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Abstract

An approximation heuristic for the prime counting function 7(x) is presented. The presented
approximation heuristic is on average as good as Li(z) — 2 Li(y/z) for = values up to 100,000. The
main advantage of the heuristic is, that it does not require an integral to be evaluated. The main
disadvantage of the heuristic is, that it gives bad approximations for x € {1,2,3}. The heuristic is

briefly motivated and then directly presented in mathematical and source code form
(Matlab/Octave). Its effectiveness is visually illustrated by some plots.

1 Motivation

It can be observed, that the following approximation of 7(z) and Li(z) = [, 1/log(t) dt holds
well for x up to some thousands (H, is the z-th harmonic number and v is Euler’s constant):
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Figure 1: Observe how [I.(x) fits m(x) and how [, (z) fits Li(x)
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Figure 2: Observe how [.(x) fits m(x) and how [,;(z) fits Li(x)
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However, the above relationship does not hold for larger values of z, as 7(z) and Li(x) appear
to move towards the inner region defined by I.(z) and I,;(z). In an attempt to receive a better
approximation for larger values of x, a convex combination of I.(x) and I, (x) is proposed.

2 Approximation heuristic for 7(x)

The approximation heuristic for w(x) is as follows:
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H, = i ! (Harmonic number)
purll

and

v =0.577... (Euler-Mascheroni constant)

e=2.718... (Euler number)

m=3.141... (Circle constant)
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A computational effective implementation is as follows (approximating H, by log(z) + )

function main
for x=4:100

end

% Calculate prime counting function Pi(x)
Pi(x) = size(primes(x),2);

% Calculate approximation heuristic A(x)
H = log(x) + 0.577; h = 1/H;
A(x) = xx((h+0.577)/(H-1.569)+(0.423-h)/(H-1.813))-2.718;

% Plot Pi(x) [BLUE] and its Approximation A(x) [RED]
plot (Pi);hold on; plot(A,’r’); legend(’Pi(x)’,’A(x)’,’Location’,’SouthEast’);hold off

3 Graphical illustration of 7(x) approximation by A(x)

Figure 3: Plot of w(x) (blue) and A(z) (red) for x = 4, ..., 100.
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Figure 4: Plot of 7(z) (blue) and A(z) (red) for x = 4, ..., 500.
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Figure 5: Plot of m(z) (blue) and A(x) (red) for z =4, ..., 1000.
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Figure 6: Plot of 7(z) (blue) and A(z) (red) for x = 4, ..., 10000.
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Figure 7: Plot of 7(z) (blue) and A(z) (red) for x = 4, ..., 100000.
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Figure 8: Comparison with Li(z) — 3 Li(y/z) for z = 4, ..., 100.

3[] T T T T T T T T T
—— Pi(x)
Alx]
pg Lifx)-0.5Lifsqrt(x)
204 ]
15} :
10} ]
5L i
D | | | | | | | 1
0 200 30 40 50 B0 7O 80 S0 100

Figure 9: Comparison with Li(z) — 3 Li(y/z) for « = 500, ..., 1000.
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Figure 10: Comparison with Li(x) —
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Figure 11: Comparison with Li(x) —
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LLi(y/z) for z = 48000, ..., 50000.
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Li(y/x) for x = 990000, ..., 1000000.
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Figure 12: Comparison with Li(z), Li(z) — $Li(y/z) and x/(log(z) — 1).
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Figure 13: Comparison with Li(z), Li(z) — $Li(y/z) and z/(log(z) — 1).
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