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Abstract: This article discusses the motion of particles in multiple time dimensions and in
multiple space dimensions. Transformations are presented for the transfer from one inertial
frame of reference to another inertial frame of reference for the case of multidimensional time.
The implications are indicated of the existence of a large number of time dimensions on
physical laws like the Lorentz covariance, CPT symmetry, the principle of invariance of the
speed of light, the law of addition of velocities, the energy-momentum conservation law, etc.
The Doppler effect is obtained for the case of multidimensional time. Relations are derived
between energy, mass, and momentum of a particle and the number of time dimensions in
which the particle is moving. The energy-momentum conservation law is formulated for the
case of multidimensional time. It is proven that if certain conditions are met, then particles
moving in multidimensional time are as stable as particles moving in one-dimensional time.
This result differs from the view generally accepted until now [J. Dorling, Am. J. Phys. 38, 539
(1970)]. It is proven that luxons may have nonzero rest mass, but only provided that they move
in multidimensional time. The causal structure of space-time is examined. It is shown that in
multidimensional time, under certain circumstances, a particle can move in the causal region
faster than the speed of light in vacuum. In the case of multidimensional time, the application
of the proper orthochronous transformations at certain conditions leads to movement
backwards in the time dimensions. It is concluded that the number of different antiparticles in
the k-dimensional time is equal to 3* — 2%, Differences between tachyons and particles moving
in multidimensional time are indicated. It is shown that particles moving faster than the speed
of light in vacuum can have a real rest mass (unlike tachyons), provided that they move in
multidimensional time. © 2012 Physics Essays Publication. [DOI: 10.4006/0836-1398-25.3.403]

Résumé: L’article traite du mouvement des particules dans un temps et espace multi-
dimensionnels. Les transformations de référentiels inertiels d’un systéme a I'autre sont déduites
dans un temps multidimensionnel. Les conséquences de I’existence d’un plus grand nombre de
dimensions temporelles sur les lois physiques sont démontrées: sur I'invariance de Lorentz, sur
la symétrie CPT, sur le principe de l'invariance de la vitesse de la lumicre, sur la loi
d’accumulation des vitesses, sur la loi de conservation de 1’énergie-impulsion etc. L’effet
Doppler est obtenu dans un temps multidimensionnel. Les corrélations entre I’énergie, la
masse, 'impulsion d’une particule donnée sont déduites, ainsi que le nombre des dimensions
temporelles dans lesquelles cette particule se meut. Formulée a été la loi de conservation de
I’énergie-impulsion en cas de temps multidimensionnel. Il est démontré que si ont été satisfaites
certaines conditions, les particules qui se déplacent dans un temps multidimensionnel sont tout
aussi stables que les particules se déplagant dans un temps unidimensionnel. Se résultat tranche
avec le point de vue adopté jusqu’a présent [J. Dorling, Am. J. Phys. 38, 539-540 (1970)]. Il est
démontré que les luxons peuvent avoir en repos une masse non €gale a zéro, mais a la
condition qu’ils se meuvent dans un temps multidimensionnel. La structure causale de
I’espace-temps est étudiée. Il est démontré que dans un temps multidimensionnel, dans
certaines conditions, une particule peut se mouvoir dans le champ causal plus rapidement que
la vitesse de la lumiére dans du vide. En cas de temps multidimensionnel, ’application des
propres transformations orthochrones mene, dans certaines conditions, a une marche en
arriére dans la mesure du temps. Nous atteignons la conclusion que le nombre des différentes
antiparticules dans un temps k-dimensionnel est égal a (3 — 2%). Les différences entre les
tachyons et les particules se mouvant dans un temps multidimensionnel sont montrées. Il est
démontré que les particules qui se meuvent plus rapidement que la vitesse de la lumiére dans
du vide peuvent avoir une masse réelle en repos (a la différence des tachyons), mais a la
condition qu’elles se meuvent dans un temps multidimensionnel.
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I. INTRODUCTION

The concept of multidimensional time has been
introduced and has become more important in contem-
porary physical theories.' > According to the inflation
theory of the big bang, the visible universe is only a small
part of the multiverse, and it is possible that many other
universes have emerged in which conditions are entirely
different from the conditions of our universe.® Up to now,
no physical principle or law has been found that
determines the possible number of spatial dimensions
and of temporal dimensions (or limits the number of
spatial and temporal dimensions to a value which differs
from the observed number in our universe). Due to this
fact, the number of spatial and temporal dimensions in
our universe is more probably a result of chance than a
result of unknown processes acting during the initial
development phases of the universe. Through the
anthropic principle it is explained that we live in a
universe with more than three dimensions of space (or 10
dimensions, as predicted by M-theory) but only one
dimension of time. Therefore, in the other universes that
are part of the multiverse it is quite possible that space
and time have entirely different numbers of dimensions
than the dimensions in our universe. We can assume the
existence of universes having two, three, four, or more
temporal dimensions. The relation between the anthropic
principle and the number of spatial and temporal
dimensions is considered by Tegmark.’ Here we do not
discuss this matter.

As shown in some studies,'? it is possible to
formulated physically meaningful theories with two time
dimensions. Bars noted that “two-time physics could be
viewed as a device for gaining a better understanding of
one-time physics, but beyond this, two- time physics
offers new vistas in the search of the unified theory while
raising deep questions about the meaning of spacetime.”?
For systems that are not yet understood or even
constructed, such as M-theory, two-time physics points
to a possible approach for a more symmetric and more
revealing formulation in 11 + 2 dimensions® that can lead
to deeper insights, including a better understanding of
space and time. The two-time physics approach could be
one of the possible avenues to construct the most
symmetric version of the fundamental theory.'-

As noted by Tegmark, “Even when m > 1, there is no
obvious reason why an observer could not, none the less,
perceive time as being one-dimensional, thereby main-
taining the pattern of having ‘thoughts’ in a one-
dimensional succession that characterizes our own reality
perception. If the observer is a localized object, it will
travel along an essentially one-dimensional (timelike)
world line through the (» + m)-dimensional space-time
manifold.”>® Thus it is fully reasonable to ask the
question “What relations, effects, and features would

# Two-time physics introduces one additional space dimension and
one additional time dimension.

® Here m is the number of time dimensions and » is the number of
space dimensions.
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exist if we examined an object moving in multidimen-
sional time?”

In order to find experimental evidence for the
existence of particles moving in multidimensional time,
it is necessary to know their physical properties. As noted
by Recami in another context—the experimental search
for the hypothetical particles named tachyons—“it is not
possible to make a meaningful experiment without a good
theory.”’

The main objective of this article is to generalize the
special theory of relativity (STR) for the cases of
multidimensional time and multidimensional space. There
is a need to clarify not only the mathematical but also the
physical meaning of multidimensional time.

In this respect, the study raises several basic tasks:

e deriving transformations for the transition between
inertial frames of reference for the case where the
number of time dimensions is greater than one;

e establishing the implications arising from the
existence of a large number of dimensions of time
on physical laws—the Lorentz covariance, CPT
symmetry, the constancy of the speed of light, the
law of addition of velocities, the energy-momentum
conservation law, etc.;

e deriving the Doppler effect for the case of
multidimensional time;

e examining the causal structure of space-time;

e deriving formulas for momentum and energy for
the case of more than one time dimension;

e establishing the exact relationship between the
energy of a particle and the number of time
dimensions in which the particle is moving;

e formulating the energy-momentum conservation
law;

e considering antiparticles in multidimensional time;
and

e distinguishing between tachyons and particles
moving in multidimensional time.

The problem with the generalization of STR for the
case of multidimensional time is still not sufficiently
studied and is only briefly mentioned in different studies
concerning the topic. The consequences on physical laws
of the existence of multidimensional time have also not
been well studied. Up to now there has been no
distinction between tachyons and particles moving in
multidimensional time.

Il. GENERAL CONSIDERATIONS

Important for this study is following question: Are
there physical arguments and grounds allowing general
conclusions concerning the dimension of time? Related to
this question is another: Is Minkowski space-time real
and should we accept time as the fourth dimension, given
the fact that STR can be equally formulated in a three-
dimensional or a four-dimensional language? As noted by
Petkov, of course, we have to solve this issue before
seriously discussing a theory involving a large number of
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dimensions (of space or of time).® This question is
important because later in this article, additional time
dimensions are introduced. The arguments applying to
one time dimension will be valid for two, three, or more
time dimensions—i.e., they will be applicable also to these
cases. It has been shown that the block universe view,
regarding the universe as a timelessly existing four-
dimensional world, is the only one that is consistent with
special relativity.” Some arguments have been made in
favor of the statement that special relativity alone can
resolve the debate on whether the world is three-
dimensional or four-dimensional. If the world were
three-dimensional, the kinematic consequences of special
relativity—and, more importantly, the experiments con-
firming them—would be impossible.”'® Therefore, time is
indeed an extra dimension and it is fully justified and
reasonable to set and examine the issue of the dimen-
sionality of time.

The interval in Minkowski space-time is an invariant
and is given by the expression ds” = ¢*dr* — dx* — dy*> — dz°.
But instead of the four-dimensional space-time of Min-
kowski, we can consider a general five-dimensional space-
time (dx, dy, dz, cdt, d¢). Here the fifth dimension d¢ reflects
the proper time cdt, or the proper length d/, or is equal to 0.
(In Ref. 11 a similar model is considered, but the fifth
dimension corresponds to the proper time cdty.) By
definition, cdty = Vds® if ds* > 0 and dly = V—ds? if ds’
< 0. Therefore, if ds* > 0, the fifth dimension d¢ = cdl, is
spacelike; and if ds* < 0, then dé = dl, is timelike. If ds* =0,
then d =0 is lightlike. If ds®> < 0, then d¢ (or d&/c) can be
regarded as a second, additional time dimension. It should
be noted that the fifth dimension is invariant. If the quantity
d¢ is not invariant, then the time is not one-dimensional in
the usual sense (see Section IV). (A five-dimensional model
of space-time is used in Sections X and XI.)

The number of time dimensions we will denote with
k, and that of space dimensions with n. The time
dimensions themselves we will denote with x; = ctq, x, =

cty, ..., X = cty, and the space dimensions with x;,,
X425 =+ o5 Xietn-

The metric signature in the case of k-dimensional
time and n-dimensional space will be
(+,4+,.-.s+,—,—,...,— ). Therefore, the (n + k)-

dimensional interval ds, x 1s given by the expression ds>
=c%di} + -+ dfy — - —dx}, . It is clear that the (n+ k)-
dimensional interval ds,,, is invariant.

In the case of multidimensional time, the velocities of
a particle according to different time dimensions cannot
be defined as a set of partial derivatives of the
independent variables ¢4, #, ..., #;. Indeed, the movement
of a pointlike particle in the general case can be presented
as a one-dimensional (timelike) world line in (k + n)-
dimensional space-time. Let us set r = r(¢t1, 5, ..., l1);

¢ For the purpose of this article, we will use the timelike convention
for the metric signature (i.e., we choose positive signs for the squares
of timelike dimensions and negative signs for the squares of
spacelike dimensions).

405

accordingly, dr = (dr/dt,)dt, + (9r/dty)dtr + - - - + (9r/dt)dty,
where r = (X441, Xi42, - -+ Xign) 18 the radius vector,
defining the position of the particle. Then we have x, =
Xn(l], t, ..., [k) and dx,, = (axn/al])dt] + (axn/alz)dlz + -
+ (9x,/dt;), where n=k+1, k+2, ..., k+n. In the general
case, each one of the functions x, = x,(fy, t5, ..., #) must
be represented by a k-dimensional hypersurface in the (k
+ 1)-dimensional space-time ¢y, t,, ..., t, X,—that is, it
will not be presented as a one-dimensional world line.
Therefore, the functions x, = x,(¢|, f2, ..., t) could not
describe the movement of a pointlike particle in the space-
time. Each one-dimensional world line in the (k + 1)-
dimensional space-time 1y, 5, ..., I, X, is defined through
a system of k equations: Fy, (1, ta, ..., tr, X;) =0, Fp, (¢4,
tr, ...y g, Xn) = 0, ey Fkn(lls tr, ooy I, Xn) =0. (During
the uniform and rectilinear movement of the particle,
which can be presented through a straight world line, the
functions Fi,, F,, ..., Fy, are linear.) From here we can
derive the equalities x,, = f1,(t1)) = f2(t2) = -+ = fiy(ts),
where f1,, 2. - - ., fiy are different (linear) functions of the
variables 1, t,, ..., t, respectively. Thus, we have dx, =
fé’T(lg)dlg, where 0 =1, 2, ..., k. For the case where the
particle moves along a straight world line, the derivatives
1,0, fo,(02), -, f,'éﬂ(lk) are constants which define the
velocities of the particle in relation to t, 1, ..., I,
respectively. (We will find that fén(tg) =dx,[dtg=Vy,; see
the considerations at the end of Section II.)

In order to determine the velocities of a given particle
for the case of multidimensional time, we are going to use
following considerations. Let us consider a particle
moving uniformly and rectilinearly with velocity U in
relation to the frame of reference K. Let us assume that at
the moment T = (¢4, 15, ..., t), the location of this particle
is defined by the radius vector r = (Xjq1, Xia2s -« o> Xign)s
and at the moment T + dT = (¢; + dt1, to + dto, ..., t; +
dt,), the location of the particle is defined by the radius
vector r + dr = (X4 + dXip1, Xpyo + AXpioy « s Xjyn +
dxi1,). In the case of multidimensional time we will have
dT X U = dr, where dT = (dt;, dt», ..., dt;) and dr =
(dxpy1, dXpyo, ..., dxi,). As can be easily seen, the
velocity U is a k X n matrix having elements ug, (0 = 1,
2, L kin=k+1,k+2, ..., k+n),ie., U=ugylx, Let
us denote

u1,7

Uzy
u, = . ’

Ugey

where n=k+1,k+2, ..., k4+n. Then we have dT X u, =
dx,, that is:

dt dty dty

an D e+ =1, 1
dx, tn dx, tag oot dx, i ()

It is clear that if for a given J (1 < § < k) we have dt;
= 0, then the components of the velocity wusu1),
Us(et2)s - - - Usemy Will be undefined quantities. If for a
given p (k +1 < p < k + n) we have dx, = 0, then it
follows that uy, = us, = - = uz, = 0.
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Let us set ug, = Ag,(dx,/dty), where 215:1 Jgy=1andn
=k+1,k+2, ..., k+n Let us further denote

k
dT = |y _di; >0,
0=1
k+n
dx = | > dx; >0,
n=k+1
dty = opdT,
dxy = y,dX.
Then we have ij:] o} = 1—that is, |op| < 1—and Zf,i/?ﬂ
7y = l—that is, [y, < 1.
Let us set
k
2
0=1
k4n
Up = Z ”12?11 T
n=k+1
k+n k
_ 2
v=\ 353,
n=k+1 0=1
For the velocity U we have
k+n k
AP o
n=k+1 0=1
dx k+n k (lo;ﬂn) 2
AP g
dT'\|, G, =\ 0

We will show the conditions for the velocities U,, Uy,
and U. These conditions are imposed due to physical
considerations (see also Subsection IX.A). When the time-
axes basis of the frame K is changed (these are the so-
called passive linear transformations) and the value of
dT” is still the same, then the quantity dX>=cdT> - ds?,
remains the same as well. Likewise, when the basis of the
space axes of the frame K is changed, then the values dX?
and *dT* = dsy . +dX * remain the same. It is clear that
the choice of time axes of the frame K can be made
independently from the choice of space axes of the frame
K, and vice versa (see also Section VII and Subsection
IX.A). Thus, when these transformations are applied,
some physical quantities (in our case the velocities) must
remain invariant.

Since in the expression for the velocity U, all the time
axes of the frame K are represented in the denominator

(dT = /S b_, di2), we accept that the velocity U, is

Phys. Essays 25, 3 (2012)

invariant when a change of the time-axes basis of the
frame K is made. Thus, the velocity U, can be presented
as U, = v,(|dx,|/dT). Here y, > 0 is a parameter not
depending on the quantities dty, respectively on the
numbers oy (0 =1, 2, ..., k).

Since in the expression for the velocity U, all the
space axes of the frame K are represented in the

numerator (dX = 1/21;2 41 dx}), we accept that the

velocity Uy remains invariant when the space-axes basis of
the frame K is changed. Thus, the velocity Uy can be
presented as Uy = y4(dX/|dtg|). Here yg > 0 is a parameter
not depending on the quantities dx, and consequently on
the numbers y, (m=k+1,k+2, ..., k+n).

From these considerations we can conclude that the
velocity U is invariant when the space-axes basis and the
time-axes basis of the frame K are changed—i.e., the
velocity U can be presented as U =y(dX/dT). Here y > 0
is a parameter not depending on the values dt and dx,,
and consequently on the numbers oy and y, [0 = 1,
2, ... kin=k+1,k+2, ..., k+n;see Eq. (2)]. Indeed,

k+n ) dxX k+n ) k 5
Z U, = aT Z Ln¥y = Z Uy
0=1

n=k+1 n=k+1

k+ k .
Let us set y = \/anzﬂ 12y = \/29:1(75/“%;)- Since the
values y, and y, do not depend on the numbers ay,

k+n 2.2 QG
> k1 ZnVy- Since the

values oy and yy do not depend on the numbers y,,

neither does the parameter y =

neither does the parameter y = />5_, (y2/22). Thus, the

parameter y does not depend on «y or yx, and
consequently does not depend on the values dty or dx,,.

Let us assume that o =, = - - - = a = 1/v/k (that is,
dti=dty=--=dt;, =dT/Vk > 0) and i1 = fpj2=""=
Shetn = l/ﬁ (that iS, dkar] = dkarz == kaJrn = dX/\/ﬁ >

0). Let us apply a proper or improper rotation of the time
axes of the frame K in the hyperplane of time. The
transformation under consideration can be presented
through the orthogonal matrix A = [ap]ixk, belonging
to the orthogonal group O(k, R), where R denotes the real
numbers field (see also Section VII). (We have A" = A",
det(A) = +1. Here A" denotes the transpose of the matrix
A.) The new time axes, obtained after applying this
transformation, we will denote with ), (0 =1, 2, ..., k).
Since S5, (#))* = S5_, 02 = 1, we have

/
%y o]

7
%) o0

=AX| 1,

o o

I k

that is,
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k
oc(/, = Zaegag = ﬁzagg. (3)

s=1

Since the velocity U, remains invariant when the
time-axes basis is changed for the frame K, the expression
215:1(19,,/059)2 is constant when there is a change in the
values of ap—that is,

S-S g o

0=1 0=1

where y, is a parameter not depending on the numbers oy
O=1,2,...,k).

