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Abstract: We show how SU{hromodynamics, which is the theory of strongrattgons, is a
corollary theory emerging naturally from the comdtilon of nothing other than Maxwell / Weyl
gauge theory with Yang-Mills theory. In the pra;ese show not only the emergence from the
Maxwell / Yang-Mills combination of all that is be expected from SUEghromodynamics,

but additionally, we show how the observed baryamgaining three colored quarks in the
ground state are the magnetic charges of Yang-gdisge theory and how these magnetic
charges naturally confine their quarks and gluons dbo pass mesons in order to interact. That
is, we explain quark and gluon confinement and hasvthat strong interactions are mediated
by mesons but not gauge fields. Additionally, emahstrate how the inherent non-linearity of
Yang-Mills theory may be used to solve the “mags gaoblem and yield a nuclear interaction
that is short range notwithstanding its being basadnassless gluon gauge fields. We further
demonstrate the origin of “chiral symmetry breaKimg strong interactions. We find that the
non-linear nature of Yang-Mills theory containsexursive aspect which may provide a useful
tool for solving the Yang-Mills path integral inder to analytically arrive at quantum Yang-
Mills theory. Finally, as a result of further deaping Weyl's original geometric view of gauge
theory, we uncover a classical field equation undygravitational theory with Weyl's gauge
theory including both its Maxwell / Abelian and gavlills variants, at the level of the Einstein
equation for gravitation.

PACS: 12.38.Aw; 12.40.-y; 14.20.-c; 14.40.-n
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1. Introduction

In this paper we study the strong “chromodynaniitéractions for which the Yang-
Mills gauge group isSU(3).. But contrary to how chromodynamic interactions eommonly

approached, we make ra priori supposition about Yang-Mills SU@)eing the theory of
strong interactions. We simply postulate that bJ{l§lectrodynamics is a correct theory of
nature and that any other non-gravitational intttvpas have the exact same form as
electrodynamics with the sole exception that theypley gauge groups SU(N) with all
spacetime derivative8” in the Maxwell Lagrangian and the classical fiefflations including
those operating on gauge fields and on the figkhgth replaced by - D* =0 -iG*, and
so are non-Abelian versions of Maxwell’s electroalyrncs.

Starting from this view, we show how chromodynamitshe form of an SU(3)gauge
theory need not be posited at all, but emergesedntas acorollary theory based on positing
Maxwell gauge theory with Yang-Mills extension &g underlyingfundamental theory But in
the process, extending beyond the pedagogicatyutifi this viewpoint, we not only uncover
SU(3k chromodynamics in its usual expected form, butalg® come upon baryons and show
them to be the magnetic monopoles of these YantsMitensions of Maxwell. We further find
out how and why interactions between observed gtnoarticle states such as protons and
neutrons are mediated by mesons, we develop cdrtgiortant connections to gravitational
Riemannian geometry, and we solve the Yang Millssrgap and confinement problems.

In laying out the “Yang-Mills and Mass Gap” problemhich the present paper solves,
Jaffe and Witten point out at page 3 of [1] that:

“. .. for QCD to describe the strong force sucfidls it must have at the
qguantum level the following three properties, eathwhich is dramatically
different from the behavior of the classical thedty It must have a “mass gap;”
namely there must be some constédnt 0 such that every excitation of the
vacuum has energy at leaAt (2) It must have “quark confinement,” that is,
even though the theory is described in terms omefgary fields, such as the
quark fields, that transform non-trivially under @) the physical particle
states—such as the proton, neutron, and pion—af(8)Stvariant. (3) It must
have “chiral symmetry breaking,” which means tha wacuum is potentially
invariant (in the limit, that the quark-bare massasish) only under a certain
subgroup of the full symmetry group that acts andhark fields.”

They further proceed to state that:

“The first point is necessary to explain why thelear force is strong but
short-ranged; the second is needed to explain whgever see individual quarks;
and the third is needed to account for the ‘curedgébra’ theory of soft pions
that was developed in the 1960s.”

They then continue (emphasis added, embedded metseenumbered):
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“Both experiment — since QCD has numerous successesnfrontation
with experiment — and computer simulations . . .vehagiven strong
encouragement that QCD does have the propertiest [slnge, confinement and
chiral symmetry breaking] cited above. These prigercan be seen, to some
extent, in theoretical calculations carried outiimariety of highly oversimplified
models (like strongly coupled lattice gauge themse, for example, [2]).But
they are not fully understood theoretically; thedees not exist a convincing,
whether or not mathematically complete, theoretmaputation demonstrating
any of the three properties in QCD, as opposed $e\eerely simplified truncation
of it.”

Moving past a statement of the problemhtiwvthe mass gap might be solved, Jaffe and
Witten later proceed to survey a wide variety otimes used “to show the existence of quantum
fields on non-compact configuration space” and sigatly to demonstrate that “relativistic,
nonlinear quantum field theories exist.” On pageof[1], they finally observe that:

“One view of the mass gap in Yang—Mills theory sesfg that it could
arise from the quartic potentiah (* A)? in the action, wheré = dA + gA™ A, see
[3], and may be tied to curvature in the spaceooinections, see [4].”

This is the view of the Yang-Mills mass gap thall we developed here and used to solve this
problem. It is in accord Occam’s razor as restateéinstein [5], that “the supreme goal of all
theory is to make the irreducible basic elementsimaple and as few as possible without having
to surrender the adequate representation of aesidgium of experience.” All of the other
methods enumerated in section 6 of [1] appear tailesupplementing pure Yang-Mills theory
with other devices or suppositions or making tra@daapproximations in order to be able to
explain a nuclear short range coincident with nessslgauge fields, quark and gauge field
confinement, and chiral symmetry breaking. But enonportantly than theoretical economy,
this viewactually does lead to confinement and a solutiothtomass gap and chiral symmetry
breaking

In other words, we show how confinement and thesmgap and chiral symmetry
breaking can bé&ully explained using no more than a Yang-Mills fieleesgth F = dA + gA* A
via the quartic action terms (A ~ A) This places the mass gap and confinement amdl chi
solutionsentirely on the shoulders of Yang-Mills theory withany supplementBecause the
classical Yang-Mills equations are simply thoseMdixwell extended into the non-Abelian
domain, this would entirely explain nuclear shamge and quark and gauge field confinement
on the basis of “Maxwell’'s equations . . . replabgdhe Yang—Mills equations, OdaF = da*F”

([1] pages 1-2), and seveals Maxwell's theory, with the simple replacamef all ordinary
derivatives in the Lagrangian by gauge-covariantivives and nothing more, to be the
governing theory of nuclear physics.

In sum, by taking a view that the fundamental tleok Yang-Mills electrodynamics
naturally gives birth to SU(3)as a corollary, secondary theory of strong intéwas, we see
how SU(3} naturally emerges such that there is a built am-trivial SU(3): transformation for
the physical particle states that leads to a niiyeeenergent, built-in form of quark and gluon
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confinement, meson interaction, chiral symmetryakineg, and a mass gaf.hese features are
not uncovered if one starts out by assuming Si8)pe the theory of strong interactions. But
they are discovered if one starts out only with etk and Yang-Mills and then derives QCD as
a corollary theory. The purpose of this paper is to convincingly destrate this.

What is novel about his paper is the following:ld)section 7, we are able to obtain a
classical unification of gravitation theory with ugge theory at the level of the Einstein field
equation, see (7.6). 2) In section 9 we uncowveménite recursion which does not appear to
have previously been found, and which could proad®ol for carrying out Yang-Mills path
integration in an exact, analytical fashion, anetéhy quantizing Yang-Mills theory, exactly. 3)
In section 10 we solve the mass gap, see (10.1@)(HN.13), which explains how nuclear
interactions can have short range yet at the same lbe based on massless gluons. 4) In
section 11 we solve confinement and show how QCBrges as a corollary theory from Yang-
Mills gauge theory, and specifically how the Yang$1 monopoles are synonymous with
baryons consisting of three colored quarks in tfueigd state and interacting solely via meson
exchange with individual quarks and gluons remarstrictly confined, see (11.1) and (11.18)
and section 11 generally. 5) In section 12, weowuar the origins of chiral symmetry breaking
in strong interactions, and particularly, of thectee (V) and axial (A) character of the
phenomenologically-observed mesons.

Now, we provide a brief overview of this paper: eTiWwvay one chooses to think about
Yang-Mills, depending on circumstance, can makegadifference in whether a calculation or
conceptualization is reasonably clean and simplejessy and obtuse. So in section 2, we begin
by reviewing Yang-Mills theory from three equivalenewpoints: that of a gauge theory for
non-commuting gauge fields; that of a gauge theatly non-linear interactions between gauge
fields, and that of an Abelian gauge theory “orrats” by virtue of a “minimal coupling”
principle through which all ordinary spacetime datives in the Lagrangian are replaced by
gauge-covariant derivatives and the theory is aqunsetly turned into a non-Abelian gauge
theory.

In section 3, we examine the classical Maxwell ¢&igna for the electric and magnetic
charge densities, and demonstrate how the non-céimgmature of Yang-Mills theory naturally
gives rise to non-zero magnetic charge densiti&sction 4 begins to show how the Yang-Mills
magnetic charge densities have a number of symnebayacteristics which are reminiscent of
baryons, most notably, that there is no net fluxaofang-Mills gauge field across any closed
surface surrounding a Yang-Mills monopole for txaa same formal reasons that there are no
monopolesat all in an Abelian gauge theory such as that of MaxwelVe return to this
discussion in section 11 following further develagrhat which point we are able to formally
identify these Yang-Mills monopoles with baryonsitaoning three colored quarks in the ground
state and showing that these monopoles have aleofequired features of quark and gluon
confinement was well as interactions which trarespia mesons.

In section 5 we develop a fourth, perturbative vehwang-Mills theory, and in section 6
we develop a fifth view of gauge theory — whichthe original view of Hermann Weyl, the
founder of gauge theory — based on geometric cureah a gauge / phase space. In section 7
we make use of this view to uncover in (7.6) a ftivof the Einstein equation which is the
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gravitational field equation of Yang-Mill gauge trg. Because this field equation remains
valid even for Abelian gauge theory, this unifiesawtation with the non-gravitational
interactions including electrodynamics, at the silzed level.

While sections 4 through 7 focus largely on the nedig charge densities, section 8
returns to the electric charge densities. Obsgrthat the magnetic and electric charge densities
are essentially a set of linked equations paramettby the gauge fields, in section 8 we invert
the electric charge density so that the gaugediaftpearing in the magnetic charge density may
be replaced by the source currents form which #rese, which in turn enables us to replace the
source currents with the fermion wavefunctions fratrich they arise and thus “populate” the
monopole densities with fermion wavefunctions. séttion 9 we make use of this inverse to in
fact “populate” the monopole densities with fermigavefunctions. In so doing, we come to see

that the inversd,, defined such tha6, = IwJ’ which is used to replace the gauge fields with

the current densities and then with the fermion efianctions is actually eecursiveexpression
which embeds an infinite recursive nesting of gafigkels and thus an infinite succession of
current densities. This finding of an infinite vesion represents yet a sixth view of the non-
linear character of Yang-Mills theory which may bt help in developing exact, analytical
solution to the Yang-Mills path integral and thuslging quantum Yang-Mills theory on an
exact footing.

Sections 10, 11 and 12 then present the solutmniset three main aspects of the mass
gap problem, namely, the mass gap itself, quarkKimement, and chiral symmetry breaking.
Section 10, in equations (10.12) and (10.13) castdhe mass gap solution. Section 11
completes the development first started in secticend shows how and why we are able to
formally identify thee Yang-Mills monopoles with tyans containing three colored quarks in
the ground state and show that these monopoles dlbhwé the required features of quark and
gluon confinement was well as interactions whi@nsgpire via mesons. Section 12 shows the
origin of chiral symmetry breaking in the quatemimature of the Dirac gamma matrices and the
infinite recursion of gauge fields and currentseleped in section 9. Section 13 concludes.

2. Classical Yang-Mills Theory: Three Equivalent \fewpoints

Yang-Mills gauge theories, first developed in 196jby C. N. Yang and R. Mills, rest
mathematically upon the generalization of the Pg2li matrices of SU(2) into SU(N) matrices

of any NxN dimensionality. These Pauli matrices ihich 7 =0 =0’ =-icopo,=1 and
which have the commutation relations}{ipi,aj ] =2ig, g, , are in turn the direct descendants

of the quaternion$® = j > =k * =ijk = -1 which Hamilton first carved into the Brougham Ryéd
in Dublin, Ireland in 1843, presaging what has sihecome the use of non-commuting numbers
throughout modern physics. Normalized such tma(/l‘/lj):%é"', the N*-1 generators
A:i1=1,2,3.N?- . of any Yang-Mills gauge group SU(N) maintain th@mnutator
reIationshipE/li A, ] =ify, A, where f, are the group structure constants. This geneslize

Pauli relationship which becomés;,, o, | =i, g, for the normalizatiorr (o'’ ) =14 . Each
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generatorA' is an NxN matrix and so can be writteh,;; A, B=1,2,3..N, but in general it is

simpler to suppress thesk® B indexes and simply keep in mind at all times thase indexes
are implicitly there.

Physically, an SU(N) gauge theory extending Maxwe#lectrodynamics into non-
Abelian domains is developed from these generatattse following way: first, one posits a set

of N?-1 vector potentials (gauge field§'*; i=1,2,3..N?- 1. Next, one sums these with the
generators to fornG#,; =1',,G* which with A B indexes implicit is normally written as

G*=A'G*. This G* is an NxN matrix of spacetime 4-vector gauge piés1 Similarly, one
forms a set ofN?-1 field strength tensors'*, each of which is a bivector containing a
“chromo-electric” fieldE; and a chromo-magnetic fiel in the usual manner, aside from the
N? -1-fold replication of these fields. We then usesthéo formF/4 = A\ ,F'** which is an
NxN Yang-Mills matrix of 4x4 antisymmetric secondnk tensor bivectors. Finallyn very
important contrast to the electrodynamic field stgth F*¥ =0“G" —0"G*, we specify the NxN

field strength matrixF*" in terms of the NxN gauge field matr@@” as (see, e.g., [7], equation
IV.5(16)):

F/ =0“G" -0"G" -i| G, G |=d¥C" - &, G ] (2.1)

This commutatof G#,G" | is non-vanishing[ G*,G” |# 0. Much of what differentiates Yang-

Mills gauge theory from an Abelian gauge theoryhsas QED, originates from the fact that
these gauge field / vector potential matricg@$ = A'G* do not commute, i.e., from the fact that
[G*.G"|#0.

Starting with field strength (2.1), there are saVaifferent, fully equivalent ways in
which one can think about Yang-Mills gauge theoriéhe way one chooses to think about
Yang-Mills, depending on circumstance, can makegadifference in whether a calculation or
conceptualization is reasonably clean and simplen@ssy and obtuseThe first way to think
about Yang-Mills is that of (2.1), as a theory ihigh the gauge fields do not commutgs we
shall review momentarily, this leads very diredibynon-vanishing magnetic monopole source
charges that will be central to the developmenghand will eventually become associated with
the observed baryons including protons and neutrons

For a second way to think about Yang-Mills, it isniin being reminded how to expand
(2.1) using F* = A'F"", G*=A'G* and [ A,A, |=if, A . Renaming summed indexes as
needed, this expansion yields:

AiFiWza,u/]iGiv_av/]iG'p_i[/T' G,u,/]j GV}=A0”GV—AOVG”— |[/I] ,)I ]'G,u'Gv

i . (2.2)
=X0"GY -X9'G¥ + f9 1 G+ G
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The A' are then factored out from all terms, leavingemfnore renaming, the perhaps more-
familiar expression:

Fiiv =9/GY ~0'GY + X GG =g &Y + G & (2.3)

If we now use (2.3) to form a Lagrangian densitynak the QED£ =-;F*'F,, for a pure
gauge field, we obtain the also familiar (see,, ¢743, equations (VII.1.(1)-(2)):

£=-3F"F,, =-3(0"G" + 1*G*C")(0,G,) + fn G, Gu)

-1
4
%a,UGIV]a G _; .Ejka'uGV] Gl,u Cév __}1 fjk Im G'u GV G,u g’v

[u=v]

i uv

(2.4)

The first term,—49“G"9,,G,,, a “harmonic oscillator” term, is quadratic in thauge fields,
and is fully analogous and indeed identical in faorthe term—4 F*'F, -10“G"9 G, in
the Lagrangian density of electrodynamics. Butriémaining termSH1 f,lka "G“’]G#Ci,, and

-1 %f, G¥G"G,G,, the “perturbation” terms, represent vertices witiree and four

interacting gauge fields. This is not seen intetetynamics, and makes Yang-Millsian-linear
theory. So the secondiay to think about Yang-Mills theory is that of4(2.in which the gauge
fields do_not act like photons by foregoing intéi@ts with one another like ships passing in the
night. Rather, the Yang-Mills gauge fields fullyeract with one another as well as with their
fermion (current) sources.

As Zee points out in section VII.1 of [7], presemtthods used to calculate in Yang-Mills
theory, such as perturbation theory or lattice gaihgory, are severely truncated methods which
must eventually be replaced by more complete aadtexays of doin@nalytical (as opposed to
numerical) calculations with Yang-Mills theory. rRebation theory, which is highlighted by the
separation of terms in (2.4), in Zee's descripti@n,’an unnatural act as it involves brutally
splitting [the Lagrangian density] L into two parts part quadratic in the fields and the rest.”
Lattice gauge theory [2], in contrast, “does vi@erio Lorentz invariance rather than to gauge
invariance.” This is not an adverse reflectionY@ng-Mills or QCD, but only on our ability to
calculate with them, analytically. Better methoaisd approaches are needed which does
violence to neither. Because doing exact calauiatiwith (2.4) is difficult, in general we will
find it unhelpful to split (2.4) into harmonic anmerturbative parts as is done in perturbative
gauge theory, or to spoil the Lorentz invariancéndsattice gauge theory, and will look to other
approaches.

