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Abstract: This paper presents an unconventional view on the gravity force and the way it 
manifests in particle interactions via a newly-introduced particle; introduces the “energy density 
function” of this particle and the way it affects the surrounding particles by its physical field. 

I 

This paper assumes that the gravity is a force exhibited by a particle called “graviton”.  While 
not universally accepted and not strictly defined to date, the name “graviton” is quite easy to 
associate with the gravity.  In the long run, the definition of “graviton” may change while the 
association of the name “graviton” with the gravity won’t probably change ever. 

In order to define what graviton is, it is necessary to make a certain axiomatic assumption: the 
energy level (in J) of a particle changes in an impulse manner, but not instantly.  When the first 
given particle’s energy level increases, the energy is transferred to that particle from the 
second given particle.  If the first particle’s energy level decreases, the energy is transferred to 
the second particle, or is radiated out.  But right before coming into the full contact with the 
second particle and getting or losing the energy, the first particle is initially placed at a certain 
distance from the second particle, and thus the first particle has to “travel” this additional 
distance.  This distance is called the “transient distance”. 

In the simplest case, on a 2-dimensional plot, we can set the positions of these two given 
particles on the X axis symmetrically around x=0 (with x=0 position being in-between two 
particles), and put the cumulative energy level change of the first particle on the Y axis.  We 
may use a suitable step function in the form of cumulative distribution function of the Gaussian 
distribution (fec(x)=∆E/2*(1+erf( x/sqrt(2*σ2) )) ) J (1) to approximate the first particle’s energy 
level change over the transient distance: it approaches zero at the initial position x1 (e.g. x1=-2) 
of the first particle, and approaches ∆E at the position x2 (e.g. x2=2) of the second particle (∆E is 
the total energy level change of the first particle, σ depends on the transient distance).  The 
farther the first particle has travelled from its initial position towards the second particle along 
the transient distance, the larger the cumulative energy level change of the first particle is. 

 
Figure 1:  y=fec(x)/∆E, σ=0.5 



2 
 

The exact value of ∆E and the energy level change of the second particle depend on the states 
and interactions of and between the particles, and this is out of the scope of this paper.  
However, the energy level change of the second particle changes in a manner similar to the first 
particle, in a step function manner, and the paragraphs above can be formulated as if the 
second particle is getting the energy from the first particle, or is losing it. 

The approach presented in this paper is similarly applicable to both kinetic and potential 
energies: ∆E can be either kinetic or potential energy level delta.  However, as will be shown 
below, this paper promotes a view that gravity field is not an abstract potential well making the 
use of potential energy redundant (still, the potential energy of a particle can be contained in 
another, non-spatial, domain and expressed as a state vector, or frequency as in the case of 
photon).  The integration domain of the function (1) can be generally chosen arbitrarily instead 
of the “meter” for spatial domain as used in this paper. 

Such treatment of particle’s energy level change is quite different to the one commonly used in 
physics now: commonly it is assumed that particle’s energy level changes instantly and does not 
require introduction of any “transient distance” step function.  In reality, it is reasonable to 
assume that the energy is transferred to or from the particle during some span of distance or 
time, not instantly. 

II 

The aforementioned step function (1) integrates the Gaussian probability density function 
(fed(x)=∆E*exp(-x2/(2*σ2)) / sqrt(π*2*σ2)) J/m (2), which is also called a delta function.  If 
mapped over the Y axis, the function (2) shows the magnitude of the first particle’s energy level 
change over the transient distance, with such magnitude being maximal at x=0, right in-
between the initial positions of two particles.  Such “energy level change over the transient 
distance” is vital to introduction of a new particle: the function (2), without the ∆E multiplier, 
can be viewed as representing the probability density function of a new particle.  The function 
(2) itself is equivalent to the “energy density function” of this particle, although this concept 
may be somewhat new.  In the essence, this new particle represents the energy which the first 
particle loses or gains, with this energy spread over an area of space between two particles.  In 
other terms, the “energy density function” is the spectral convolution of the energy by the 
probability density function. 