Let us consider the orthogonal matrix B = [bg, lixx,
belonging to the orthogonal group O(k, R). Taking into
account Eq. (4), we likewise have

;»_g/” _ Zb();%m \/— Zbo‘ﬂw (5)

o I—

From Egs. (3) and (5) we can define the values i{;n:

2 = Z Zae otbgy Ay Z Zao Doy (©6)

v=1 ¢=1

Let us apply a proper or improper rotation of the space
axes of the frame K in the hyperplane of space. The
transformation under consideration can be presented
through the orthogonal matrix H = [/i,],x,, belonging
to the orthogonal group O(n, R). Here n =k + 1, k +

wk+nmrn=k+1, k+2, ..., k+n The new space
axes, obtained after applying this transformation, we will

denote with x; (11 k+1,k+2, ..., k+n). Since Zf;iZH

2 k+
(/'/7/) Zn ZH 7,7 1, we have (/k+1’ Ths2s " Hhon = Xkt 1s
Niet2s =+ s Niern) X H—that is,
k+n k+n
7;7 Z /nhnn = f Z hnn (7)
n=k+1 n=k+1

Since the velocity Uy is invariant when the space-axes
basis of K is changed, the expression Z,ﬁ}; 11 (4, /,])
remains constant when the values of y, are changed—that
18,

k+h k+n k+n
Z (A(/)/V,X,;/)Q = Z ( (/)11%)1)2 :E Z ;“(/)n = V(Z) (8)
n=k+1 n=k+1 n=k+1
Here 7, is a parameter not depending on y, (n=k+1, k+

. k+n).

Let us consider the orthogonal matrix Q = [g,,].xns
belonging to the orthogonal group O(n, R). Taking into
account Eq. (8), we likewise have

k+n 1 k+n

Z ;“é)po%n :7% Z /’Lépq/’ﬂ' )

p=k+1 p=k+1

"
)\.Hn “'1

From Egs. (6), (7), and (9) we can define the values
D’
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k k k P
y +n a()gfxgb()v/lvp/(pQP'?
Yo — Tktn Z ZOC—
p=k+1 v=1 ¢=1 !
Z Xn m
n=k+1
k+n
Z ZZGG boy /. vppn
_p= k+1 v=1 ¢=1
- k+n (10)
>
n=k+1

Here the values 4,, are defined provided that oy =1 Ik,
xn = 1/3/n are fulfilled. Since the parameter y does not
depend of the numbers oy or y,, we can set ap=1/ vk, An=
1/y/n. In this case, we have

k+n k y) 2
=250 -

n=k+1 6=1

[See Eq. (2).]

Let us set A, = 29 | s M=k 41, k42, k+n [see Eq.
(10)]. In the general case (i.e., at arbitrary values of o), and
Z%y)» we will have

dT X UM = dr,
where
" "
UN = [ A Aoy dX
- u@n k% 7u(97] Ay dT
K n n

[See Egs. (1), (3), (7), and (10).] If Z(, | Ay F Zo | Aon

(thatis, A # I, n=k+1,k+2, -, k+n), then
A” _ /1(/)/’1 //d){sé ) /{(/)/,7)(ng
Hon A)ojdT oapdT

Let us denote dx,/dty = ugp,/Aoy = V. It is clear that
dxy="Vi,dty ="V, dty="---=Vy, dt;. Let us denote V=
(dr/dty), where dr = (dx;y1, dxiio, - .., dxii,). Then we
have Vg = [Vg(k+1), Vg(k+2), Ceey V(.)(/(Jrn)]. We will say that
Vy is the velocity of the particle under consideration in
relation to the frame K, defined in relation to the time
dimension fg. Let us set Vy=||Vg|| = dX/|dtg| = Ug/ye > 0.
Then the equation |dt|/|dt.| = V|/V is fulfilled, where 0,
¢=1,2,...,kand dX # 0.

Let us set u = dX/dT = UJ/y. We will say that u is the
total coordinate velocity of the considered particle in
relation to K. It is easy to see that

1 o
B k 1
||
n
> Vi
n=1

We will say that a particle is at rest relative to the
frame Zf reference if EﬁiZH dx; =0and V=0 (0 =1,
2, ..., k).

u =
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We assume that all time dimensions we are going to
consider—t,, 5, ..., t; (or t, 7, . . .)—are homogeneous
(i.e., all moments of a given time dimension are equal),
and that space is homogeneous and isotropic (i.e., all
points and all directions of the space are equal).

Ill. TRANSFORMATIONS FROM ONE INERTIAL
FRAME OF REFERENCE TO ANOTHER FOR THE
CASE OF (n, k) = (3, 2)

A. Derivation of the transformations

First, we will consider case with (n, k) = (3, 2), i.e.,
three space dimensions and two time dimensions. The
three space dimensions we will denote with x, y, z. The
first time dimension we will denote with ¢, and the second
with .

The interval in the five-dimensional space-time under
consideration is given by the expression ds%i2 = 2dr +
*di* — dx* — dy* — dz°. The interval ds; , is invariant.

Let us consider the two inertial frames K and K’
(moving uniformly and rectilinearly to each other). We
assume that the velocity of the frame K’ against K, defined
in relation to the first time dimension ¢, is equal to the
vector v, and that defined in relation to the second time
dimension 7 it is equal to the vector w (see Section II).

Let us denote with x, y, and z the axes of the frame K,
and with x’, y’, and z’ the axes of the frame K’. The two
time dimensions defined in the frame K we will denote
with ¢ and 7; in the frame K’, with ¢ and 7’. Let us denote
with point Q the origin of the spatial frame of reference K
(thatis, x=0, y=0, z=0), and with point Q' the origin of
the spatial frame of reference K’ (thatis, x'=0, ' =0, z' =
0). We choose the frames K and K’ in such a way that
point Q' is moving along the axis x in the direction of
increasing values of x. Further, we can choose the axes of
the frames K and K’ in such a way that for an observer
connected to K, the axis x coincides with the axis x’; the
axes y and z are parallel to the axes y’ and z’/, respectively;
and the homonymous axes have the same direction. As
the initial moment we accept (z, t'), (t, t’), where point Q’
coincides with point Q (i.e., at the moments t =t =0 and
1 =1 =0, point Q' = point Q). Having all these
conditions fulfilled, we can say for K and K’ that they are
in a standard configuration. Let us set v=(v, 0, 0) and w=
(w, 0, 0), where (v, 0, 0) are the respective projections of
the velocity vector v on the axes x, y, z of the frame K and
(w, 0, 0) are the respective projections of the velocity
vector w on the axes x, y, z of K. Let us assume that a
particle has coordinates (¢, 7, x, y, z) in K and (¢, 7/, x', y’,
z)in K'.

Let us denote x| =ict, X, =icT, X3 =X, X4 =), Xs =2
and x| =ict’, xj =ict’, xy=x', x; =)', x;=z". In order to
derive the transformations between K and K’, we will use
the same approach as for the Lorentz transformations in
a more general case, the so-called Lorentz boost in an
arbitrary direction (transformations between two inertial
frames of reference whose x, y, z axes are parallel and
whose space-time origins coincide, i.e., Lorentz transfor-
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mations with no rotation)—see, for example, Ref. 12.
First we will consider a proper rotation in the plane x;-x;
through angle «, where the other three dimensions (x3, x4,
Xxs) remain invariant. This transformation is described by
the matrix

cose sina 0 0 O

—sinoe cosa 0 O O

R = 0 0 1 0 0
0 0 0 1 0

0 0 0 0 1

Let us denote with x;z and x,g the new axes which
arise from the rotation R of the axes x; and x,
respectively. Then we will consider a proper rotation in
the plane x;z-x3 through angle ¢, where the other three
dimensions (x,g, X4, X5) remain invariant. This transfor-
mation is described by the matrix

cosp 0 sing 0 O

0 1 0 00

L=| —singp 0 cosep 0 0
0 0 0 1 0

0 0 0 0 1

In order to derive the transformations between K and
K', we will consecutively apply the operations R, L, and
R

First, we will apply the R transformation. As can be
easily seen, tan a = x/x;. If x{ =0, then x3 =—i(v/c)x; =
—i(w/c)x, > 0 and thus tan o = v/w. Here the angle « is a
real number. Let us set = 1/1/(c2/v?) + (2/w?), { =1/
V1 —p% (We will have 0 < f < 1 and { > 1; see also
Section IV.) We have cos o = cfi/v, sin oo = cfi/w.

It is clear that if v=0, then w=0, and vice versa. We
will consider more specific cases in relation to the value of
o. Let us assume that « = bn, where b =0, =1, £2, ...
(i.e., the motion occurs only along the axis x; = ict). It is
clear that if v # 0, then w= *o. If we assume that o =7/2
+ br (i.e., the motion occurs only along the axis x, = ict),
it is clear that if w # 0, then v = *oo.

We have accepted that point Q' is moving in the
direction of increasing values of x, which means that if x’
=0, then x=vt=wrt > 0. We have the following: If & € [0;
7/2], then t > 0 and t > 0, and therefore v > 0 and w > 0;
if o € (n/2; ©], then ¢t < 0 and 7t > 0, and therefore v < 0
and w > 0; if o € (%; 37/2), then t < 0 and 7 < 0, and
therefore v < 0 and w < 0; if o € [37/2; 27), then ¢ > 0 and
Tt < 0, and therefore v > 0 and w < 0.

Let us now apply the transformation L. It can be

easily seen that tan ¢ = x3/x1x = x3/4/x} + x3. Further,

if x5 =0, then x3 =—i(v/c)x; =—i(w/c)x, > 0. Therefore,
we have tan ¢ = —iff. Here the angle ¢ is an imaginary
number. We have sin ¢ = —ifi{, cos ¢ = {. The signs in
these expressions are chosen so that when v — 0 and w
—0,wehavet’ — 1,7 - X > x, ) —y, 2 — z
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Finally, let us apply the transformation

cosa —sinoe 0 0 O
sinz cosa O O O
R'=| o0 0 1 0 o],
0 0 010
0 0 0 0 1
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which is the inverse of the first transformation R. The matrix for the transfer from the coordinates x;, x», X3, X4, X5 to

/ / / / 1
X1,X3, X3, X, X5 is equal to the product

1+ (cos ¢ — 1)cos?
(cos @ — 1)sinacosa

R'XLXR= —Cos o sin @ —sin o sin @
0 0
0 0

(cosp — l)sinocosa cosasing 0
1+ (cos @ — 1)sin®

0

sinasing 0 0
cos ¢ 0 0

0 1 0

0 0 1

Let us express sin a, cos o, sin ¢, cos ¢ through v/c and w/c and go back to the old coordinates ¢, 1, x, y, z, t/, 7/, X',

y', z'. Then finally we obtain the following expression:

¢ 2 [ 2 1 »
1+(C—1)§ﬁ (C—l)mﬁ —;ﬁg 0 0
t 2 2 1 t
v (=)= 1+(-D=p =L 0 0=
v |- W w w N (12)
y’ Cz o) C2 2 y
’ __ﬂz: __ﬁC C 0 0
z v w z
0 0 0 1 0
0 0 0 0 1

We can easily prove that if y=0 and w=0, then ¢' =1,
v'=1,x'=x,y =y, z/ =z. The transformations in Eq. (12)
belong to the group of proper orthochronous transfor-
mations, which we will denote with /\L_’ (see Section
II1.C). The transformations in Eq. (12) are equivalent to
the Lorentz transformations as t — 0 and accordingly as
w — oo,

Let us set ¢ = i®. Taking into account the fact that
cos ¢ =cos(i®) =cosh @ and sin ¢ =sin(iP) =i sinh @, we
obtain cosh @ = { and sinh ® =—f(.

In the plane of time #'-7’, one can apply a proper or
an improper rotation. These transformations present
change of the time-axes basis of the frame K (the so-
called passive linear transformation). The orthogonal
matrix M for the transfer from the old coordinates ¢/, 7/,
x', y', ' to the new coordinates ¢{, #;, x”, y", z", is

cos o sine 0 0 O
—esing ecosg 0 0 O
M = 0 0 1 0 0],
0 0 0 1 0
0 0 0 0 1
where ¢ = +1 (proper rotation) or ¢ = —1 (improper

rotation, rotary reflection). The following equations are
fulfilled: (¢])* + (&5 = ('Y + @) x" =X, y" =y, 2" =z
It is clear that for these transformations, the five-
dimensional interval ds}, is invariant. If a proper or
improper rotation is applied in the plane of time -7/, the

transformation D between K(¢, 7, x, y, z) and K"(¢], #;, x”,
y”, z”) is obtained by multiplying the matrix A from Eq.
(12) for the transfer from K to K’ by the matrix M; that is,
D=M X A.

Let us apply a (proper or improper) rotation in the
plane #’-t’. We obtain the equation (dl{’)2 + (dt] 2= (dr')?
+(dt')*. Here dt] = dt' cos o +dt' sin o, dt} =—edt’ sin ¢ +
edt’ cos g, where e = *£1. It is easy to prove that if dt] =
dty > 0, then ¢ =0’ — &(n/4) + 2bn, where tan o’ =d7’/dt’, b
=0, £1, £2, ... Since the vector dT’' = (dt’, dt’) makes an
angle o with the axis ¢, the axis f{ makes an angle ¢ with
the axis ¢/, and the axis ¢; makes an angle ¢ + &(n/2) with
the axis 7, the vector dT’ makes an angle o' — o = &(n/4) —
2bm with the axis ] and an angle o’ — [0 + &(n/2)] =—¢(m/4)
— 2bm with the axis 75. The size of the angle between the
vector d'T' and each of the axes ¢{ and ¢] is equal to n/4
(see Section VII).

Let us consider two events which are causally
connected, i.e., for which As3, = A* + At — Ax®
—Ay? — AZ? > 0 (see Section 1V). From Eq. (12) it is seen
that if Az =0,Ax =0,Ay =0,Az =0, then At’ = ({ — 1)(c?/
yw)f?At and Ax’ = — (¢*/w)B*(At. Thus, if two events are
causally connected and if in an inertial reference frame K
the coordinates of these events, defined according to x, y,
z, t, coincide, then in another inertial frame K’ the
coordinates of the events according to x’, )/, z/, ¢’ cannot
coincide. In this case it is possible that A¢’ # 0 and thus
Ax" # 0 (provided that At # 0 and w # *©).
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B. Backwards motion in the two-dimensional time

In STR, the condition s> = ** —x* —y? — 2> >0, 1 >
0 cannot be changed through proper orthochronous
Lorentz transformations LL into the condition s* > 0,
< 0. If it could be done, then on account of continuity one
could also have ¢ = 0—which is impossible if s> > 0. For
this reason, the region s> > 0, ¢ > 0 (inside of the positive
light cone) is called the absolute future. Similarly, the
region s° > 0, 7 < 0 (inside of the negative light cone) is
called the absolute past relative to ¢ = 0. These
considerations are not valid for the case of multidimen-
sional time. For example, for the case k =2, the condition
s, =+ 7 - x" -y —22>0,1>0,7>0can be
changed through proper orthochronous transformations
Al (see Subsection II1.C) into the condition 53,>0,1<
0, T < 0, the condition s%yz >0,t<0,7t>0, or the
condition sg‘z >0,1>0, t<0. Indeed, since ¢ and t are
independent variables, it is possible that following
conditions are simultaneously fulfilled: 7 = 0, © # 0, ¢*7*
— x? — y*> — 22 > 0. Thus the equality 7 = 0 does not
contradict the inequality s3, > 0. Due to the same
considerations, the equality T =0 also does not contradict
the inequality s3, > 0.

The application of the transformations in Eq. (12),
which belong to the group of the proper orthochronous
transformations Af, at certain conditions leads to
movement backward in the time dimensions ¢ and 7. Let
us assume 52, = AL + AT — Ax* — Ay* — Az* > 0. We
accept that Ax > 0, Ay = 0,Az = 0, At > 0,At > 0.
According to Eq. (12), following equality will be fulfilled:

yw

6‘2 62
At = {1 + (¢ - 1)v232]m+ (C—1)— At
—%ﬁchx. (13)

We assume that v > 0. Further, we will examine for
which values of the velocities v and w the condition At <
0 is fulfilled.

First, we will assume, that At =0. Since As3, > 0, we
will have Ax < cAt. Let us set Ax = cAt¢. In this case the
inequality A7’ < 0 is equivalent to the inequality

At

At

If we set r=c¢/v, then we obtain a quadratic inequality
in relation to the parameter r. Since in the expressions for
p and ( there are two independent variables ¢/v and ¢/w,
for which the only restriction imposed is (¢/v)> + (¢/w)* >
1 (see Section IV), we can set (¢/v)? + (¢c/w)* = const > 1
and therefore f = const < 1 and { = const > 1. Further,
we can find the first and second derivatives of the function
fr) = (C — D*? — p*Cr + 1. Then we discover that the
function f{(r) has a minimum at r = {/2({ — 1) and { > 1.
This means that at a fixed value of 1 > f > 0 (and
accordingly of { > 1), the function f{r) reaches its
minimum at r = {/2({ — 1). Let us set r =c¢/v ={/2({ — 1)
and { > 1. According to the inequality in Eq. (14), we
have

¢ 2 C
1+(C—1)§ﬂ —;ﬁ{<0. (14)
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—pP 44 —4<0. (15)

Taking into consideration that { =1/+/1 — 2, we find
that at § — 1, the expression in Eq. (15) tends toward —oe.
Therefore, if r=c/v={/2({ — 1) and f — 1 (thatis, { —
and r — 1/2), then At’/At — —=. Further, if f = (2v/2)/3
(that is, { =3 and r = 3/4), then the expression in Eq. (15)
becomes equal to 0. It is easy to find that if r€[1/2; 3/4),
then Eq. (14) is fulfilled and therefore A¢’/At < 0, which
we wanted to prove. If r = 3/4, then A¢'/At = 0—that is,
At' =0—and if r — 1/2, then At'/At — —o—that is, A’ —
—o0

According to Eq. (12), the following equality will be
valid:

/ ? 2 ¢ 2
—iﬂzmx. (16)
w

Since At =0 and Ax = cAt, we have

/ o o
A= - -y C]At.
ww w
Let us assume that w > 0. It is easy to prove that if ¢/v={/
2({ 1), then ({ — 1)(c*/yw)B* — (¢/w)B*( < 0. Therefore, in
this case we have At" < 0. If § — 1 and accordingly { —
o, r — 1/2, then At'/At — —o—that is, At — —o.