A third way to think about Yang-Mills gauge theosyto expand the commutator in (2.1)
and then reconsolidate using gauge covariant degaD” =0 —iG*, as such: (In general,
for compactness, we scale the interaction chargagthg into the gauge field vimG* - G".
This g can always be extracted back out when explicélgded.):

F* =0"G" -9"G* -iG*G +iG'G' =(0" - iG") G -(0"-iG) @ =D C- D C= ¥ J(25)
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We compareF* =D*G" above to the Abelian field strength*” =0'“G"! and see that the
only difference is that the ordinary derivative is eg@d by o” - D =0* —-iG*. This is
actually a very pedagogically-useful observatiofonsider that gauge theory first originates
when one has a field equation or a Lagrangian &oadarg or fermion¢/ field which includes
atermo,p or 0,4 . One then subjects the field to theeal gauge (phase) transformation

@ e or g - €y and insists that the field equation or Lagrangiemain invariant

under this transformation. What does one do tarensuch invariance? Make the replacement
0% -~ D# =0* -iG”. So, one then changésy - D, andd ¢ - D with the consequence

that ¢ or ¢ acquires an interaction with the gauge fieid .

So if we start with an Abelian gauge theory susi®Q&D for whichF** =9*G"!, we can
easily turn it into a non-Abelian gauge theory lgplacing 0 — D¥ =9* -iG* so that
F* =D“G", which is (2.5). As a consequence, the gauge @&l acquires an interaction with
the gauge fieldG”, i.e., the gauge field now starts to interact tinearly with itself! This says
exactly the same thing as (2.4), with the exceptiat in the form of (2.5), the pure gauge term
in the Lagrangian is the much cleaner (the Y rathan ¥ owes to thél’r(/l‘/lj ) =10

normalization):
=—3TIF*"F, = ——;TrD“’G“] D,.G;. (2.6)

Given that (2.4) and (2.6) staggactly the same physjds should be clear that (2.6) is a much
easier expression to work with than (2.4) and dues‘brutally split” anything. This is a third
way to think about Yang-Mills theories: A non-Abelgauge theory is simply an Abelian gauge
theory for which gauge theory has been appliedaogg theory. Or, perhaps with a bit more
color (pun intended), Yang-Mills gauge theory isige theory on steroids.

Specifically, in gravitational theory, the prinagpbf minimal coupling suggests that we
merely replace the ordinary derivativel;lG” of a vector G with covariant derivatives

0,G"=9,G" +I"’,G” simultaneously with replacing the Minkowski metremsors,, with the
generalized metric tensog,,, for the gravitational field, to migrate from a tflapacetime to
curved one in WhicH'Z,JG” represents the curvature discerned under pataieport (see, e.qg.,

[8] page 259.) In gauge theory, this steroidalaepment ofd” - D* =9* —iG* represents an

analogous principle of minimal coupling, in whidtet-iG* represents the gauge (really, phase)
curvature based on a relative relationship betwegnobservable phases.

These first and third views of Yang-Mills are thiees laid out by Jaffe and Witten in [1]
at pages 1-2 when they point out that for Yang-$/ijauge theory:

“At the classical level one replaces the gauge gid(l) of electromagnetism by
a compact gauge group G. The definition of the atwme arising from the

9
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connection must be modified t6= dA + gA " A, and Maxwell’'s equations are
replaced by the Yang—Mills equations, Q&g = da*F, whered, is the gauge-
covariant extension of the exterior derivative.”

This view of Yang-Mills theory as simply being Maglls theory on steroids with a

0 - D¥ =0* -iG* replacement throughout (> da in the above passage) is actually very
attractive and mathematically simplifying. Phydligait says that the weak and strong
interactions which are based respectively on Slaf) SU(3), are just steroidal versions of

Maxwell's electrodynamics in which all spacetimeidatives 0“ including those which act on

gauge fieldsG* or field strengths=* = D'*G"! are replaced wittD*. It tells us that Maxwell
already discovered the governing classical equsatfon the other non-gravitational (weak and

strong) interactions but for the fact that he usethmuting gauge field$G*,G’ |=0 rather

than non-commuting one[sG”,G“] #0. And, as (2.5) advises us, the non-commuting gaug

fields inherently flowfrom using gauge-covariant derivatives to defihe field strength as
F# =DW¥G", i.e., from putting Maxwell on steroids. So fraims view, strong and weak
interactions are simply governed by Maxwell's eledynamics on steroids. The questions then
become not about the nature of the governing thergtrong and weak interactions, but about
1) why SU(2) and SU(3) and not some other groupsused for these interactions; 2) what
group G serves to unify these interactions and 3) whahésnature of the symmetry breaking
that yieldsG - SU(3). x SU2), x U1), - SU3).x Ul),,. The focus here will be on the
first question, and specifically, how it is thateeything needed to deducg®U(3). and explain

confinement and solve the mass gap is embodietisnview of Yang-Mills gauge theory as
Maxwell theory on steroids.

3. The Field Equations and Configuration Space Ggrator of Classical
Yang-Mills Theory

Now we turn to Yang-Mills theory at the level diet classical field equations OdzF =
da*F discussed on pages 1 and 2 of [1]. U$ngather thard,, these are writtem vacuoas 0 =
DF = D*F. And, for non-vanishing electric and magneticrseaJ (one-form) andP (three-
form), these are respectively written asB*F andP=DF. Expanded into tensor notation, these
classical Yang-Mills equations, with sources, are:

3V =D, F*, (3.1)
P = DYF + D¥F" + DF* = DF*) =9 F") -iGUF"). (3.2)

In (3.2), we have also defined a “cyclator” notatifouv) to represent the cycling of three
indexes over three terms, as shown, which will eful for compacting the somewhat lengthy
expressions we shall soon be deriving #ff¥. We have also regarded the spacetime to be
curved and so have included the gravitationallyac@ant derivativesd, G" =9, ,G" +I",,G’.

Here in (3.1) and (3.2) too, we see a “steroidalhimal coupling in which the spacetime
derivatives of the classical Maxwell equations eplaced with gauge-covariant derivatives

10
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0¥ - D¥ =90# -iG* - D" =9* -iG* where we also apply the minimal coupling principle
from gravitational theory G” - 0.,G" =9,G +I"’, G as reviewed in the previous section.
Referring to the “three views” of Yang-Mills juseviewed, we shall find that for
chromo-magnetic source®™” of (3.2), it is most helpful to view Yang-Mills ¢ory in the form
of (2.1), as a theory on which the gauge field doatsself-commute, that is, to think about the
“non-Abelian” view of Yang-Mills theory. But, wheit comes to chromo-electric sources of
(3.1), the more convenient view is that of (2.6)which we view Yang-Mills as gauge theory on
steroids. As a first step, taking the “gauge thieon steroids” view of Yang-Mills, and
employing spacetime-covariant derivatives, we stulist the field strength represented as
F* =DG" from (2.5) into (3.1), while taking the “non-comting gauge fields” view of
Yang-Mills, we substitute the entirely equivaléat’ = 9'#G"! —i[G”,GV] of (2.1) into (3.2).

So for the chromoelectric (3.1), usinD* =0* -iG* and some well-known index
gymnastics, we obtain:

J'=Dp,F*=D,D*G =D,D*G'-D,D'G =(¢g" D, I’ - DY) G,
en? : (3.3)
(g (0,07 +1)- D) G,

In the final line, we introduce a “Proca mass’for the gauge field, by hand, in the usual way,
using 4,0’ - 8,0° +m*. The Proca mass serves three purposes. Firstcirmstances where

one isnot concerned with gauge symmetry and renormalizghalitd simply wants to know the
effect of masan on the field equation (3.3), this tells us whattkffect will be. Second, for
circumstances where omeconcerned with preserving gauge symmetry, and sManbe able to
“reveal” masses from a Lagrangian with gauge symynga spontaneous symmetry breaking or
some analogous method to reveal masses, the Pragsmmoperates as a “red flag” to tell us
which masses we want to be able to introduce ndtdoyg, but by symmetry breaking. In other
words, terms with Proca masses eventually nee@ eloed out and replaced with mass terms
hidden in the gauge symmetry, in more completertego This will be very important for the
filling mass gap in section 10, where we shall ¢wvally set this mass to zero and show how
even with this mass going to zero there will be-nero gauge boson mass eigenstates remaining
behind in the Yang-Mills inverses. Third, withhn=0, the configuration space operator of

electrodynamicsg”0,0° —0%0" in flat spacetime, has no inverse, which requyasge fixing,
see, e.g., [7], chapter 11l.4. B@g"” (aga" + m?)—aﬂav with the Proca mass is easily invertible
as we shall review in section 8.

The above (3.3) should be contrasted]fo:(g’” (a;ga;” + mz)—a?”a?”) G,, which is the

analogous classical equation for Maxwell’'s elegyrainics, in curved as well as flat spacetime
because we are including the spacetime-covarianvatiees. We see the gauge theory
“minimal coupling principle” at work here: each ardry spacetime-covariant derivativg, is
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replaced by the steroid& , which is covariant in both spacetime and in theggajphase) space.
The configuration space operator in (3.3) gﬁ“(D;JD”’+mZ)— D D", in contrast to the
analogous electrodynamic operatgr” (6;065"+mz)—6;”6?“. These operators will play an
important role in the development here, and inise@& we shall be obtaining their inverses.

For the chromomagnetic (3.2), it will help to fireview how the monopole density (3.2)
behaves in an Abelian gauge theory for which tleddfistrength is simplyF* =9%“G". In
doing so, we keep in mind that the Riemann cureati@nsor R"D,W may bedefined via
[0,,9,]G, =R, G, as a direct measure of the degree to which spaeetierivatives are
non-commuting. This can be explicitly expandedstow the Christoffel symbols via the
expressiona;uG” ZONG“ +F;UG” for the covariant (;) derivative of a vector fieltVe also keep
in mind that one of the important geometric ideasitsatisfied by the Riemann tensor is the first

Bianchi identity R"* + R + R**” =0, with a cycling of indexes identical to that which
obtains in the magnetic monopole field equatior2)(3. Writing (3.2) in the Abelian form
P =9 °F* +9*F" +3"F* and combining with the Abelian field streng# =9'“G",
this well-known electrodynamic calculation is aidws:
Pa,uv = a;a F,uv +a;,u FVO' +a;v FO’/J
=97 (a;qu _a;vGu) +9H (a;vGa —-9° Gv)+a;v (a;a G —9H Ga)
=[97,0* |G" +[0",0" |G" +[8",0” | G

:(Rrvay_'_ Ra,uv_'_ R,uva) G=0

(3.4)

This is a very important result, because it teisthat vanishing magnetic monopoles in
Maxwell’s theory (and to be discussed later, thefioement of quarks in QCD), are brought

about not only via the trivial relationsh[m”,a“} =0 for the commuting of derivatives in flat

spacetime, but also in curved spacetime via thadiaidentity R "* + R + R, by the very
nature of the spacetime geometry itselfhat is, the non-existence of magnetic monopoies
Maxwell’'s electrodynamics is a direct consequerfcgpacetime geometry, such tHa#"” =0 is

a geometrically-rooted relationship. In the langiaf “differential forms,” (3.4) foP*" =0 is
expressed compactly @ = dF = ddG=0, and is discussed in geometric terms by saying tha
“the exterior derivative of an exterior derivatiigezero,”dd =0, see, e.g., [9] §4.6.

It will also be of interest here to consider the nopole equation (3.4) and its non-
Abelian counterparts in integral form. Differemtfarms provide a very helpful way to take
volume and surface integrals while easily apply@auss’ / Stokes theorem, which theorem we

write generally for any differential forrK, as ” dX :<j'> X . Specifically, to express in integral
form the absence of magnetic monopole densitiescifgee in (3.4), one writes
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P=dF=ddG=0 as (wedge products] in 5 F*dx, Odx = F* dx dx are considered to
already have been summed):

[[[P=[[]dF=][f ddc=dp F=¢p F* a5 dx=]p dc-o. (3.5)

One may extract Maxwell’'s magnetic charge equaitomtegral form,gfj)é[dj%:o, from the

space-space bivector components oﬁi F*dx, dx =0. While magnetic fields may flow across

some surfaces, there is nevamnaflux of a magnetic field through argfosedtwo dimensional
surface. In non-Abelian theory, this will tell tlsat there is no net color passing through any
closed two dimensional surface surrounding a Yamigsvhonopole, and will thus be at the root

of how quarks and gluons become confined. Faradaguctive Iawcﬁ Efdl = —ﬂ &é ot h;djﬁ

is extracted from the time-spac& Divector components. While magnetic fields areerof
referred to as dipole fields, it is probably bettethink of them aaterminalfields, i.e., as fields
for which the field lines never end at any termiloghle.

With this review of the vanishing of magnetic aes in Maxwell’'s Abelian theory, we
now turn back to the non-Abeliaf* =0%G" ~i| G*,G" | of (2.1). Using this in the non-

Abelian (3.2), also making use db* =0* -iG*, noting as just reviewed in (3.4) that

(R,V"” + R™ + R“V") G =0, and condensing with the cyclat@uv), we obtain:

P = DYF* + D*F" + D" F*
=D” (%G -i[6*,G" )+ D*(a" " -i[ ¢, ¢ ||+ D' (0 G - { &, &)
=(R™+R™+R") G- (0”] @, G]+3*[ &, c]+0*[ &, &)
-i(cratc" +cra' e + @ @ )-( @[ @, ¢]+ ¢ 667]+c [, &)
=0-i(97[G*,G"|+0*[G",G7 |+9*[ &, @]+ Ga* & + @ & + &7 &)

-(e’[e".¢]+@[c. g+ ¢[ G, a])

=0-i(9[G*,G"]+Gc?)-a[ &, @]

(3.6)

=0-i (a:(a [G#,G"]+GeDIG? )

It can be shown thatd'’|G*,G” |+G 0" GY =9 G* G by fully expanding the
commutators, reducing, and reconsolidating. Tigctually a form of product rule when recast
as 6?(”(6[”6“])):6;("@”(3"” + G#0'? @ and closely examining spacetime indexes which are
fully antisymmetric ing, 1,v. But we shall not use this here because we veanidintain the
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ability to apply Gauss’/Stokes’ theorem to the ahoand having the termﬂ;‘”[G” ,G“’]
explicitly appear in (3.6) gives us this ability.

So, in sum, (3.3) is the classical chromo-electietd equation of Yang-Mills gauge
theory corresponding to Maxwell’'s equatialf ZOWFW for electric charges, and (3.6) is the

classical chromo-magnetic field equation of YandkMigauge theory corresponding to
Maxwell's magnetic equatiof =0“F*" +0*F" +93"F% for magnetic charges.

4. The Chromo-Magnetic Field Equation of Classicalrang-Mills Theory,
and its Apparent Confinement Properties

The first point to be observed as regards theseg¥ills monopoles (3.6) is that the
term (R,V"” + R + R‘”") G once again vanishes as in QED with the able assistof the

spacetime geometry itself. As discussed in rafatoo(3.4) and (3.5) above, this is why there are
no magnetic monopoles in QED. But beca[@é’,G”J # 0, we have some non-zero remaining

terms i (a*” [G¥,G" |+Ga%G? ) -@’[ @, @], and consequentlythese magnetic

monopoles are non-vanishingSo if one believes in Yang-Mills gauge theoryeanust also
believe that the magnetic monopoles (3.6) existeswhere, in some form, in the physical
universe. Indeed, t'Hooft [10] and Polyakov [11¢n& among the first to recognize this. What
form they exist in, however, remains an open qaedt this day. Whether these monopoles are
topologically unstable objects that can only beeobsd for a small fraction of a second in a high
energy accelerator; whether they can be made sta&bpontaneous symmetry breaking and are
hiding in plain sight as baryons and most notalslypeotons and neutrons and are the “colour
magnetic charges” referenced by Cheng and Li [12}72-473 (which the author contends in
[13] is the case); or whether they are somethisg,ak an open question at this point. But the
non-commuting nature of the Yang-Mills gauge fietdsnpels us to take these monopoles (3.6)
seriously and ask: what are they, physically, ahdr& and how can we find them, physically?

Second, the above gets even more interesting wbasidered in differential forms
language. The relationship (2.1) now takes onctrapacted formF =dG-iG*=DG. As a
result, (3.6) is written compactly with =d —-iG as:

P=DF = D(dG-iG’)=(d- ig)( dG- iG)=0- { d&+ Gdg~- ¢, (4.1)

where (R,V"” + R™ + Fg“”") G is again responsible foidd =0, “the exterior derivative of an

exterior derivative is zero.” So that term drops as in Abelian gauge theory, but the remaining
terms are non-vanishing. The correspondences batthe non-zero terms in (3.6) and (4.1) are

dG? = a*’[eﬂ, GV’], GdG = G @ andG?® - G“’[Gf‘, G")]. So now, via (4.1) and the
use of Gauss’/Stokes’ theorelﬁdx=<ﬁ X in differential forms, the Yang-Mills magnetic
monopole equation in integral form is:
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JIfp=[lfdr=qpF=]f](adc- (G + Gag- &)= [[f(- { de+ cap- §
=fpdc-ifpc*-[[[(icde+ &) =0~ iff &~ [[[(icdc+ G)

Importantly, we are able to apply Gauss'/Stokegotem todG* - 6‘("[6", GV)J but not to
GdG = G @ or G° - G“’[Gf‘, G")] which is why we kep®© [G”,G“)]+ Gol* 3
rather than converting over @“G!“G" via a product rule as mentioned after (3.6). Nb
the bottom line of (4.2) embed."gﬁ dG =0, which in (3.5) for electrodynamics tells us thagre
is nonetmagnetic field flux across amjosedtwo-dimensional surface.