 
Figure 2:  y=fed(x)/∆E, σ=0.5 

This new particle is what this paper presents as graviton.  The graviton is a particle which may 
be detected directly: it may manifest itself as a real physical particle with its specific energy 
spectrum.  In cases when the energy of this particle is fully contained within a certain particle-
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interaction system, the graviton is treated as a virtual particle.  In a free-standing formulation in 
3-dimensional space, the “energy density function” of graviton is equal to: 

Egf(x, y, z)=∆E*A*exp( -( (x-x0)2/(2*σx
2) + (y-y0)2/(2*σy

2) + (z-z0)2/(2*σz
2) )) J/m3 (3).  Where point 

(x0, y0, z0) is the center of graviton in space; ∆E – graviton’s energy (particle’s gained or lost 
energy); A – coefficient of energy proportionality; σx, σy, σz are coefficients of spatial 
proportionality, collectively they define the energy density symmetry, and may not be equal to 
each other, leading to an anisotropy and non-symmetry of the gravity force which can be 
hypothesized.  In the simplest case, when the gravity force is isotropic, the “energy density 
function” of graviton is equal to: 

Eg(x, y, z)=∆E*A*exp( -( (x-x0)2 + (y-y0)2 + (z-z0)2 )/B ) J/m3 (4).  Where B is the coefficient of 
spatial proportionality. 

III 

Various energy transfers between particles, their acceleration and deceleration included, can 
be mediated via gravitons.  In most cases this will be redundant due to a high locality of energy 
transfers between particles, but in some cases such mediation is a requirement.  It is known 
that in a particle accelerator a particle that quickly reduces its velocity in an electromagnetic 
(EM) field produces EM radiation known as Bremsstrahlung – a braking radiation.  
Bremsstrahlung is such case when a graviton is involved. 

In order to validly equate graviton’s EM spectrum to a measurable Bremsstrahlung spectrum, it 
is important to note that the Fourier transform energy spectrum of (1) on the log scale falls by 
log(0.5)=~-0.6931 per doubling of the frequency (or “per octave”), fig.3, and is non-zero though 
not infinite on the linear energy spectrum scale, at zero frequency.  Bremsstrahlung exhibits a 
similar spectrum near zero frequency, and so the Fourier transform of (1) can be used as a 
model of Bremsstrahlung EM spectrum up to a certain cutoff frequency (e.g. X-ray frequency).  
In simple terms, this means that the lower part of graviton’s energy spectrum has the energy 
spectrum of Bremsstrahlung from zero to up to X-ray frequency.  The higher part of graviton’s 
energy spectrum is the spectral convolution of X-ray energy by graviton’s probability density 
function.  Note that a lot of contemporary papers on Bremsstrahlung do not measure spectrum 
down to zero frequency and are satisfied with the X-ray part of the spectrum.  The papers in the 
field of plasma physics are more likely to contain the full Bremsstrahlung spectrum, from zero 
frequency and up. 

 
Figure 3:  Normalized log energy spectrum of graviton near zero frequency (equals 0 at zero frequency). 

This figure only shows the approximate slope on a linear frequency scale (horizontal axis). 
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This theory assumes that the X-ray energy emitted during Bremsstrahlung is a cascade effect of 
particle acceleration or deceleration, with the primary cause being the lower part of graviton’s 
energy spectrum.  X-ray energy is the unabsorbed part of graviton’s energy which may be 
absent if X-ray energy was fully absorbed, or if only a small kinetic energy change occurred.  The 
lower part of graviton’s energy spectrum stays in a “leverage ratio” to its higher part: while ∆E 
in equations (3) and (4) includes the full energy spectrum, the lower part of graviton’s energy 
spectrum may be only a fraction of this full energy spectrum.  Hence, in the general case ∆E can 
be represented as ∆E=∆El+∆Eh, where ∆El is the lower part and ∆Eh is the higher part (including 
the X-ray frequencies) of graviton’s energy spectrum (∆Eh is calculated in the spectral domain).  
The “leverage ratio” ∆Eh/∆El (with ∆El being always a scalar value) depends on the specific 
particle interactions, and can be the function of ∆E. 

Hypothetically, ∆Eh is oscillatory and equals to some sort of sinusoidal function (or sum of 
functions) on the complex plane; at the same time it can be hypothesized that if ∆El is zero, 
equations (3) and (4) represent the “energy density function” of a photon, making it unable to 
directly affect kinetic energy of other particles in spatial domain, and thus it also lacks kinetic 
energy.  On the macroscopic scale, ∆Eh is usually equal to zero due to statistically-based 
absorption. 