Let us now assume that At > 0. In this case At is
given by Eq. (13) and A7’ is given by Eq. (16). Further,
from the condition As3, > 0 (and Ay =0, Az = 0) it
follows that Ax < c¢VArR2 + A2 Let us set Ax =
xeV A2 4+ At2, where 0 < y < 1. We are going to examine
for which values of the velocities v and w the conditions
At" < 0 and At’ < 0 are fulfilled. We accept that r=c¢/v=
{/2(¢ — 1) and re[l1/2; 3/4). In this case the following
inequalities are fulfilled: 1+ (C — 1)(2 V) — (¢/V)P*C <0
and ({ — 1)(?/yw) > — (¢c/w) B> < 0. These two expressions
tend toward —» at f§ — 1, and accordingly { — o, r — 1/2.
Since Az, At, and Ax are independent variables, we can
choose Ar large enough, At small enough, and y close
enough to 1 that the following expressions take arbitrarily
small values:

(-l ple

T
w' At

C o) A'Cz
- 1 — 1+
vﬁ(( x +At2>’

{1+(C— 1)532} At

w2" | At

C 2 A'L'Z

— 1= /1+-—=|.

w b C( AT At2>
Therefore, if r € [1/2; 3/4), then for appropriate values of
At, At, and Ax the following inequalities will be fulfilled:
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TABLE I. Some values of A" and At/, provided that Az =1, At=0.3, y =0.999.
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B ¢ r== £ AV Av
V w
0.799 1.663 1.254 Imaginary number Complex number Complex number
0.800 1.667 1.250 0.000 0.276 0.300
0.840 1.843 1.093 0.472 0.320 0.007
0.841649 1.852 1.087 0.480 0.320 0.000
0.950 3.203 0.727 0.761 0.189 —0.549
0.960 3.571 0.694 0.776 0.142 —0.659
0.970 4.113 0.661 0.791 0.071 —0.813
0.976556 4.645 0.637 0.802 0.000 -0.958
0.980 5.025 0.624 0.807 —0.051 —1.060
0.990 7.089 0.582 0.825 —0.336 —1.594
0.999 22.366 0.523 0.853 —2.487 —5.384
0.999999 707.107 0.501 0.866 —99.434 —173.329
2 2 5
o ¢ oAt 1\2 242 2 11\2 212
{[H(C— l)vzﬁ} <5 c} re-nspd (604 (2 = S = (01 )
}’]:
¢ Az? 5
+op(1—pn/1+=]) <0 >
o 5( e | <0 =3 (17)
n=3
) 5 . . . ..
-1 & P < gl 4 s -1 & P g The general relations which fulfill this condition must
" W w2 AL have the form
c At? x*/ = atx? H 18
+Wﬁ2C<1—X\/1+At2><O; / Pa (18)
where u, p=1, 2, 3, 4, 5.9 Here b* are five constant values,
that is, which are equal to the values of x*/ for the case when x* =

/ e A o

- %ﬁzgxx/mz + A2 <0,

CZ cz
At = (= 1)—B2Ar + {1 + (- 1)—2/32]Af
vw w
- %ﬂZCX\/Atz F A2 <0.

An example of this is shown in Table I. From Table I
one can see that if f < 0.800, then the value ¢/w is an
imaginary number and A¢" and At’ are complex numbers;
if #=0.800, then A’ > 0,At" > 0; if § ~ 0.841649, then
At' > 0,At7" =0; if £=0.950, then At > 0,At" < 0;if f =~
0.976556, then At = 0,At’ < 0; if f=0.999, then Ar' <
0,At” < 0. According to Table I, for the case of two-
dimensional time, it is possible that the conditions v > ¢
and A > 0 can be simultaneously fulfilled (unlike the
case of one-dimensional time in STR). For example, if r=
¢/v=10.694, then A’ =0.142 > 0.

C. General properties of the transformations

We are going to examine some of the properties of the
general transformations between K and K’. Let us denote
with x!, x? the time dimensions and with x°, x* x° the
space dimensions; for example x'=ct, X?=ct,x*=x, x*=

y, x° = z. The following equality is fulfilled:

0(u=1,2,3,4,5)—thatis, b* is a five-dimensional vector
of translation in the space-time. If the origins of both
reference systems are the same, then b*=0 (u=1, 2, 3, 4,
5). We will further examine the transformations that do
not include translations in space and time, i.e.,

X = abx". (19)
Let us introduce the notation
1 u=p=12
Sup = &= —1 u=p=345
0 pu#p
In this way, Eq. (17) can be presented in the form
ZupXHXP = g xt'xP". (20)

If we substitute Eq. (19) into the right-hand side of Eq.
(20) and compare the coefficients in front of x, we have

up = giaa,}ja;- (21)
(Here 2,0=1,2,3,4,5). Let us define a 5 X 5 matrix (A),,,,
with elements a*,: (A),, = a",. Similarly, let us define the
elements of the matrix (G),,: (G),, = gup- In matrix
presentation, Eq. (21) can be written as (G),, = (A”GA)M,;
therefore det(G) = det(A"GA) = det(A")det(G)det(A).
Taking into consideration the fact that det(A"™) = det(A)
and det(G) =—1, we obtain

¢ In this and the following formulas, the Einstein summation
convention for repeating indices is used.
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TABLE II. Decomposition of the group of nonzero transformations.
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Transformations between K and K’ det(A) sign of a' sign of a% Operations applied on ATf:

Al +1 +1 +1 1 (unit matrix) = diag(+1, +1, +1, +1, +1)

AL +1 +1 -1 ME = diag(+1, -1, =1, =1, 1)

Al- +1 —1 +1 nQ = diag(—1, +1, -1, =1, —1)

AL +1 -1 -1 I = diag(—1, —1, +1, +1, +1)

Al” -1 +1 +1 I = diag(+1, +1, —1, -1, —1)

A -1 +1 —1 Z = diag(+1, —1, +1, +1, +1)

Al— -1 -1 +1 Q = diag(—1, +1, +1, +1, +1)

Al —1 -1 -1 II (total inversion) = diag(—1, —1, —1, —1, —1)
det(A) = =1. (22)  A'7}. The transformations which do not change the sign

In Eq. 21), if we set u =p =1 and u=p = 2, we
accordingly obtain

L= (ap) + (a7)’ = 25:(07)27

= (@) + (@ = > (@)

n=3
that is,
: 2 2
aj =+ |1+ (@)’ (),
n=3
5
=2 |1+ (@) — (@)
n=3

Therefore, we have nine possible cases: a'; > 0 and
@, >0:a'1>0and a®>, <0:d', <0and ®, > 0:d', <0
and a®>, < 0;a'y=0and ¢*>, > 0;a';=0and ¢>, < 0; a', >
0and ¢’ =0; d'; < 0and ¢>,=0; and ¢'; =0 and &%, =0.
Adding into consideration Eq. (22), we have altogether 18
cases in general.

In the case of two-dimensional time it is possible that
the equalities a'; = 0 and a*, = 0 are fulfilled [e.g., if x' =
ctx*=ct, x> =x, x*= ¥, x> = z, then they are fulfilled at
the transformation (x') = ¢1,(x?) = —ct,(x*) = x,(x*) =
y,(x°) = z]. The transformations where a'| # 0 and a?, #
0 we will call nonzero transformations.

Let us now consider only the nonzero transforma-
tions. There are in general eight nonzero transformations
(see Table II). The transformations conserving the
orientation—i.e., for which det(A) = 1, a'; > 0, a*, >
0—we will call proper orthochronous transformations
and will denote with Af. The transformations which do
not change the signs in front of 7 and 7 (that is, a'; > 0
and a*, > 0) we will call orthochronous in relation to ¢
and 7; we will denote them with A" ={A|" U A"}. The
transformations which do not change the sign in front of ¢
(that is, a'; > 0) we will call orthochronous in relation to
t; we will denote them with A7 ={Al" UA' " UAT" U

in front of 7 (that is, a*» > 0) we will call orthochronous in
relation to 7; we will denote them with AT = {Af U AT: U
A7 A"}, The transformations which change the signs in
front of ¢ and 7 we will call nonorthochronous in relation
to the time dimensions; we will denote them with A*~ =
{Alf U A7) Tt is clear that the same transformation can
be orthochronous in relation to a given time dimension
and nonorthochronous in relation to another time
dimension (for example, the transformation Al:). The
transformations responsible for the condition det(A) =+1
we will call proper transformations and will denote with
A+:{A1H U Af U Aﬂf U Af}. The transformations for
which det(A) =—1 we will call nonproper transformations
and will denote with A_={AI” UA'” U AT U AL

Let us define the following discrete operations which
present spatial or temporal reflection: x* = IT/x”, ¥ =
F"px”, xH = Q"px”, xt = E"px”, where IT*, = diag(+1, +1,
—1,-1,-1), I'¥  =diag(—1, -1, +1, +1, +1), Q" , = diag(-1,
+1,+1, +1, +1), ¥, = diag(+1, —1, +1, +1, +1). Since after
these operations the scalar product remains invariant,
they belong also to the full group of transformations. We
can connect these operations to the transformations
obtained previously (see Table II).

The results obtained here will play a very important
role relative to an antiparticle moving in multidimension-
al time (see Section X).

If we assume that thes transformations are valid, then the
Lorentz covariance must be violated. The physical laws will
not be Lorentz covariant, i.e., they will not be transformed
according to the Lorentz group. The four-dimensional space-
time interval in this case will not be invariant, while the five-
dimensional interval will be—see Section IV.

In the case of multidimensional time, the CPT symmetry
will be violated. STR and consequently the Lorentz
covariance is placed at the base of CPT symmetry. Indeed,
the even number of reflections of the coordinates in
Minkowski space-time (P7-symmetry) is formally reduced
to a rotation by an imaginary angle. Due to this fact, the
existing physical theories, which are invariant relative to the
Lorentz transforms (i.e., rotations in Minkowski space-time)
turn out to be automatically CPT invariant. We discuss the
problem with CPT symmetry in multidimensional time more
precisely in Section X.
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D. Waves in two-dimensional time and three-
dimensional space and the Doppler effect

It is clear that in the case of two-dimensional time the
d’Alembert operator is not a scalar. Instead, another
operator must be used, obtained from the scalar product:

2
I NI 2+ 0\’ 25: 9
T =8 o axr  \cor cot axn )’

=3

(Here x' = ¢1,x* = ¢1.) Since the [J,, operator is a scalar, it
follows that

2 2 s 2
J J J
— / —
Do =D = (c&t’) +<c&r/) _23 <8x’7’> ‘
pa

For the case of two-dimensional time and three-
dimensional space, the wave equation takes the form

CF OF FF_(x 232F+ K\ PF
ox2 9?9z \w,) o ) o1’

where w, and w, are the angular frequencies of the wave,
defined in relation to the time dimensions ¢ and <
respectively, and x is the angular wavenumber (ultra-
hyperbolic partial differential equations—see Ref. 5). We
have set x* =x, x*=y,x° =z.) Here u, = w,/x and u, = o,/
are phase velocities, defined in relation to ¢ and =,
respectively.

We will examine the Doppler effect in two-dimen-
sional time and three-dimensional space. In this case it is
possible that waves exist which have properties depend-
ing only on one or both time dimensions. We will
consider the general case, when a wave is moving in the
two time dimensions ¢, t and in the three space
dimensions x, y, z.

Let us denote with w, and w, the angular frequencies
of the wave in the frame K, defined relative to the time
dimensions ¢ and 7, and with k = (x,, k,, x.) the wave
vector of this wave in K. The phase of the wave in K is
given by the expression w;t + w,7 — kR, where R =(x, y, z).
Let us denote with ] and w, the angular frequencies of
the wave in K’, defined relative to ¢ and t’, and with ¥’ =
K., Kk, k. the wave vector of the wave in K’. The phase of
the wave in K’ is given by w;#' + w.t" — k'R’, where R’ =
(x’, y’, 2’). In order to determine the Doppler effect for the
wave under consideration, we have to set to set the wave
phase to be invariant—that is, w,/ + 0,1 —kR=w;t' + w7’
—k'R".

We set k' = ||[k’|| > 0 (angular wavenumber); u, = ),/
k', u, = w./x’ (phase velocities determined according to ¢’
and 7', respectively); k./k' = cos y'. Applying the
transformations in Eq. (12) from K to K’, we define the

KL, K, KL

relation between w,, ., k., K,, k. and o, w/K,,

413

/ C2 2 Cz 2 1
(,U[:(,L)[ 1+(C—1)V—2ﬁ +Wﬁ C.COS'})
t
2

, ¢
—‘rC!)T(C— 1)_ﬂ27
w
0, = o] [1 + (¢ - l)w—zﬁ + wu’ﬁ C.cosy’}
T

cZ
+ (,U;(C - 1)_ﬁ27

yw
u u’
1 1 2 /P2
Ky=Kk 0\ 1+——p )+ p{——,
: vCosy ’ wcosy
. . !
Ky =Ky, K =K.

The expressions w,({ — 1)(c*/yw)p* and KA;BZC(u;/w cos ')
in the formulas for the angular frequency w, and the wave
vector k., respectively, can be regarded as corrections in
the formulas for the Doppler effect for the case of two-
dimensional time. If we set w, = 0, we will obtain the
formulas for the Doppler effect for the case in which the
wave is moving in only one time dimension, ¢'. Obviously
in this case, the expressions for w, and «, differ from the
formulas for the relativistic Doppler effect in STR.

IV. CAUSAL STRUCTURE OF SPACE-TIME (n, k) =
3, 2)

Let us have a five-dimensional vector A" in space-
time (n, k) = (3, 2). The scalar product of the vector A"
with itself will be®

(A = 4"4, = g, A" A*
5

= (A + (£ = (4,

n=3

where i, p=1, 2, 3, 4, 5 and

1 w=p=12
8up = 8pu = -1 u=p=3,4,5
0  up#p.

Let us denote (As)* = (4")* — 23:3(/1’7)2. Then we
will have (A)* = (A3,)* + (4%)°. While in Minkowski
space-time [(n, k) = (3, 1)] the value (A3,1)2 is invariant, in
a space-time (1, k) = (3, 2) it is not invariant—but the
value (A)? is invariant. If, for example, the value (A3,1)2 is
spacelike in one frame of reference K [(A3ﬁ1)2 < 0], it can
be 0 [(A;,)” =0] or timelike [(A},)* > 0] in another frame
of reference K. '

The causal region of the space-time (n, k) = (3, 2)
encompasses the region (A)*> > 0, and the causal region of
the space-time (n, k) = (3, 1) encompasses the region
(A3,1)2 > 0.

Let us set: A’ = cdt, A° = cdv, A® =dx, A* = dy, A°
dz, q1 = (Vdx®+dy* +dz2)/(c|dt]) = Vie > 0, ¢
(\/dx? +dy* + dz?)/(c|dt]) = W/c > 0, ds;» = ||A]| =

2

(A)

¢ In the formula, the Einstein summation convention is used.
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FIG. 1. (Color online) The values of the velocities ¥ and W at which an
object is moving in the causal regions of the space-time (1, k) =(3, 2) and
(n, k)=(3,1).

We will consider three cases for the value of (A)>.

First case: (A)* > 0—that is, ds3 , > 0. If 4*>=cdr 7é 0,
then there are three possible cases: (A )> > 0 (As, )=
0,(A31)> < 0. If 4% = cdr = 0, then (A3,)* > 0. Let us
assume that in the frame of reference K, the following are
fulfilled: 4% =cdr # 0 and (A3,1)2 < 0. Itis clear that in the
system K’ moving uniformly and rectilinearly in relation
to K, we have (A")* = (A},)* + (47)* = (A)’ > 0. If we
assume that A% = c¢dt’ =0, then we have (A3 1) > (0. So we
have obtained that in the frame K the value Aj; is
spacehke [(As, 1)> < 0] and in K’ the value A} is timelike [
(A3 1) > 0]. It is easy to prove that the condition (A)* > 0
is equivalent to the following inequality:

1 1
S+ > 1. (23)
q9 493

If 0 < g, <1 (thatis, 0 < V < ¢), then the inequality
in Eq. (23) will be fulfilled for all values of ¢, < e (i.e., for
all values of W, including W =»). If ¢; =1 (that is, V'=¢),
then the inequality in Eq. (23) will be fulfilled provided
that ¢, < o (that is, W < o). Similar considerations are
valid for ¢, (and accordingly for the velocity W).
Therefore, if the velocity of a particle defined in relation
to the one time dimension (as absolute value) is less than
or equal to the speed of light in vacuum, then the velocity
of this particle defined in relation to the other time
dimension can have an arbitrary value without violating
the causality principle. If simultaneously ¢; > 1 and ¢, >
1, then the inequality in Eq. (23) will be fulfilled for an
appropriate choice of the parameters ¢; and ¢, (e.g., ¢ =
10/9,4> = 2). It is clear that the condition (A;;)* > 0 is
equivalent to the inequality V" < ¢, the condition (A3,1)2 =
0is equivalent to the equality V' = ¢, and the condition
(As1)* < 0is equivalent to the inequality V' > c.

Second case: (A)* = 0—that is, ds3, = 0. In this case,
(Az1) >=—¢%dr?, and therefore it is not poss1b1e that (A;, )?
> 0. IfAzfcdrfO then (As,)>=0. If A>=cdr # 0, then
we have (A3,1)2 < 0. The condition (A)*> = 0 is equivalent
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to the following equality:

1 1

p 1. (24)

If g <1 (thatis, V< ¢)or g, <1 (thatis, W < ¢),
then Eq. (24) is impossible. If ¢; =1 (that is, V" = ¢), then
Eq. (24) is possible under the condition that ¢, = % (that
is, W = ). This means that dx> + dy2 +d? >0, d*> >0,
dr*>=0—i.e., the considered particle moves in space and in
the time dimension ¢ but not in the time dimension 7. The
same applies for the case ¢» =1 (that is, W =c¢). From Eq.
(24) follows the equality (¢*/V?) + (¢*/W?) = 1. Therefore,
if the considered particle is moving with velocity

c

2
1—&

V =

)

then we have (A)> = ds3, = 0. According to the results of
Section VIII, if the equality (¢*/V?) + (3/W?) =1 is
fulfilled for the velocities V' and W of a particle in the
frame of reference K, then for the velocities V7 and W’ of
this particle in the frame K’, the similar equality

¢ c?

vy wy
is fulfilled.

Third case: (A)> < 0—that is, a’s3 , < 0. We have
(A;, 1)? < 0. In this case it is not p0s51ble that (Aj, D> >0
or (A3,1) = 0. The condition (A)*> < 0 is equivalent to the
following inequality:

1 1
—+—5<L (25)
a9

The inequality in Eq. (25) is fulfilled only if the
following inequalities are simultaneously fulfilled: ¢; > 1
and ¢> > 1 (thatis, V> ¢ and W > ¢).

From these considerations we can conclude that the
causal region of (3 + 2)-dimensional space-time includes
the causal region of (3 + 1)-dimensional space-time and
presents a larger part of it.

Figure 1 shows graphs of the functions (¢*/V?) + (¢?/
W?) =1 and ¢/V =1 for non-negative values of ¥ and W.

It is clear that for each point in the darker region and
on the border of this region [i.e., the region confined by
the coordinate axes and the graph of the function (¢*/7?)
+ (¢2/W?) = 1] corresponds to a combination of values for
the velocities V" and W where a given particle is moving in
the causal region of the space-time (n, k) = (3, 2), that is,
dsg,2 > 0. For each point outside this region there is a
combination of values of the velocities /" and W where the
given point does not move in the causal region of the
space-time (n, k) = (3, 2), that is, dsg2 < 0. For each point
in the region between the abscissa and the straight line ¢/V
=1 there exists a combination of values for the velocities
V and W where the particle is moving in the causal region
of space-time (n, k) =(3, 1); this is the case of STR [(A3,1)2
> 0]
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FIG. 2. (Color online) Causal structure of the space-time (a); causal region in the plane /; (b) and in the plane  (c).