(4.2)

Now, focusing on the correspondena#G’® a;("[Gﬂ,G”] let us expand the

differential form to formally write (antisymmetrievedge products3;dx, Odx, [0 dy are
considered to have already been summed):

-i[[Jde? =-io“[c*,6" ] =-i[[[(e°[c*,c' |+o*[ &, & ]+0*[ G, @) dx dx &
=-3fp[G*,G" |dx, dx =~ ifp G

Then let us use this with (3.6) to expand some teesns in (4.2), and thereafter consolidate
using D* =90 —iG* as follows:

[I[P=[]f P c dx ax
= I (R+ R+ ) @ o o
-if[[(e[c*.c" |+0*[c".¢" ]+d*[ &", q']) d d dx
-i[[[(ceo™ e +G#a""GT + G @ ) dy dy dx
-[[(c’[e". e ]+e[c.a]+ e[ G, &]) dx dx gx
=0-3¢p[G*,G" |dx, dx -3{f[[ &" D & dx dx dx
=fpde-ifpc -if[feac-[[[ & =4 d&- ifp &~ {[] cDC
=0-ifpG’ -i[[[cac-[[[ *=0-ifp G*~[[[ 6DG

So we see thansidethe monopole volumef[[(R"* + R*" + R?) G dx dx d» describes the

.(4.3)

(4.4)

coupling of individual theN?-1 gauge fieldsG'" of G' =A'G" to the spacetime geometry,
and that this coupling vi&R " + R + R**” =0 conspires to result ilzj':ﬁ dG=0. Thus the

geometry couples to the gauge fields in a manredrgrevents gauge fields fronet flowing in
and out acrosslosedsurfaces enclosing the monopole for exactly tineeseeasons that there are
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no magnetic monopoles at all in Abelian gauge theMhat also does noiet flow across any
closedsurface, but is nonetheless clearly containedimvitie overall volume represented by the

triple integral, is [[[GDG=([[(GdG-iG)=[[[ G" U* & dx dx d» whatever this
represents. This expression simply is not intdgralith HdX:qSX. But whatever

@GZ = 3@[6",6”} dx, dx represents, does ridw across a closed two-dimensional surface.

We shall demonstrate in section 11 that this texpmasents a net flow of mesons through closed
surfaces.

Third, making (3.6) even more interesting, as diedain section 1 of the author’s [13], if
we perform a local transformatiof — F'=F —dG on the field strengtk, which in expanded
form is written asF* - F*'=F* -9"G*, then we find from (4.2) as a direct result of

#dezo, that:

[i[P=gbF - pF =qp(F-dc)=qp F . (4.5)

This means that the flow of the field strengjijﬁF = —ic‘f:JSG2 across a two dimensional surface

is invariant under the local gauge-like transforiorat-* - F*'=F* —9"G*! .

Fourth, we see from (4.4) thdf[G° =3[[[G"[ G*,G ] dx d dx is one of the non-

integrable terms. This involves pure antisymmethiee-field cubic interaction&? 0G* 0 G’
among the gauge fields. While we shall avoid tee af the term “glueball” to describe this
because this term already has certain technicahimgs for which its use here might cause
confusion, certainly this term contained within tm®nopole volume is an amalgam of pure
interaction gauge fields which nicely displays tiom-linearity of Yang-Mills gauge theory.

Now, as much as the MIT Bag Model reviewed in,,e[$4] section 18 has certain
inelegant features such as @ hocintroduction of backpressures to force confineméms
model very correctly makes one very important pthatt deserves utmost attention beyond the
specifics of any particular model of confinemefuicus carefully on what flows and does not
flow across any closed two-dimensional surfadéis is why the integral form of Maxwell’s
equations is so vital to any sensible discussiotoofinement. The confinement of gauge fields

(which in SU(3) QCD are represented by the eighbgs of G' = A'G" with i=1,2,3...§) is
symbolically specified byﬁ) Gluons= (. Similarly, the confinement of individual quarkshich
are represented by the SU(3) Dirac wavefuncignA =1, 2,3 with three color eigenstatés G,
B) is specified symbolically b)@ Quarks= (. Different theories may have different ways to

achieve these two symbolic confinements, but inethé, one should pay close attention to the
two-dimensional closed surface integrals and cdyefxamine what does and does not flow
across these closed surfaces. Equations (4.2)ghr¢4.5) contain a lot of information about

what does and does not flow across the clogﬁdsurface of a Yang-Mills monopole, so as
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taught by the MIT Bag Model, we should study thegeations carefully to see if these magnetic
monopoles exhibit any attributes of confined gluand quarks, or interactions via mesons.

A first point is made b)d'”(R,V”” + R + R‘”") G dx dx d¢>which leads toﬁ} dG=0
in (4.4) and is the exact same expression whichdyi¢he absence of magnetic monopoles
entirely, in Abelian electrodynamics, review (3.4)his J“(R}””+ R + R‘”") G dx dx ¢

term contains amdividual gauge fieldG" = A'G'", zeroed out as a direct result of its coupling
through the Riemannian geometry in the configuratwd the first Bianchi identity, and upon

Gauss’ / Stokes’ integration yieldgg dG=0. So the question, in the context of the MIT bag

model, is whether this term is to be interpretededisng us that gauge fields (gluons in SU(3)
QCD) are confined, which means that there is navet flow of gauge fields across awiosed
surface surrounding a Yang-Mills magnetic monopoks is the case with electrodynamics,
Yang-Mills magnetic fields (and gluon fields in QEBan and do flow, in net, througipen
surfaces, but because magnetic fields are aterald$, an outward flux over one portion of a
closed surface is always cancelled by an inward dltross another portion of the closed surface.

This is strengthened by the fact displayed in (4na} SEJSF - <ﬂ> F' :ﬁ) F is invariant under

the transformationF - F'=F -dG, i.e., F# - F*'=F* -9G* which renders the gauge
fields (gluons in QCDhot observablavith respect to net flux through the closed swefachis
would mean as argued in section 1 of [13] that gafiglds are confined in Yang-Mills theory
for the exact same geometric reasons that magmedicopoles do not exist at all in Abelian
gauge theory.

A second point is made by the fact thf$G” =3fp[ G*,G' ] dx, dx which is the

integrable term in (4.4), is really the telling tiee crux of whatdoesnet flow across closed
surfaces of a Yang-Mills magnetic monopole. Théydhing that does net flow, are these

3[G*,G'] entities. While we still must determine, physigalhat these3[G*,G’ | entities
represent, we do know th%G”,GV} # Ois at the heart of the non-Abelian character of ¢¢an

Mills theories, see (2.1). If theﬁG”,G”] do not turn out to represent individual quarks, then
what (4.4) would be telling us, in the sense of M@ bag model, is that neither individual

gluons nor individual quarks net flow across thesed surface of a Yang-Mills magnetic
monopole,sﬁﬁGluonsz C and SE_]SQuarks: (. But what we also know is that baryons interact

via meson exchange, and that mesons have a col@fuvation of the formRR + GG + BB.

So mesonshould be permitted to flow in and out of baryons, thgtwe should also have
fpMesonsz ¢ So if we can show thafp G =3fp[ G*,G' ] dx, dx represents meson flow, as

we shall shortly do, then these magnetic monopetadd forbid net quark and gluon flows but
permit net meson flow, and we would have some wrgng formal reasons for identifying
Yang-Mills magnetic monopoles with baryons.
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Additionally, the factors of “3" which also emerge {$G* =3ff[ G*,G" ] dx, dx and
in jﬂGDGzBﬂI G D" G? dx dy dx in (4.3) and (4.4), although it comes from theethr

additive terms in the various expressions in (4o signifies the number of colors of quark in
QCD, the number of quarks in a baryon, and the rmundf terms in the meson color

wavefunctionRR+ GG + BB. So this “3” is a very strong hint — on top oétfact thatP™"
itself has three totally-antisymmetric spacetimeeixes each capable of accommodating one of
three vector current densities, and contains tlagditive terms — that there is some very
definitive “three-ness” associated with these Yailis monopoles. This “three-ness” could
save us having tpostulatethat there are three quarks per baryon as is pitgs#one in QCD,
and would insteadequire us to have three quarks per baryon upon which addvhen impose
QCD as an Exclusion Principle. In other wordsthis “three-ness” is telling us that a Yang-
Mills monopole contains three quarks and has allatier required symmetries of a baryon, then
postulating Yang-Mills theory would be synonymouth ywostulating QCD and postulating
baryons and postulating that the baryons contanmeehcolored quarks. This would make QCD
itself an unavoidable, purely deductive consequesfc& ang-Mills gauge theory, and would
greatly strengthen the roots of QCR!would at the same time answer the unansweredtoun

as to why baryons contain three quarks and not sother number. These symmetry
relationships are what led the author in April 2@0%egin taking seriously, the thesis that these
non-vanishing magnetic monopoles originating frdra hon-commuting gauge fields of Yang-
Mills gauge theory might be baryons.

But so far, beyond this number “3,” there is nathn this present development of any
quarks in the Yang-Mills monopole (4.4). So we chée now see if there is some way to
“populate” these magnetic monopoles with quarksis brings us back to (3.3), which is the

field equation relating Yang-Mill€lectric charge densities)” to the gauge fieldss,, and

which we shall study more closely in section 8.t 8uthis point, the lay the foundation for this,
it will be helpful to first explore two more viewsf Yang-Mills theory, namely the
“perturbative” view to now be developed in sectlrand the “curvature” view to be developed
in section 6. Not only are these two views hel@salto how we conceptualize Yang-Mills
theory, but they also simplify the mathematical@lepment of Yang-Mills theory.

5. The Yang-Mills Perturbation Tensor: A Fourth View of Yang-Mills

In section 2, we described three equivalent “vieofsYang-Mills gauge theory: as a
field theory of non-commuting gauge fields (2.13; atheory of non-linear interactions among
the gauge fields (2.4); and as a minimally-cougladge theory on steroids (2.6), (3.1), (3.2) in
which ordinary derivatives are made gauge-covar@nt. D* =9* —iG*. Now, we introduce
yet a fourth view of Yang-Mills gauge theory, theefturbative view,” which is motivated by the
field equations (3.1), (3.2) when the field strénigt expressed aB*’ = DG" in the steroidal
view of (2.5). This “perturbative” view is rooteadl the Klein-Gordon equation

0=(D,07 +)=((2, -1, )(0° ~i6") + nf) p=(0,0° + i - 9, G - IGO" - G Gr)qa(S 1)
=(0,0°+m?+V)g |
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for an interacting scalar field, where in the finkthe one identifies and defines an
electromagnetiperturbationspacetime scalar:

V =-id,G° -iG,d° -G, G’ (5.2)

In virtually identical fashion, we may use (2.®)daspecificallyD* =9* —iG* to rewrite
the Yang-Mills chromo-electric field equation (388):

3 :(g““((a;ga;”—i(a;gG”+Gga?”)— G G )+ ni)-(0%0" - (0" G+ Go*)- & G)) G

(5.3)
(o7 (0.0° +v + i) -(o%0° +w)
where in the final line, we have defined a “perairbn tensor” and its trace scalar:
V# =-i(0#G" +G*0" ) -GG (5.4)
Ve =V, =-i0,G —iG,0° - G, G =-0,G; — iGy,0° — G, G- (5.5)

The perturbation scalar identicalin form to (5.2), but in Yang-Mills theory, it &n NxN Yang-
Mills matrix of spacetime scalars, as we are reméhebout by the explicit showing of Yang-
Mills indexes in (5.5).

Noting that for any two successive gauge-covarignivatives:
D#D" = (8% -iG*)(9" ~iG") =0#9" ~10*G" ~iG*0" —G“G" =8#9" +V*, (5.6)
we see that in flat spacetime wh%ﬂé/’,a;“] = [6”,6“] = 0, the antisymmetric combination:
viel =y -y =[ p#, D" ]. (5.7)

So VIl s synonymous with the commutator of the Yang-#dbvariant derivatives. But in
curved spacetime, using (5.7) to operate on a vectod fiaf and applying the Riemann
curvature definitior| d.,,9,, |G, =R’,,, G, , we obtain:

[D*, D" A" =[0%,0" | A +vil :( R™ +4.° \}‘”]) A. (5.8)

Applying (5.8) to the magnetic monopole (3.6), tuevature terms vanish as in (3.4) via
R"*+ R + R"? =0, and so we obtain simplin both curved and flat spacetime
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P* = D’D¥G" + D*DVG” + D' D7 G
=[D?,D*|G" +| D¥,D" |G’ +[ D",D” |G, (5.9)
=vi¥le + Vvl + Wl @

The chromo-electric and chromo-magnetic field eiguat expressed in the respective, wholly
equivalent forms of (5.3) and (5.9), illustratesttiourth, “perturbative” view of Yang-Mills
theory. In fact, it is a very useful exerciseagk about thelifferencebetween the physics of
Yang-Mills theory and that of ordinary Abelian gautheory, which difference is wholly
measured by the perturbatiaft” of (5.4) and functions of this perturbatioit is this fourth
view of Yang-Mills — the perturbative view — thalt enable us to fill the “mass gap.”

To better understand the perturbative view, weodice the labels “P” to denote
“Perturbative,” “YM” to denote the complete, holtstphysics encompassing all features of
Yang-Mills, and “L” to denote the “Linear” expreesis of Abelian gauge theories, most notably
electrodynamics. Schematically, YM=L+P, that ise tcomplete physics of Yang Mills YM
theory may be thought of and analyzed as the sumparturbative aspect P and a linear aspect

L. Thus, from (5.3), we can deduce that the pbdtive-only portion of the current density,,
which is the differencel;,, — J| between the complete Yang-Mills current denslty, of (5.3)

and the linear density, :(g"” (6;06?” + mz)—awa;") G, of Abelian theory. This is given by:

2= 3= %= (0.0°+ve i)-(0%0+ v)) G ¢ (0.0 W-0) §
:(g‘WV—V'W)G,u | |

In other words, J; =(g"V-V*) G, summarizes all of the effects which are addedhi t

current densityd, of Abelian theory by the non-linear perturbati@hs'ang-Mills theory.

For the magnetic monopoles, of cours®’” = R/", because as we are reminded by

(3.4) the monopole densities of Abelian gauge thewe zero,R” =0. We know this of

course from (3.4), but we also see this by inspacfrom (5.9) in which the non-vanishing
magnetic monopole arises completely from the incigtical application of the antisymmetrized

perturbation operatdv[””] to Yang-Mills gauge field&°. If V# - 0, the monopole densities
P _ 0 go to zero. Yang-Mills monopoles are entirelyraature of perturbation, as they
equivalently are creatures of non-Abelian gaugkldieof non-linear gauge interactions, and of
gauge theory on steroids. Those of course, artotlreviews of Yang-Mills theory that we have
articulated so far. Now we turn to a fifth viewhish is thegeometric viewfirst articulated by
Herrmann Weyl in the wake of Einstein’'s 1915 Geh@&teeory of Relativity [15] based on the
curvature of spacetime.
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6. Hermann Weyl's Gauge Theory and Gravitational Cuvature: A Fifth
Geometric View of Yang-Mills

Hermann Weyl in 1918 [16], [17] first conceived ilklea that that electrodynamics might
be unified with gravitation by analyzing the “twig” of vectors under parallel transport to
measure the geometric curvature of the space. eNNikyl first conceived of this as a local
“gauge” symmetry, in 1929 [18] he corrected higjioral misconception into the modern view of
a local “phase” symmetry. Notwithstanding, thegoral misnomer “gauge” is still used to name
his theory, perhaps as a reminder to posterity that most bedrock physical theories are
sometimes properly-conceived in the abstract bgtcamceived in some details that need to be
worked out over time. While gravitation operatés the curvature of a physical, non-compact

configuration space* first pioneered by Minkowski [19] based on Einstei 1905
development of Lorentz invariance into Special Rélg [20], Weyl's theory operates along the

circle of an abstract phase space based upon absamvable the local phas&xpi@(x) for
Abelian theory, andexpif(x)= expA'é (x) with i=1,2,3.N°- 1 for an SU(N) Yang-Mills
theory.

The relationship (5.8), illustrates Weyl's curvaudea very clearly. We see that the
anti-symmetrizeddr‘fv[””] plays a role in Yang-Mills theory very similar that played by the

Riemann tensoR *" in gravitational theory: each is a “curvature” regang of the degree to

which the spacetime derivatives do or do not conemun fact, lowering all of the indexes on
the Riemann tensor in (5.8), we see that in gomgnfan Abelian gauge theory in curved
spacetime to a Yang-Mills theory in curved spacetimve make theoperator replacement

Row = Raw * 9o Y., When operating on any vecté . Thus:

gm[D;/j' D;v] A :( RG’/!I/ + 9 Y,uv]) A. (61)

So just asR,,, represents curvature in spacetingg,Vf,,,; represents Weyl's gauge curvature in

7
gauge / phase space. We note the leading roteeddriti-symmetrized perturbatiaf,,, in this

curvature connection. It is also worth noting tuperposition of the symmetric metric tensor
0,, against the antisymmetrico indexes in the first two positions of the Riemaensor,

which means that the resulting operaRy,, + g,,\,,, is non-symmetric. But this is absorbed
in the operation oA” which sums out the index.

