y”) =nt.

And, of coursej)’y'y?yy°=1. So if one wished to represent the Dirac gammizices in the

form of Hamilton’s original quaternions and cariern into a bridge somewhere, one would use
the penknife to carve:

- =y =y =y =y =y Y Y Y = (12.4)
with =i’ y'y?y%°=-1 being the spacetime generalization of HamiltdjkKs= —1.

So if one desires to take some of the mystery nstewnation out of vector/axial and
left/right chiral relationships involving® and the “chiral symmetry breaking” of strong

interactions, it is sufficient to note thgt’y'y’y*y°=1 is simply the Dirac form of Hamilton’s
quaternions, and that in any theory where one Ipmsduct of current densities" , N =2..0

one will likewise have a similar produ(:y”) of vertices which, via the Dirac quaternion

relationship (12.4), will recycle itself and in tpeocess produce particles over an entire
spectrum of spin 0, 1, 2, 3 and 4 with both odd eveh parity. When this is then understood in

the context of (11.17) and (11.18) which describ@sw of color-neutralRR + GG + BB
mesons across a closed monopole / baryon surfaden ahe context of (8.14) and (8.15)
wherein |l introduces an infinite order of recursive nestih¢hen becomes evident that this

stands at the root of “chiral symmetry breakingt dthe ‘current algebra’ theory of soft pions”
which is one of the three main aspects to undedstgrand solving the mass gap problem.

13. Quantum Yang-Mills Theory

It is worth remarking at this point that in secsatD through 12, we have been able to
solve the mass gap, confinement and chiral symnhe&gking problems entirely on the basis of
theclassicalMaxwell field equations extended into non-Abelgauge fields in the form of (3.1)
and (3.2). However, we have relied to some degnethe “recursive” inverses developed and
elaborated in sections 8 and 9, which we notedeatime might be useful for Yang-Mills
functional path integration. Now, it is time tactes directly orQuantumYang-Mills Theory in
order to better understand these solutions indnéegt of relativistic, nonlinear quantum field
theories, see [1] at page 7.

We begin by turning to the third view of Yang-Miklaborated in (2.5) and (2.6) and
used in much of the development since, in whichregard Yang-Mills gauge theory as
Maxwell’s electrodynamics “on steroids,” and spieailly, as a theory in which all of the

ordinary spacetime derivatives in are replaced @ith- D* =9* —iG#* according to a
“minimal coupling” principle analogous to that usadyravitational theory to go frord#G" in
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flat spacetime tcﬂWG” EONG“ +I” G’ in gravitationally-curved spacetime. We later saw

sections 6 and 7 how by marrying together bothitagonal curvature and gauge curvature, it
was possible in (7.7) to derive a classical “Eimsi&eyl” gravitational field equation for Yang-
Mills gauge theory.

v
Lo

We now approach Quantum Yang-Mills Theory by pgosrvery simple question: Does
this view of Yang-Mills gauge theory as a minimatiyupled gauge theory on steroids, which
clearly applies to the kestassicalequations (2.5), (2.6), (3.1), (3.2), and whickrecarried
forward from the Abelian inverse (8.8), (8.9) te t¥iang-Mills inverses (8.14), (8.15), also carry
forward even further, intQuantumYang-Mills Theory? That is, might it be possibbesimply
take the path integral of linear quantum electr@ahyits, replace ab” - D* =9* -iG#
throughout whereved” appears in a configuration space operator, makarhlogous
replacemenk” - ' = k" + G of the canonical momentukt’ with the kinetic momentum

7 wherever we have performed@’ — k* transformation into momentum space, and by this
simple injection of “steroids,” arrive at an anaglly-exact expression for the non-linear Yang-
Mills path integral? If this does turn out to baspible, then when specifically used for SY(3)
Chromodynamics as uncovered in section 11, this ipéégral would become the analytically-
exact path integral for Quantum Chromodynamics (RCD