Let us denote with x', x? the time dimensions and
with x°, x* x° the space dimensions. Let us further for
simplicity consider only one space dimension x* and the
two time dimensions x' and x> (that is, xX'=ct, *=c1, X°
=x, x*=0, x’=0). Let us assume that at point O, having
coordinates x' =0, x>=0, x>=0 (x4 =0,x°= 0) defined in
the frame K, there has been an event E. Let us further
assume that a given interval of time AT = VA2 + At2 > 0
has passed since the event. Our task is to examine the
causal region attached to the event E. Since the time is
two-dimensional, all possible combinations of coordi-
nates x', x> for which the inequality (x")* + (x?)* < ?AT?
is valid form a circle in the plane x'-x? with center at point
O and radius equal to ¢AT. If we add the space dimension
x* in such a way that for an arbitrary value of x° the
inequality (x")? + (x?)* < ?AT? is fulfilled, then we will
obtain a right circular cylinder with the obtained circle as

its base. According to the previous considerations, in
order for a exist causal relation between two events to
exist, the inequality s3, > 0 must be fulfilled—that is,
(x"? + (x»? — (x*)®> > 0. This inequality can be rep-
resented graphically by a double right circular cone. The
generatrices of the lateral surface of the cone make an
angle of 7/4 with the plane x'-x*. Therefore, we obtain a
double cone inscribed in the cylinder [Fig. 2(a)]. From the
inequalities (x")* + (x?)* — (x*)> > 0 and (x')> + (x*)* <
’AT? we obtain |x|* < cAT—that is, cAT > x* > —cAT.
The cone and the cylinder have common bases: a circle
with its center at the point x* = —cAT (x' = 0,x* = 0) and
radius ¢AT, and a circle with its center at the point x* =
¢AT (x' =0, x* = 0) and radius ¢AT.

Let us with C denote the border region which includes
all points lying on the lateral surface of the cone and the
lateral surface of the cylinder. The region C; includes also
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the origin O—i.e., it includes all points (x', x% x°) for
which the conditions {(x')* + (x*)* — (x*)*=0 and |x|* <
cAr}y or {(x")? + (x*)* = AT? and |x|* < cAt} are fulfilled.

Let us denote with C, the inner region limited by the
lateral surface of the cone and the lateral surface of the
cylinder. The region C, does not include the origin O or
the lateral surfaces of the cone and the cylinder (i.e., it
does not include the border region C;)—it includes all
points (x', x%, x*), for which the inequalities (x")* + (x%)* —
(x*)? > 0 and (x")? + (x*)* < ?AT? are fulfilled. From
these two inequalities we obtain |x|* < ¢cAT. If x> =0, then
0 < (x"Y + (x%)? < AAT>

Let us denote with C5 the region which includes all
points lying in the inner volume of the cone. The region Cs
does not include the origin O or the lateral surface of the
cone. It includes the inner parts of the circles that form the
bases of the cones (and the cylinder), but does not include
the points lying on the directrix circumference restricting
these circles (bases)—i.e., the region Cj includes all points
(x', x% x3), for which the inequalities (x')* + (x%)* — (x’)* <
0 and |x|* < cAT are fulfilled. It is clear that if x* = +¢AT,
then (x')? + (x))? < AT

Let us denote with Cy4 the region including all points
outside the cylinder. It does not include the lateral surface
of the cylinder or the two bases of the cylinder—i.e., it
includes all points (x', x%, x*) for which the inequality (x')?
+ (x?)? > ¢*AT? or the inequality |x|* > AT is fulfilled.

The causal region includes the regions C; and C»; the
noncausal region includes the regions C; and Cjy.

In Fig. 2(a), the vector OM shows the motion of a
pointlike particle M. The point M is the projection of
point M on the plane x'-x°, and point M, is the projection
of point M on the plane x*-x>.

Let us consider the plane /;, which is parallel to the
plane x'-x* and includes point M, and the plane /,, which
is perpendicular to the plane x'-x* and includes points O
and M. Let us set tan o = x’/x' and tan Y = x°/

\/(x1)? + (x2)2 If we set x! = cr,x% = e1,x° = x > 0, then

tan o = v/w and tan ¥ = 1/1/(c2/v?) + (c2/w?). (In this
case, v and w are the velocities of the particle M defined
relative to the time dimensions f,and t—see Subsection
II.A). Let us denote with ¥, the angle between x' and
OM;, and with y, the angle between x> and OM,. It is
easy to see that tan yy; = (tan ¥)/(cos «) [if in Fig. 2(c) one
can imagine the plane x'-x’] and tan , = (tan )/(sin o)
(if one can imagine the plane x*-x°). Let us denote with L
the point where the axis x° intersects the plane /,—i.e.,
point L is the projection of the origin O (x' =0, x*=0, x*
= 0) on the plane /;.

The causal region o, in Fig. 2(b) represents the region
between the two circumferences having a common center;
the outer circumference has a radius R = ¢AT, and the
inner one has a radius r = ¢AT tan . The causal region a4
in Fig. 2(c) represents two congruent right-angled isosceles
triangles, namely OAC and OA4,C, which have a common
apex at point O. It is clear that |4C|=|4,C,| =2¢AT, |OB|
= |4B| = |0By| = |41B\| = AT, [0A] = |0C| = |04,| =
|OCy| = cATV2. Further, we have |OL| = cAT tan .
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We have assumed that since event E an interval of
time AT has passed. In this case, the causal region in the
plane /; (that is, g,) includes all events which are causally
connected with event E and happen at a distance |OL| =
¢AT tan y from O (along the axis x*). The causal region in
the plane L (that is, og4) includes all events which are
causally connected with event E and happen in a plane
making an angle « with the plane x'-x°.

If =0 (i.e., the vector OM is in the plane x'-x%), then
the plane /, coincides with the plane x'-x*. (We will have
M, = M.) This case is considered in STR. If o = /2 (i.e.,
the vector OM is in the plane x*-x%), then the plane /
coincides with the plane x*-x*. (We will have M, = M.)

We can consider two more specific cases depending
on the value of the angle .

First case: iy = 0—that is, the plane /; coincides with
the plane x'-x?. In this case the particle M is at rest; i.e., it
does not move in the space dimension x°, but only in the
time dimensions x' and x*. We have tan y =tan 0 =0. In
this case the radius of the inner circle oy in Fig. 2(b) is
equal to 0 (r=cAT tan  =0), i.e., the causal region o, of
event E includes all points of the outer circle. Therefore,
the causal region of event E in the plane /; (and
accordingly in the plane x'-x?) in this case coincides with
the circle for which (x')* + (x%)? < [|OM||? = ’AT>. In
this case we have tan y; =0, y; =0 if Fig. 2(c) shows the
plane x'-x* and tan y» = 0, Y, = 0 if Fig. 2(c) shows the
plane x*-x°. One can say that the two-dimensional time
“flows” from the origin O in all directions in the plane x'-
x%; as a result of this, the described circle is obtained. If we
assume that the moments lying on the circumference of
this circle are contemporary moments, then the moments
of the inner part of the circle are past moments and the
moments outside the circle are future moments (according
to the moments defined as contemporary). These consid-
erations are valid also for the case of k-dimensional time.
It is evident that k-dimensional time will “flow” in the
form of a k-dimensional hypersphere having its center at
the origin O. Let us assume that between point O and the
event £ a period of time AT > 0 has passed, which is
determined according to the frame of reference K. In this
case all moments inside the k-dimensional hypersphere
with center O and radius AT are in the past and all
moments outside the k-dimensional hypersphere are
future moments. The surface which defines the k-
dimensional hypersphere is a (k — 1)-dimensional hyper-
sphere. All moments lying on the mentioned (k — 1)-
dimensional hypersphere are present moments.

Second case: y = n/4—that is, the upper bases of the
cylinder and the cone lie in the plane /;. In this case the
vector OM lies on one of the generatrices of the conical
surface. We have tan y = tan(n/4) = x*/1/ (x!)? + (x2)* =1.
If we further set x! = ¢, x> = ¢1, x> = x > 0, then for the
velocities v and w of the particle M defined in relation to the
time dimensions ¢ and 7, respectively, the equality (¢*/v*) +
(¢*/w?)=1 will be fulfilled (see Subsection III.A). Since cos o
= 1/v/(1/v?) + (1/w?), sin o = 1/wy/(1/v?) + (1/w?) , in
this case we can express the velocities v and w in terms of
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FIG. 3. (Color online) Projection of the causal region (a) on the plane x'-x2, (b) on the plane x'-x3, and (c) on the plane x2x3, fora change of the angle

o (from o to o).

angle o: v = (c¢/cos o) and w = (¢/sin «)—see Subsection
IIT.A. Since tan y = 1, in this case the radius r of the inner
circle g, from Fig. 2(b) is equal to the radius R of the outer
circle (r = cAT tan y = ¢cAT = R), i.c., the causal region g,
includes only the points lying on the outer circumference. In
this case we have tan y; = (1/cos o) if Fig. 2(c) shows the
plzanf x'-x* and tan y» = (1/sin o) if Fig. 2(c) shows the plane
X7-x7.

Let us project the intersection of the plane /; with the
cylinder and with the cone [shown in Fig. 2(a)] onto the
plane x'-x* . Let us do the same with the intersection of
the plane /, with the cylinder and the cone onto x'-x* and
x>x>. Then we obtain Fig. 3(a) and the darker areas
shown in Figs. 3(b) and 3(c), respectively. If the vector
OM presents the motion of a given particle M, then the
projections of the motion of this particle onto the plane
x'-x? (i.e., the vector OM,) or onto the plane x*x° (i.e.,
the vector OM,) can lie only in the darker regions of Figs.
3(b) 3(c), respectively. In the opposite case—if the
projections OM; or OM, do not lie in the indicated
regions—then the motion shown by the vector OM is not
causally related. In Fig. 3(a), the point M; is the
projection of point M onto the plane x'-x°.

Figures 3(a), 3(b), and 3(c) show what happens when
the angle o is changed (i.e., the angle o changes to angle
o). Here tan oy = (1/cos ), tan a; = (1/cos o) [Fig. 3(b)]
and tan o, = (1/sin a), oy = (1/sin o) [Fig. 3(c)].

At o =0 or o =7/2 we obtain the well-known case of
motion along only one axis of time (x' or x?, respectively).
This case (« = 0) is considered in STR.

If, for example, « = 0 and x' = ¢t, x* = x, then the
projection of the causal region onto the plane x'-x* [Fig.
3(b)] will coincide with the causal region according to
STR. If «=0, then cos a=1, tan o; =1, oy = 1/4, tan o, =
o, o, = 1/2. If o = 0, then the projection of the causal
region onto the plane x*-x* [Fig. 3(c)] will be a line
segment lying on the axis x° (o, = 7/2). In this case, if
[[OM,|| = 0, then the velocity of the particle M
determined in relation to the two time dimensions x'
and x? is equal to 0; but if ||[OMs,|| # 0, then the velocity
of the particle M defined in relation to x' is greater than 0
and less than or equal to the speed of light in a vacuum,
and the velocity of the particle defined in relation to x? is
infinitely large. (See the considerations at the beginning of
Section IV.) Likewise, one can apply the same consider-
ations for the case o = /2.
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For the angle o' = *o+ bn (=0, £1, £2,...), one
can obtain the same projections of the causal region [Figs.
3(b) and 3(c)] as for angle a.

For an observer in the frame K, each coordinate plane
x! = const, x* = const represents space in the respective
instant of time—i.e., these are a set of events which occur
for the observer simultaneously. These regions in STR are
called simultancous spaces of the given observer. By
analogy with STR, each timelike straight line [or line
segment—see, for example, OM in Fig. 2(a)] is parallel to
one of the time axes of a frame of reference K’ moving
uniformly and rectilinearly against K. Therefore, each
timelike straight line “separates” the three-dimensional
space into countless simultaneous regions.

Let us assume that the line segment OM lies in the
plane x'-x* and not on the axis x'. In this case, the three-
dimensional velocity of K’ in relation to K defined in
relation to the time dimension x> is infinitely large.
However, as noted earlier, the three-dimensional velocity
of K' against K determined in relation to the time
dimension x' must be less than the speed of light in a
vacuum. Obviously, in this causal region there exist
infinitely many inertial frames like K’ which posses the
previously mentioned properties. Similar considerations
are valid if the line segment OM lies in the plane x*-x* and
not on the axis x°.

In space-times with at least two time dimensions, it is
always possible to construct closed timelike curves." In the
space-time (n, k)= (3, 2), we can consider a “motion” in the
causal region in the plane #-t which begins at the origin O (¢
=0,7=0) and ends at the same point. Indeed, let us set 1=
Q.sin O, T = Q(1 — cos ®); x, y, z= const. (Here Q =
const,® € [0; 27].) Then we have ds3 , = df* + *dr” — dx*~
dy* — dz* = Q*d®” > 0—i.e., the world line is everywhere
timelike.* As pointed out by Foster and Miiller,*

The existence of closed time-like curves implies that an
observer can revisit the past and, if we accept the tenet
of “free will,” change it in a manner that is incompatible
with the already experienced future. Obviously, any-
thing resembling the common notion of causality
cannot be maintained under such circumstances.

It has been argued, however, that such cases arise
only due to the misidentification of different space-time
points as identical points of the manifold."* Other authors
have argued that the paradoxes arising from closed
timelike curves are real, but can be resolved by an
appropriate extension of the space-time manifold'* (see
Subsection II1.B).

V. GENERALIZATION OF THE TRANSFORMATION
FOR n-DIMENSIONAL SPACE AND k-DIMENSIONAL
TIME

First, we will consider the simplest case, without
rotations or translations in space or time (i.e., general-

* This is different from the case of curved manifolds, where closed
timelike curves may arise under certain circumstances.
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ization of the Lorentz boost in a fixed direction in the field
of multidimensional space and multidimensional time).
Equation (12) can be easily generalized for an arbitrary
number of space and time dimensions (# > 1, k > 1). The
time dimensions we will denote with 7, 7., ..., #;, and the
space dimensions we will denote with xy 1, Xx2, - - -, Xiin-
We assume that the frames K and K’ are in a standard
configuration. Let us denote with

Vi = (V1707"')0)a
——

n—1

Vi = (Vkaov cee ﬂO)
—
n—1
the vectors of the velocities of K’ against K, defined

respectively in relation to the time dimensions ¢,
tr, ..., Ip. Let us set

g1

ic
v

2
9=1 "9

S

and { =1/4/1 — *. Let us denote with A
transfer between

«p the matrix for

1

X — Ik
Xk+1
Xkc+tn

and

/

4

¢

/ k

=% 1

h+1

X!
Yk+n

where i, p=1,2, ..., k+n. Here we have X’ = A, X. If u
< kand p <k, then A, =3,, + ({ — 1)(/v,v,)B>. Here

0,, is the Kronecker delta, i.e.,

5. — 1 u=p
L0 u#Ep
If u=p=k+1, then A,, = {. Furthermore, Agyi1) =
~(1/v)B°L, Aeriyo=—(c*vo)B°L, where 0, 0=1,2, .., k.
If u>k+2orp>k+2, then A,, =9,,. Therefore, we
have
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5= 3 [+ 5

g

B (- l)fe} —vlﬂszkH,

(26)
£ Iy
xl/<+1 = _Czﬁzgzv_e + ka+1a x(; = Xo, (27)
0=1
where 0, 0=1,2, ..., k,and o=k +2, k+3, ..., k+n.

The transformations in Eqs. (26) and (27) are equivalent
to the Lorentz transformations at z, — 0, 13 — 0, ...,
0 and accordingly v, — *o, v3 — *oo ... v — Fo

Let us set (dxk+1/dt1) =y, (dxk+1/dt2) =V, ... (dxk+1/
dt) = vi.. Applying Eq. (26), we obtain

dt, = di,\J1 —

lp —

that is,

(i)’ + -+ (di)* = (d} + - +dip) (1 = B).
(We used the equalities

@ . dty dka . E

dt, B dxk+1 dt, B VH’
where o, 0 =1, 2, ...,
hyperplane of time ¢]-5-
obtain the equality

k.) Let us apply rotation in the
--t;. (see Section VII). We

(di])? + -+ (di])* = (di]))* + - - + (dr})?
= (df} + -4 di)(1 — 7).

(28)

If we set dt] =dt; =---=dt] > 0, then we obtain the

following equalities:

drf =dty = --- = dt}
1
=—\/(d+dB+---+di)(1 - B*).
oV + d D(1— )

We will use these equations in Section IX.A.

Let us consider more general transformations, which
do not include translation in space and time. Let us
introduce the indefinite metric

Iy, =diag(l,...,1,—1,...,—1).
——

k n

Let us denote with O(k, n, R) the group of all (k +n) X (k
+ n) matrices M for which M"(I;,,) 'M = I ,. (Here M"
denotes the transpose of the matrix M and R denotes the
field of real numbers.) The inverse of M is given by M =
(It..) 'M"I,,. The indefinite orthogonal group O(k, n, R)
conserves the quadratic form defined through the metrics
I, and is isomorphic to the group of all proper and
improper rotations in the space-time being considered.
The indefinite special orthogonal group SO(k, n, R) is the
subgroup of O(k, n, R) consisting of all elements with
determinant +1. The group SO(k, n, R) corresponds to the
group of all proper rotations in the space-time. The
proper Lorentz group of four-dimensional Minkowski
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space-time is SO(1, 3, R); together with parity and time-
reversal it becomes O(1, 3, R). If we introduce an (n + k)-
dimensional vector of translation in the space-time, then
by analogy with (n, k) = (3, 1)—that is, the inhomoge-
neous Lorentz group or Poincaré group in STR—we can
obtain the most general transformations [see Eq. (18)].

VI. VELOCITY-ADDITION LAW

From the transformations obtained in Egs. (26) and
(27), it is easy to derive the velocity- addition formulas.
Let us denote (dx,/dt,) = V5, and x//dt = an’ where 0 =
1,2,...kand n=k+1, k+2, ..., k+ n. The velocity-

addition formulas are given as follows:

aties ) [l—ﬁz

2

) voVo(+1)
V . - )
a(k+1) . k 62
1+ n(f;+]) 2 évi 1 7@‘
ol ); voVo(k+1)
(29)
! VG'(
V= S— . (60)
Votert 2 | ¢ ¢
ERLETEY Y J N ) s
" ( ); VoV o(+1)
whereo,0=1,2, ..., kand o=k+2,k+3, ..., k+n. We
have used the equalities
dy _dv,  dty _ Ve,
dt, dty  dxy, Vo'
We note that (Vlﬂ/ Vln) = (V2:1/ VZTE) == (an/ an)a

where n, t =k + 1,k +2, ..., k+n. Indeed, (V,,/Vyr) =
(dx,/dx;), where ¢ =1, 2, ..., k.

VIl. ROTATIONS IN THE HYPERPLANE OF TIME
AND IN THE HYPERPLANE OF SPACE

Let us assume that a particle under consideration is
moving in k time dimensions (¢y, f,, ..., ;) and in n space
dimensions (Xgy1, Xgy2, ---» Xipn). According to our
considerations, separately and independently from each
other we can apply some rotations of the time axes (¢,
t, ..., ;) in the hyperplane of time and some rotations of
the space axes (Xji1, Xxy2, - - -» Xiyn) 10 the hyperplane of
space (see Section II and Subsection IX.A). These
transformations are expressed in a change of the basis
of the time axes or of the space axes of the frame of
reference under consideration (these are the so-called
passive linear transformations). The group of all proper
and improper rotations in the hyperplane of time is
isomorphic to the orthogonal group O(k, R), and the
group of all proper and improper rotations in the
hyperplane of space is isomorphic to the orthogonal
group O(n, R), where R denotes the field of real numbers.
During the simultaneous rotation of the space axes in the
hyperplane of the space and the time axes in the
hyperplane of time, the origin will remain invariant. The
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time interval d7° =df} +di3 + - - + dlk, the space interval
dX? =dx}  +dxi ,+ -+ dxk+ndxk+2, and the (n + k)-
dimensional interval dsn, = dT? — dX? are invariant
during these operations.