In fact, we can and should apply the same curvaamaysis to the gauge-covariant
derivative in curved spacetim®,, =4d., -iG,,, which we now write operating oA, as:

D,A=0,A-iGA=0,A-T", A-IiG A. (6.2)
With minor manipulation, and using,, , :%(ng + Oy~ glw) , we can reframe this as:
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gav D;,uAa = ( gavay _ra,uv - Igav G,u) K ) (63)

So here, the curvature view is highlighted by thet that when going from Abelian to Yang-
Mills gauge theory in curved spacetime, we make tloperator replacement

Fow ~ Tow+i9,,G, When operating on the vectét’. Becausd ,,, captures the effects of
parallel transport in curved spacetime, we seeitf)gG, represents Weyl's parallel transport in
gauge (phase) space. As with (6.1), the combirgstator ", , +ig,,G,is non-symmetric,

becausd, ,

a uv

is symmetric ing,v while ig,,G, is symmetric ina,v. And as with (6.1), this is

v

absorbed in the operation &% which sums out the index. In contrast to (6.1), however, the
curvature operator ,, + ¢,,\{,,, is @ tensor, but the parallel transport operatpy, +ig,, G, is

not becausé , , is not a tensor. Only the entig, 0, -I", , —ig,,G, is a tensor operator.

v

Given this curvature view of Yang-Mills, and es@dlgi (6.1), we now note the two
geometric Bianchi identite® ,,, +R,,,+ R, =0 ando R, +d R, +0, R, =0. The
former was already employed in (3.4) to yield vAmg magnetic monopoles in Abelian gauge
theory and a vanishing tern(uR,“"“+ R™ + F;’”") G =0 in the non-vanishing magnetic

monopole (3.6) of Yang-Mills theory, which “0” iesponsible for the confinement of gauge
fields with respect to any closed surface, as wasudsed at length toward the later part of
section 4. The latter Bianchi identity, when mangped into the contracted form

O;V(R’” -1 9" R) =0 and then connected to a conserved energy tedsbf” =0, is at the

center of classical gravitational field theory. ®e certainly want to inject these identities into
Yang-Mills theory to the greatest degree possildealbise they are at the center of both the
magnetic monopolesnd gravitational theory.

First, let's takeR,,, + R,,, + R,,, =0. Because (6.1) contairk ,, which is the first

term of this identity, let use rewrite (6.1) two radimes with a simple renaming of indexes to
match the other two terms R, + R,,, + R, =0. Then, let's add these all together to write:

(90[D,.D,]+0,[0..D,]+4.[D,.D,]) A
=(Row * Ruo * R * G ¥+ A Va* 81%)
= (gm\/[w] * 0 Noa + D Vo ) A : (6.4)
= gr(a[D;w D:v)] A =0\ A
:[D:w’ D:v} Ay = Vi M

In the final line, we have applie®,, + R, + R, =0 to zero out the terms that contain the
Riemann tensor, so (6.4) now incorporates thist fB&anchi identity. Once again the
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perturbation and the curvature views converge taget In fact, here, in contrast to (6.1) and
(6.3), wecanslice off the A" operand, and simply write the operator equation:

gr(a [ [);/1' D;v):l = gr(av[,uv]) : (65)

This is allowed because the spacetime index synesebn the left and right side of the above
are fully matched, and so we do not need to sumiraléx ther index to obtain matching
spacetime symmetries.

Let us now absorb the spacetime indexes in (6.4)vter the indexes on the generalized
vector A", and then rename this into tepecificvector A, - G, :AiG'ﬂ with represents the

Yang-Mills gauge field. With this, (6.4) becomes:

P,uva :I:D;#’[);V:IGU+|:[);V' D;U:IG,U-I-[D;U’ D/J:I q = YﬂV] ci-l- Mﬂj Cé-l- [\{7/-] g
:[D;(N’D;VJGJ) =V G |

(V0 o)

(6.6)

Contrasting, this isotally identicalto equation (5.9) for the Yang-Mills monopole, pisnwith
covariant rather than contravariant indexes. Agtia perturbative and curvature views
converge: The Yang-Mills monopole density is no enand no less than the geometric operator

identity g,,[ D,,D,]= 0,V Of (65) — which is the Yang-Mills version of
Row * Ruo ¥ R, =0 —applied to the Yang-Mills gauge fied, .

Next, because (6.5) is valid standing alone asparator equation, let us now multiply
this (in the expanded form of (6.4)) from tleét by a general vectoA”. Thus we now write:

A(9,[D, D]+ 8 [0.0,]+ [0, 0, ])= A( GV * g ¥t W) (67

Upon lowering indexes this becomes:

A[D,.D,|+A[D,.D, [+ A[D,.D,[= AV, + AV + AV,

(6.8)
=As [ D, D:v)} = Ao\

Contrasting to the identity (6.4) written Eﬁ);(y, D;V] A, =V B, We see thaany vector A,

may be commuted withyj,,, to obtain the “twin” identity A, [ D,,, D, | = A,V,,, when the

[uv]
spacetime indexes are cycled w(iv). This will lead us to a “twin” of the Einstein @@tion

in (7.6) infra, and is an important commutativiglationship to have in mind when we regard
A as an NxN matrix of vectors in Yang Mills theory.
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Speaking of which, let us do just that. If we g8t G, :AiGA again as we did for
(6.6), then (6.8) becomeisg[Dw, Dv)] =G,V which is a “twin” of the magnetic monopole

(o )
equation (6.6) in which the gauge fields appeathenleft rather than the right. But because the
gauge fields are contained withib , =0, -iG,, let us set the vectoA, — D, in both the

bottom line of (6.4) and in (6.8), and then use f#aeobian (determinant-related) identity
[a[b.d]+[ b[c d]+[ ¢ a b]=0to combine (6.4) and (6.8) into the single relasioip:

[D:D, D,y =V Doy =Dy [ D,u D,y [= DY,y - 6.9)

Because this commutes, , to the left of the commutatc[er, D;V)} , this sets up the ability to
now incorporate the remaining Bianchi identity, R, ,,=0,R,, 9, R,, +0 =0

v ‘toau
which underpins the expressiar), (R”V -1g” R) =0 that is at the heart of gravitational theory.
In the expressiom. ,R ., we define the notatiofro | as a “wall” to seal off and fix theo

indexes (this isnot an absolute value symbol as used here) from(the/) cycling of the
remaining indexes. But before we do this, let wskwirom the final expression in (6.6), use
iD, =i0,, +G, inverted intoG, =iD,, —id,,, to replaceG,,, then apply the Jacobian identity
(6.9). The result is:

g)?

Puo :[D;(w D;JGU) =V &) [ Do D,v]( D, - ia;a)):\{[m (iDa) - ia;o))
=i ([D;(ﬂ'D;V}Do) _[D;(/I’D;V]a;o)) i (V Dﬂ) _V([#v}a:a) ) ' (6.10)

=i (D;(U [D;,,, D;v)] _[D:(/J’D:V]a?”))

V]

(¥ [uv]) 1 0)

i (D Mwy ~Vim 0 )
In this form, we have now turned the magnetic mat®pensity itself, into an operator!

Now, let's move on to the second Bianchi idenity,R, ,,=0. We start with (6.1)

written in the form D,,,D, |A, =R, A+V,,; A. We operate on all three terms from the left
using D,. Thus, D;g([Dw,D;JA,): D, (Row &)+ D, (V. A)- Then we replicate this

expression two more times via a simple renamingaéxes with a cycling oj,v,a . We then
add all of these together, to fashion:

D, ([D,.D,]A)+D,([..D,]A )+ D, ([D,.D,] A)
=D, (Ryw A)* D, (Ros A)* D Rew A+ (¥ A+ D( M A+ P (Y A-(6:11)
=D,, ([D;,,.D;w]pb): Do (R A)* Do (Vo 4)
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It should be clear how the teri,, (R
identity 0., R

mW)AT) sets up the ability to apply the second Bianchi

oy = 0. SO Now let’'s proceed.

We can slightly expand the compacted form in theétdmo line of (6.11) using
D, =0, -iG,, take the spacetime derivatidg, using the product rule, and make use of the

Bianchi identityd. ,R,,,,, =0 to write 4, (RWW)AT) = R, 9.4y A, thus obtaining:

D;(a ([D;#’ D;V)} Ab) :a;(ﬂ ( Rra[uv) A()_ iqﬂ( FiﬂlW) A)+ D@( va]) é) .

| (6.12)
=0+ R, (005 A ~ G, Rop) A+ D(a( Yiwp '9‘)

That is it! We have now incorporated the Bianderitity 0. ,R =0 which underlies the

Toluv)
geometric heart of gravitational theorg,, (R‘” -1g” R) =0, directly into Yang-Mills. Now

what remains is to rework (6.12) to make somesoimeanings more transparent.

Continuing with (6.12), in the third line below weommute G ,R, ., = Ry Gy,
because whileR ,, is a spacetime fourth rank tensor, it is simplyxa matrix in Yang-Mills

theory. In other words, whil&, and areD, andV,,, are all NXN matrices which do not

[av]
mutually commute with one another or even with teelves when the spacetime indexes are
different, R, and (when it appearsy,, can be freely moved to any left-right position as

desired. In the fourth line we consolidate thetfand second term usilg,, =d.,, -iG,,. In

a)*
the fifth line we useD,,, =0, —iG,, to expand theD,, (VWDA,) term. In the sixth line we

apply the product rule for the ordinary derivatiamd in the seventh line we reconsolidate the
second and fourth terms usimy, =0, —iG, . The result is:

Do (0,00 JA) =00 (R &) = G ( R A)*+ B Vary )
= R0 A ~1G, Ry A+ Dy ( vy ’3‘)
= Row0a A ~ iRy Gy A+ D, ( Yy ’9‘)
=R Doy A + Dy (\{wl) ’AA) ' (6.13)
= Rou Doy A +00 (Vup B) = 1Ga Yun A
=Row Py A 406Ny B+ YO0 A~ 1G My A
=R Doy A+ Do Ny B+ Y90 A

Now the “odd duck” is theV,,0 , A, which contains the only remaining ordinary

covariant derivatived ,, amidst all the otheD, ,. But from (6.10):
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V([/A/]a;a) Af = D,(a\{uv]) A& + iF/)jva '%' (614)

which is why we wanted to make the one final cotioacin (6.10) before turning to
0., Rioywy =0. So we use (6.14) in (6.13) to finally write (8) Bs:

PucA = 1Ry Doy A= 1D, ([ D, B,y ] A )+ 21D Yoy A- (6.15)

This is our final result for the magnetic sourcensigéy written as an operator operating on any
vector A,, and it embeds both of the Bianchi identities a$i as the Jacobian identityWWe can

also manipulate the indexes to clearly displaysi@cetime symmetries:
go-r F,)uvaAr = iRO’(/JV Da) A - Ig'r D(a ([ D,u’ DV):I A)-'-2 Ig'r Qa Yuv]) A (616)

Of course, A" represents anything that transforms like a fowtae in spacetime.
Among the specific vectors which may be of interast yet a fourth gauge covariant derivative

AY - D*, and a gauge field' -~ G (which is implicit in A“ - D*). Thus, it helps to use
(6.15) to form:

D.(a ([Dw' D, | Do) =Rotw Dy D' + 1B B, + 2D\ D - (6.17)
In particular, this is now an operator identity wahitells us what happens when we take four
successive gauge covariant derivatives inm;g;([Dw, D;VJ D;U) cyclic combination.

Finally, in flat spacetime, wherg ., =0 andD,, -~ D, , (6.15) reduces simply to:

Pua B ==D, ([ D,: D, | A )+ 2ID, VA - (6.18)
For a succession of four gauge-covariant derivatithas is:

P...D, =-iD, ([D,.D, |D, )+ 2DV, D, (6.19)
So Hermann Weyl's curvature view of Yang-Mills thhedeaches us quite a bit, in

particular, about the nature of the Yang-Mills mpale densities. This ought not to be

surprising, ~ because the two Bianchi  densiteR,, +R,, + R, =0 and

d,R,,+0,R,,+9d,R,, =0 contain cyclic index structures just as do the opmtes.

Above, we have illustrated the curvatumealogy between gauge theory and gravitation, and
embedded these two important identities of spaee®ometry in the Yang-Mills identities
(6.15) and (6.15). Based on this embedding, howeve can go even further, to fully unify
Yang-Mills gauge theory with classical gravitation.
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7. The Gravitational Field Equation for Yang-Mills Gauge Theory,
Inclusive of Maxwell’s Electrodynamics

Because the second Bianchi identdyR,, +0.,R,, +0,R,, =0 is embedded in

(6.15) aka (6.16), there should be some manipulahat will reveal a Yang-Mills analog to the
equationd,, (R"” -1 g° R) =0 which underlies gravitational theory. We now deslthat.

We start by manipulating (6.16) according to tbh#ofving sequence of steps which
apply D, =0,,, —iG,, and the product rule for differentiation:

garp,uvaAr = iRa(,uv D,a) A - IgJT D,(a (I: D,,u’ D):I A)+2 Igr Qa vi]) A
=Ry Doy A =19,,0,4 (I: Dy D:V)] AT) ~ O G('HI: D DV)J A+2ig, D, Yy A (7.1)
= iRm(uv D:a) A - igm’a:(ﬂ |: D:u' D;v)] A - igm[ Du' Dv)]a;(a A - gaTG(a I: D:u' D:v)] A+ 2igm D(a\{uV]) A
=Ry Doy A i, D:(a[ D, D:v)] A - igm[ Dy D,v]a:a) A +2ig,; Dy Yy A
Now, becauseA’ is just a dummy operand which can be any foureredét us just lop it off of

(7.1) entirely. The equations on each side of égaal sign will no longer have matching
symmetries becausg,, is symmetric whileR,,, is antisymmetric in these same two indexes.

So we shall use a “=" sign, that is, an equal sigguotes. Thus, we now write:
gar P/.jva = iR{O’(/jl/ D;a) - Igar D;(a[ D,/j’ D;v):| - lga‘r[ D,(,u’ D;v]a;a) +2 Iga‘r D,(a\{/jv]) ' (72)

The two sides of this equation are only equal tbpgrate on a vector as in (7.1), or if the
symmetries can be restored in some other way. é&wailvneed to now manipulate this in such a
way that the symmetries on both sides once aga&ionbe matching.

First, we fully expand the cyclators in (7.2) totan:

Yor P " =" 1Ry Dy + 1R D, + 1Ry, D,
-ig,,D,[D,.D, |-ig,,D,[D,.D, ]~ig,D,[D,.D, ]
-i9,,[ DD, ]9., -ig,, [ D, .D, ]9, ~ig,, [ D,.D, ]o,
*+2105, DMy * 28,0, Musy + 219, D, Yoy

(7.3)

Next, we use the termR D, and the like as a guide and engage in the saméeufations
normally used to derive,, (R‘” -1 0° R) =0 fromo,R,, +0.,R,, +0, R, =0. We raise

7o indexes everywhere to put the Riemann tensorrmied form so we can extract the Ricci
tensor. Then we contract one pair of indexes Iliyngev =7 and we start to reveal the Ricci

o . . . . . : . _
tensor viaR"™ = R’ﬂ including revealing one sign reversal. This ysetlde intermediate result:
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9" F,"="IR, D, - iR, D, +iR%, D
-ig”D,|D,.D,]-ig"D,[D,,D,]|-ig"D,[D,.D,]
-ig”[p,,D, J0,, ~ig”[D,,D, Jo.,~ig” [D,,D, o,
+ 297D My + 297D,V + 297 D, Yo,

(7.4)

Now we do a second index contraction by setting o. This yields the Ricci scaléR’, = R

and allows another application &“, =-R, with a second sign reversal. We then usegfie
to raise indexes. Now we have:

P, =iR°, D, -IR, D, - IR, D,
-io,[D",D, |-iD*[D,.,D,]-iD,[D,D"]
-i[p",D, |0, ~i[D,.D, |0"~i[D, D" ]d
+2iD, VI, + 2DV, + 3DV, "

(7.5)

N

7a]

We have now removed the quotes from the equal biggause now the only free indexaisand
there is no longer a mismatched symmetry. Thdhessymmetry became mismatched when we

looped off A"from (7.1) and it became restored when we contdadtavn to (7.5) which is a
vector equation containing one free index But given the commutation properties in the above
P’ =0 because it is a third-rank totally antisymmetgodor, and all of the other terms in the
second, third and fourth lines also cancel outnispéction. So all that we have left in (7.5) after
some very simple rearrangement, and applying thet&in equatior-«T* = R -1 ¢ F, is:

-kT*'D, =(R* -1 ¢" R D, =0. (7.6)

This is the gravitational field equation of YangHMlitheory! It resembles the usual
-0, TH :O;V(R’”—% g” Q:O, but here, we have an operator equation, the alerer is

moved to the right (it does not operate to difféi@r R“" -4 g““ R and so is a free derivative),

and it is a gauge-covariant derivativerhis is a “twin” of the Einstein equation. Ifevwwant to
highlight the nexus to Yang-Mills theory in the atest way possible, we may expand to above
into the form:

-«1* (9, -iG,) =(R" -1 g* R(d, - iG) =0. (7.7)

And, if we then use this to operate on some amyitractor A, we may further expand this to:
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0=-«T*(0,A -G A)=(R" -3 ¢" §(9, A~ iG A)
=-«T*(0,A,-T", A-iG A)=(R" -1 ¢" B(3, A-T",, A~ i A
=-KT# (07,9, -1, ~i07,G,) A = (R -1 ¢" §(0, A-T",y A= iG 4)
=~KT* (9,0, =T ., ~i9,G) A=(R" -3 ¢" B( g0,-T,,,~ ig G *

(7.8)

By the connection td@*”, we further come to understand the coupling betwgzrige fields and
source matter.

This brings Hermann Weyl full circle back to Alb&instein, as there is no more concise
way to express the role of geometry in spacetinteimmgauge space then through the “Einstein-

Weyl" unified field equation(R* -1 g R D, =0. The termR* -1 ¢g" R emerges from
Einstein’s understanding of parallel transport andvature in spacetime, whil®, =4d., —iG,
emerges from Weyl’'s understanding of .parallel ¢port and curvature in gauge (phase) space.
The contracted combination fR* -1 g R} D, =0 marries the two together into one!