A priori, without being aware of the recursive view of Yavds theory which we
started to develop in section 9, one might be macdlito answer this question in the negative. But
as we shall now demonstrate, when one takes actmuthie recursive view of Yang-Mills, it
turns out that the answer to this questioyeis! The minimal coupling” - D* =9* -iG*
used to go from Abelian to non-Abelian gauge thdoryclassical Yang-Mills theory, when
supplemented with the analogous minimal coupkfg- 77 = k¥ + G* in momentum space,
does carry over fromlassicalYang-Mills theory “to the other side of the riveand works just
as well to help us arrive, exactly and analyticalip a recursive kernel, &uantumYang-Mills
Theory in Riemann / Minkowski spad®®*. With such a showing, we address a final, kegetsp
of the mass gap problem [1] at page 6, which [ptove that for any compact simple gauge
group G,a non-trivial quantum Yang—Mills theory exists R*.”

If the steroidal principle of minimal coupling cagi¢” — D* =0 -iG* and

k“ - " =k + G through unscathed from classical to quantum Yaiiltstheory, then this
would mean that we may start with the QED pathgrak(9.4), back up a few steps so as to
employ (8.9) in flat spacetime rather than (8.10hie final term of (9.4), as such:

z=[DG, expi[ d*x(1 G,( g (0,07 + ni)-0"0") G- ¥ g

o+ 3,0.9°9” 1)
4 vt a aa+ 2 aaaﬁ_a aﬁaaaa . 131
E@exp(|W(J)):@ ex _EIJ‘ d k4 JH ( o m) i o J
2 (2;1) 0,0 +m
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Then we may substitut®” — D =0 —iG* into the configuration space operator while
simultaneously substituting” — D* =(9* -iG*) - —iz* = -i (k* +G*) into theW (J) , while
also using the placement markers and quoted dembonnof (8.15), and also including a Trace
(Tr) and multiplying through by 2 (see e.qg., (2@))ich is required when using Yang-Mills
matrices with the normalizatio‘ﬁr(/liAj ) =19 in a Lagrangian. All of this yields:

Z:J'DGﬂexpiJ.d“xTr(Gﬂ(g“”( DD+n)- 0O [5) G-21% Q)E@eXF( W J)
. 1’

' tvOo

y_gw "mPr it - ﬂﬂ”ﬂ”nﬁ+ﬂnﬁﬂ”ﬂﬂ"u (13.2)
=Cexp —|J' ) T J T et

Then, in accordance with the mass gap solutioraian 10 in which we set the Proca mass
m — 0 and the uncovering of SU@in section 11, we seh — 0 and regard the gauge group of
(13.2) to be SU(3)and so write (13.Xpecifically for QCDas:

Z:J‘DG#expiJ‘d“xTr(G#(gW DD-D U) G-2J §)

7,78,,71°
+
S, o/ ob /s
||7T077J||

9 (13.3)

JI/

= cexp(iw (J)) = ¢ ex |J'

So now the question is simply this: is (13.2) iotfa mathematically correct result, i.e., is
the Gaussian integral properly formulated and #heluated? We now prove that (13.2) is
correct, and specifies tlexact analytical form of the Quantum Yang-Millstpettegral using a
recursive kernelin a manner that we stated after (9.2) mightdsesible. To prove that (13.2) is
correct requires three steps: 1) obtaining theycbdile for the classical Yang-Mills Lagrangian

density £; 2) obtaining the classical Yang-Mills acti®@= J.St‘dA x; and 3) showing that (13.2)

correctly evaluateg :I DgexpiS for the Yang-Mills gauge fielgp=G,,, which will rely upon
the recursive view developed in section 9. We worikat spacetime.

First, as to the product rule, for any prodabtof a, b operated on by the gauge-covariant
derivative D¥ =0 —iG*, we may write:

D*(ab) =(0* ~iG*) (ah) =0* ab+ @* b- i al. (13.4)

The extra term-iG“ab is wholly a creature of the gauge-covariant derrea and does not exist
for an ordinary derivative. So with the assignmemnt G’, b= DG, (13.4) becomes:
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D"(6'D,G,)=9"G'R,G +C0" D, G- IECPG= DGR ¢+ @ DE (139