Let us apply a proper or improper rotation of the
time axes f1, t», ..., Iy in the hyperplane of time. The new
time axes obtained after this transformation we will
denote with ¢, 5, ..., #;,. Let us denote dT = (dr,,
dt,, ..., dty). For the vector components of dT before and
after the transformation we have (dr])* + (dt))* + -+ +
(dt])* = di} + di3 + --- + d} .The transformation under
consideration can be presented through the orthogonal
matrix A = [d.]ixk, Which belongs to the orthogonal
group O(k, R). Here, ¢, 0 =1, 2, ..., k. Then we will have
A"=A"" det(A) =+1 [proper rotation, A € SO(k, R)] or
det(A) =—1 (improper rotation). The relation between the
components dt], dt;, ---, dt; and the components dr,
dty, ..., dty is given by dT' = dT X A—that is,

k
di, =" di.a,.

Let us set df] = dt5 = --- = dtj, = dT/v/k > 0. This is
possible if the size of the angle made by the vector dT and
each of the time axes |, t;, ..., t; is equal to m/4.

We can similarly consider a proper or improper
rotation of the space axes Xjii, Xii2, ---» Xipn IN the
hyperplane of space.

VIil. GENERALIZATION OF THE PRINCIPLE OF
INVARIANCE OF THE SPEED OF LIGHT IN STR

In the case of multidimensional time, the principle of
invariance of the speed of light defined in STR is violated.
This requires a generalization of this principle for the case
k>1.

Let us assume that the particle under consideration is
moving in k time dimensions, denoted with 7y, 15, ..., #,
and in n space dimensions, denoted with x;.,
Xie42s - - -5 Xryn- We consider the motion of the particle in
relation to the frame of reference K. The (n + k)-
dimensional interval in this case is expressed as ds;, =

Adi + -+ Ad —dx}, — - —dx?,,. Let us set

k+n
2
> ag
n=k+1
Vo=—"—"—"7,
|dlg|
where 0 =1, 2, ..., k. The total coordinate velocity in this

case (see Section II) is equal to

Let us now assume that ds?, = 0. It is easy to prove
that in this case we have u = c—that is,
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= =1 (31)

In Eq. (31), let us set V=V, =---=V,. This can be
done by appropriate rotation in the hyperplane of time so
that the condition dt; = dt, = - - - = dt, is fulfilled (see Sec.
VII). Then we will obtain

=V =cvVk. (32)

Let us consider the motion of the particle in relation
to the reference frame K’, which is moving uniformly and
rectilinearly in relation to K. The (n + k)-dimensional
interval in this case is given by the expression (dsn k)

c (dt Y+ te (dtk) - (dxkﬂ) (dkarn) Let us
denote

Vi=V,=

0=1,2, ...,

Since the (n + k)-dimensional interval ds; , is invariant,
the equality ds? nk = = (ds,, ,() =0 will be fulﬁlled From here
it follows that u’ = c—that is,

k 2

In Eq. (33), let us set V'] = V3 =---= V. This can be
obtained through an appropriate rotation in the hyper-

plane of time so that the condition dt| = dt;) = --- = dt; is
fulfilled (see Section VII). Then we will obtain
Vi=Vy=-=V,=cVk (34)

Let us summarize: If for the velocities u and Vy of a
particle in K Eq. (31) is fulfilled, then for the velocities u’
and V) of the particle in K’ the similar Eq. (33) will be
fulfilled. If for the velocities V of a particle in K Eq. (32)
is fulfilled, then for the velocities V of this particle in K’
the similar Eq. (34) will be fulfilled. These two statements
are equivalent. For k = 1 we obtain the principle of
constancy of the speed of light in a vacuum, defined in
STR: If V'=¢, then V' =c.

IX. MOTION OF A PARTICLE IN n-DIMENSIONAL
SPACE AND IN k-DIMENSIONAL TIME

A. Proper time and generalized velocity

Let us assume that the particle under consideration is
moving in k temporal dimensions, denoted with ¢,
tr, ..., t;, and in n spatial dimensions, denoted with
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Xit1> X2y - - - Xign- By analogy with the term “proper
time” in STR, we will introduce the term “proper time”
for the case k£ > 1, which we will denote with T,,.

Since time has k dimensions, the proper time dT, will
be a k-dimensional vector. We have dT, = (dto,
dtoy, ..., dtoy), where dty, dtgo, ..., dtg, are the projec-
tions of the proper time on the different time axes. Let us
set

k
dTy = ||dTo|| = | > digy > 0.
0=1

Let us consider the motion of a particle in relation to
the frame K. The (n + k)-dimensional interval, being
invariant, is given in this case by the expression ds2, =
Ade + -+ Fd —dxt, — - —dxZ,, > 0. '

By analogy with STR, we have to assume that the
proper time is invariant. If we consider the quotient of the
two invariant quantities ds,;, and ¢, we obtain an
invariant value having the physical dimension of time.
We assume that this value is equal to the length of the
vector dTy. In the general case (k > 1), the obtained value
will be the proper time. We will have dT, = |ds,x|/c.
Hence, the length of the vector dT is invariant.

In order to understand the physical meaning of
proper time, we will make the following considerations:
V;’e \;vill have ds2, = (df} + di3 + -+ + di)(1 - p°) =
c“dTj, where

ﬁ =
k+n
2
> e
% n=k+1 ~0
T '
Let us assume that the (n + k)-dimensional vector of the
location of the particle R = (cty, ..., Cli, Xih1s - - -» Xiyn) 1S
a function of the proper time Ty = (¢, fo2, - - -, tor)—that
is, x,, = x,(To), where u=1, 2, ..., k+n; here x,=ct, at u
=1, 2, ..., k. Let us consider the motion of a particle in

the inertial frame of reference K, the velocity of which at
a given moment Ty = (¢y1, to2, - . ., tox) coincides with the
velocity of the particle. Let the coordinates of the particle
at this moment be xq, = x,(T). Since at the considered
moment the particle is at rest relative to Ky, at u = k+1,
k42, ..., k+n we will have xg, = x0,(To + dTy). So we will
obtain x¢;(To + dTo) — x01(To) = dxo1, Xo2(To + dTo) — X0z
(To) = dxo2, - -+, Xor(To + dTo) — x0x(To) = doxox-

Let us set dxgg=cdtyg, where 0=1, 2, ..., k. Here tyg=
Xop/c are the time axes of the frame K. Hence we have cdTy=
ds = s} = cdT§, where dT) = \[di}, +didy + -+ i,
We have dT, = dT)—that is,

dTe = di, + - +did, = (df + -+ di) (1 — B2).
(35)
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The obtained formula coincides with Eq. (28) (see
Section V). We can see that the values d3,, di,, - - -, di%, are
transferred according to the same law as (dl{’)z, (deyy, - -,
(a’t,f)2 in Eq. (28)—which had to be expected. The frame K|,
we will call the proper frame of reference. Taking into
consideration Egs. (28) and (35), we can understand the
physical meaning of proper time: It is the time measured in
the proper frame of reference K, where the particle is at rest.
The values dty;, dto,, . .., dty, are projections of the proper
time d'T on the axes ¢y, fo, - - -, tox, respectively, of K.

We note that if >2¢  (c?/V2) = I—that is, ds?, =0
and accordingly d73 = 0—then the particle will not move
in time (for the observed particle, time will not exist).
Indeed, in this case we have dT3 =di, +di3, + - - +di}, =
0—that is, d}, = di}, = --- = di3, = 0. Thus, for the
observed particle the time axes fgy, fp, ..., tox do not
exist.

Let us set dtog = 0ppdT,. We have Zgzl a3, = 1—that

is, |oa] < 1. Let us set dX = 1/221;:“ dx% > 0, dT =
/X d2 > 0. From Eq. (35) we obtain dT, =

dTy/1 — p*.
If we use the equalities ds2 , — >dT§ =0, dT§ = sk
di}y = (dtop/o0)*, we will have

Ads + -+ Fdi — dxp,, — - — dx,, — dig,

=0, (36)
Ede 4 -+ iy — dx,zﬂ_l — = dx,%,+n — 2dT}

=0, (37)
Ady + -+ Fdi — dxp — - — dxi,

2 <dlo0>2
2=
ooy

0, (38)

AdT* — dX* — *dT; = 0. (39)

According to Eq. (36), instead of (n + k)-dimensional
space-time, we can consider a generalized [(n + k) + k)]-
dimensional space-time, where k dimensions are related to
the projections of the proper time. In the generalized
space-time, k& dimensions are timelike (cty, cta, ..., cty)
and (n + k) dimensions are spacelike (Xiy1, X512, - - - Xjtns
ctoy, Ctoo, - - -, Ctor). In accordance with Egs. (37) and (38),
instead of (n 4 k)-dimensional space-time, we can consider
a generalized [(n + 1) 4 k)]-dimensional space-time, where
the additional dimension is related to the proper time ¢7
or to the proper time (ctog/09). In this case, k dimensions
are timelike (cty, cts, ..., ct;) and (n + 1) dimensions are
spacelike (Xiy1, Xii2s -« o> Xigms €10 OF Xpy1s Xpi2s -« o5 X
ctop/ogg). According to Eq. (39), instead of (n + k)-
dimensional space-time, we can consider a generalized (2
+ 1)-dimensional space-time. In this case, one of the
dimensions is timelike (¢7T) and two of the dimensions are
spacelike (X, ¢Ty). Similar considerations are valid in STR
(see Section II).
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By analogy with STR, in the case of (n + k)-
dimensional space-time we can define the generalized
velocity U. Let us assume that the location of an observed
particle in the frame K is given by the (n 4 k)-dimensional
vector R() = (Cl()l, vy Clogs XO(k+1)s ++ s Xo(k+,1)); then the
location of the particle in K is given by the (n + k)-
dimensional vector R=(cty, ..., Cti, Xit1s - - -» Xign)- 1f the
location of the particle in K, is given by the (n + k)-
dimensional vector Ry + dRg = [cty; + cdtyy, ..., ctor +
Cdl‘()k, X0(k+1)> X0(k+2)s - - +» Xo(k+n)], then the location of the
particle in K is given by the (n + k)-dimensional vector R +
dR = (C[l +cdty, ..., cty + cdty, Xit1 + dxk+1, coes Xjgn
dxy.,). For the case of multidimensional time we have
dTO X U:dR, where dTO = (dfo], dloz, e dfo]() and dR =
(cdty, cdts, ..., cdty, dxiy, dxiio, ..., dxg,)—see also
Section II. It is easy to prove that the generalized velocity
Uis a k X (k+n) matrix with elements uq, (0=1, 2, ..., k;

u=1,2, ..., ktn)—thatis, U = [ug,]rxsn). Let us denote
Uiy
Uzy
u, = )
Ujey

Then we have dTy X u, = cdt,,dTy X u, = dx, (¢ =1,
Skyn=k+1,..., k+ n)—thatis,

dtor dtyy dtoi

. oty = 1, 40
cdt, o+ cdt, o oot cdt, Hk (40)
dty dtgs dtoy
—_— — s —— =1. 41
dx, uy + dx, uyy + + dx, Uy (41)

It is clear that if for a given 6 (1 < ¢ <k) it is true that
dtops = 0, then the components of the velocity ug,
Usz, - - -, Usgerny Will be undefined values. If for a given ¢
it is true that dt, =0 (where 1 < ¢ < k) or dx, =0 (where
k+1< ¢ <k+n), then u;, =, =+ = g, = 0.

Let us assume that ug, = Ag,(cdt,/dtog),ugy = Agy(dx,/

dtog), where 0, a=1,2, ..., k;n=k+ 1, k+2, ..., k+n.
Then we have 35, 29, = 1, where u=1,2, ..., k4 n.

Let us set dt, = y,dT and dx, = y,dX (O’—l 2 S kn
=k+1, k+2 , k+n). We then have >°* 1,((,—lamd

k+n

Skl ln = that is, |x,] < 1and [y, <1.

Let us set

_cldt,|
Uw = Z Ups = dT()

k
cdT
Uio = u?) =—
; 7 ldtool

Then for the velocity U, we have
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(42)

k+n

Uso = Z Uon =
n=k+1
k+n  k
U. = 2
s = u()q'
n=k+1 0=1

Then for the velocity U; we have

k+n k
— § 2 § : 2
Us = Um - Us0
n=k+1 0=1

d k+n k y) / 2
:d_‘; ZZ(M) (43)

ki1 0=1 \ %00

We are going to show the conditions for the velocities
U6,U09, U, and Uy, Uy, Us. These conditions are imposed
by physical considerations (see also Sections II and VII).

Since during a change of the basis of the time axes of
Ky (the so-called passive linear transformation) the value
of dT} does not change, the values dX* and dT” remain
the same as well [see Eq. (39)]. Likewise, during a change
of the basis of the spatial or the temporal axes of K, the
values dX?2, dT?, and dT(% remain constant. It is clear that
the temporal axes of the frame K, and the spatial and
temporal axes of frame K can be chosen independently
from each other (see Sections II and VII). Therefore,
when applying these transformations, some physical
values (in this case velocities and consequently energy or
momentum—see further) must remain invariant.

In the expression for the velocity U,,, all time axes of

K, are included in the denominator (dT, = 1/21(;:1 dtgo);

we thus assume that the velocity U, is invariant during a
change of the basis of the time axes of K. Therefore, the
velocity U,, can be presented in the form U,, = y,,(|cdt,]|/
dT,), where y,, > 0 is a parameter that does not depend
on dtgy or, consequently, on the numbers ogy (0 = 1,

., k).

In the expression for the velocity U,gy, all time axes of
K are included in the numerator (d7 = Z];:l di); we
thus assume that the velocity U,y is invariant during a
change of the basis of the time axes of K. Therefore, the
velocity U,y can be presented in the form U g9 = Vioo(cdT/
|dtog|), where 7,09 > 0 is a parameter that does not depend
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on dt, or, consequently, on the numbers y, (¢ = 1,
2, ..., k).

From here we can conclude that the velocity U, is
invariant during a change of the basis of the time axes of
K, and during a change of the basis of time axes of K—
i.e., the velocity U, can be presented in the form U, =
v(cdT|dT,), where y, > 0 is a parameter that does not
depend on dtyy and dt,; or, consequently, on the numbers
ogp and y, (o, 0 =1, 2, ..., k)—see Eq. (42). Indeed,

k k
§ 2.2 § : 2
LoV = Ut()()
o=1 0=1

k.2
N 202 V100
DA o
o=1 o=1 %00
Since the values y, and 7,, do not depend on the numbers

%9, the parameter 7, = /S5 _| 7292 will not either. Since
the values oy and 7,09 do not depend on the numbers y,,
the parameter

will not either. Therefore, the parameter ), does not
depend on the numbers oy and y, or, consequently, on
dtye and dt,.

In the expression for the velocity Uy, all the time axes
of K, are included in the denominator (dT, =

2’;:1 dt(zw); we thus assume that the velocity Uy, is
invariant during a change of the basis of the time axes of
Ky. Therefore, the velocity Uy, can be presented in the
form Uy, = yy,(|dx,|/dT,), where y,, > 0 is a parameter
that does not depend on dty, or, consequently, on the
numbers oy (0 =1, 2, ..., k)—see Eq. (4).

In the expression for the velocity Uy, all the space
axes of the frame K are included in the numerator (dX =

Zﬁiﬁi 4 dx%); we thus assume that the velocity Uy is
invariant during a change of the basis of the space axes of
K. Therefore, the velocity Uy can be presented in the
form Uy = ye(dX/|dToe|), where y,9 > 0 is a parameter
that does not depend on dx, or, consequently, on the
numbers y, m=k+1, k+2, ..., k+ n)—see Eq. (8).

We can prove by analogy that the velocity U; is
invariant during a change of the basis of the time axes of
K, and during a change of the basis of the space axes of
K—i.e., the velocity U, can be presented in the form U, =
v(dX|dTy), where y; > 0 is a parameter that does not
depend on dfyy and dx, or, consequently, on the numbers
ogpand y, (0=1,2, .., ksn=k+1,k+2, ..., k4+n)—see
Section II and Eq. (43).
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Let us set

k+n k

DS ug, =\ U+ UL

u=1 0=1

U =

Since U, = y(cdT/dT,) and U, = y(dX|dT,), we obtain

2 2
(ST (X
U= <dT0> t <dT0 '

In support of these assumptions we can present one
more argument. In STR, the real space-time is compared
to the dual space of the energy-momentum. These
considerations must apply also for the case of multidi-
mensional time. Therefore, between the total energy and
total momentum in the multidimensional time there
should be a relation similar to the one in Eq. (39). The
velocities U, and U, participate accordingly in the
formulas for the total energy and for the total
momentum—see Eqgs. (61), (71), and (73). If the
equalities U, = y/(cdT/dTy) and Ug = y(dX/dT,) are
valid, then between the total energy and the total
momentum there will be a dependence which is similar
to the relation in Eq. (39)—see Eqgs. (73) and (74).

Let us assume that og; =ogp =" - =0 = 1/\/% (that is,
digy =dtoy =+ =dio=dTo|Vk > 0), g1 =po=""+ =t =
1/Vk (that is, dty =dty = - - - = dty = dT//k > 0), and yy
= Y2 = = Yarn = 1//n, (that is, dxg = dxgp = =
dxj, = dX//n > 0). Let us apply a proper or improper
rotation of the time axes of the frame K, in the
hyperplane of the time. The transformation under
consideration can be presented through the orthogonal
matrix A = [ap)ixk, belonging to the orthogonal group
O(k, R), where R denotes the real numbers field (see also
Section VII). The new time axes obtained after applying
this transformation we will denote with 7, (0 = 1,
2, ..., k). Since S35 (o) = Sh_; 43, = 1, we will have

/
%o1 o1
I
o o
02 02
=AX ,
/
%ok 0k
that is,
k 1 k
I
0(00 = E apcdo; = —\/]; E agc;.- (44)
c=1 c=1

Since the velocity U, is invariant during a change of
the basis of the time axes of K, the expression

k 2
Z <)“00>
=1 \%00

remains constant during a change of the numbers cgg—

that is,

k A 2 k ) 2 k
S(e) =3 (2) kA= 69
0=1

’
=1 \%o0 0=1 \%00
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where y,, i1s a parameter that does not depend on the
numbers oy (0 =1, 2, ..., k).