 
Figure 4:  y=fed(x), ∆E=1+cos(x*20)*0.5, σ=0.5 

A free-form example of graviton’s “energy density function” in the case of X-ray Bremsstrahlung. 

 
Figure 5:  y=fed(x), ∆E=cos(x*20), σ=0.5 

A free-form example of “energy density function” of a photon, ∆El=0. 

IV 

A new important concept in relation to graviton and its energy at zero frequency is the 
induction of displacement in the surrounding particles.  If we take some particle that oscillates 
around its parametric center in a sinusoidal manner, we can measure the frequency of such 
oscillation: it can be any value except zero.  In the case of Fourier transform of (1) the 
estimated energy spectrum reaches zero frequency.  Presence of energy at zero frequency is 
what puts graviton into a special position among particles.  The energy at zero frequency 
induces displacement in the surrounding particles, in a progressive, non-oscillatory manner. 



5 
 

In the essence, such displacement function of graviton creates a physical (gravity) field around 
it.  When some particle P with the given coordinates and the vector-energy Ep is put into this 
field, it begins to gain energy (Ep’=Ep+∫∫∫Eg(x, y, z)*Vg(x, y, z)*Dp(x, y, z)dxdydz*Vgk) J (5) from 
this field; the triple integral’s range includes the area surrounding the particle.  Eg(x, y, z) is the 
equation (3) or (4), or similar in sense (e.g. a macroscopic variant that integrates individual 
gravitons of a large body).  On the macroscopic scale, the vector field function Vg(x, y, z) is equal 
to the unit vector pointing from (x, y, z) to the center of this field plus an energy-proportional 
vector of angular momentum of the macroscopic field, but on the microscopic scale the 
function Vg(x, y, z) is equal to scalar value 1 and may be omitted.  The scalar function Dp(x, y, z) 
is proportional to particle’s probability density function.  The unit vector Vgk is the unit kinetic 
energy vector of the field. 

The field performs work by displacing this particle P.  Since the gain of energy by the particle in 
this field is a persistent, cumulative process, the field accelerates or decelerates the particle 
until all energy of the field was transferred to the particle.  However, if ∆E in Eg(x, y, z) includes 
only an oscillatory member, the net displacement of the particle will lean towards zero, and the 
energy of such oscillatory member may trigger particle’s subatomic-domain energy level shift 
(that may or may not affect particle’s kinetic energy) or go unabsorbed. 

It can be hypothesized that the calculation of dynamics of a particle under the influence of 
several overlapping gravity fields can be performed simply by summing vector-energy integrals 
of gravity fields at particle’s position, as in equation (5), as separate terms.  The non-linear 
effects usually attributed to the gravity force like redshift, lensing, time dilatation can be a 
result of the energy gain equation (5) and do not need any specific modeling. 

On a macroscopic scale, the “energy density functions” (3) and (4) and the energy gain equation 
(5) must include additional multiplier members to scale up to the macroscopic numbers of 
particles, which is usually “mole” or “mass”, but see below.  It can be hypothesized that gravity 
field’s strength of a large massive body is proportional to J/(kg*m3)=m-1s-2.  This identity 
multiplied by an area (m2) yields m*s-2 which is circumferential acceleration.  The equation (5), 
when transformed into a continuous-time integral, is best expressed as integral of gravity field’s 
“energy density function” multiplied by particle’s circumference integrated over distance, with 
the distance differential depending on particle’s energy integral (see fig.6 for 1-dimensional 
example). 

V 

Note that the term “mass” was not mentioned throughout this paper.  It is because “mass” may 
be a vague term as far as gravity fields are concerned: an atom we call “massive” gains energy 
during a free fall in a gravity field faster than a lighter atom (accelerations of both atoms are 
equal while the masses are different), but it can be hypothesized that in a free-standing case 
the heavier atom may not have a gravity field proportional to its free-fall mass.  Hence, the use 
of a known “mass” multiplier may be precise only in some cases as far as gravity fields are 
concerned.  Unfortunately, today there may be no better alternative to “mass” since no 
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universally-accepted gravity field measurement method exists yet.  It is a hope of the author 
that this paper gives an idea for such measurement method. 