While we have developed the foregoing based on Y\itlg gauge theory, and have
generally regarded, =0, —iG, =9, —iA'G, to be an NxN matrix, this is not an absolute
requirement. Weyl developeld, =0., —iG, twenty five years before Yang and Mills came on

the scene. So we can also take the gauge grobe té(1), of electrodynamics, and we may
regard the gauge fiels, as Maxwell’s electrodynamic vector potentid) (here we areiot

taking A, to be arbitrary but making a specific associatoth the electromagnetic potential).
When we do sahe geometric operator equatic(rR”“ -1 g" R)(a;v ~ iA) =0 now becomes the

classical unified field equation for gravitation é@relectromagnetism All of classical field
theory is geometry! Quantum field theory then egaerfrom path integration of the classical
fields.

8. The Configuration Space Inverse of the Chromo-Ektric Field
Equation of Classical Yang-Mills Theory

Much of the focus in the last two sections waste®a on the magnetic charge density
P, primarily because this has the same index-cyelntisymmetric tensor properties as the

two Bianchi identitiesR,,,, + R,,, + R, =0 ando R, +0 ,R,, +0, R, =0 the Jacobian
identity [a,[b,d]+[ b[c d]+[ ¢ a b]=0 which were central to the development of the

classical unified field equation in the variousniations of (7.6) to (7.8). Now it is time to
return our focus largely to the field equation §38the chromo-electric charge density.
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If we compareld” = (g‘” ( D, D7 + mz) - D D”) G, which is the chromo-electric charge

density field equation (3.3) side by side wiBf* = —i(a?<ﬂ[eﬂ,ev>]+ e D“’G’]’) which is

the chromo-magnetic charge density field equat®6)(while keeping in mind that the gauge-

covariant derivativeD* =90* —iG*, then we notice a remarkable thing: Mathematjcdliese
two non-Abelian Maxwell's equations can be thoughtasa pair of parametric equations in

which the gauge fields” is itself the parameter These means in turn that there is a definitive,

albeit complicated relationship between the monepnsity P and the charge density’ .
As such, we should endeavor to find out more abfustrelationship. Keep in mind, this would
never become a consideration in Abelian electroayos, because there, the magnetic sources

P =0. But this isnotthe case in Yang-Mills theory.

Additionally, the chromo-magnetic densitp® = —i (0?(” [G”, G”)]+ c“p“a? ) of

(3.6) aka (4.1) looks on the surface like a buraflgluons G¥. (Again, we avoid the term

“glueball” to avert confusion with specific meansmthat have already been given to this term.)
But if we take a conservative view of field theowherein gauge field are always generated by
some source, then the natural progression fron),(@8) should be to inquire about the sources

from which these gauge fields” originate. Other than the monopole souR#®’, the only
other logical source o&* is the chromo-electric source density.

Furthermore, in Dirac theory, an electric soureadity J* may in turn be expressed in
terms of fermion wavefunctiong . Specifically, Dirac’s equation says tr(ay”a# —m)(// =0.

For the adjoint spinory =¢'y° the field equation isiaﬂtZy" +mzz=0. Adding yields
2, (Zy”z//) =0 as is well known. And because the conserved stiseexpressed by ,J* =0,

we identify the current density witd” =@y*w . In Yang-Mills theory, for a compact, simple
gauge group SU(N), this generalizes 36 = A\ J* = AL ,Wc A *W , = Wy*W | with Yang-
Mills adjoint i and fundamenta®,B,C,D indexes explicitly shown for illustration, and whe
W=w, is an N-component column vector of 4-componentmelgary Dirac fermion
wavefunctions ¢ . Thus, Wy'W = (g‘”(D;U D7 + mz)— D* D?”) G, becomes another way to

write (3.3). With this progression from* — Wy*W  the gauge field5* now is the parameter

which specifies a relationship between the magrssiiccesP* and the Dirac fermionsp .

Because we already seen based on some of the sygsrmitlined in section 4 that thesg"”
have attributes reminiscent of baryons, this patanzation may provide a way to “populate”

these magnetic monopoleB*” with fermion eigenstateg/. If, in turn, these fermions
eigenstates exhibit the same symmetries as th&gjtiaat we know reside inside baryons, this
would provide support for regarding thege as quark wavefunctions, and tR" themselves
as baryon densities. So, we shall now proceedyalmese lines to populate the monopoles with
fermions by developing the inverse field equati€)s= Iw.J’.
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Specifically, we nowdefinean inversel,, such thatG, = Iw.J’. Then, we can insert
G,=1,J" =1, ¥y/W¥ into P™ = —i(a;(” [G”,GV)]+ G D* G’]’) for each occurrence of the

gauge fieldG*, thereby populating?®” with fermions. It helps to briefly review how shi
inversion is done in electrodynamics, to preparettie more complicated calculation required
for Yang-Mills theory.

In electrodynamics, we use the classical field égoamentioned just after (3.3) to

specify this inversés, = |Ler, namely:

J. (8.1)

Llry

2 =(o(0.0°+1)-00) =, 3 =( (0,07 )-0")

We have specifically denoted this inverige, with a “L” subscript to keep note of the fact that

this is thelinear inverse of Abelian gauge theory. We will shodigrive the more complicated
inversel,,,, which includes all the effects of Yang-Mills thgdyoth linear and non-linear, and

then from this will form al, , =1, -1, which tells us the precise portion of the complete

Pru
Yang-Mills inversel,,,,, arising from theperturbativeeffects which account for the difference

between| and | This follows the approach introduced prior tol(® where we found

YM iy

that the perturbative-only contribution to the emtrdensity isJ, = ( g’V - V‘”) G,.

Loy *

Dropping J* from the last two terms with index renaming théaves us to sift out:

5 = (g‘” (0,07 +n?) —a?TaW) | (8.2)

Lvr *
Looking at the momentum space operagdf(a;ga?” + mz) —-070*, we see that in flat spacetime
this will be symmetric in itsy, 7 indexes, but in curved spacetime it will not. darved

spacetime, the Riemann tens[cﬁw,aw]Ga =R’,, G is non-zero as noted just prior to (3.4),

auv
and so left-right ordering matters. Especiallycsitthe non-AbeIiarg‘”(DU D7 + mz)— D* D’
in (3.3) with D* =9'* —iG* where G* = 1,,G* is an NxN matrix for SU(N) is manifestly not
M, T symmetriceven in flat spacetiméat will be important to pay attention right away

commutativity issues. One will also discern framsf that except in flat spacetime for Abelian
gauge theory, inverse, will be non-symmetric between its 7 indexes. Thus, the definitional

choice G, =1,,J" where the left index in the inverse is summed witl current density is
different than the reversed-index definitié) = 1,,J" in which the right index is so-summed.

Based on the terms in (8.2), we may surmise khat=g,,A+0.d..B will be the general

form of the inverse, witH , defined to have the same index orderingad, , and withA and

Lvr
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B being unknowns we shall now deduce. We defirmndB to the right, so that when we insert
I, into (8.2) to specify:

Lvr
&, =(g" (0,07 +nf)-0"0") (g, A+a,0, B, (8.3)

the A andB will not come between the known terms. Agains tkipart of our desire to pay very
close attention to commutativity order, which vk especially important when we progress to
Yang-Mills theory.

Now we expand (8.3) to obtain:
5", =", (0,07 +m?) A-9,0% A+((0,,0° + n)d,0% ~079%0,0, ) E, (8.4)

where we may freely commutg”’, and where we then make usedf = g’ g, and also use
the remaining metric tensors to raise or lower xadeas appropriate. The first step is to
eliminate thed”, (a;ga?” + m2) A term by setting(a;ga;” + mz) A=1, and more specifically, by

left-multiplying with (6;06;” + mz)_l to write:
A=(0,,0 +n?) (9,07 + nf) A=(0,07+ ), (8.5)

Becaused.,0° +nT is not a matrix (shortly, its Yang-Mills counterpavill be), the use of

inverses is not required and we can employ the foomemon A:1/(a;ga?”+ mz). But this

“overkill” will be important for Yang-Mills theory. Inserting (8.5) back into (8.4) while
maintaining all the “overkill” of ordering and talg inverses yields, with some rearrangement:

00" (9,07 +m?)" =((0,,07 + n?)0*0* -9,0“0"0") B. (8.6)
Multiplying from the left by((a;ga“’ +nt)0"o" —a;,a;ﬂa;“a?f)_1 then yields:

B=((0,07 +nt)0*0" -0,0%9"07 ) 0"9* (0,07 + nt) " . (8.7)
Now using (8.5) and (8.7) ify,,, =g,,A+d,d., B we obtain:

|, = [gw +0,0, (0,07 +m?)a0* —a;aa;ﬁa;aa;”)'la;aa;ﬂ}(a;(,a;ﬂ +m?) " (8.8)

Since these inverses have a Yang-Mills dimensfdixiN=1x1, they are not Yang-Mills
matrices and may be placed into denominators itbomery manner. Thus (8.8) becomes:
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9,0,070
9,0 +m*)9“0” -9,,0°9°0
v 9,07 +m’ '

(8.9)

In flat spacetime where the derivatives may beljreemmuted, we can factor out tte& 9"
terms and which leaves a,0° -0.,07 =0 which also zeros out. Thus, we convert to

momentum space vid” - ik and add thetie prescription to yield the inverse for a massive
vector boson, namely:

0,0
| gvr+rl;,]zr__gvr+k;:r?+i£ _g/r+K;T?

T 7+ kK -nf kK- M+ 4

(8.10)

We make note of the fact that up to a factor, dhis inverse is identical to the QED propagator
., ie., thatrg, =il Finally, we return to use the above@ =1, ,,J" (note reversed index

VT ! Lvr *

ordering versus (8.10) traceable to (8.2)), whiiehdg:

kk
G _ _grv+ mz J’ _ 1 3 m=0 1 (8 11)
K e KK-mrE T KR+ '

After a final flat spacetime commutatida,,d,]=~[k,.k ] =0, the final reduction occurs via
conservation of charge densidyJ” =0, which in momentum space, isJ* =0 (e.g., [7] after

1.5(4)).

Now, it is easy to see from (8.10) as— 0, via k k / nf - o, thatl , — . Thisis

Lvr

why the configuration space operatgf“d.,0” -9#9" for a masslessvector particle inflat

spacetiméhas no inverse (e.g., [7] section 3.4). But wiggipens in curved spacetime when we
use +i¢, and setm - 0? This will be instructive for our momentary cafesiation of Yang-
Mills. In this circumstance, using (8.9) i@, =1,,,J", the inverse equation corresponding to
(8.11) becomes:

9.0,070" 9.0,070"
gTI/ + . \ .Y . . . . grv + . ’. Y. . . .
(0,07 +m*)0 0% -0,,0790° _ m=o 9., (69°0” -9”69° )
G, = ' - = : - (8.12)
0.,07+m +ie 0,07 +ig

None of the reductions of (8.10) or (8.11) occurTo obtain a;va;”a:ﬂa;,y:o from
0.,0,090”3" one would need to commui@, to the right past all 0b,0“0”, generating
several new non-vanishing terms containing the Riemand Ricci tensors. But of particular
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interest is what happens if we set=0 (and also addri¢), as we have done on the rightmost
expression above. This, of course, describestibéop. Even here, witn=0 (so long as we
use +ig), the inverse is only singular in the circumstanteere 9°0“0'” -00“0'” =0, i.e., in
flat spacetime. In curved spacetime, the commu@it®'“9*”! # 0, and so while the inverse of
g"0.,07 —0*0" will still become very large in relatively flat gens of spacetimeso long as
there is a modicum of gravitational curvature, faliy speaking, the inverse will never become
infinite. In the real physical world — as opposed to trethematical idealization that is flat
spacetime — anywhere there is matter there is tgtégon. So in the real physical world where
one cannot escape at least some modicum of maltiehwnherently gravitates, the inverse in
(8.12) will always be finite. Of course, we stiked to addtie in the bottom denominator,
because for a massless photon on-sh&llg” = -k k? =0, this inverse will still become

singular even in curved spacetim&/e point this out because these types of behadiogsto
non-commuting derivatives will manifest very penvely in Yang-Mills theory, and will actually
fill the mass gap.

Now we turn back to the Yang-Mills inverses. Hexe start with the classical chromo-
electric field strength (3.3) which we cast in anicanalogous to (8.1), namely:

3 =(g”(D,D7+nf)-D"D’)G =0, T=(¢"(Q I+ M)~ O B) }, I, (813)

where | is now the Yang-Mills inverse and wiefineG, = I,,,,,J" to includeall the effects

YMu

of Yang-Mills, both linear and perturbative,,,, =1, +I The calculation then proceeds

exactly in the manner of (8.2) to (8.8), but nove tloverkill” of being very careful about
inverses and left-right ordering is essential. @lately analogously to (8.8), but with the Yang-
Mills “minimal coupling” discussed in relation the “gauge theory on steroids” view of (2.6),

with the simple replacement of' — D* =9* —iG*, we obtain:

Pru *

lwe = [gw +D,,D, (m*D’ D” + D, D’ D’ D” - D, D D’ D) D D” }( D, D +nt) " .(8.14)

Here, not only is the left-right ordering essenbtiakcause thes* = 1,,G* are all Yang-Mills

matrices, but so is the specification of matrixarses which areot ordinary denominatorsTo
express (8.14) in a way that facilitates visual panson to (8.9) for Abelian gauge theory, we
shall now adopt a “quoted denominator” notation rebg we represent the inverse of any matrix

M according tol/"M"=M™, and to keep track of the proper placement ofraerse in the
overall series of matrix multiplications, we usé @’ down-arrow as a placement marker. In
this notation, (8.14) now is written as:

.\ D,D, ,D“D¥
_ "m2D? D¥ + D;a D° D¢ D# - D;a DfD?D?" o
YMvr T n D;JD;J + lel .

Oy
(8.15)
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By comparison to (8.9), we see in stark reliefttenner in which Yang-Mills gauge theory — at
least at the classical level — is simply Gauge mhamn steroids with the minimal coupling

principle 0¥ - D* =0 -iG*. On should note two factorizations which are k¢ in the
upper denominator of (8.15). The first two termeyrbe written as/( m* + D, D?") D“ D¥ which

matches up with th®“D* in the top numerator. But these do not simplydiaout as they did
going from (8.9) to (8.10) because of the Yang-Mithatrices and the inverses involved. And

the latter two terms in the upper denominator maynitten asD;J(D?”D”’D;” - D?ﬂD?"D"’).

As discussed after (8.12), this helps avert a samgqumerator even if we set=0, because this
will remain finite to the degree thab“D“D”* - D*D“D* =DD“D# #0,

We note finally, referring back to sections 6 andhat the symmetries of sequences of
covariant derivatives is integrally connected te thurvature view” of Yang-Mills theory and
helped us to derive the Einstein-Weyl equation)(7 Along the way, beginning with (6.9), we
obtained several useful identities involving thenooutativity properties of taking three of four
successive covariant derivatives. Clearly, based tleese identities, as a general rule

DD“D# 20. Thus,8.15) will not become infinite even if we set 0 and even if we do not
include +ie and even if the gauge particles for which (8.X5)he inverse are placed on shell
without +ie. This property of (8.15) will become essentialfihing the mass gap.

9. Populating Yang-Mills Monopoles with Fermions, ad the Recursive
Nature of the Yang-Mills: A Sixth View of Yang-Mills which may Aid in the
Quantum Path Integration of Yang-Mills Theory

We will examine (8.14) and (8.15) much more clgselthe next section when we finally
turn directly to the mass gap solution. But far thoment, let us return to the complete the goal

established at the start of the last section, wisi¢h “populate” these magnetic monopok%”
with fermion eigenstateg . Via G, = IYMer, we now use the final line of (3.6) to populate th

magnetic monopole density (3.6) with inverdgg,, and current densitied”, and we further

make use of the Dirac relationship between fermianefunctions and chromo-electric current
source densities as discussed at the outset of thst section, namely

I =Wprp = A3 = AL Wed AW to write:

P = —i(0 [ 1943, 1603, [+ 1503, D¥1403 )

= (a*”[l;’ﬁﬁyaw,l 5 Wy, W]+ 1o Wy,uD /Y’:A]’Gyﬁw) . (92)
(0715 Wy, W Wy, W [+ 4[| 5 Wy, W Gy | +07 1 Ty, W) 4y, ]

+137 Wy, WD A Wy, W +1 2 Wy WD £T Wy W+l T Wy D A Wy y

The Yang-Mills monopole is now fully populated wifiermion wavefunctions. We now
explicitly can see the fermion sources from whibk gauge fields originateAll of the non-
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linear plus non-linear/perturbative (L+P) aspedt¥ ang-Mills gauge theory are fully included
in the above.

In fact, it is critically-important to observe théitwe wish to do so, to obtain an even
more detailed expression we may explicitly subtgitunto (9.1), thel,,,,, of (8.14) with a

renaming and raising of some indexes. And thencaveemploy the gauge-covariant derivative
0“ - D¥ =0# —iG* throughout the inverses teintroduce additional gauge fieldsAnd then,
we can useG, = ly,,,,J* to replace these new gauge fields with currensities and then use

J¥ =Wy“Y to add more fermion wavefunctions and then dée- D =9* -iG* to again

replace gauge fields and repeat this cycle itezftjwecursivelyad infinitum! So while (9.1)
represents this Yang-Mills monopole in its most pact form, this is a recursive expression

because of the fact that if we use (8.14fGp= IYMw.J’ to write gauge fields, in terms of the

current densityd” via:
G, :[gw +D,D, (nf D" D’ + D, D’ D D” - D, D D° D) D Dﬁ}( D, D7+ nf)" ¥ .(9.2)

we obtain a host of terms with” =0” —iG* which specify the gauge fiel@“ recursively in
terms of itself. Then, viaG, = 1,,,,,J°, we may generate a similar recursion embedding the

current densities)” .