Noting that the Lagrangian density (2.6) for a pdamg-Mills gauge field contains a term
-iD%G"Q,G, =-D“G'D,G,, we now restructure (13.5) in termsBf'G'D,,G,,. The full
calculation is instructive, with index gymnasti¢aring on the fifth line:
D“G” q,UG‘/] DU(G/ EP/I Ci]) Go* P/l C;;!
= (ay _IG/I) (G'0,G,))-G"D,G,
=0" (GV Iunv})_ IG'G'D,G -G D, G
=0"(G'D,G,)-IG*G'D,G+IE G DG~ G D G+ G DG, (13.6)
=0"(6'D,G,)+(-IC°G' D, +iIG T 0, -G R+ G D) G
=9"(6¢'D,G,)+(6°D'D,-G'D’D,) G
=0"(6'D,G,)-G, (9" DD-DD)G
We see in the final line, the emergence of the Y&ty configuration space operator sans
Proca massg*’ D, D’ — D' D*, contrast (3.3). This is the minimally-coupletgrsidal Yang-
Mills configuration space operator. The only platevhich the minimal coupling doe®t carry

through, is in the terng” (GV DG, ) . But as we shall shortly see, this is exactly wira need
in order to eliminate this term with a boundary dition when calculating the action.

Working from (2.6) and applying (13.6), let us ntawm the Yang-Mills Lagrangian
density including a current sourdé’Gﬂ, to obtain:

e=Tr(-4F*"F, -20"G,)=Tr(-4D*G"Q,G,-2¥ G)=T(-D C B, G-2J4 G

o (13.7
=120, 6. (#* RO - D D) 627 ) 0

This is the classical Yang-Mills Lagrangian densityived at via the product rule (13.6).

Second, as to the classical acti®s J&d“ X, we use (13.7), and add back in the Proca
mass just for the moment, to write:

s=fedx=[dar(-0(cpG)+ ¢ ¢( po+ #- DB 2494 (38
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Except for the additional termy’ (G DUJGV]) noted above, this iglenticalto the action term

appearing in the path intengI:j DgexpiS of (13.2). And, except for this same term
0 (GVD“,GV] ) , the steroidal minimal coupling” - D* =0* —iG* has indeed carried through

to the classical Yang-Mills action. But this exteam can be eliminated by boundary conditions
in the usual way, and the reason we can do soe@sely because this additional ternmat

steroidal, but simply contains an ordinary dervaid” rather than the gauge-covaridbt' .
Specifically, by imposing.;“(x” 200) =G ( X' = —00) =0 (or even the looser condition

(=) _
i i=s) 0 for

each of the coordinateg’ =(t,x, y, 2, and withd*x= dx’ d% dX dx, we may calculate that:

G’ (w) =G’ (~)) as a boundary condition upon the gauge potelstnalhatG“|

Jd0"(e'D,6)=| d“x@f%( G P )
jdx°d>&d>8 dX go ( Gp g,)+j d% dx dx dx”éa%( 'G,D.,®
+[dxdX dX dX g2 (6D G)+[ dkdxdk d”X"@i( 'G,D,%

(13.9)
= [k a2 d"( GLVE: Q D G+ [P dt ¢! ( o D -
5 G ((y=+e) Y (z=+e0)
+ [k X ¢ ( el )j DG+ d‘%(dxcfx’@( CE(M)) P g
=0
So with Id“)@”(G“ B, G,) =0, the classical Yang-Mills action (13.8) now redsite:
S=[od x= d‘)Tr( G(¢( Do+ M- DB) G2 4 g (13.10)

This is an important result, because it tellshad the action we have employed in the
configuration space portion of the path integr&.2} is the correct action. Specifically, given

that the electrodynamic action &:J d" Xr (% q( ot (606” + rﬁ) —0”0”) G- 4 9) , We see

that the steroidal minimal coupling first elaborhte (2.5) and (2.6) does carry through all the
way into the classical Yang-Mills action that fe¢dds path integral (13.2). Thus, the path
integral (13.2) is properly formulated. Now thag wnow that the configuration space portion of
(13.2) is correct, we now need simply to prove thatGaussian integration of this expression is
correct.