Let us consider the orthogonal matrix B = [by,]ixks
belonging to the orthogonal group O(k, R). Taking into
account Eq. (45), we likewise obtain

)‘(:)U _ Zb('h Vo \/— Zb(h/bvg- (46)

%o =1 %oy

From Egs. (44) and (46) we can define the quantities 2,

Kk k__k
2 = Zzaoﬂdo bovdve Z Za9 boving. (47)

v=1 c=1

Let us apply a proper or improper rotation of the
time axes of the frame K in the hyperplane of the time.
The transformation under consideration can be presented
through the orthogonal matrix J = [ s, i<k, belonging to
the orthogonal group O(k, R). The new time axes
obtained applying this transformation we will denote
with ¢/ (6 =1, 2, ..., k). Since F_ 4V =S5 2 =1,
we will have (x{, x5, -+ 1) =01 %2s -+ > X)) X J—that is,

k k
1
" . .
Ao = AsJse = —7= )P Joa- (48)

Since the velocity U,y is invariant during a change of
the basis of the temporal axes in K, the expression

" 2
> (ioto)
o=1
remains constant during change of the numbers y,—that is,
k k k
Z( (/)/axz;,) = Z OGXU Z - y12007 (49)

1 o=1

Q
I

where 7,9 is a parameter that does not depend on y, (6 =1,
. k).
Let us consider the orthogonal matrix L = [/y,]ixks
belonging to the orthogonal group O(k, R). Taking into
account Eq. (49), we likewise obtain

k k
14 " / 1 b4
Mete = Agotolss =—= Y Joploe- (50)
I=1 \/% =1

From Eqgs. (47), (48), and (50) we can define the
quantities A,

ko k k

<ZZ agp; OCOsb()\ \’1?/(19[190)

=1 v=1 ¢=1 %ov

1

P
Z X(ijézr

"o
)\-HO. -

: (51)

where the numbers A,y are defined provided that oy = y,
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= 1/vk. Since the parameter y, does not depend on the
numbers oy and y,, we can set ooy = 7, = 1/vk. In this
case we have

ko k i()a}’o— 2
= o () -

o=1 0=1 \ %00

k k
S i (52)

g=1 0=1

[See Eq. (42).]
Similar considerations apply for the velocities Uy, and
U,y (see Section II). For example, if the qudntities Ay are
defined at arbitrary values of oy, and j,, and the
quantities 4,, are defined provided that oy = 1 Ik, Ay =
1//n, then we have

gl ;bevivapqu/>

ooy

Z Z Z ag:bo, A voqpn

p =k+1 v=1 ¢=1
k+n

D

n=k+1

(53)

[See Eq. (10).] Here ay., by, hays g,y are elements of the
orthogonal matrices A = [a(k]kxks B= [b(?v]kxka H= [hTH’]]HXH:
Q =[¢pylixn> respectively. [The matrices A and B belong to
the orthogonal group O(k, R), and the matrices H and Q
belong to the orthogonal group P(n, R).] For the
parameter y, we have

k k /9 . \2 k k

o +n /L()n)(q B k +n "

=l 2o 2 () = 2 D
n=k+1 0=1 09 n=k+1 0=1

(54)

[See Eqs. (11) and (43).] In Eq. (54) the quantities /g, are
determined provided that ooy = 1/v/k, Ly =1/v/n.

Let usset A = S Ao #=1,2, ..., k+n. [See Eqgs.
(51) and (53).] In the general case (i.e., at arbitrary values
of ayy, %o, and X;,’), we will have

dTy X UM = 4R,
where
v= ] Ly = el
H 1 e X (ktn) A, (’)QdTo

an V4
A Py dX

o = ATagydTo”
[See Egs. (40), (41), (44), (48), (51), and (53) 11 05

Aoy 7 Sk | Ao (that is, A7 # 1, p =1, k4 n)
then

A ()O‘/O‘CdT u// _ }()a/”CdT

bo = Alo,d Ty %4,dTo
and
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A }gnx”dX
Ugy = X777 7
A, 0,dT

75 , Aen,(”dX
O(OHdT()

Let us set u, = (dX/dT,) = (Uy/y,). We will say that u
is the total proper velocity of the particle under
consideration. The relation between the total coordinate
velocity u,. = (dX/dT) = (U./y)—see Section II—and the
total proper velocity u is given through the expression u,=

un/1 — B> We have U, = y,U./(yy/1 — f*)—see Egs. (2),
(11), (43), and (54). If dtgg = dtg\/1 — B> (0=1, 2, ..., k),

then y, =17 (see Sections II and V).

Let us consider the frame K”, moving uniformly and
rectilinearly in relation to K. It is clear that in the frame
K” a particle will have a different generalized velocity U”,
given by the matrix U” = [ug Jix@n). Let us choose the
frames Ky and K” in such a way that ogg = dtgg/dTo =1/
Vi, ! =dT"/dT" = 1/Vk, %y =dx)[dX" =1/\/n , where
0,6=1,2,...k;n=k+1, k+2,...,k+n.1nthiscase
the qudntltles Ag;t,deﬁned in the frame K”—as with 24,
defined in K—can take arbitrary (real) values. The only
condition for this is defined with the equality S5_, Aoy =
1, where u=1, 2, ..., k + n. (For the quantities Ay, the
similar equality Zo | )g,, =1 applies.) Due to this fact we
can assume that the values of 4y, in the frame K” coincide
with the corresponding values of 4y, in the frame K—that

is, )tg;l:/lgﬂ, where 0=1,2, ..., k;u=1,2, ..., k+n. (The
values 2, are determined provided that ooy =y, = 1/Vk vk,

%, = 1/y/n, and the values A, are determlned provided

that 009 = Yo = 1/\/_ In= 1/\/~)

For the velocities ug, (0=1,2, ..., k;u=1,2, ..., k+

n) we have
oo = g cdte _ lo)sC (55)
o o le@ son /——1 B ﬂ2>
dx j~0 X Cﬁ
Ugy = }ten ?01:) = S L (56)

09\/1—[32’

where o=1,2, ... k;n=k+ 1, k+2,..., k+n.

B. Energy and momentum of a particle moving in k-
dimensional time

Let us consider the motion of a particle in relation to
the frame K. In the case of the one-dimensional time of
STR, a (3 + 1)-dimensional energy-momentum vector is
defined. Likewise, in the case of multidimensional time we
can define a k X (k 4+ n) energy-momentum matrix p =
moU, where my > 0,U = [ug,Jix(tn)- The physical meaning
of the constant my will be clarified later.

Let us denote p. = mow, and pg, = moug, (0 = 1,
2,k p=1, ., k 4+ n). First, let us consider the
components Poos Where 0,0=1,2, ..., k. By analogy with
STR, if we multiply by the velocity of light in a vacuum c,
we will obtain the components of the energy ey,. The
energy of the particle defined in relation to the time
dimension ¢, has kK components:
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€lg
€2s
Eo’ = . 5
Cko
where
iealamocz
€ = MoUYeC = ———F— (57)

00y/ 1 —ﬁ27

g, 0=1,2, ..., k [see also Eq. (55)]. The energy of the
particle will have k> total components. If for a given § (1
< 0 < k) the condition dtys = 0 is fulfilled, then the
velocity components ugsy, us, ..., Ug, Will be undefined
values and thus the energy components e, €5, - .., €sk
will also be undefined values. If for a given J (1 < < k)
the condition df; = 0 is fulfilled—i.e., a given particle is
not moving in the time dimension #5—then we have u;s =
rs = -+ = us = 0 and therefore e15=er5 =+ = exs =0.

From Egs. (40) and (57) the following important
equalities are obtained:

dtyre1q + dtopers + - - -
myc

+ dtoWie

= cdt,,

that is,

2
%1€l + %225 + - -+ Aoke myc
0 g 0 i 0k Aa: 0 > 0. (58)

1o S

Let us assume that for a given J (1 < 6 < k) we have
1s <O—that is, the particle under consideration is moving
backward in the time dimension f5 (dts < 0). Let us
simultaneously multiply the numbers ys, ao1, %2, - -, ok
by —1. This operation corresponds to an inversion of the
time dimension dt; = ysdT and an inversion of the proper
time dT() = (dl()l, dloz, . dl()k) = (OCOIdTOa Otosz(), Cea
oordTy). According to Eq. (58), this operation will not
change the components of the energy e, ess, .. ., exs. (If
o # 0, during this operation the number y, does not
change its sign but the numbers o, oo, ..., 0gr change
their signs, and therefore the energy components ey,
€20, - - - €ro change their signs, as well.) Therefore, if a
given particle is moving backward in the time dimension
ts (that is, dt; < 0) and the projections of the proper time
on the time axes are dtg;, dtyo, ..., dior, then we can
assume that the particle is actually moving forward in the
time dimension 7s (that is, dt; > 0) but the projections of
the proper time on the time axes are —dty, —dtgo, - - .,
—dty,. These results have important consequences for
antiparticles in multidimensional time (see Section X).

If in Eq. (57) we set oy =%, = 1/vk, then we will have

1 — f*. From here we can define the

) 2
€os = Aoghioc”/
quantities Ay,

_eoy/ 1 - p (59)

In this case, if 19, > 0 then we have eg, > 0, and vice
versa. If 2y, < 0 then we will have ¢y, < 0, and vice versa.
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As pointed out in Subection IX.A, if the frame K” is
moving uniformly and rectilinearly in relation to K, then
for an appropriate choice of the axes of Ky and K” (0gp =
1 = 1/vk), the quantities /g, will conserve their value
during the transfer from K to K”.

Let us denote E, = ||E,|| > 0. The aggregate energy,
defined in relation to the time dimension ¢,, is equal to

k
- 2 m002|Xa|

_ ;eog_il_ﬂz

_ mOC2|Xa|Vto'
\/1—p°

where y,, > 0 is a parameter that does not depend on the
numbers oo (0 =1, 2, ..., k)—see Subsection IX.A and
more precisely Eq. (45). [If we assume that the given
particle does not move in the time dimension #5 (1 < 6 <
k), then we will have ys =0 and accordingly Es=0.]
The total energy of the particle which is moving in k
time dimensions will be defined through the expression E

= /3% E2 > 0—that is,

E,

(60)

= en (61)

where 7, > 0 is a parameter that does not depend on the
numbers y, and ogy [see Subsection IX.A and more
precisely Egs. (42) and (52)].

Let us assume that the frame K coincides with the
proper frame of reference K, (see Subsection IX.A). In
this case we have dt, = dt,, (that is, dT=dTy, ), = 0gs).dx,
=0,whereo=1,2, .., k;n=k+1,k+2, ..., k+n. The
proper energy or the rest energy of the particle defined in
relation to the time dimension ¢, = ¢y, has kK components:

€0lo
€020
EOO’ = . ’
€0ka
where ey = Ago0ooMoc’/o0,0, 0 = 1, 2, ..., k. The

aggregate proper energy defined in relation to the time
dimension 1, is equal to Ey, = m0c2|xg|yw.

The total proper energy of the particle moving in k
dimensions is defined by the expression £y = \/21;:1 E2.
> (0—that is,

Ey = moczy,. (62)

It is clear that if k=1 (and accordingly y,=1), then E
= moc. This is the well-known formula obtained in STR.
Hence, the constant m, > 0 is equal to the proper mass or
to the rest mass of the particle (at V1=V,=---=V,=0).

By analogy with the case k =1 (i.e., STR), we will
assume that if a particle has rest mass m, and is moving
with velocities V75, V5, V3, ..., Vi (defined in relation to
the time dimensions #;, t,, ..., #;) in relation to a given
frame of reference K, this particle will have relativistic
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mass m = mg/{/1 — ﬁz defined in K. Letus set V|, =V, =

- = Vi = V. (This can be obtained through an
appropriate rotation in the hyperplane of time—see
Section VII.) Then we have

my my
m= = .
Vi-p -
Equation (63) gives the relationship between relativ-
istic mass m, rest mass m, velocity V of a particle, and the
number of time dimensions k in which the particle is

moving. According to Eq. (63), a given particle has zero
rest mass if f = 1—that is,

(63)

2

k.
> =1
c=1

(and accordingly ¥ = ¢v/k). At k =1 we obtain the well-
known case of STR. From Eq. (63) it follows that at
constant velocity V' (V' = const), as the number of time
dimensions increases, the relativistic mass m decreases.

S

If in Eq. (61) weset Vi =V,=---= V=V, then we
obtain
m0C27t 2
E= = mc-y,. (64)
-z

Through Eq. (64) we determine the relation between
total energy E, rest mass m, relativistic mass m, velocity
V' of a particle, and number of time dimensions k in which
the particle is moving.

As can be seen from Eq. (64), only for the case k=1
do we have following peculiarity: If V' — ¢, then £ — co—
that is, the energy of the particle is an infinite quantity
(see Figs. 4 and 5). It is clear that if K > 1 and V' =c¢, then
E = myc*yVk/\k — 1. Therefore, if a particle with rest
mass (rest energy) differing from 0 and moving in a
number k > 1 of time dimensions with the same
velocity—which is equal to the speed of light in
vacuum—then its energy is not infinite, but will have a
finite value. However, if V' — ¢v/k, then E — oo—that is,
the energy of the particle is an infinite value. (As noted in
Section VIII, the velocity V= cVk is a constant, invariant
value in relation to all inertial frames of reference.)

Let us consider two particles L and N, moving
uniformly and rectilinearly to each other. Let us assume
that particle N is moving in only one time dimension (¢;)
and that particle L is moving in k time dimensions (¢,
t, ..., t;), where k > 1. We assume that particle N is not
a luxon—i.e., the rest mass of the particle N differs from
0. Let us assume, as well, that particle L is a luxon—i.e.,
the velocity of L in relation to N defined according to the
different temporal dimensions ¢, f,, ..., f; is the same
and is equal to the speed of light in a vacuum. According
to Eq. (64), the total energy of particle L defined in
relation to particle N is equal to E = my >y k/\Vk — 1
(where k£ > 1). Although particle L is moving in relation
to particle N with a velocity equal to the speed of light in a
vacuum, the rest mass of particle L differs from 0: my =
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FIG. 4. (Color online) Relation between the quantity ¢; and the number of time dimensions k.

EvVk —1/c*y/k # 0. The reason for this result is that
particle L is moving in more than one time dimension (k
> 1). Therefore, the particles which are moving with a
velocity equal to the speed of light in a vacuum (i.e., the
luxons) can have nonzero rest mass, but on the condition
that they move in two, three, or more time dimensions.

Let us assume /l%ﬂ = /lgﬂ =...= Aiﬂ—that is, [A1,] =
Vol == a1 =1, 2, ..., k+n. Since ¥5_, 29, =1,
the minimum value which the quantity |1,/ can take in
this case is 1/k (here 8 = 1, 2, ..., k). If k is an odd
number, then the maximum value which the quantity |4g,,|
can take is 1; and if k£ is an even number, then the
maximum value which |4,| can take is 1/2. If we take into
account Eqgs. (52) and (54), then for odd values of k we
will obtain 1 < y, < k and accordingly 1 < y, <k. For
even values of k£ we will have 1 < y, < k/2 and accordingly
1 <7y, <k/2. We note that if k=2, then y,=1 and thus y,
=1.

Since 1 < y, < k, according to Eq. (64) we have

2 2
M g ek (65)
1-2 1 -2
ke? ke?

If k=2, then y, = 1—that is,

0
1-22

If we set V=0, then according to Eq. (65) we obtain the

following expression for the proper energy of the particle:

moc® < Ey < myck. (66)

From Eq. (64) it follows that if V'=const and y,=k (k
is an odd number) or y, = k/2 (k is an even number), then
as the number of time dimensions increases, so does the
total energy (see Fig. 4). In this case, the additional time
dimensions “add” additional energy to the energy of the
particle. Let usset y,=k at k=2k;+ 1 and y,=k/2 at k=

2k, where k; =0, 1,2, 3,.... Let us denote ¢, = E/mocz.
According to Eq. (64) we obtain
k
g = ——
-

at k =2k, + 1 and

at k=2k;. Figure 4 gives the relation between the quantity

—A— V/e=0.990
—o— V/e=1.000
ey 6 V/e=1.900
—o— V/e=2.500
4

—=— V/e=0.000

—¥— V/e=3.000

30 35 40 45 50

FIG. 5. (Color online) Relation between the quantity ¢, and the number of time dimensions k.
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¢; and the number of time dimensions k at different values
of the ratio V/c (0.000, 0.990, 1.000, 1.900, 2.500, 3.000).

According to Eq. (64), if "=const and y,=1, then as
the number of time dimensions increases, the total energy
decreases (see Fig. 5). In this case, the additional time
dimensions “subtract” from the energy of the particle. Let
us set y, = 1 and &> = E/moc*. According to Eq. (64) we
obtain

_
1 V2

k32

& =

Figure 5 gives the relation between the quantity ¢, and the
number of time dimensions k at different values of the
ratio V/e.

As can be seen from Figs. 4 and 5, only in the case k=
1 do we have following peculiarity: If V' — ¢, then ¢, —
o and accordingly £ — o. Further, if k=9 and V' — 3¢,
then &, — % and accordingly £ — o.

In the case of multidimensional time, the momentum
of the particle defined in relation to the space dimension
X, has k components:

pln
D2y
pﬂ = : )
DPiy
where
Mo Aoy Ay CP
pgn = m0u9,1 = % (67)
oo/ 1 — B

[Here 60=1,2, ..., k;n=k+1,k+2, ..., k+n—see also
Eq. (56).] The momentum of the particle has nk total
components. If for a given J (I < § < k) the condition
dtos = 0 is fulfilled, then the velocity components usgct1),
Us(kt2)s - - - Usckrny Will be undefined values and therefore
the momentum components Pok+1)s PS(k+2)s « - =5 Po(k-+n)
will also be undefined. If for a given ¢ (k+1 < ¢ < k+n)
the condition dx, = 0 is fulfilled—i.e., the particle does
not move in the space dimension x,—then we will have
1o =0 and therefore p;, = pr, =+ = pry = 0. It is seen
that if for a given 9 (1 < 9 < k) the condition Vy =0 is
fulfilled, then =0 and therefore py, = 0 for all values of
0 and 7.
From Egs. (41) and (67) we obtain the following:

%01P1y + %o2pay + + + dokPry - Mo

i JioF

From Eq. (68) it follows that if we simultaneously
multlply the numbers 01> %025 -+ v5 KOks Xkt-1s k25 « o5 Lk+n
by the number —I1, then in this operation the momentum
components pg, will not change.

According to Egs. (58) and (68), the multiplication of
the value mgy by the number —1 is equivalent to the
multiplication of all numbers o, %2, ..., % by —1—that
is, the rest-mass sign inversion is equivalent to the proper
time inversion dTo = (dtyy, dty,, ..., dty,). The application

>0. (68)
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of these two operations leads to identical results, namely
changing the signs of all components of the energy and of
the momentum. A similar statement is valid in STR.
These results have important significance in relation to
antiparticles in multidimensional time (see Section X).

If in Eq. (67) we set agp = 1/Vk, 1, = 1//n, then we
obtain

mO;L();7C'ﬁ\//;
Vi1 f?

From here we can define the quantities Ag,:

o/ 1 — (69)

mocpvk

In this case, if 4y, > 0 then we have py, > 0, and vice
versa. If g, < 0 then we have py, < 0, and vice versa. As
already pointed out in Subsection IX.A, if the frame K” is
moving uniformly and rectilinearly in relation to K, then
for appropriate choice of the axes of Ky and K” (¢g9=1/
Vk, Ty = 1/y/n), the quantities Ay, conserve their value
during transfer from K to K”.

Let us denote p, = ||p,|| > 0. The momentum of the
particle defined in relation to the space dimension x,, is
given through the following formula:

Poy =

)"0'7 =

k
mO|X ‘ym Cﬁ
Py = Zpén =—==. (70)
0=1 1— 52
Here
Yoy = >0

0=1

is a parameter which does not depend on the numbers oy
(see Subsection IX.A).