In other words, it is very important to observeattl9.2) isnot a closed expression,
becauseG, is self-definedrecursivelyin terms of itself. To obtain a closed expressione

would have to repeatedly inse®, into itself,ad infinitum And viaG, = 1,,,,,J", this in turn

cascade into an infinite nesting of current deesiti It may well be possible to discern the
patterns and develop a closed form of (9.2), butthe@ moment, we simply note that this
recursion is yet aixth viewof Yang-Mills gauge theory. To summarize: YandIsfiield theory
is 1) non-commuting, 2) non-linear, 3) steroidal, &rtprbative, 5) geometrically-curved and
now 6), based on (9.2), recursiveAll of these views are alternative, equivalenida

complementary. The P ==i(0% 13,1473, ]+1"3,D¥1423,) of (9.1), is the
compact, irreducible kernel of the recursive speaiion of the Yang-Mills monopole, witall

non-linear aspects of Yang-Mills inherently incldde infinite recursive order. This is the same
monopole (6.16) used in section 7, starting witli),7to derive the classical unified Einstein-

Weyl field equation-«T*'D, =(R* -4 ¢* R D, =0 of (7.6).

Having found this recursive aspect to Yang-Miledry, we now return to Jaffe and
Witten who on page 7 of [1], state:

“Since the inception of quantum field theory, twentral methods have

emerged to show the existence of quantum fieldes@mcompact configuration
space (such as Minkowski space). These known methogl (i) Find an exact
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solution in closed form; (ii) Solve a sequence ppraximate problems, and
establish convergence of these solutions to thieedielimit.”

The foregoing suggests a third method which islyealhybrid of (i) and (ii): find an exact
recursive kernein closed form, and then expand that kernel ircessive iterations to see how
the recursion behaves in the limit of infinite resiue nesting.

It will of course be of great interest to examihe behavior of (8.14) a.k.a. (8.15) to see
if it is exhibits suitable convergence under irnnrecursive nesting, and how this relates to
expression obtained during efforts to quantize Yhtigs. If we look at the numeratoN in

(8.15) and raise one free index to tugp into §," which is a unit matrix, we see that this has

the skeletal mathematical forfl =1+ A/ B. Noting that one definition of* includes the
similar form € =lim (1+ x/ n)n, and noting for example howe"’ expresses the continuous

n-oo

growth of a “principal’P at a rateR for a timeT which principal is, in essence, recursively fed
into itself for compounding, we may think & as the quintessential, self-feeding, recursive

mathematical function. So we ask if there is a@rcexplicitlyrecursivedefinition for €*which
might give some insight into how to tame expressiesnch as (9.2). If we define a dummy
variable x=1+ Bx/ n and feed this into itself, each time settm¢p the number of the nesting

level, it turns out that as the nesting approaatfasity, we obtaine®:

. B(L+)
Bx B+ ) B+ 4)
Bx B(l+ ) Bl+——3) B(l+ 3
X=lt— L1421+ 2 Z (9:3)
1 1 1 1
S1+B+ LB+ LB+ LB &
217 31 4l

In other words, the infinite recursive nesting &1+ Ax/ n with n set to the nesting level is
another way to defin@®. This is not to say that (8.15) will necessarilynt out to have an

exponential form, but rather to point out how a Madn series fore® may be recursively
defined from the recursive kerngl=1+ Bx/ n wheren is the nesting level.lt would seem a
fruitful mathematical exercise to develop simila&cursive definitions for other mathematical
functions via their serieand then, armed with those definitions, to takesh look at (9.2) and
see if that provides further insight into undersdiag this recursive series and the circumstances
under which this series diverges or tractably-coge®, and what it looks like in truly closed
form.

The other very important insight to carry awaynfréhe recursive expression (9.2), in
light of (9.3), which is a mathematical insight kvftossible physical implications is this: In (9.3)
x is a “dummy” variable that gets stripped awayhe tnfinite application of recursion. This
means that in (9.2) the gauge figB] is the dummy variable that will get stripped avimythe

recursion as the nesting reaches infinity, thatwieat will remain behind is the sing(@, on the
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left of (9.2) expressed as an infinite series iw@@ of the source currenl”. Possibly
analogously, when we take a path integral, such &D:

z=[DG, expi[ d*x(3 G,( g (0,07 + ni)-0"0") G- ¥ g

KK,
— + H

d4k u gyv m2 JV

2m)" " kK-t

, (9.4)

= cexp(iw (J)) = ¢ ex —%ij'(

the gauge fieldG, is the variable of integration, it also gets giegd away as the integration
takes place, and what is left behind is an infis#é@es in powers of the source currdfit

With this in mind, using what Zee [7] in Appendixrafers to as the “central identity of
guantum field theory” (we have reversed the signJfbecause we are using the electrodynamic
convention in which the units of charge (electroas) negative whereas Zee uses a positive
charge sign convention):

[ Dpexp(—1 oK -V (¢) - Ip) =€ ex{ V(3 6J)) exps IOK*0), (9.5)
it would be a very interesting mathematical exer¢tssee whether the core Gaussian integral:
Idxexp(—% AR - =(-2m 1 A" ext 3 12A (9.6)

can be fully reformulated in terms of a recursivadtion. As a start toward this, it helps to
develop what may be a new mathematical notatiorepoesent this sort of recursive nesting.

Analogously to how series are summarized usingsymabol X*_ , we shall now create an

infinite nest symbol represented by a pair of rebgtarenthesig()),,. In the function to be

nested, we shall enclose the dummy variable (whiabx in (9.3)) in the form((x)). Thus, in
this (possibly new) notation, we may write (9.3cmmpact form as:

e =(( ) (1+8((%)/n (9.7)

This means that the Gaussian integral (9.6) magersivelywritten as:

o JZ((X))
_1 _ —(_ 5 2/0A _ _ 5 ~ A\
Idxexp( 1 AX J>)—( 27l A exd K /2/)\ e =(-2r 1 R(( ))ML 2 e (9.8)
where x (an abstracted gauge field), which islammy variableof integration is what gets
stripped away during the infinite recursion adwsmmy variableof recursion It is not at this
point clear whether this sort of recursive analgsis be helpful in breaking through to enable an
exact, analytical path integral quantization of YyaMills theory in closed form, but it is
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worthwhile to see what contributions can be madea Ibgcursive analysis in which the physical
field to be subjected to path integration is indteegarded as a dummy variable in a recursive
expansion. What is absolutely clear, howevehas ¥ang-Mills theory, in the form of (9.1) and
(9.2), forces upon us the need to analyze, undetsend better develop its recursive features,
which are yet a sixth view of Yang Mills in whicll af the non-linearities are expressed and
developed through recursive mathematics. One dhauidst this analysis, be looking for ways
to analytically calculate the exact Yang-Mills patkegral with the aid of the recursive kernel in
(9.2) which does mirror the types of terms thatfgdtinto the Yang-Mills path integral.

It is also worth observing that the magnetic maie9.1), now populated with fermions
(which we will later show are quarks) is reallybattom, a non-Abelian combination lodth of
Maxwell’s classical equations (3.1) and (3.2) iateingle equation Specifically, the chromo-
electric charge equation combined with Dirac  wawmefion theory via
J'=D,F" =D, D'“*G” = Wy'W is represented in inverse form via (9.2) and theerted into
the monopole density (3.6) to arrive at (9.1). SEim, in his final paper [21] at page 159 points
out the “surprising” finding that Maxwell's two egtions, taken together, possess a field
strength z =12 which is the exact same strength as the equaRgn=0 for pure geometry.

This would suggest that (9.1), which is a field atipn relating all three ofi¥ = Wy*'y, p*

and G* (two sources and one gauge field) to one ano#met which merges both of Maxwell’s
equations together, will also have a strengtlgof 12 interrelating each of its=1,2,3..N* - !

Abelian sources)", P’ and fieldsG'*.

The final, very important point to note is that &ese of its origin in (3.2) and (3.6) as a
Yang-Mills monopole, (9.1) contairtbree additive termsn index-cyclic configuration of the

form 6;(”[I$’(ﬂ’$yaw,lé”&)¢yﬂw] and similarly 13 Wy, WD 4P Wy, W Further, W =W, is

an N-component column vector of 4-component Dirac spwavefunctionsy/ for whatever
gauge group SU(N) we choose to employ. To this erdmwe have been exploring Yang-Mills
gauge theoryn genera) but have made no selection of any specific gayrgap. Now that is
about to change. Becaus®" is the density of &ingle magnetic monopoleP?" must be
regarded as a system which contains ti€seW ,. But by virtue of the three additive terms, it
would appear to contain three such fermions. Was the source of the “three-ness” discussed
at some length toward the end of section 4. Di@ni-Pauli exclusion tells us to make certain
that that the fermions in each of these terms rardifferent eigenstates, so that this monopole
system does not contain any two fermions in theesatate. Because there are three additive
terms, thesmallestgroup we are permitted to choose is SU(3). Byadts razor, we make this
smallest permitted selectioand so do choose SU(3)

Once we choose SU(3), we place each of the nowe-tireof W =W ,, A=1,2,3 into a

distinct eigenstate. In order to discuss thisneed to name these states. So we will name them
Red, Green and Blue, and denote thgm ¢, and ;. And with that, we move from Yang-

Mills gauge theory generally, to Chromodynamicscdpzlly. And while we start with three
fermions ¢, ¢, and ¢, which we shall soon establish may be interpretedj@arks, the
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recursive nature of (9.1) via (9.2) afaf’ =0* -iG* andG, =1, J" = |;ﬁy’w ensures us the
monopole system of (9.1) will be teeming with nore&r physics and many additional quarks
and antiquarks that arise at the first, secondygaondth, and millionth recursive order, which
may thought of as various “excited” baryonic stateghis will all be developed in detail in
section 11.

In this light, as stated in the introduction, arslvae shall detail in the forthcoming
development of section, QCD is not a theory oft fmsnciple, it iscorollary theory The theory
of first principle is Maxwell's electrodynamics agtended into non-Abelian domains by Yang-
Mills gauge theory. QCD is thaterived by deductioas a consequence of enforcing exclusion
for the fermions contained in the non-vanishing neg monopoles of Yang-Mills gauge
theory, and choosing a gauge group no larger thaedessary to enforce this exclusion. In the
process, we fully explain why nature chooses tloypegrks per baryon (in the “ground” state of
zero-recursive order) rather than some other number

Now we turn to make two specific showings: Fimstsection 10, we shall show how the
relationship (8.14) which of course is containedntinite recursive order in monopole (9.1) via
(9.2), fills the mass gap. To preview: if we et 0 in (8.14), due the non-commuting nature of
Yang-Mills theory, we still retain terms which cteanass-like effects and which, because of the

specific matrix inversion(D;UD"’)_1 in (8.14), vield a mass eigenvalue spectrum, whiok

expects will come to be associated with the now-zeasses of the observed mesons such as
those catalogued in [22]. Second, in section $has already been developed to some degree in
section 4, we shall show from a more formal staimtpoow and why (9.1) contains all of the
expected color symmetries of a baryon, and at éineestime confines its quarks and its gauge
fields, while permitting the flux of colorless qkatombinations that we observe in the form of
mesons. It is by this means that we shall ideritigymagnetic monopoles of Yang-Mills gauge
theory as baryons, which naturally possess thrésremb quarks at the lowest recursive order an
only permit a flow of mesons across their closetbses.

10. The Mass Gap Solution

Let us now show how the solution to the mass dap is embedded in equation (8.14)
which is the form(9.2) yields an infinite recursiowe shall develop this solution using the more
“user-friendly” representation (8.15).

The configuration space inverse (8.15) represahisf the non-linear, recursive features
of Yang-Mills theory. As we have done previousét,us now identify how much of this inverse
arises strictly from the perturbations P which esent the “difference” between Yang-Mills
gauge theory and an Abelian gauge theory such asvBlBs electrodynamics. As we did
earlier with (5.10), let us used the framework YM=HL (total Yang-Mills effects are the sum of
linear effects plus perturbative effects) to ceadtell,, =1,,,, —! .., which is simply the

difference between the entire, holistic (see [7page 356) inverse (8.15) and the linear inverse
(8.9). So what we shall now be studying is whaing-Mills theory brings to the table
(perturbations in the perturbative viewajove and beyondhat Abelian gauge theories such as
electrodynamics already bring to the table. Socae study only the impact of Yang-Mills
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theory separated from any impact due to spacetumeature, we represent both of (8.9) and
(8.15) in flat spacetime, and so turn the grawtadily-covariant derivative®’ into ordinary
onesd’. Thus, we form:

IPVZ' = IYMVZ' _I r

anB anpB
D,D, . DD 9.0 990 (10.)

O + 2 T 9, + '
"m?D°D’ + D,D° D' D” - D, D’ D" D’" © Mf°a” +9,0°9°0% —a_973°0°
n DUDa+m2" aaaa+m2

The ordinary derivatives in the right hand term omme and the denominators are real
denominators, not matrix inverses. So the aboadilsereduces to (see (8.9) to (8.10) where we
did the same reduction earlier):

IPVZ' = IYMVZ' _I r

D,D . D?D” 0,0

+ v—r Qg vYr . (102)
_ gvr " m2 DY D'B + DJ D° D? Dﬁ _ Da Dﬁ D“D°" D_ gvr + m2
"D,D7 +m" 0,07 + nf

The term on the right, of course, is the invergeafmassive spin-1 vector field (vector boson), it
is identical to what we found in (8.10), and whe& eonvert over to momentum space, it is the
same thing as the vector boson propagator up tactrfofi, 7z, =il ,. The QED path

integration which establishes thatz, =il ., is displayed in (9.4). The term
D,DD’D” =D,D°D“D” -D,D?D“D?, which will be at the heart of the discussion to
follow, contains a succession of four covariant\dgives, and as we can see from the identities
developed in section 6 and especially (6.17), t@em D, D“D“D”' is non-vanishing
everywhere there are non-zero perturbations.

Now let us return to (5.6) for two successive gaugvariant derivatives, and write this
in momentum space in flat spacetime via- ik, as

DD" =-k*K' +V* =-K'K+ K G+ G k- G G, (10.3)
which also means that:
V¥ =kKFG + G K -G GC. (10.4)

So we expand the variou3”D" = -k#“k” + V" in (10.2) and convert into momentum space, to
obtain:
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YMvr _I r

g+ (kk =V,) o (- ¥+ V)
_ (R eV R - V)RR V) -(kk= )R V)T s
= VARSI

g+
- m

k,k* - n?

We of course see the perturbative-only invetsg — 0 if all the perturbations are

turned off,V* _ 0, as is to be expected. Again, we are now largelgking in the perturbative
view of Yang-Mills.

What we now wish to consider is this: In the fdlng Mills inversel,,,,, in (10.5), the

m® is from the Proca mass of the Yang-Mills gaugeohssintroduced by hand back in (3.3).
That mass has followed us all the way through #aeelbpment since, but as originally pointed
out, it is a red flag mass that we want to evehtuzse able to zero out and — if there are massive
particles to be found in the physics we are deswib to be able to reintroduce in some other
way without ruining the gauge invariance and theormalizability of the theory. So now, the
time has come to set the Proca mass,jj), to zero. But we shall leave the Proca mass &s is

|, for reasons to be momentarily discussed. Wittingetm’ =0 in 1,,,,., the above now
reduces to:

IPVZ' :IYMVZ' _I Lr

) (k=)o (=K ¥+ V) 0.6
R T (L B L 0| L i e A
P ESVAL kK-

This means that (3.3) is now revertedlb:(g”“ D,D? - D* D?V) G,, so that the Yang-Mills

gauge bosons are now massless. This means, fopéxahmat if our gauge group is SU£3)hen
these gauge bosons will be massless gluons.