Third, as to the evaluation of the Gaussian irdkdet us expand each of the
D# =0* -iG* in (13.10) to explicitly show the gauge fieldsle form:
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s=[ed x=| d‘)Tr( c;( g”((ag— iG)(0° - iG)+ ﬁ‘])—(d"— i) (0 - i@)) G-2 /:Jg

g ((0,07 -10,G% ~iG,0° -G, G ) + nf) (13.12)

=[d*xTr| G, G, -2JG,

—(avaﬂ ~i0"G* —iG"9* —G”Gﬂ)

If we now try to use this itz = J' DG, expiS without being aware of the recursive naturezyf,

then we run into the brick wall that has thus fade it impossible to analytically solve the path
integral using an action such as (3.11). Afterthk ability to exactly solve the QED path

integral is based on the Gaussian integmkexp(—% AX - J>§ =(27/ ﬁ)‘5 exp( K} /2/) from
(9.8) in which the variable of integratienwhich abstracts to the gauge fiey in (13.11),

appears only to quadratic order, and specificalhpears as® andx. Butin (13.11), we have a
polynomial inG, up to an abstractex’. Ordinarily, one turns to (9.5) to try to solvestusing

the variationV (d/9J), and specifically, uses the fact @ = 5( J”Gﬂ)IJJ” to replace all
occurrence ofG, which are of higher than second order waj -~ d/9J* and then segregate
those terms from the integrand, which thereby adltive integralj dxexp(—% AX — J>§ to be

taken. Then the varioud/ dJ are used to operate on tlemep(J2 /2A) that emerges following
the integration. This, however, is exceptionailficllt to do in exact, closed form.

But we are now aware from (9.2) f& = 1,,,,,J" that:
G, =[gw +D, D, (nf D D” + D, D D’ D” - D, D* D* D'”)‘l D“ Dﬂ}( D, D7 + mz)_l J.(13.12)

We are also now aware from the development in@e&;j that each and eve@/ in

o (0,07 -i9,G° ~iG,07 - G,G")+ nf) - (80 - 8 G - IG3" - G @) which is the
configuration space operator in (13.11) can béosa using (13.12) with a source current via
G, =1,J3", and that eacd” in I,,,,, can again be expanded usiBg =0* —iG* and that
(13.12) can be reapplied again, and that this gocan be repeated, iteratively, recursively, ad
infinitum. So in the limit of infinite recursioim, (( )) using the nesting notation

developed in section 9, the action (13.11) becomes:

g” (9,0 -i0,67 ~iG,9" -G, G’ ) + nf)

| | G, -2JG, |.(13.13)
—(ava/' ~i0"G* —iG" 9" —G”G’)

Szjﬁ?d“ x:J' d Ar| Glim
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That is, in (13.13), every occurrence®f is regarded vidim, ., (( )) to have been replaced

with a current density)” ad infinitumusing (13.12)and so this configuration space operator is
no longer a function oG* but rather is a function o8”. This is exactly the same thing that we
do with the functional variatio®, - d/JJ* to remove all terms which are polynomial (greater

than second order) in the gauge field, but we nseafaite recursion instead! As a result, when
we now seek to takg = _[ DG, expiS, the expressiom < lim_,, (( )) in (13.13) corresponds
to theA in Idxexp(—% AX - J>) =(27/ A)‘S exd 3 /2,9\, and the overall expression (13.13)
containsonly terms quadratic irG, because all of the higher order terms in the gdiegthave

been turned into functions @ using the infinite recursion in lieu of the vaiat
G, - 8/0J". So to do the Gaussian integral, all we now nig¢de inverse B. But going

back to (13.10)A = g ( D, D7 + nf) - D ¥ is just the configuration space operator that we

have been using ever since (3.2), and we knowvesrse from (8.14) and (8.15). So if we just
define the double nest symbgf( )) to denote the infinite nestirign,, ., (( )), then we can

use the action (13.10) to in fact obtainexactexpression for the path integral, namely:

z=[pG,expi[ d'xTr( G, .((¢" (0 D'+ M)~ D' D)) G-2 4 Q)E@exp( )

g+ 7,71, 71 117 (13.14)
_ ¢ d’k p S\ o b i o il R o sl A B e
—@eXp _IJ.W Tr J o ||7Tgﬂg_m2|l J