The total momentum is defined through the following
formulas:

k+n

Ps = Z P% > O,
n=k+1
that is,
moycp
ps = ———==my P, (71)
1-p
where 7, = \/Z];L'Z 1 %373, > 0is a parameter which does

not depend on the numbers y, and agyy [see Subsection
IX.A and more precisely Egs. (43) and (54)].

Let us set Vy =V, =--- =V, = V. (This can be
obtained through an appropriate rotation in the hyper-
plane of time—see Section VII.) We have

moySV

g = —— =

k=

myV
e

(72)
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Equation (72) gives the relation between total
momentum p,, rest mass m, relativistic mass m, velocity
V' of a particle, and number of the time dimensions k in
which the particle is moving.

As is easy to see, following equalities are fulfilled:

cdT ¢ _E dx o ps
dTy 1— mycy,”  dTy 1 —p myy,
(73)

[See Egs. (61) and (71).] Taking into consideration Egs.
(39) and (73), we obtain the following important equality:

B2 2R
2B =mic. (74)

Equation (74) gives the relation between total energy
E, total momentum p,, and rest mass m,. If kK = 1, then
from Eq. (74) we obtain the well-known equality derived
in STR: E* - ¢p? = mjc.

C. Energy-momentum conservation law

In STR, the energy-momentum conservation law is
derived as a consequence of continuous space-time
symmetry (Noether’s theorem). For example, let us
consider the process of decay of a particle. Applied to a
decay process, energy-momentum conservation states that
the vector sum of the energy-momentum four-vectors of
the decay products should equal the energy-momentum
four-vector of the original particle. Some aspects of the
problem for conservation of energy and momentum in
multidimensional time are discussed by Dorling.” Until
now it was accepted that in the case of k-dimensional
time, the energy is a k-dimensional vector’>. But
according to the previous considerations, in the case of
k-dimensional time and n-dimensional space, the energy is
a k X k matrix and the momentum is a k X n matrix. In
this case the energy-momentum conservation law applied
to the process of decay of a particle will state following:
The matrix entrywise sum of the energy-momentum k X (
k + n) matrices of the decay products is equal to the
energy-momentum k X (k + n) matrix of the original
particle. In particular, the matrix entrywise sum of the
energy k X k matrices of the decay products is equal to the
energy k X k matrix of the original particle. Moreover, the
matrix entrywise sum of the momentum k X n matrices of
the decay products is equal to the momentum k X n
matrix of the original particle. For example, if we denote
with pH[p{)fl]kX(kH) the energy-momentum matrix of the
original particle (particle H) and with p* = [pglﬂ]kx(kﬂ), p®
= [Pg,‘]kx(mn), v pl = [p(l))u]kx(kﬂz) the energy-momentum
matrices of the decay products (of the particles A,
B, ..., D, respectively), then we have

p’ =p' +p" 4+
that is,

Pl = Py + Do+ -+ Pl (75)
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O=1,2,..,k;u=1,2, ..., k+mn). For the energy and
the momentum, respectively, we have EY =E* + E® + . ..
+EP—thatis, efl =efl +eB +---+ebl —and p =p/ +p®
+ -+ pP—that is, pji = pj, + pp, + - +pg, (0= 1,
2, ..., kin=k+1, ..., k+n). For the total energies of the
considered particles, we have

EM = (et

M-
M- | 2~

bl

(e, + b+ +eh),

Q
Il
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Il

1

kol
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1

et
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Q
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Il
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1 0=1

2
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1
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The total energies E”, E*, E®, ..., EP are the
Frobenius norms of the matrices E = lel T E! =
led Yo EP =[e8 Lk - - EP = [eB ik Tespectively—i.e.,
E" = |[E”||p = ||E* + EP 4 - - + E°|[p, B/ = ||[E||p, E” =
I[E®||g, - -, E® = ||EP||. (The total momentums p/, p?,
pB, .., pP are the Frobenius norms of the matrices p¥ =
[pgi,]kxm p? = [Pgn]ka p? = [Pgn]ka ) p? = [p(l))n]kxm
respectively.) The Frobenius norm possesses the following
property: [[E* + E” 4 + E?||p < ||E”||¢ + [[E” + - +
E”l[g < - < [[E"[p + [[E”[ + - + [E”]| - (the triangle
inequality property). Therefore, we have

ET<E'+EP+...+ EP. (76)

We obtained the result that in the case of multidi-
mensional time, the energy conservation law as defined in
STR will be violated—the magnitude of the total energy
of the original particle H is less than the sum of the
magnitudes of the total energies of the decay products
(the particles 4, B, ..., D). The same applies also for the
momentum of the considered particles—the momentum
conservation law for the case of multidimensional time
differs from the momentum conservation law for the case
of one-dimensional time (STR).

Let us assume that the particle H is moving only in
one time dimension #; and that the remaining particles A4,
B, ..., D are moving in k > 1 time dimensions ¢, ..., .
According to the energy conservation law, the equality £/
=ell =ef +ef 4+ -+l will be fulfilled. Further, at ¢ >
1 or 0 > 1 the equality ¢/ = 0,will be fulfilled—i.e.,
Cho + €hy + 1+ g = 0.

Up to now, it has been accepted that particles moving
in multidimensional time are more unstable and decay
more easily than those moving in one-dimensional time.’
However, this is only valid if we suppose that in the case
of k-dimensional time and n-dimensional space the energy
is a k-dimensional vector and the momentum is an n-
dimensional vector. According to our obtained results, in
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the case of k-dimensional time and n-dimensional space
the energy is a k X k matrix and the momentum is a k X n
matrix. We are going to prove that in multidimensional
time, like in one-dimensional time, the sum of the rest
masses of the decay products is always less than or equal
to the rest mass of the original particle. Therefore,
particles moving in multidimensional time are as stable
as those moving in one-dimensional time. Indeed, let us
consider the process of decay of the particle H into the
particles 4, B, ..., D. Let us choose the values of /g, in
such a way that for a particular choice of time axes in the
frame K, of some space axes in K, and of some time axes
in K (i.e., at a given x,, . %), the following equalities
are fulfilled:

A )B D
;‘()y//x _ /10/1}5;;1 _ /“(),u/ﬁ . /“(J,uX,LLL) (77)

oG %0 %Gy oGy
(Here 0,6=1,2, ... ksn=k+ 1, k+2, ..., k+n, u=1,

., k + n—see Subsection IX.A.) It is obvious that in
this case the parameters y;, y, will be the same for all
particles H, 4, B, ..., D—ie.,yT=yl=y8=...=yP =»,
>0, 9=y 4+ 9B =... =9P =y, > 0 [see Egs. (52) and
(54)]. For the total energies and the total momentums of
the particles we have

k

2

Ef=\[>_> (ef)
0=1

ot ega)za

k
EY = > (ed)

2
+p£1)’

k+n

> Z(po,7

n=k+1 0=

k+n

Z Z(p@rl

n=k+1 0=

[See Egs. (60), (61), (70), and (71)]. According to Eq. (74),
we have
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It is clear that if the inequality

2 2 2 2
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V2 72

+

is fulfilled, then the inequality m{ > mg +m8 + - + mpP
will be valid as well. However, the first inequality is
equivalent to the following inequality:

kK k ,
Z Z 806 T+ ega)
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From this inequality we obtain

k+n

k k 2
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ZZ €05C00 Z Zp(%vp@n
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In order to find whether the obtained inequality is
fulfilled, we have to compare the expressions on each side
of the inequality concerning the respective pairs of
particles. For example, let us consider the expressions
concerning the pair 4 and B—these are the expressions

k k k+n »
2
E e eea Z ZPOWPOV/
o=1 6=1 _n= k+1 0=
7 72

and mglmOBc“. (The comparison for the remaining pairs of
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particles is done similarly.) Taking into account Egs. (57),
(67), (52), and (54), we have

k Kk k+n k
2 A B
E eneh, € Z ZPOWPOW
a=1 6=1 n=k+1 0=1
- V2
))[ ))S

mimf (1 )

[We have accepted that (4] O /ﬁ Jorgly) = (Agﬂ L Ba8)); therefore
we have
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It is clear that the same inequality will be valid also for the
remaining pairs of particles. Therefore, if Eq. (77) is
fulfilled for particles undergoing decay (i.e., the values of
/o, are chosen in an appropriate way), then the inequality
mil > mi +mB + -+ mP will be fulfilled. (If p* = p* =

= p” then this inequality becomes an equality.) The
obtained inequality is similar to that derived in STR.

X. ANTIPARTICLES IN MULTIDIMENSIONAL TIME

In relativistic quantum mechanics, an antiparticle is
attached to every particle. The so-called switching
principle (SP) (or reinterpretation principle) was formu-
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lated by Stiickelberg, Feynman, Sudarshan, and Reca-
mi."> %7 According to this principle,

positive energy objects traveling backwards in time
do not exist; and any negative energy particle
travelling backwards in time can and must be
described as its antiparticle, endowed with positive
energy and motion forward in time (but going the
opposite way in space).’!

Thus the antiparticle moving forward in time and
possessing positive energy in fact can be regarded as a
particle moving backward in time and possessing negative
energy.’

This principle can be generalized for the case of k-
dimensional time ¢, t,, ..., fx. A particle moving back-
ward in a given time dimension ¢ (that is, dfs < 0, where 1
< ¢ < k) and possessing energy

—€1s

—€25
—E; =

—€ks

defined in relation to ¢5 can be described as an antiparticle
moving forward in the time dimension ¢s (that is, dts > 0)
and possessing energy

€15

€25
Es; =

€ko

defined in relation to 7s5. In the case of multidimensional
time, the components of energy ey, (o, 0=1, 2, ..., k) can
accept not only positive but also negative values (unlike
the case of one-dimensional time).

First, we will consider the case (n, k) = (3, 1). Some
authors''?!2323-28733 have shown that the nonorthochro-
nous, proper Lorentz transformations (i.e., transforma-
tions which include “total inversion” —1) can be
connected with the existence of antimatter. The asser-
tion>* is reasonable that the term “antimatter” is strictly
relativistic, and that on the ground of the double sign in
the formula for energy, the existence of antiparticles could
be predicted right after 1905, provided that the switching
principle is applied.

It is important to note that the full group of Lorentz
transformations acts as the four-dimensional vector on
the position of a given object, and also on the other four-
dimensional vectors (four-momentum, four-current, etc.)
which are connected with the object. We will introduce
the new notations P for strong parity and T for strong
time reversal, in order to denote the inversion of the sign
of the first component and of the next three components
of all four-vectors. The operation strong reflection, PT,
which changes the sign of the three-vector x and of the
time #, will change the sign of the three-momentum p and
of the energy E as well. We can write P= Pp and T = TE,
where p and E are operators respectively changing the
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signs of the three-momentum p and of the energy E
(operations of three-momentum and energy reversal). In
this new formalism, the operation P is in fact equivalent
to the standard operation P (parity), but the operation T
is not equivalent to the standard operation 7T (time
reversal transformation) because T does not contain the
operation X, which performs the exchange of emission
and absorption.

It can be proven that the strong reflection P7 is
equivalent to the normal CPT operation: PT —S2CPT.
Indeed, applying the switching principle (SP), we
obtain®***

29,30,34

SP = CEp, (78)

where C is the conjugation of all conserved additive
charges. Since P= Pp and T = TE, we have PT = PpTE.
Thus we have**

SPPT = (CEp)PPTE = CPT. (79)

If we apply the switching principle, then we have''
SP = CC,X = CX, (80)

where C = CC,,; here C,, is the rest-mass sign inversion
and X operates the exchange of absorption and emission.
The operation C will be called strong conjugation.” One
can easily realize that in the frame of quantum mechanics
(in the case of states with definite parity), C = Ps, where
Ps is the chirality operator (C ' C =y’ = P5 'y Ps)—see
Ref. 11. Let us now consider generalized five-dimensional
space-time instead of the four-dimensional of space-time
of Minkowski, where the fifth dimension corresponds to
proper time and consequently is connected with the rest
mass.''*>#® It turns out that from the geometric point of
view, chirality Ps in fact means inversion of the fifth axis
(i.e., inversion of the proper time or accordingly of the
rest mass). Taking into account Eq. (80), we can write SP
= PsX (see Ref. 11). Therefore, SP is a combination of
inversion in relation to the fifth axis (proper time and
accordingly rest mass) and application of the operator X.

Since PT means the sign inversion of all components
of all four-vectors, for getting such an effect it is enough
to writt PT = PTaX ', where X! = X has been
introduced because ordinary 7T contains the exchange X
of emission and absorption exchange (different from T)—
see Ref. 33. With @ here is denoted the four-velocity
inversion. We obtain

SPPT = CX(PTux ') = CPT. (81)

The switching principle changes the sign of the three-
momentum but does not change the sign of the three-
velocity—i.e., it changes the sign of the rest mass. In fact,
the four-velocity inversion is equivalent to the rest-mass
inversion: o = C,,.

"'We point out that in the formalism used here, the strong conjugation
is a unitary operator when acting on the state space, as well as strong
time reversal.
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If we denote with L]_ the proper orthochronous
Lorentz transformations (i.e., transformations including
the unit matrix 1) and with Li the proper nonorthochro-
nous Lorentz transformations (i.e., transformations
including total inversion —1), then we will have''-!

Lt =ncl =pP7Ll 2L cprLl. (82)

[Here the operation (—1) means total inversion, as in (—1)
= PT = CPT—see Refs. 11, 29, 30, and 34.]]

According to the results obtained in Section IX.B, in
the case of one-dimensional time the formula F = e, =
mouyc is valid for all free particles, where u;; is the time
component of the four-velocity. According to Eq. (58), at
k=1 we have

a1/ 1 —

(In the case dT = |dt;| > 0, dTy, = |dto1] > 0, 1;; = 1—see
Subsection IX.B.) Let us assume that y; > 0 and oy >
0—that is, the energy of the particle is a positive quantity:
E = e;; > 0. Let us consider the proper nonorthochro-
nous Lorentz transformations Li, which lead to the
exchange of the signs of all time components:

(—Xl)m062

/1 - p

Let us apply the switching principle, which is expressed in
the inversion of the fifth axis (i.e., inversion of the proper
time dtg; = ag1dT or, accordingly, of the rest mass). The
switching principle will mean multiplying the number o,
= dty,/dTy by the number —1. We obtain the related
antiparticle:

E/Z —EZWI()(—L{]])CZ <0.

( %) moc? (*Xl)(*mo)cz >

—og1)\/1 = B oy 1-p

We determined that for the antiparticle (moving in
one-dimensional time) we have to attach negative proper
time or, accordingly, negative rest mass, but of course
positive full relativistic mass and energy.'!

Recmi and Ziino'' formulated so-called strong CPT-
symmetry: The physical world is symmetric (i.e., physical
laws are invariant) during total five-dimensional inversion
of the axes x, y, z, ct, ctg; (Where fo; is the proper time).

If the number of time dimensions in which a particle
is moving is greater than one, then the particle will have
more than one antiparticle. There will be a violation of
Lorentz covariance and therefore of CPT symmetry. In
the case of multidimensional time, CPT symmetry must
be exchanged with another generalized symmetry. Now
we are going discuss this issue.

Here we will consider the case (n, k) = (3, 2). The time
dimensions we will denote with ¢, ¢ and the space
dimensions with x, y, z. In the case of two-dimensional

E —

! In the formalism used here, CPT is a linear operator in pseudo-
Euclidean space.
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time the term “switching principle” will mean inversion of
the proper time dTO = (dlo], dtoz) = (OCOldTo, OCoszo)fthat
is, multiplication of the numbers oy; and oy, by —1. (See
Subsection IX.A.) This is equivalent to rest-mass sign
inversion. Therefore, every object moving backward in
the time dimension ¢z (that is, df < 0) and having energy

-E, = <_e“)
—€21

defined in relation to ¢ can be described as the
corresponding antiobject moving forward in the time
dimension ¢ (that is, df > 0) and having energy

- (3)
€]

defined in relation to ¢. The same considerations apply to
the time dimension 7 as well.

Let us denote with 4, 44, A, Ay, A, the
different kinds of antiparticles in two-dimensional time.
The antiparticle 4_, is moving backward in the time
dimension ¢ and forward in the time dimension 7 (that is,
dt < 0 and dr > 0). The antiparticle 4, is moving
backward in the time dimension ¢ but does not move in
the time dimension 7 (that is, df < 0 and dr = 0). The
antiparticle A__ moves backward in the time dimensions ¢
and 7 (that is, dr < 0 and dr < 0). The antiparticle Aq_
moves backward in the time dimension 7t but does not
move in the time dimension ¢ (that is, dt =0 and dr < 0).
The antiparticle 4, moves forward in the time dimension
t and backward in the time dimension t (that is, dr > 0
and dtr < 0).

By analogy with Eq. (78), we have the equality

SP,. = CEp, (83)

where E is an operator changing the signs of all

components of the energy E [the quantities ey, (o, 0 =1,

2)], p is an operator changing the sign of all components

of the momentum p [the quantities py., po,, po- (0 =1, 2)],

and C is the conjugation of all conserved additive charges.
By analogy with Eq. (80), we have the equality

SP,. = CC,X, (84)

where the operation C,, is the rest-mass sign inversion and
the operator X performs the exchange of emission and
absorption (and vice versa).

If in Eq. (36) we set (1, k) = (3, 2), then we obtain

Ad + Fdi? — dx? — dy* — dz* — FPdef) — i, = 0.
(85)

By means of Eqgs. (84) and (85) we can interpret the
meaning of the operation SP,, from the geometrical point
of view. According to Eq. (85), we could consider a
generalized [(3 + 2) + 2]-dimensional space-time, where
the two additional dimensions are the projections of the
proper time fq; and #y,. Therefore, SP,, is a combination
of inversion in relation to the axes cty, and ctyp, and
application of the operator X.
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By analogy with Eq. (82), in the case of two
dimensional time we have the following three formulas:

A = (DAl =irAl s cpial, (86)
Al =ToAL 2 cpin (87)
A =mEAT 2 cpial, (88)

where the operators 7 and % correspond to the standard ¢-
reversal transformation and t-reversal transformation
operations, and P is the standard operation parity (see
Subsection III.C and more precisely Table II). The
transformations A~ lead to a change of the signs of
the numbers y, = dt/dT and y, = dt/dT and therefore to a
change of the signs of all components of the energy ¢y, (o,
0=1, 2)—see Eq. (58). The transformations Af lead to a
change of the sign of the number y; and therefore to a
change of the signs only of the /~components of the energy
eg1 (0=1, 2). The transformations Af lead to a change of
the sign of the number y, and therefore to a change of the
signs only of the t-components of the energy ¢g, (0=1, 2).
The transformations A'~, Aﬁf, and Af lead to a sign
change of the numbers y; =dx/dX, ys=dy/dX, ys=dz/dX
and therefore to a sign change of all momentum
components pgy. poy, po- (0 =1, 2)—see Eq. (68). The
same is valid also for the respective components in the
dual spaces.

Let particle M be moving forward in the time
dimensions ¢ and t. Application of the proper orthochro-
nous transformations Af in some cases leads to a
direction change of the time dimensions ¢ or t (see
Subsection II1.B). Therefore, as a result of the transfor-
mations Alﬂ applied on the particle M, in these cases we
obtain some of the listed antiparticles: A_,, A_o, A__, Agy_,
or A, .