While we are at it, let us even go a step furthogr,setting the now-massless gauge
bosons inl,,,,, to be on mass shell, witk k? =0 (which means that the terkg k”k* K’ - 0
because the&’ can commute since we have assumed flat spacetineolate the effects of
Yang-Mills all by themselves), while at the sanmmadiadding+i¢ to the linear inverse , and
also introducing the gauge numbgr which for { =1 is the Feynman gauge and {6~ 0 is the
Landau gauge. This gauge number is associatedinvitile Faddeev-Popov method and was
originally developed by Feynman, see, e.g., [7}lisac lll.4. The latter{ =0 is the gauge of
(10.6). Let us also raise the freeindex everywhere. Thus, (10.16) now becomes:
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_s (K'k =V ) o (- K+ v7) o 10.7
) 5T+w¢ﬂvw—kﬂfy+&WVW—yﬂva+yﬁkk"u—59+@—ﬂﬁ$’ wen
) oy kK-t E

To simplify our consideration off . a bit, let us choose the Feynman gafigd which is what

transpires anyway the moment one contracts theseve”, with a current density vik, J* =0,
see (8.11). Thus, (10.7) now becomes:

(WK—WJA—WW+wﬂ

+
VIV KT )+ K KV = VT YRR -
Y Al )+ k ¥ Y RKS -0 08
r AL k,k” = nf+ i

Now we arrive at the point: Even after we setRneca mass to zero to keep the Yang-
Mills gauge bosons massless and preserve renoabdiiy, and even after we further set those

zero-mass gauge bosons to be on-shell, so lorfegsetturbationy ¥ andV,? are not zero —

which means that so long as Yang-Mills theory isngosomething more than Abelian gauge
theory — the inversé,,,,, remains entirely finite and well-behaved. We ad need the Proca

mass at all, and we do not even neeid to avoid the pole that occurs ih, when

kk’-nf=0 (or when kk’=0 with m*=0). Referring to (10.3), the
1, =(V,°) =(k T+ G K- G G)
same way thak_k’ - nf + i keeps the lineal , well-behaved. But — at the heart of the

7 term keepsl,,,, well-behaved in exactly the

matter -1/"V,7" = (Vg")_l = ( kG +GK-G G’)_l is an NxNmatrix inversethat arises with

no artifice from the essential non-linear core of Yang-Milleedry. In contrast, in

k k? - nt + ig, them® is a renormalization-destroying Proca mass whahus asking why, for
example, the strong interaction can be a shorteanggraction even though its gauge boson
masses are zero which means we cannot introduceca Pfhass even though we need a Proca
mass to make the strong interaction short rangegarethe inverse / propagatar, =il a
non-infinite inverse. And in further contrastie is another artifice introduced by hand, to avoid
the pole of an on-shell boson. Similarly, as weresaw following (8.12), the moment we set
m? =0, the numerator ternk k / nf - o in I, unless the spacetime is curved. Here, where

we are considering Yang-Mills alone and have rerdoamey effects of gravitational curvature,
-1

the corresponding “denominator” in (10.TY,° (V”ﬁ - K k'”)+ k KV -V 7+ \f & “k) :

plays the analogous role to the spacetime curvatane is perfectly well-behaved so long as the
perturbations/ % andV,_? are not zero, which is exactly what Yang-Millsahgis all about.
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So, now, to the mass gap: The Klein Gordon eqndb.1) for a massless scalar fietd

with gauge symmetry, plus a hand-added Proca neassfor a vector boson with mass, has an
associated Lagrangian density (every Lagrangiarsijeims multiplied by 2 in Yang-Mills

because of the generator normalizatTcrrﬁ/l‘/l" ) =179, see (2.6)):

£=(0,0) (09) 6,6 =¢{ 0,16, |(0# - i&")p-mi G &
(10.9)

=90, 0" p-i¢5"d p-i9d .G p-¢G,G gt G, G

+

Above, we represen((aﬂ—ieﬂ)qp) (p(é#—iGﬂj due to the hermicity of the gauge fields
G, =A'G, which is in turn due tol' = A" for the Yang-Mills generators, and we also usefta |

operating 5,,. (While we are here, contraﬁDﬂqo)T D@ above to one possible use of the
Einstein-Weyl equation (7.6) so as to operate eoadar field, namely( R -1 g R) D¢=0.)
Although the only ingredients we started with i0.d) were a scalag for which we took the
gauge-covariant derivatiip, we ended up with a tergG,G"@. When we then expand the

scalar around the vacuum using a Higgs fields i@ thrm g=v+h(X+... and rescale
G, - dG, to explicitly show the gauge coupling, this gawgeated term:

-0°¢G,Gp=-¢F(w h.) GE(w k.)=—( W 66 Y2 vh’k.) G (10.10)

reveals the term—(vg)2 G,G’. So now (10.9) contains(vg)2 G,G' - nf G @. Butthe term
m GHG” was introduced by hand with a Proca mass andnsrilie gauge symmetry. The term

—(vg)2 G,&, on the other hand, is a direct result of the gasgmmetry. In fact, the gauge
symmetry would be ruined if we ditbt have this term. So we remove the Proca masst ¢get
zero) and in its place we regard the teﬂ(rvg)2 G, to represent the massive boson agdto
represent the mass of the boson. The experimentdirmation of electroweak theory, of
course, validates this result, and at the same ti)lylelsing—(vg)2 G, G rather thann' G,G as
the boson mass term, we keep the gauge theorymemaiormalizable.

The exact same sort of thing is happening in (10.Based on what we know from
Abelian gauge theory, we have come to expect tlaatsime vector bosons will have a propagator

. =il The terml , =-im, in (10.8) is completely analogous to the terrﬁGﬂG”in
(10.9). Each contains a hand-added, renormalizatéstroying Proca mass. And (10.8) does

(10.9) one better, because it also has a hand-atidetb ensure that the world does not come to
an end when a boson is on-shell. But in stromgraction theory, we expect the gauge bosons

Lvr *
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to be massless. Were we to se0 in thel , of (10.7) before we gauged out this term with
¢=11in (10.8), everything would blow up. Were we & the boson on-shell iy, and not use
+ig, everything would blow up. But the compete ineens Yang-Mills theory isl,,,,, , not
l,,=-m,. Sol,,,  , notl is the inverse in which we should set0. And while we are

at it, if we want the gauge bosons to be on-shell,, is also the inverse in which we should set
k,k? =0. In (10.7) we have already done all of this. Tm&ss is zero, the bosons are on-shell,

and we have done nothing by hand that is artificiahd what great catastrophe has befallen
lymy: 1N (10.7)? Absolutely none! This remains a coetgdy finite, well-behavednatrix

expression, so long as” #0 andV,” #0. But where and how, exactly, mathematically, do
we fill the mass gap?

Lvr ?

This is where the matrix expressions and the segcome in. Written out expressly in
terms of matrices and inverses with matrix indeXBs(10.8) really says:

v — v 1 Vv —
IP TAB_IYM 7 AB I L75AB_

(<o (R =V ) (W (V- K K)+ KRV - e kR (- KA ¥))(- )7 -(101D)

AB

~(=0", )1 (k,k* =P + ) 3,

We have taken special pains to make explicit, thbl Katrix structure, noting thdt,,”, ,; iS a
complete, non-commuting, rather complicated NxN ¢-afills matrix for SU(N), and that
1Y, =-0", /(kgk” - + 15) is not a Yang-Mills matrix . Rather, when we sabt | “, from

l.",, we must putl “. into the diagonal positions of the Yang-Mills umitatrix J,;, thus
forming | ",0,;-

But (10.11) is in the form of an eigenvalue equafior the matrixl,,,”, ,5- SO if we use
this to operate on any Yang-Mills column veclgy, then | ", will represent the eigenvalues,

i.e., theobservablesof the matrixl,,,”, ,s. But we don’t even need to posit a vecigrbecause
we may obtain these eigenvalues directly from (10.Via the eigenvalue equation
|M - I)I| = det(M ol )I) = 0 which uses the determinant of a matviXxo compute its eigenvalues

J. For (10.11) this eigenvalue equation takes oinenf

‘IPVTAB‘:“YMVT s LVTJAJ:O . (10.12)

That is it! This is the mass gap solution! Onae deduce a non-zero eigenvalle, via the

above from some perturbations” 0 andV,” #0 in 1,,,", s, We then know that the mass
will be related to this by:
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-0’ _yv

_ : 10.13
kK -nf+ie ‘7 ( )

In this way, we may deduce both the m@asand, if an eigenvalug ”, is acomplex numbewith

T

any imaginary component (which it may be becauseth generators systemically generate
complex numbers once one takes a matrsersesuch as(Vg”)_l), the imaginary magnitude
+ie which corresponds not to the mass — buthal&life. (See, e.qg., [23], page 150.)

So, we turn to the mass gap problem in [1], wisiehies at page 3:

“. .. for QCD to describe the strong force suctidhs. . . It must have a “mass
gap;” namely there must be some constant0 such that every excitation of the
vacuum has energy at least

and which at page 6 then sets forth the problem:

“Prove that for any compact simple gauge group Gomtrivial quantum
Yang—Mills theory exists on R4 and has a mass gap >. namely there must be
some constamk > 0 such that every excitation of the vacuum hegy at least
AT

The solution to the mass gap is as follows: Foompact simple gauge group G which
may be ‘any” gauge group SU(N) withN =2 and generatord' and gauge bosors” = A'G*,
the complete, holistic, non-Abelian, non-linearssiaal inversel,,,, associated with these
gauge fieldsG* and defined byG, = I,,,,,J", with a hand-added Proca masswill be the
lym,, INcluded in (10.1) generally, and included in @)0in flat spacetime. As pointed out

already, the ternD,D'“D“D# in (10.2) is non-vanishing. To maintain the remalizability of

gauge group G, wenustset this Proca mass to zero, as we do in (10T8)js means that the
gauge bosons are now massless. If one takes thge gaoup to be SU(3)then the gauge
bosons are gluons and these gluons are now mas#assve are in no way restricted to SU(3)
or to any other specific gauge group G. Thesedtseapply to ‘any compact simple gauge group
G.” For good measure, though not essential, wen g@ptace the gauge bosons on-shell as in
(10.7).

Now that the gauge bosons are massless, the quésttomes how, for every excitation
of the vacuum, “therenustbe constaniA > 0 such that every excitation of the vacuum has
energy at leash.” The “excitations of the vacuum,” in Yang-Millgre the perturbations

V& =kfG + G'K - GG of (10.4). For every such perturbation / exaiafiV*” #0 and
V,? #0, by definition. WhereveQ<V*’ <o and0<V,? <, the matrixl,,,,, will be finite

and well behaved, and the eigenvalues gf. obtained through the eigenvalue equation (10.12)

will be finite and non-zero and given by, ".. These eigenvalues, which are physical
observables, may, in the process, also be complé&kese eigenvalues in turn, are related to

46



J. R. Yablon

boson masses and lifetimes via (10.13). This m#atshe masm in (10.13) will also be non-
zero, that is, will have a value&whereA is some non-zero valueptwithstanding the fact that

we have set m=0 in (10.6And because this mass is contained within an sevgr’, which is

an eigenvalue of,,,” , this mass is deducible (as are possible noniefiifetimes) via (10.13).

This works forany compact simple gauge group G, which is to sagpgtoint in thiscompletely
generaldevelopment have we assumed or needed to assunpaxticelar group over any other.
(Though as we have pointed out toward the end efdht section based on (10.1), Yang-Mills
monopoles give us reason for regarding SU(3) aartcplarly important group, which will be
developed further in the next section.)

The massnin | ”, in (10.13) is similar to*nszG“ in (10.9). Itis a hand-added version

of a mass that we observe in the physical worldnbay not put into the theory by hand without
ruining the renormalizability of the theory. So l@ek for ways for this “anticipated” mass to be
revealed by the theory in some other way. In (2)).this mass associated with this mass gap is
revealed in the theory because the excitation&0riL() give this mass non-zero eigenvalues via

(10.13) and the non-zero eigenvalugg, which are the reciprocals df k? - nf + ig, even
though the gauge boson masses have been set tolzemsetk k” =0, then these eigenvalues

|V, are simply the reciprocals e’ + ig, which is a pure mass number with infinite lifetim

(stable particle) for real eigenvalues, and a puess number and finite lifetime number for

complex eigenvalues. The mass gap is filled, aedtiven have the basis for explaining why

Yang-Mills interactions — most notably the stromgeraction — are able to have a short range
which requires massive gauge bosons and that time $ine have gauge bosons which are
massless. The mass gap is filled because (10r&2gdls” a non-zero mass in the inverse
(10.13) without ever introducing that mass by handxactly the same way that (10.10) reveals
a non-zero mass in the Lagrangian density (10.8)out ever introducing that mass by hand.

Having now filled the mass gap, we return to shatw it is that the Yang-Mills
monopoles (9.1) have all the chromodynamic colonmegtries required of a baryon, and at the
same time confines its quarks and its gauge fieldigle permitting the flux of colorless quark
combinations that we observe in the form of mesdas/en that the mass gap is now filled, this
in turn would mean that the nuclear forces assediatith these baryon/monopoles have short
range.

11. Populating Yang-Mills Monopoles with Fermions ¢ Reveal that Yang-
Mills Monopoles have the Chromodynamic Symmetriesfdaryons and Emit
and Absorb Objects with the Chromodynamic Symmetrie of Mesons

Let us return to the monopole (9.1) which we hpepulated with the fermion sources
W from which its gauge fields arise. As we didhe last section, we write the inverses in the
form 1., =1, +! to show the sum of the linear plus perturbativatgbutions to the

complete Yang-Mills inversd,,,,,. And, let us stay in flat spacetime and thereby &l

Pvr

a7



J. R. Yablon

spacetime-covariant derivatives to ordinary deies, 9., - 0
I =1 into (9.1) yields:

So, substituting

ur

+1

YMvr Lvr Pvr

P =-i(0 [ 16 Wy, W1 50 Wy, |+1 1By 4D U 40 By, w)

=i (0 (17412 )Wy W, (1 £+ £0) Py ]+ 1 1) By (£ 4 £ )y, w)

=i (a“’ (1@, w1 270y, W] +1 1By 4D 1 £ Gyﬁw)
-1 (0 [1 Wy, w1 £7Wy,W ] +1 O Wy, WD £ By w) (11.1)
-i(0€ [12 Wy, w1 LWy, W]+ LWy D U 2 By w)
-i(0C 1 Wy, W, £ Wy, W ] +1 Wy 4D U 2 By, )

— pOouv opy v v
=R +R; +F§L +F§P

At the end, we have respectively denoted eacheofdbr main terms a8, R%", B and
PrY to specify the four combinations of linear (L) aperturbative (P) inverses they contain.

Because our goal is to understand the symmetryeptiep of P*" | let us zero in on th&?"
terms, which we segregate out as:

R =i (a“’ 1@y, W1 Wy w |+ O @y D P Gyﬁw) =P +P Y . (11.2)

We have further use®?/ and R, to separately denote each of the terms in the eabov
Zeroing in even more, let’s look at:

RYY ==i0 [179,,1073, ] = =i0 | 1Wy, w1 Py w |, (11.3)

where we have also used], =Wy, W to consolidate back to a source density. Now,uket
substitute the linear inverse derived in (8.10)ss#i® into the above, to obtain:

—-q T kA — V) )
RO :_ia(a[lfﬂ‘Ja’lfl})‘Jg]:_ia(g{ g + kK | nt (f + KK/ rﬁ\]ﬁ}

Kk -nf "7 kK-m

g 3" 3 ige| Py wpw '
Kk -nf' kK- m kR- M Kk- f

(11.4)

The termskk” / nt etc. are eliminated via the conserved curiehl, =0, see (8.11), and then

we raise the index on the current and #g” absorbed into the current flips the overall sign.
Finally, let us expand the cyclator in the finapsssion in (11.4) as such:
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k,k?—n?' kK- m kK- ' k% Kl MKk

1 5 Yy oy Yy ‘o YYowyyd g
kK- m kk- m K%k-

Pﬂ:{a{ VY Py }a{ Yy Gy"wﬁ]}ra{ Py Gy ZJJ
(11.5)

Now, let's develop the above in some depth. Thesldg@ment to follow parallels sections 2, 3
and 5 of [13], but streamlines and simplifies tdavelopment considerably and, perhaps more
importantly, put that development in the overalhtext of the complete set of non-linear
behaviors which are the hallmark of Yang-Mills gaugeory.

To start, we note the spin sum relationship whishoften normalized such that

N?=E+m. Here, we shalhot use this normalization but will use the spin spnor to
normalizationwhich is:

. 2

N
ZspinsUU = E + m(p+ m) ' (116)

Also seeing the emergemm =UU in each of the three terms in (11.5), we takethe =UU
in all three of these terms in (11.5), and then(4e6) to write:

guv —
PLLl =1

1 N2 (L, W (p+rm)y® W (prm W WY (ppr myAw
K — T E+ W(a k=m0 ke w0 ke m

Next, we keep in mind that the fermion propagator

p+m _ p+ m -1

pPp-nt (p+ (/e n)]:(p—m) ’ (19

while also noting the appearance(cp‘+ m)/( kK- rﬁ) throughout (11.7) which is very similar

in form to the first term in (11.8). So, if we céind some rationale (see section 3 of [13]) to
associate thek” with p” which is the four-momentum of the fermion, then wil have
established that there are propagating fermion fuaetions populating the monopole term
R? . Observing thatl/ (krkf - mz) represents propagation for a Proca-massive véoson

with three degrees of freedom and that fermions héue degrees of freedom, we shift one
degree of freedom from the Ieadirlg(krk’ - nf) over to the fermions by setting=0 to turn

that leading term into massles®oson propagator. That is, for each term in (1@ shift:

1 g (prmpyly 1w (et Yy (11.9)
KK — 7 kK- m KK pp-
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and now takep’ to represent the fermion four-momentum. It shdaddclear that both parts of
(11.9) contain a total of six degrees of freeddmeythave just been shifted from a 3+3 to a 2+4
configuration not dissimilarly to how a degree ofddom is shifted from a Higgs scalar to a
massless gauge boson to create massive vectordasong the Goldstone mechanism. Thus,
following this shifting of degrees of freedom, (Z)lbecomes:

auv
PLLl -

1 N2 [agmy“’(wm)y”‘PmuW”(AM My o Y (e ’T)Vw}(ll.m)
k,k? E+m RPE-m p p- PP M

If we now normalize such that?® = ( E+ m) k. K, then via (11.8) we can reduce (11.10) to:
R = i(a”(wﬂ(p— m) ) ot (WP (pm )y ) (W (s )y ‘P)) (11.11)

which contains three additive terms each containipgopagating fermion wavefunction.

Now, we resume the discussion toward the end dicse® where we noted that because
P is the density of @ingle magnetic monopoleP? must be regarded as a system which
contains these¥ =W ,, and that Dirac-Fermi-Pauli exclusion tells usnake certain that the

fermions in each of these terms are in differegemestates. Thus, as already stated, because
there are three additive terms, traallestgroup we are permitted to choose is SU(3), and by
Occam’s razor, we make this smallest permittedcsiele, and so do choose SU(3)So let us
now implement this.