This is identical to the (13.2) which was arrivedbg applying the steroidal minimal coupling to
the QED path integral, but for tnoe(( )) nest to indicate an infinitely-iterative recursive

application of (13.12) to all appearances3sf occurring inside the nest. It is important thast
.(()) nest also appears above in what we now segragatéhie Yang-Mills amplitude:

g+ 7,71, 71 177

4 y2i% 1] 2 _ n

W(J):_J‘ d k Tr J'uoo m]?alTﬁ ﬂglzglzalTﬁ+ﬂ07Tﬁ77a77U U ,JV (1315)
(277_)4 Ilﬂgnﬂ _m2|l

becauser” =k* + G*. Thus, here too, so long as we infinitely nest@f using (13.12), we
will have an amplitude that is exclusively a funatiof J", from second order all the way to

infinite order, whileG*, which is both the variable of path integrationl éine dummy variable
of recursion (contrast (9.3)), has been entiretyaeed in the process.
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So we now establish that the steroidal minimal dagpof Yang-Mill theory, first
articulated in (2.5) and (2.6) not only appliectassical field equations and the classical inverse
and the classical action, but also, that it suiwipath integration, and applies as well, in thenfor
k“ - =kt - w((G")) , With an infinitely-recursively expande@”, to the amplitude

functions of Quantum Yang Mills Theory. Put plgintlassical and quantum Yang-Mills theory
are simply classical and quantum electrodynamicsimimmally-coupled steroids, with an
infinitely-recursive expansion of the gauge fields.

For QCD, the amplitude is based on (13.3) for heassgluons, and is simply (13.15)
with m=0 and the gauge group regarded to be &&)&@mely:

g+ 7,7, 1°
_pd o o T o
W(J)--I(Zﬂ)ﬂf N e il (13.16)

Above, " =k* +G* = k* +1'G#, i =1...8, and A' are the generators of SU£3)This is the
exact analytical solution to the QCD path integigbecified using an exact recursive kernel in
closed form.

Having derived (13.15) generally fany Quantum Yang-Mills Theory and (13.16)
specifically for QCD, let us briefly talk about tpeactical aspects of calculating with (13.15)
and (13.16). Ideally, one would wish to use thprapch developed in section 9 and specifically
the approach illustrated by the example (9.3) &) for €®, to obtain a closedon-recursive
analytical expression for what we now define @sapagator operatar

7, 1 T’
4 . O T A g i
o1 Eiw(((-gyﬁﬂym(ﬂaﬂ”n"n‘ﬂ) n”nﬂ)(nan”) )j:i . o (13.17)

in (13.16), and its more general counterpart winigty be similarly defined from (13.15). If a
closed analytical expression for the above candveldped analogously to the example (9.3),
(9.7) so as to strip off the recursion, then thgerator would become closed and exact, rather
than just being an exact recursive kernel. Butesge this mathematical problem for another
day. We have in the above shown this operatoy &gecified in terms of the required matrix
inversions and multiplications, as well as in isér friendly” form based on (8.15) with place
markers and quoted denominators. By writjig,, we the infinity prescript, we denote that all

of the kinetic momenta are to be infinitely recuedy expanded viar”’ = k* - m((G")) :
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Absent an exact mathematical evaluation of (13(@7)he more general analogue from
(13.15)) which sums out the recursion into a cldsech, one can daumericalcomputations by
performing the recursion up to a speciffette level of nesting, while recognizing that this then
becomes approximate up to the levels of nestingaifealeft out, in the same way that “loop”
calculations of less than an infinite number ofgs@re also approximate not exact up to all of

the loops that are left out. Symbolically, we l,{ﬁ(é )) to designate a recursion which is

numericallyapplied forN recursive iterations, in contrast ;aé( )) for an infinite succession of

iterations which in the absence of an infinite commy resource is necessarily amalytical
calculation. So when (13.15) through (13.17) amgreached numerically rather than
analytically, one needs to do a finite recursiviewation, rather than an infinite one. But for
finite recursions, one generally needs two inputs: frsgcursive kernel; second, a terminal
condition. A good example is the recursive defimtof the factorial function: The recursive

kernel says than! = nx(n-1)!. The terminal condition says that=1.