It should be also noted that the latest research of cosmic-scale redshift quantization concluded 
that such quantization does not exist.  This fact is important, because energy gain formula (5) 
allows for non-quantized energy gains. 

VI 

Given the overall description of the graviton above, it can be hypothesized that for an atom to 
have a gravity field its subatomic particles have to travel in mostly elliptical orbits, with the 
periods of deceleration and acceleration that lead to creation of gravitons.  Thus, on subatomic 
level the gravity field is not constant and manifests itself as impulse trains that contribute to 
atomic decay (meaning fast-decaying atoms and plasmas may have a greater gravity field).  EM 
radiation of pulsars, the double-star systems, may be an example of such graviton 
Bremsstrahlung impulse trains on a cosmic scale. 

It can be also hypothesized that a particle with kinetic energy is actually “carried forward” by a 
leading graviton placed at a certain distance from particle’s center or at its center, along its 
kinetic energy vector, with graviton’s vector-energy equal to particle’s kinetic vector-energy.  In 
free space, such “particle carried by a leading graviton” forms a dynamic kinetic system that 
exhibits no acceleration and no Bremsstrahlung radiation.  In the essence, the kinetic energy of 
a particle can be represented as its additional gravity field that may interact with other particles 
via equation (5).  This hypothesis leads to a hypothesis of “inertial drag effect” meaning that a 
particle with a considerably high kinetic energy drags a slower particle placed at a small 
distance from it, along the kinetic vector of that faster particle, by non-electromagnetic means 
(note that the photon having its ∆El=0 has no kinetic energy in terms of this paper while its 
potential energy is “conserved” as its frequency, which may undergo a shift in the vicinity of 
such fast particle). 

During the time when graviton lives, the energy that this graviton has can be absorbed by any 
third particle.  This is what a macroscopic gravity field demonstrates.  This macroscopic gravity 
field is a sum of graviton fields of particles of a macroscopic body.  Any third particle that passes 
nearby this field absorbs the energy of gravitons of this macroscopic field. 

Several particles that have a nearly equal kinetic vector-energies and that travel in space in an 
equidistant and unidirectional train formation, one after another along the same directional 
vector, tend to group with each other over time due to mutual energy loss and gain like via the 
equation (5), via the “inertial drag effect”.  This may explain why repetitive oceanic waves in the 
deep ocean tend to form rogue waves, and why acoustic waves tend to form shock waves over 
time.  It can be hypothesized that a similar “particle train” (“1H train” or “2H train”) method can 
be utilized to perform an energy-efficient, low-energy fusion, with the parameters such as 
frequency of particle firing and particle initial kinetic energy being chosen to be the most 
economically-efficient. 
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If required, the equation (1) can be expressed via the Heaviside step function and the equation 
(2) can be expressed via the Dirac delta function (with its “a” parameter controlling the 
“transient distance”).  Other similar in sense step and delta functions can be used for better 
approximations. 

Graviton, having mostly a continuous spectrum and also due to the shape of its spectrum near 
zero frequency can be called the “rainbow particle”. 

This theory assumes that there is no space-time curvature exists and that gravity is not 
propagated as waves of changes of this space-time curvature.  And so, the “gravitational 
radiation” must be reformulated to be just the lower part of the Bremsstrahlung radiation 
spectrum, again not involving any space-time curvature.  It can be hypothesized that in order to 
detect gravity field changes it is necessary to precisely measure ambient energy spectrum 
around zero frequency, which requires electromagnetic equipment of a high precision.  
Photon’s red- and blueshift can be also used as a measure of the gravity field.  Any particle 
interactions that lead to an increased ambient energy spectrum around zero frequency can be 
hypothesized to be interacting with or via gravitons. 