As already stated at the end of section 9, oncehleese SU(3), we place each of the
now-threeyy of W =W,, A=1,2,3 into a distinct eigenstate. In order tacdss this, we need to

name these states. So we will name them Red, GmeerBlue, and denote theg,, ¢/, and
W, . The generators ard';i =1,2,3...§, the eight gauge bosons & = A'G*, and the three
fermion eigenstates ag,, ¢, andy,. Specifically, we define these eigenstates as:

Yr 0 0
W= =57=0)=| 0 [, =20 =202 ) =| g W[40 - A=) =| o |- (11.12)
0 0 Yy

This, together with having set=0 in (10.6), means that th@* = A'G* may now be interpreted
not just as generalized gauge bosons, but spdbifiaes the bi-colored massless gluons of
chromodynamics. It also means that we may cortstruc
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YWy 0 0 0 O 00 O
YW= 0 0 0f; W,Wo=|0 gty O|; W,W:=|0 0 0 |. (11.13)
0 00 0 0 0 0 0 ¢,

Then we go back and use (11.13) to display thei@kBk3 matrix character oR? = R77 .z In
(11.5):

aU ‘ﬂRV[#l//R‘//RVV]‘/JR 0 0
k k® - nt
o
R s = iﬁ 0 e 294 I:’;%g Ye 0 (11.14)
4 JBV[J‘//BZB M‘/’B
° 0 O K -

Then, repeating the same steps that brought us(ft@rd) to (11.11), we may turn this into:

0 (et (p-m) v 0 0
P e =1 0 o (@ (p-m)™ Vs 0 (11.15)
0 0 o (wer” (p-m)" yuse)

The trace equatioirRT} = R/ .1 is then easily deduced to be:
TrR7Y = i(a"(tZRy“’(p— m)" V]wR)+aﬂ(¢ZG;}V(p— n)‘lyﬂ¢6)+a”(z/73;}0(/rr r@‘lwa)) .(11.16)

This is now the fully-developed Yang-Mills magnetmnopole termTrR7 .z, populated with

three colored quarks, and it is formally equivalem{5.5] of [13]. There are of course other
terms that we see in (11.1) and (11.2), but wenending with this specific term because it most
clearly displays the chromodynamic symmetries @& thonopole P . Although we are
working with the one ternTrR7{ ,z out of the eight terms in (11.1), the assignmé&ati?) is

systemic: with (11.12), every singl#’ in the complete monopol®” of (11.1) has been
turned into an SU(3) column vector with three camenstates.

If we now associate each color wavefunction with sppacetime index in the relatéd
operator in (11.16), i.,e.g~R, y~G and v~B, and keeping in mind thaTrR?} is
antisymmetric in all spacetime indexes, we expthss antisymmetry with wedge products as
ocOuOv~ROGOB=H G B+ ¢ B R B R[ This is the exact colorless wavefunction

51



J. R. Yablon

that is expected of a baryorindeed, the antisymmetric character of the spaeeindexes in a
magnetic monopole should have been a good tipaff tagnetic monopoles would naturally
make good baryons. We now may assert that thig¥éitls monopole has the exact colorless
QCD symmetry required of a baryon.

Furthermore, if we apply Gauss’ / Stokes’ theoren(ltl.16) and also include from (4.3)
in trace form the finding thaﬁ) TrG? = 3<ﬂ> Tr[G",GV] dx, dx, we find that:

[[[TR.=gpTrR,, =-ipTre? =-3iffTr[c*.G"]  dx,dy a1
=i (@ (p-m) " Vi + e (p= )" g+ (- 0 0s,) dx oy
What is the color wavefunction for thei[G#,G* | entities? By inspectionRR + GG + BB. So
quarks do_not net flow in and out of closed twostfisional surfaces surrounding, ,, except in
the colorless RR+GG + BB combination of a meson!So (11.17) validates the suspicion
expressed at the end of section 4 that the appesacdra “3” in front of[G” , G“] has something
to do with there being three colors of quark ingtie magnetic monopole.

Of course, (11.17) does beg the question of whmatsf in and out of the complete
monopole (11.1), because (11.17) only considergdira P, ,. So if we go back to (11.1) to

apply Gauss’/Stokes’ theorem, we obtain:
i[[[P=p| 15 Wy, W1 oWy, W [dx, dx, + [[[ 155 Wy, WD 14 Wy, wdx, dx, dy.  (11.18)

The first term in (11.1), because of the lead#d in (11.1) is fully integrable via Gauss'/Stokes
theorem. The second term in (11.1)na integrable, and so it tells us about all of thggits
that is confined inside the overall volume of thenopole. But the point made by (11.17), is

that whatever does flow across a closed surfacsupnt tocﬁ} 124 @y Y| %)GyEdeyd& in

the above, will have the color wavefuncti®R + GG + BB of a meson!

So returning to the MIT bag model as discussedeiction 4, we now see that for the
magnetic monopole (11.1) with surface flux showrlﬁesﬁﬁ Ly Wy, W, 1 ) Wy, Wdx dx, term in
(11.18), 1) the color wavefunction is that of aywar, namelR[G, B+ d B R+ B R § 2)
from (4.4) and (4.5),#Gluons: ¢ 3) from (11.17),#Mesonst ( and 4) #Quarkszc

except in the colorless combinatid®R + GG + BB of a meson. Thus, on a formal basis, with
the MIT Bag Model telling us to look at what flowasross the surface of any theoretical entity
proposed to be a baryon, and we see that the Yaltgilagnetic monopole hgwecisely the
required formal symmetries and boundary flows regfifor a baryon.
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Again, on page 3 of [1], Jaffe and Witten note Q&iD:

“. .. must have “guark confinement,” that is, ewbough the theory is
described in terms of elementary fields, such asahark fields, that transform
non-trivially under SU(3), the physical particleatsts—such as the proton,
neutron, and pion—are SU(3)-invariant.”

Equation (11.16) shows how the magnetic monopolésYang-Mills, with an
antisymmetric color wavefunctioR[G, B+ ¢ B R+ B R ¢, are indeed SU(3) invariant,

notwithstanding that the individual fermion eigextes transform non-trivially under SU(3).

This makes the monopoles them well-suited to repriethe physical particle states such as
protons and neutrons, and makes the fermion eigisstvell-suited to represent quark fields.
We further see from (11.17) that all the flux asr@sclosed surface of the monopole has the

symmetric color wavefunctiolRR + GG + BB which is also SU(3) invariant and so make the
physical particle states which the spacetime gegnukies permit to net flow across closed
surfaces well-suited to represent mesons incluthegpion. And in the process, QCD itself is
fully reproduced. But again, QCD is not a theofyist principle, but rather a corollary theory

derived by deduction from Maxwell’s electrodynaméssextended into non-Abelian domains by
Yang-Mills gauge theory.

Of course, if we wish to associate these magnetinapole with physical baryons, we
still need to make these monopoles topologicaliplst and see how to use them to represent
protons and neutrons which are the most importantdms, see section 6 through 8 of [13], and
we need to calculate their energies to see if thaike sense in relation to empirical data, see
sections 11 and 12 of [13]. Insofar as topologs@bility, we simply note that the trace

equation (11.16) is non-vanishing, but thatP*" :Tr(ALBF’””V):O if we regard the gauge

group as SU(3)because all ofi' are traceless. In other wordsywe assume the simple group
SU(3) the left and right sides of (11.16) do not matghbecause one side is traceless and the
other is not. It is on this basis that we introglibe product group SU@U(1)s.L, and then
obtain the monopole (11.16) (and generally, (11frbyn the spontaneous symmetry breaking of
larger SU(4) gauge groups withEa— L (baryon minus lepton number) generator which weld
the quantum numbers required to turn these barydosproton and neutrons and ensure that
these magnetic monopoles are topologically stabbleese details are in sections 6 through 8 of
[13], they fully apply to the development here, asul they need little if any elaboration or
modification here.

12. Chiral Symmetry Breaking

Referring back to Jaffe and Witten at page 3 ¢fifilsection 10 we showed how Yang-
Mills theory leads to a “mass gap” notwithstandiraying massless gauge gluons, and in section
11 we demonstrated “quark confinement” of all boé tcolor-neutral meson combinations

RR+GG + BB. Now let us briefly explore the origins of “chlisymmetry breaking,” which is
the third leg of the mass gap problem
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In (11.17) we identified the mesons which flowaind out of the magnetic monopoles
which P, by virtue of theirR[G, B+ d B R+ B R E color wavefunctions, we now interpret

as baryons. Let us now rewrite (11.17) WIIC = RR+ GG+ BE representing a compacting
(C=Color) of the three additive terms into a sindlershand term, as:

” TrPLLl_Iq‘:jS(l/ICy[IJ p m) yv]‘//c)d)ﬁl dy = @[wcy[ﬂf)pjm)y”lwc] dy dx

(12.1)

:i@[pa Ecy[ﬂyayz]‘/’dexﬂd% +2<j':j'>( m—agz“jvr‘ffCJ dy dx

p’-m

This also makes use ¢fp—m) " =( p+ n)/( g - rﬁ). In the second line we separate the two
additive terms that emanate fropv+ m while applying p = p,)” and expressly introducing the
Dirac bilinearg*” =1i [y y"} . Now let’s look at what these two terms represent

The latter term for which the core structureﬁsﬁca‘”wcdxy dx , contains the second-

rank antisymmetric tensq?caﬂ"wc which is understood to represent a spin-2 vedatprieson.

So this latter term represents the flow of a spwe2tor (as opposed taxial vecto) meson
across the closed monopole / baryon surface, tbatiti represents the flow of a

CC= RR+ GG+ BE meson with spin 2 and positive parity. In padigarlance, this has
JP =2, see, e.g., [24] pages 2-4. But what about thHeeroterm with the /*y~ "
combination? For this, we expand the main stratti@érm into:

PV VW = B SV W+ DU SV W+ b VPV W+ pip SV VW e(12.2)

Then, we evaluate each of the six independent caerge for v =010203122331. The
terms where either the or v index is equal to the middkeindex drop out because of thev

antisymmetry. Applying the Dirac relatiop® =i)°y'y*y® in various combinations to the
remaining terms while usingy,, =7, to lower indexes, the result can be covariantly-

summarized via the Levi-Civita tensor in a basi®mle,,,;=4/—9 and in flat spacetime where

£%% = -1, by the expression:

YA P We = B SV VW = 2T DYV W (12.3)

This means that the first term in (11.17) has aacsnructure—zg”mﬁ( pgtzcyrfwc)d& dx .

Becausel?lcyrﬂl/c has a single vector index iy together with ay”, this represents a spin-1
axial vector (A) mesofiowing in and out of the baryon monopole. ThisiJ” =1" meson! So
in (11.17) we established that mesons Wit = RR+ GG+ BE are all that flow across closed
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surfaces of the monopole / baryons. Now in (124 (12.3) we see that the spin-parity
characteristics of the particular mesons in (1ar&)J° =2 and J° =1". But what about other

mesons, such as the pseudoscalar (axial scalagnsiegth J° =0~ which includes as ther
mesons which play a central role in strong inteoast between nuclei, as well as the whole
panoply of mesons catalogued by [24], [25]?

Now we keep in mind tha.mTrPLL1 in (11.17) only draws from th?" term in (11.1),

which is the linear-linear term for flow across lased monopole / baryon surface. More
generally, the meson flow across the surface is ergiv by the term

ﬁ[l?ﬁmyaw,lf&myﬁw]dxﬂd& in (11.18) which contains all of the non-lineapests of
Yang-Mills theory. But look at what is containedthis term: the full inversesy of (8.14),
(8.15) which we showed in (9.2) themselves bringadditional gauge bosons / gluons in an
infinitely recursive, non-linear fashion via thecfahat D =0 —iG*. So, if we take th&z*
which enter (8.14), (8.15) vi®" =0 -iG* and then use5, = 1,,,,,J" to introduce current
densitiesJ” as we did in (9.1) and then use these to in tupujate the monopole / baryons with
fermions viaJ* = Wy*WY as we also did in (9.1), then in the process,mythe infinite recursion,
we will now have terms involving™; N=2... That is, (9.1) can be recursively expanded to

contain J¥ = Wy*W , multiplied by a like-current density to up toiitife order. We also keep in
mind the discussion from (9.4) to (9.8) and notat thath integration also is expected to
introduce higher powerg"™; N=2..00 of J¥. This is what we use Green’s functions and Wick
contractions to keep track of when we do path natisg

However, as we saw in (11.6), each time we aree dbl suitably-commute the
J* =WYprY in @[I?ﬁ@yaw,lfamyﬁw]dxﬂd& of (11.8) to a position where we have two
spinors adjacent to one another in the fo## , we may seWW -, UU and then use (11.6) to
remove those spinors and introduce - m)~ =( p+ n)/( g- rﬁ) in their place. And we

then saw in (12.1) and (12.3) how this yields thi/parity characteristics of these mesons. But
what we learn more generally from (12.1) and (1&3pat each time we have a current density
for which we do this sequence of operations, we aading Dirac vertexes to

ﬁ[l?ﬁmyaw,lfhjmyﬁw]dxﬂd&, and asJ"; N=2..00, we will simultaneously be creating
(V")N;N:Z...oo combinations of self-multiplied Dirac gammas whieimerge following

suitable commutation operations and then the agpdic of (11.6).

But, of coursey” =iy°y'y?y*, so even though there may be a very large (upfiite)
sequence o, we have a closed group consisting of o3, )", 2, y%,y°, and so the terms
with up to infinite multiplicative combinations gf will nonetheless cycle in a closed manner

via (yoylyzy?’yS)N = (—1)N . So depending on the particular order (powerd aff any given term
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in @[Ifﬁ@yaw,lfgmyﬁw]dxﬂd& , one will find meson terms of the formg.. (scalar0*),
Y VY (pseudoscalad”), woy s (vectorl), Yeyyi. (axial vectord’), @[ v,y Jw.

(tensor2*), . [y”,V’]y’ﬁ/zc (axial tensor2™), as well as spin 3 and spin 4 vector and axial

mesons which can always be recast as a spin 02 In@son viay® =i )°y'y°y>.

So we now see that because of the infinite reeainsesting of the full inversel;, of

(8.14), (8.15), and also because path integraéisualts in principle in similad™; N=2..00

powers of current densities, that Yang-Mills themraccompanied by an infinite
N

(y")N ;N =2..00 range of vertex multiplications which will recyoléa (y°y1y2y3y5)N =(-1)",
and so via the ternfp| 1% Wy, W, 1 Wy, W |dx,dx, in (11.18), will yield a flux of mesons with
the full set ofJ” characteristics that are observed in the mescrtrspe as catalogued, for
example, by [24], [25].

So the third and final leg of the mass gap prollElnnamely the “chiral symmetry
breaking” which is “needed to account for the ‘emtralgebra’ theory of soft pions that was
developed in the 1960s,” is accounted for and éxpthby the presence in (11.18) of terms

. . N . . .
which contain product§i;_, (y*)" of Dirac gamma matrices which are then evaluateti a

reduced withi )°y'y?y*y° =1 to yield the entire observed’ meson spectrum, in terms of their

spin / parity characteristics. (We do not in théper attempt to explain meson flavors, which is
a function of the quark generations u,d; c,s; t,b.)

This brings us full circle back to the discussioth& start of section 3, in which we
observed that Yang-Mills theory is rooted in thentilfonian quaternions® = j* =k * =ijk =-1
dating back to 1843. The modern representatidtiaohilton’s quaternions is of course
embodied in the 2x2 Pauli spin matrice$= o0’ =0’ =-ic,go,=1 developed circa 1925,

which are Hermitian, which have the commutatioatiehship[ai 0, ] =2ig, g, , and which
form the basis for Yang-Mills theory in whidh,, A, | =if, A with Tr(A'A1)=14". But these
guaternions and spin matrices are also embeddsdlirknown fashion into Dirac'y” defined
to reproduce the Minkowski metric tens@iag(/]"”) =(1-1- 15 } via %(y"y" —y’yﬂ) =n .

And, of coursej)’y'y?y°=1. So if one wishes to represent the Dirac gammnisicea in the
form of Hamilton’s original quaternions, one woulite:

—y02 :yl2 :y22 :y32 :—y52 :—iyoy]l/Zyi/5: —1’ (124)

with =i’ y'y?y%°=-1 being the spacetime generalization of HamiltdjkKs= —1.

56



J. R. Yablon

So if one wishes to take some of the mystery ostnation out of axial and left-right
chiral relationships involving” and the “chiral symmetry breaking” of strong irsetions, it is

sufficient to note that)y'y?y®°=1 is simply the Dirac form of Hamilton’s quaternigrasd
that in any theory where one has a product of atidensitiesi5_,J" one will likewise have a

similar productlTy_, (y")N of vertices which, via the Dirac quaternions rielaship (12.4), will

recycle itself and in the process produce particles an entire spectrum of spin 0, 1, 2, 3 and 4
with both odd and even parity. When this is thedarstood in the context of (11.17) and

(11.18) which describes a flow of color-neutRRR + GG + BB mesons across a closed
monopole / baryon surface, and in the context df4Band (8.15) whereif(/, introduces an

infinite order of recursive nesting, it then becamegident that this stands at the root of “chiral
symmetry breaking” and “the ‘current algebra’ theof soft pions” which is one of the three
main aspects to understanding and solving the gegsgroblem.

13. Conclusion

In all of the foregoing, we have now shown how Sd@romodynamics, which is the
theory of strong interactions, is a corollary theemerging naturally from the combination of
nothing other than Maxwell / Weyl gauge theory witling-Mills theory. In the process, we
have shown not only the emergence from the Maxiwéling-Mills combination of all that is to
be expected from SU(@xhromodynamics, but additionally, we have showw kiee observed
baryons containing three colored quarks in the gtlstate are the magnetic charges of Yang-
Mills gauge theory and how these magnetic chargasally confine their quarks and gluons but
do pass mesons in order to interact. That is,awe lexplained quark and gluon confinement
and how it is that strong interactions are medi@tgdesons but not gauge fields. The main
components of this understanding are in sectioasdd11 and the key resultant equations are
(11.1) and (11.18).

Additionally, we have demonstrated in section 18doamainly on the development in
section 8 how the inherent non-linearity of Yangiiheory may be used to solve the “mass
gap” problem and yield a nuclear interaction tkahort range notwithstanding its being based
on massless gluon gauge fields, see specificajlyations (10.12) and (10.13). In section 12 we
have shown the origin of “chiral symmetry breakimg’strong interactions. In section 9 we
found that the non-linear nature of Yang-Mills theoontains a recursive aspect which may
provide a useful tool for solving the Yang-Millstpantegral in order to analytically arrive at
guantum Yang-Mills theory. Finally, as a resdlfuther developing Weyl’s original geometric
view of gauge theory, we in section 7 we uncoverethssical field equation (7.6) unifying
gravitational theory with Weyl's gauge theory ingilng both its Maxwell / Abelian and Yang-
Mills variants, at the level of the Einstein eqoatfor gravitation.
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