So working off of (13.17), the recursive kernal &inite nesting is:
=i N(((—gw + 71,71, (7,7 7 )'lnﬂnﬂ)(nanﬂ)'l)j . (13.18)

But, what is the terminal condition which we denasg , ? That would simply be the linear
propagatorrz,, =il of Abelian gauge theory which was developed i@)(&nd (8.10), which
includes the Proca mass a#ik, and which is give by:

_gﬂu + k.UK’

2
n,s=sm,=i———M =
0" "uv 7% o .
k,k?=nf + i

il (13.19)

Luv *®

In other words, when doingfemite recursive calculation numerically uphkblevels of nesting,
one substitutes (13.12) for the gauge fields thindugerations, and then on the next iteration,
one terminates by using (13.19) as the terminatlitiom analogous t®!=1, which is just

(13.18) in which/7* - k* and in which the Proca massand +i¢ are included.

Going back to the mass gap solution (10.12), we rezognize that the Yang-Mills

inversel,, , is related to the Yang-Mills propagator mawperatorr , =1 , ,, according to
M, =ilyy, while atthe same time the linear inverse andiibelian (e.g. QED) propagator are
related byrz,, =il ,, . We may use this insight to rewrite the masssgdption (10.12) in terms

of these quantum propagators as:

M ae = 77,0,8=0 (13.20)
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with 77, defined as in (13.19). In this light, the masp galution has a very simple
interpretation: A propagatar,, is simply a second-rank spacetime tensor eigeaafia
propagator operator matrix ,, ,5. In this regard, it is interesting to note that& numerical
calculation, the eigenvalugg, 77,, of the operatorg M, will be different for different nesting
levels. In other words, becaugg, M, #,.,M,, for different nesting levels # m, one will
also have different eigenvalugsr,, # ., 77,, for these different nesting levels.

The foregoing also allows us to go back to (1&arigd explicitly include the propagator
operatorfl , =il,,, , in the expression (11.1) for the complete Yangidvlitonopole baryon,

via the substitutiori1 , =il,, ,. Thus, we now write the monopole baryon as:
po — | (a(a [I‘I WPy W1 5u)myﬁw] +N7C Py YDA Gyﬁqj) . (13.21)

In this way, the monopole baryon now reflects tharqum result thattimes the classical Yang-
Mills inverse (8.14), (8.15) is in fact equal tetiang-Mills propagator operator obtained via a
path integration (13.14) that takes advantageretarsive understanding (13.12) of the gauge
fields G, = I,,,,,d" =-iM,,J".

The final questions which arise, now that in (#3,ive have proved thexistencef a

non-trivial quantum Yang—Mills theomgn R* for any compact simple gauge group G, are
guestions as to the circumstances under which #mg¥ills amplitude (13.15) and the specific
QCD amplitude (13.16) will converge or diverge. ri@mly, per (13.19), there is convergence at
the zero recursive ordefl , =77, , because this is just the Abelian propagator.téNo

however, that this zero-order convergence stillethels upon a Proca mass and #or.) But
what happens for infinite nesting, or for varioirsté levels of nesting?

If one had a closed analytical expression fdi , in (13.17) which “cashes out” the
recursion out to infinite nesting, then one coufd@y use (10.3) in the form of:

=k +KG+ QK+ G= K k- V¥V (13.22)
to write and evaluate (13.17) with V** = w(k”G“ +E K+ G G) in the perturbative form:
Ny =i ([0 + o (ot me ) e ) )|

=i m(((—gw+(kﬂk/—vw)((lg7|%ﬂ— V) (K k= v ))& &- \75))( K &= yljj

.(13.23)
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In the limitV,, - O there is no recursion because all of the gaudsfie” - 0 and this

becomes (13.19), with Proca mass aiiél as already noted. So it is to be anticipatedftirat
smallV,, this infinite recursion will continue to convergeith the inverses preventing any