It can be hypothesized that for precise modeling at very low kinetic energies it may be 
necessary to find the “ground zero” or absolute kinetic energy of a particle, free of any frames 
of reference, by measuring average arrival time and angle of billions of short-time visible light 
photon pulses in the current frame of reference.  The summary gravity field can be additionally 
measured by evaluating the average change of frequency of these pulses.  This will require 3 
fast-acting photon detectors placed in equiangular triangle formation in front of a photon 
emitter at a known distance along the normal vector to this formation, plus 1 more detector in 
the center of this formation, tuned to a slightly different resonant frequency than the other 3 in 
order to detect photon frequency change (fig. 10).  The cross-section of photon should be 
known to calculate the gravity field’s energy per cubic meter from photon’s frequency change 
and distance.  It is a hypothesis of this paper to assume that such cross-section can be found if 
photon’s energy can be expressed via the “energy density function” which bounds spatial 
position of photon (photon’s spectral line which is infinitely thin is spectrally convolved by the 
probability density function yielding a “thicker” spectral line).  Additionally, such measurement 
system can be rotated along its axes to increase precision and measure gravity field’s gradient 
vector, and also to reduce systematic measurement errors.  Eventually, such systems can be 
embedded into hand-held devices together with accelerometers and magnetometers. 

VII 

The following 1-dimensional graviton simulation program in C programming language 
demonstrates that the energy in the “body-graviton” system is conserved, supporting a 
hypothesis that such system follows the “principle of least action”, essential for physical 
systems. 

This simulation uses the Adams–Bashforth three-step explicit method of integration, which is 
strongly stable.  Simulation is run for 300 seconds. 
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#include <stdio.h> 
#include <math.h> 
const double M_PI = 3.14159265358979324; 
 
double fed( const double x, const double DE, const double sigma ) 
{ 
 // Energy density function (2). DE - graviton's energy delta. 
 const double sigmasq2 = 2.0 * sigma * sigma; 
 return( DE * exp( -( x * x ) / sigmasq2 ) / sqrt( M_PI * sigmasq2 )); 
} 
 
double vel( const double E, const double mass ) 
{ 
 // Non-relativistic velocity of a body with kinetic energy E and mass. 
 return( sqrt( 2.0 * fabs( E ) / mass ) * ( E >= 0 ? 1.0 : -1.0 )); 
} 
 
int main() 
{ 
 const double h = 0.02; // Integration step, s 
 double t = 0.0; // Initial time, s 
 double x = -2.0; // Initial body's position, m 
 double E = 0.003; // Initial body's energy, J 
 const double mass = 10.0; // Body's mass, kg. 
 const double sigma = 0.5; // Graviton's sigma. Center is at x=0 
 double DE = -0.004; // Graviton's delta energy, J 
 
 double v = vel( E, mass ); 
 double dE = fed( x, DE, sigma ) * fabs( v ); 
 double dx = v; 
 double p2dE = 0.0; 
 double p2dx = 0.0; 
 double p1dE = 11.0 * dE / 12.0; 
 double p1dx = 11.0 * dx / 12.0; 
 
 while( t < 300.0 ) 
 { 
  v = vel( E, mass ); // m/s 
 
  printf( "%f\n", E ); 
 
  dE = fed( x, DE, sigma ) * fabs( v ); // J/m * m/s 
  dx = v; // m/s 
  E += h * ( 23.0 * dE - 16.0 * p1dE + 5.0 * p2dE ) / 12.0; 
  x += h * ( 23.0 * dx - 16.0 * p1dx + 5.0 * p2dx ) / 12.0; 
  t += h; 
  p2dE = p1dE; p1dE = dE; 
  p2dx = p1dx; p1dx = dx; 
 } 
} 

Figure 6:  1-D “body-graviton” interaction simulation program in C programming language. 
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Figure 7:  Integration of body’s energy (E) and position 

(x) in the vicinity of graviton (x=0), see fig.6.  The energy 
of graviton is not absorbed, because its change is higher 
(-0.004 J) than body’s initial energy (0.003 J).  The body 

“bounces back” and changes the sign of its velocity 
vector (represented as negative energy). 

 
Figure 8:  Integration of body’s energy (E) over time (t) 
at various initial body energy settings (0.004 J, 0.006 J, 

0.008 J), in the vicinity of graviton, see fig.6. 

 

 
Figure 9:  Integration of body’s energy (E) and position (x) in the vicinity of graviton (x=0), with graviton’s delta 

energy set to a positive value (0.001 J), see fig.6. 

 
Figure 10:  Scheme of absolute kinetic energy and gravity field’s energy density 

detector.  Circles are photon detectors, rectangle is a photon emitter.  Line with an arrow on it – 
the normal vector and the direction of photon pulse emitting. 

 