Let us assume, for example, that as a result of the
transformations Af applied on the particle M, the
antiparticle A__ (dt < 0,dr < 0) has been created. In this
case, when applying the operations in Egs. (86), (87), and
(88) we will have the respective antiparticles of the particle
A__. For example, if to the obtained antiparticle 4 we
apply the operations in Eq. (86), then we will obtain the
given particle M. Therefore, with application of the
operations in Egs. (86), (87), and (88) the directions of  or
7 are reversed, but it is possible to obtain antiparticles
moving backward in the time dimensions ¢ or t as well as
particles moving forward in the time dimensions 7z or t
(depending on the transformations Af).

Let us assume that the proper orthochronous
transformations Af have not changed the directions of
the time dimensions ¢ and t—that is, dt > 0,dt > 0.

The transformations A~ lead to a sign change of all
energy components ey, (o, 0 = 1, 2). Therefore, for the
energy components (after application of A*~) we will have

B —-£ = (Z0)
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where

o1 (=11 )moc?

—eg1 = mo(—ug1)c = , 0=12
oo/ 1 — B
E/ — _E. = —€12
T —622 )
where
_ 2
don(=12)moc 0=12.

—eg = mo(—up)c = —
oopy/ 1 — B

If we apply SP,, we obtain dtj; =—dlty; (that is, oy =—0;)
and dty, = —dty, (that is, o, = —0p>. According to Eq. (58),
we will have

" !/ e
55 (3)

and

” ’ €12
Er = _Er = ,
€22

where ey = (—mg)(—ug)c and e = (—mg)(—ugpo)c. As a result
of these operations we obtain the antiparticle 4__.

The transformations A]_‘_ lead to a sign change only
of the --components of the energy ey (6 =1, 2). Therefore,
for the energy components (after application of Al—) we
will have

—e
E;:_Ef: (_e;:>7

where

o (=) moc?

—eg1 :mo(_um)c—7> 0=12;
2000/ 1 — B
en
B—E = (),
where
s 2
epn = MoUpC = 02721M0¢ 0=1,2.

agpy/ 1 — ﬂZ’

If we apply SP,. we obtain dtj, =—dty; (that is, o, =—0g1)
and dtj, = —dto, (that is, oy, = —0p). According to Eq.
(58), we will have

"o r €1l
E/ =-E =
€1

and

"o r —€n
E =-E = ,
€22

where eg; = (—mg)(—ug1)c and —eg, = (—mg)ugrc. As a result
of these operations we obtain the antiparticle A_, or the
antiparticle 4_j.
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The transformations Af lead to a sign change only
of the t-components of the energy epn (0 = 1, 2).
Therefore, for the energy components (after application
of A'™) we will have

where
Ao111moc?
Co1 = Mol € = —" v, 0=1,2;
oo/ 1 — B
—e
E/ _ _ET — 12 ,
—en

where

iez(‘%z)mocz

—egy = mo(—up)c = —
aoy/ 1 — B

If we apply SP,, we obtain dt{j; =—dty, (that is, a5, =—ug)
and dtj, = —dto, (that is, o5, = —0y). According to Eq.
(58), we will have

e

and

"o r €12
El=-E=( "],
€22

where —ey; = (—mg)ugic and egr = (—mp)(—ug>)c. As a result
of these operations we obtain the antiparticle 4, or the
antiparticle A4, .

According to these considerations, a negative rest
mass equal to —my must be attached to the antiparticles
A, Ao A__, Ao, Af_.

On the ground of the obtained results, it is possible to
make a generalization of the strong CPT symmetry
formulated by Recami and Ziino.'" In the case of two-
dimensional time the physical world is symmetric (i.e., the
physical laws are invariant) for inversion of the axes x, y,
z, ct, ct, ctyy, ctoy [see Eqgs. (84) and (89)].

Let us summarize the obtained results: If k =1, then
the number of antiparticles is 1; if £ =2, then the number
of antiparticles is 5. With similar considerations, one can
find that if the number of time dimensions is equal to k,
then the number of the different antiparticles is equal to
3k — 2% For example, for the case k =3 we obtain 3> — 23 =
19 different antiparticles. Indeed, let us denote with ¢,
t, ..., t; the time dimensions. Since we consider antipar-
ticles, it must be true that drs < 0 for at least one of the
time dimensions 75 (1 < § < k). Obviously, for each of the
quantities dt, (6 =1, 2, ..., k) there are three possibilities:
dt, > 0 ordt, <0 ordt,=0.If we take into consideration
these three possibilities and the circumstance that the
number of time dimensions is equal to k, then we have a
total of V7(3, k) = 3* cases. (Here V' (3, k) denotes the
respective variations with repetition.) From these cases we

0=1,2.
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have to exclude those in which all quantities dt,,
dt», ..., dt are non-negative. These are the cases where
for all values of 6 (6=1, 2, ..., k), either dt, > 0 or dt,=0
is true. This comes to V(2, k) = 2* cases. Therefore, the
total number of different kinds of antiparticles is equal to
3k 2k,

As we pointed out, the antiparticles must move
backward in at least one of the time dimensions; in the
remaining k — 1 time dimensions they can move forward,
backward, or not at all. It is easy to prove that there exist

(e

different antiparticles which do not move in ¢ of a total k
time dimensions. Here 1 < ¢ < k and

(4)

q

is the binomial coefficient. [If ¢ =0, then for each ¢ (6 =1,
2, ..., k) the condition dt, # 0 is fulfilled.]

Let us have an antiparticle 4 moving in k-dimen-
sional time. We can prove that in the case of k-
dimensional time there exist 2% — 1 different particles M
corresponding to the antiparticle A. [Concerning the
movement of the particle M in the hyperplane of time, the
condition dt, > 0 is fulfilled for all values of ¢ (¢ =1,
2, ..., k) and the condition dt, > 0 is fulfilled for at least
one value of ¢.) For example, in the case k =2 we obtain
2?2 — 1 = 3 different particles M corresponding to the
antiparticle A: M, (dt > 0, dt > 0), Mo (dt > 0, dt=0),
Moy, (dt =0, dv > 0).

XI. DISTINCTION BETWEEN TACHYONS AND
PARTICLES MOVING IN MULTIDIMENSIONAL TIME

Recami pointed out that in the course of any
generalization of STR in such a way that tachyons are
included, it will turn out that these particles move in three
time dimensions and one space dimension.’

Tegmark® pointed out that the case (n, k) = (1, 3) is
mathematically equivalent to the case (n, k) = (3, 1), so
that “all particles are tachyons with imaginary rest
mass.”*’

However, from the physical point of view these two
cases are not equivalent. It is necessary to distinguish
between the transformations bradyon — tachyon, where a
particle is created moving with a velocity greater than the
speed of light in a vacuum,’ and the transformations (n, k)
=3, 1) — (n, k) = (1, 3), where a particle is created
moving in three-dimensional time and one-dimensional
space.

It has been proven®® > that if both postulates of STR
are fulfilled (namely the principle of invariance of the
speed of light and the principle of relativity), then the
transformations describing the transfer between the two

I We point out that the velocities of the bradyon and of the tachyon
are defined from the point of view of an observer situated in (n, k) =
(3, 1) space-time.
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inertial reference frames must be such that
(x)? = () = () = ()
= =) = () = () = (] (89)

for each four-vector x = (x], X2, X, x4), which can be a
four-dimensional vector on the position of a given
particle, a four-momentum, four-velocity, four-current,
etc. In the special case where space-time coordinates are
considered, Eq. (89) takes the following form:

(ct') = (&) = () = (=)
== (et = () = )" = (2)*]. (90)

The plus sign in the right-hand side of Eqgs. (89) and
(90) corresponds to the standard case of subluminal
relative velocities, i.e., concerns bradyons [here (n, k) =(3,
1)]; the minus sign must be chosen in the case of
superluminal relative velocities, i.e., concerns tachyons
(see, for example, Refs. 57 and 58).

The difference between the transformations bradyon
— tachyon and the transformations (n, k)=(3, 1) — (n, k)
= (1, 3) can be understood best if, instead of four-
dimensional Minkowski space-time, we consider a gener-
alized five-dimensional space-time (x, y, z, ct, ctg;), where
the fifth dimension corresponds to proper time #y; and
therefore is related to the rest mass (see Section X). If we
set (5)2 = ()% — (22 — () =} and (s)> = (x'")? —
(x*)? — (x*)* — (x*)% then according to Eq. (89) we will
have (s')* = =(s)*(s')*> = =(s)*, where (s)> > 0. Therefore,
Eqgs. (89) and (90) can be written as

() = () = () = () = (5)* = 0

S R R G N G R O R R CIV

/

() = () = () F eto) =0

£ = (0 = 0F = @ = ()] (92)

[Here, s = ctg;—see Eq. (36).] Since in the case of
superluminal relative velocities one should choose the
minus sign in the right-hand side of Eq. (91), during the
transformations bradyon — tachyon the signs in the
expressions (x)?, (x*)% (x*)?, (x*)?, (s)> will change. This
is equivalent to a multiplication of the row matrix S = (x',
x% x%, x*, 5) by the complex diagonal matrix D = diag(i, i,
i, i, i), where i = v/—I—that is, the product S X D. The
multiplication of the row matrix S by the matrix D
corresponds to rotation of all axes R S S through
an angle of /2 (arg i = n/2).

According to Eq. (92), in the case of superluminal
relative velocities we have (ct/)* — (x)? — (v')* — (z/)* +
(cto1)*. Therefore, instead of (3 + 1)-dimensional space-
time, we could consider a generalized [3 + (1 + 1)]-
dimensional space-time, where the additional dimension
corresponds to proper time cfy;. In the generalized space-
time, 1 4+ 1 dimensions are timelike (ct’, cty;) and three
dimensions are spacelike (x’, )’, z). These considerations
also concern the dual space: In the generalized dual space,

~

~—

(¢
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1 4+ 1 dimensions are timelike (x'" = E’, s’ = moc?) and
three dimensions are spacelike (x* = pLc, ¥ = p.c, x¥
p.©). (Here m? > 0.) The energy E' of the tachyon will
have only one component, and the momentum p; of the
tachyon will have three components. The expression (E')
— (p)’c® = — mdc® < 0 will be valid. Obviously, the
tachyon will have imaginary rest mass: (in)”> = —m3 < 0.
As we know, in the case of (n, k) =(1, 3) the following
equality is fulfilled for each four-vector x = (x', x% x°, x*):

()P () 4 () ()
= —(x") + () + (D) + (o (93)

(Here x is spacelike dimension and x5, x3, x4 are timelike
dimensions.) If we set (5)* = —[(x")* — (x?)* —(x*)* — (x*)?]
and (s')* = —(x")* + (x*)* + (*)* + (x*)%, then in
accordance with Eq. (93) we will have (s’)2 = (s)> > 0.
Therefore, Eq. (93) can be written in the form

S ) ) () ()P = 0
e (G RE Co R GO S € ol I O B L)

It is clear that if (n, k) = (3, 1), then we have (s)* =
(x")? = (x*)? —=(x*)* = (x*? > 0. [See Eq. (91) for the case of
subluminal relative velocities, i.e., those with the plus sign
in the right-hand side of Eq. (91).] If (n, k) = (1, 3), then
we have (s)* = —{(x")? — (x%)* =(x*)* — (x*)?] > 0 [see Eq.
(94)]. Therefore, in the transformations (n, k) = (3, 1) —
(n, k) = (1, 3) the signs are changed in front of the
expressions (x')% (x?)% (x%)% (x*? but unlike in the
transformations bradyon — tachyon, the sign is not
changed in front of the expression (s)*. This is equivalent
to multiplication of the row matrix S = (x', x% x°, x*, s)
by the complex diagonal matrix J =diag(i, i, i, i, 1), where
i=+/—1—that is, the product S X J. The multiplication of
S by J reflects rotation of the axes X', a2 X0 Xt through
angle 7/2 around the axis s (the axis s is invariant in
relation to the applied operation).

According to Eq. (94), in the special case of space-
time coordinates we have

=) (et))? + (et)” + (et5) = (ctor)” = (ct2)’
—(cto3)* = 0. (95)

Here 141, tos, to3 are the projections of the proper time T
[see Eq. (36)]. According to Eq. (95), instead of (1 4 3)-
dimensional space-time we can consider a generalized [(1
+ 3) + 3]-dimensional space-time, where three dimensions
correspond to the projections of proper time (cty;, ctoo,
cto3). In the generalized space-time, three dimensions are
timelike (ct], ct5, ct;) and 1 + 3 dimensions are spacelike
(X', ctor, Cloa, Cloz).

These considerations also concern the dual space: In
the generalized dual space, three dimensions are timelike
(> =E|[y;, X' = E3/y,, x* = E}/y,) and 1 + 3 dimensions
are spacelike (x'"’ =pLclys sV = Eqg [y, 87 = Epfy, 8o =
Eys/y,)—see Egs. (62) and (74). (Here p, = p..)

According to the considerations in Subsection IX.B,
the total energy of the particle will have nine components
ey = mouy ¢ (o, 0 =1, 2, 3)—see Eq. (57). The particle’s
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momentum will have three components pj, = mou, (0=1,
2, 3)—see Eq. (67). The following relation will be fulfilled
[see Eq. (74)]:

(EV (e

i ¥

The particle will have real rest mass (m3 > 0).

According to these considerations (see Section IV), in
the case (n, k) = (1, 3) the particle can have velocity
(defined in relation to one of the time dimensions) which
is greater than, less than, or equal to the speed of light in a
vacuum. Until now it was accepted that if a particle
moves according to one observer with a velocity which is
greater than the speed of light in a vacuum, then the
particle has imaginary rest mass (and accordingly it has
real mass measured by the observer). However, this is not
fulfilled if the particle moves in multidimensional time—
in this case it will have real rest mass.

If the particle moves in the space-time (n, k) = (1, 3)
and the condition

F2
_ =0 _ 2 4
=— =myc > 0.
1

3 02
Z s<1
c=1 (Vé)

is fulfilled, where V! = [dx’|/|dt[| (see Sections IV and
VIII), then by analogy with Egs. (91) and (92) we have

—(Y () () () () =0

= [~ H O+ )+ () = ()]
and

—(') + (et}) + (ety)” + (et5) + (etor)” + (et)?

F(cts)? =0 = — [—(x)2 + () + (cta) + (ct3)?

—(ctor)® — (cton)® — (cto3)’

Here (s')* = —(s)> < 0.

Xil. CONCLUSION

The simplest way of thinking about and considering
multidimensional time is using a branching or train-track
model. Meiland proposed a more formal model of
multidimensional time, where the past can be changed.”
Despite the changes, however, there is only one past.
According to Meiland, his two-dimensional time model is
not radically different from our ordinary, one-dimension-
al perception of time. He treats “the past as a continuant,
as existing at each of several times.””’

In multidimensional time, like in one-dimensional
time, every localized object is moving along a one-
dimensional timelike world line.® Therefore, even in two
or more dimensions time will look one-dimensional,
because all physical processes (including thinking) will
run in a linear sequence, which is characteristic of the
perception of reality. Clocks will work in their usual
manner. Every localized object will have one single
“history” in the multidimensional time. In this sense,
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the notion an observer will build of multidimensional time
will not differ very much from the well-known notion of
time. However, in the case of multidimensional time there
are problems concerning well-posed causality®>!>!* (see
Section IV).

As stated in Section IV, for multidimensional time the
notions of past, present, and future can be defined as well.
If time is one-dimensional, then one point (the present
moment) divides the time axis into two separate regions:
past and future. If the number of time dimensions is equal
to k, then time can be divided into two k-dimensional
regions from one (k — 1)-dimensional hypersurface—more
precisely, from the (k — 1)-dimensional hypersphere (see
Section IV). The two obtained k-dimensional regions can
conditionally be called past and future, and the border
region—i.e., the (k — 1)-dimensional hypersphere—can be
called present (see Section 1V).

Let us consider two nonrelativistic observers moving
in different time directions. (In this consideration
relativistic effects are neglected.) These observers can
meet in the space-time and can synchronize their clocks
only if their directions of movement are crossing in time.
Let us assume that the observers meet at point O on the
hyperplane of time. Then these observers will separate
again and will continue to move in their time directions,
without any opportunity to meet.> Let us assume that,
according to the one of the observers, from the moment of
their meeting (point O) a period AT > 0 has passed.
Because in the case of k-dimensional time the present is a
(k — 1)-dimensional hypersphere, in this case both
observers will be at points (moments) which lie on the
(k — 1)-dimensional hypersphere with center O and radius
AT (see Section IV).

In a universe of multidimensional time many other
strange things can happen. If two observers are not
moving against each other (in space) but they move in
different directions in the hyperplane of time, then
according to their opinion the same physical process will
run with different speeds (see, e.g., Subsection III.A). If
two observers move in orthogonal directions to each
other in the hyperplane of time, then according to each
one of them time for the other observer will “stand still,”
1.e., will not run. If these observers move relative to each
other in space, then according to each one of them the
other will move with infinitely high velocity (see Section
V).

In this study, there are results which can be proven
experimentally. If there exist particles moving in multidi-
mensional time, the following physical effects can be
found which are different from the effects derived from
STR:

e The transformations derived in Sections III and V
will be valid for transfer from one inertial frame of
reference to another.

e The law derived in Section VI will be valid for
addition of velocities.

e The Doppler effect derived in Subsection II1.D will
be valid.
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e The principle of invariance of the speed ¢v/k will be
valid instead of the principle of the invariance of
the speed of light ¢ in STR (Section VIII).

e The causal region in multidimensional time (which
is described in Section IV) will differ from the
causal region in STR.

e The relations derived in Subsection IX.B will be
valid between total energy E, total momentum p,
rest mass my, relativistic mass m, and velocity V of
a particle. They differ from the relations in the
STR.

e The energy-momentum conservation law derived in
Subsection IX.C will be valid. This law differs from
the energy-momentum conservation law of STR.

e A new, different CPT symmetry will be valid
(Section X).

e In the case of k-dimensional time, there will exist 3*
— 2 different antiparticles (Section X).

According to the results obtained in the study:

e Itis proven that in multidimensional time, particles
can move in the causal region with a velocity which
is greater than, less than, or equal to the speed of
light in a vacuum (Section IV). For the case of
multidimensional time, it is possible that a particle
can move simultaneously faster that the speed of
light in a vacuum and forward in the time
dimensions, which is not true for the case of one-
dimensional time (STR; Subsection II1.B). Thus, if
the results for the superluminal neutrinos are
confirmed,®® this can be explained with the
existence of additional time dimensions in which
these neutrinos are moving.

e In the case of multidimensional time, application of
the proper orthochronous transformations at
certain conditions leads to movement backward
in the time dimensions (Subsection I11.B).

e It is shown that particles moving faster than the
speed of light in a vacuum can have a real rest mass
(unlike tachyons), provided that they move in
multidimensional time (Subsection IX.B).

e Thus the existence of particles moving in multidi-
mensional time can be proven or rejected through
proper experiments.

As a conclusion, we want to point out that if in our
universe exist particles moving in two, three, or more time
dimensions, then the relations between energy, mass,
velocity, and momentum of these particles will be
expressed through the formulas derived in this article.
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