“catastrophe” by taking over the role of the Protass andrie as elaborated in section 10.
And, it ought not be surprising if forV,, above a certain threshold, this expression goes ove

from convergence to divergence, because a main pbihe infinite recursion is that we now

obtain an expression with up to infinite powerdha current density)”. But we also know

from sections 4 and 11 that gauge field and quaniicement are a built-in aspect of the
magnetic monopoles of Yang-Mills gauge theory, dinet there is no net flux of any color
across any closed surface of a Yang-Mills monopdleus, it is fair to anticipate that the
threshold between convergence and divergence raay@leal itself to be related to the manner
in which color is confined as established in sewid and 11. This too, however, we leave for
another day.

In conclusion, we have now in (13.14) provedékistenceof a non-trivial quantum
Yang—Mills theoryon R* for anysimple gauge group G, and in (13.15) we have agphis
specifically to QCD. Thereatfter, we have remar&sdo how these findings may be used to
approach doing Quantum Yang Mills including QCDcaidtions both analytically and
numerically, and we have discussed how one mightcaeh trying to understand the ranges of
convergence and divergence of this Quantum Yant¢sNlheory. Coupled with the findings of
section 10 for the mass gap solution, section L1hi®emergence of SUGBLThromodynamics,
guark and gluon confinement, and meson interadtaon the magnetic monopolies of Yang-
Mills gauge theory, and section 12 for chiral syetm breaking based on the same recursion
that was central to developing Quantum Yang-Miltledry in the present section 13, this
provides a substantially complete solution to tlead-Mills and Mass Gap problem [1].

Finally, having shown how to obtain a non-lineangaMills Quantum Field Theory
using a recursive approach, we now have a firgngiacourtesy of Yang-Mills, of how to
develop non-linear quantum field theorylf . It would certainly be of great interest to see
what can be achieved if one applies a similar @earanalysis to gravitational theory and the
Einstein-Hilbert action, which from the non-lineaewpoint that “gravitation gravitates,” may
well be the quintessential example of a recurdrie theory.

14. Conclusion

In all of the foregoing, we have now shown how SJd@ romodynamics, which is the
theory of strong interactions, is a corollary theemerging naturally from the combination of
nothing other than Maxwell / Weyl gauge theory witling-Mills theory. In the process, we
have shown not only the emergence from the Maxiwéling-Mills combination of all that is to
be expected from SU(@rhromodynamics, but additionally, we have showw kiwe observed
baryons containing three colored quarks in the gtlstate are the magnetic charges of Yang-
Mills gauge theory and how these magnetic chargasally confine their quarks and gluons but
do pass mesons in order to interact. That is,awe lexplained quark and gluon confinement
and how it is that strong interactions are medi@tgdesons but not gauge fields. The main
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components of this understanding are in secticasd411 and the key resultant equations are
(11.1) and (11.18).

Additionally, we have demonstrated in section 18doamainly on the development in
section 8 how the inherent non-linearity of Yangi#tiheory may be used to solve the “mass
gap” problem and yield a nuclear interaction tkahort range notwithstanding its being based
on massless gluon gauge fields, see specificajlyations (10.12) and (10.13). In section 12 we
have shown the origin of “chiral symmetry breakimg’strong interactions. In section 9 we
found that the non-linear nature of Yang-Mills theoontains a recursive aspect which later, in
section 13, provides a useful tool for solving ¥eg-Mills path integral in order to exactly,
analytically arrive at quantum Yang-Mills theornAs a result of further developing Weyl's
original geometric view of gauge theory, we in gat7 we uncovered a classical field equation
(7.6) unifying gravitational theory with Weyl's gge theory including both its Maxwell /
Abelian and Yang-Mills variants, at the level oétBinstein equation for gravitation. Finally, in
section 13, we use the recursive aspects of Yarig-Meory from section 9 to develop and
solve an exact, closed recursive path integraQfeantum Yang-Mills Theory and thereby prove
the existence of a non-trivial quantum Yang—Milieary on R for any simple gauge group G.
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