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Abstract: This article discusses the motion of particles in multiple time dimensions and in
multiple space dimensions. Transformations are presented for the transfer from one inertial
frame of reference to another inertial frame of reference for the case of multidimensional time.
The implications are indicated of the existence of a large number of time dimensions on
physical laws like the Lorentz covariance, CPT symmetry, the principle of invariance of the
speed of light, the law of addition of velocities, the energy-momentum conservation law, etc.
The Doppler effect is obtained for the case of multidimensional time. Relations are derived
between energy, mass, and momentum of a particle and the number of time dimensions in
which the particle is moving. The energy-momentum conservation law is formulated for the
case of multidimensional time. It is proven that if certain conditions are met, then particles
moving in multidimensional time are as stable as particles moving in one-dimensional time.
This result differs from the view generally accepted until now [J. Dorling, Am. J. Phys. 38, 539
(1970)]. It is proven that luxons may have nonzero rest mass, but only provided that they move
in multidimensional time. The causal structure of space-time is examined. It is shown that in
multidimensional time, under certain circumstances, a particle can move in the causal region
faster than the speed of light in vacuum. In the case of multidimensional time, the application
of the proper orthochronous transformations at certain conditions leads to movement
backwards in the time dimensions. It is concluded that the number of different antiparticles in
the k-dimensional time is equal to 3k� 2k. Differences between tachyons and particles moving
in multidimensional time are indicated. It is shown that particles moving faster than the speed
of light in vacuum can have a real rest mass (unlike tachyons), provided that they move in
multidimensional time. � 2012 Physics Essays Publication. [DOI: 10.4006/0836-1398-25.3.403]

Résumé: L’article traite du mouvement des particules dans un temps et espace multi-
dimensionnels. Les transformations de référentiels inertiels d’un système à l’autre sont déduites
dans un temps multidimensionnel. Les conséquences de l’existence d’un plus grand nombre de
dimensions temporelles sur les lois physiques sont démontrées: sur l’invariance de Lorentz, sur
la symétrie CPT, sur le principe de l’invariance de la vitesse de la lumière, sur la loi
d’accumulation des vitesses, sur la loi de conservation de l’énergie-impulsion etc. L’effet
Doppler est obtenu dans un temps multidimensionnel. Les corrélations entre l’énergie, la
masse, l’impulsion d’une particule donnée sont déduites, ainsi que le nombre des dimensions
temporelles dans lesquelles cette particule se meut. Formulée à été la loi de conservation de
l’énergie-impulsion en cas de temps multidimensionnel. Il est démontré que si ont été satisfaites
certaines conditions, les particules qui se déplacent dans un temps multidimensionnel sont tout
aussi stables que les particules se déplaçant dans un temps unidimensionnel. Se résultat tranche
avec le point de vue adopté jusqu’à présent [J. Dorling, Am. J. Phys. 38, 539–540 (1970)]. Il est
démontré que les luxons peuvent avoir en repos une masse non égale à zéro, mais à la
condition qu’ils se meuvent dans un temps multidimensionnel. La structure causale de
l’espace-temps est étudiée. Il est démontré que dans un temps multidimensionnel, dans
certaines conditions, une particule peut se mouvoir dans le champ causal plus rapidement que
la vitesse de la lumière dans du vide. En cas de temps multidimensionnel, l’application des
propres transformations orthochrones mène, dans certaines conditions, à une marche en
arrière dans la mesure du temps. Nous atteignons la conclusion que le nombre des différentes
antiparticules dans un temps k-dimensionnel est égal à (3k � 2k). Les différences entre les
tachyons et les particules se mouvant dans un temps multidimensionnel sont montrées. Il est
démontré que les particules qui se meuvent plus rapidement que la vitesse de la lumière dans
du vide peuvent avoir une masse réelle en repos (à la différence des tachyons), mais à la
condition qu’elles se meuvent dans un temps multidimensionnel.
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I. INTRODUCTION

The concept of multidimensional time has been
introduced and has become more important in contem-
porary physical theories.1–5 According to the inflation
theory of the big bang, the visible universe is only a small
part of the multiverse, and it is possible that many other
universes have emerged in which conditions are entirely
different from the conditions of our universe.6 Up to now,
no physical principle or law has been found that
determines the possible number of spatial dimensions
and of temporal dimensions (or limits the number of
spatial and temporal dimensions to a value which differs
from the observed number in our universe). Due to this
fact, the number of spatial and temporal dimensions in
our universe is more probably a result of chance than a
result of unknown processes acting during the initial
development phases of the universe. Through the
anthropic principle it is explained that we live in a
universe with more than three dimensions of space (or 10
dimensions, as predicted by M-theory) but only one
dimension of time. Therefore, in the other universes that
are part of the multiverse it is quite possible that space
and time have entirely different numbers of dimensions
than the dimensions in our universe. We can assume the
existence of universes having two, three, four, or more
temporal dimensions. The relation between the anthropic
principle and the number of spatial and temporal
dimensions is considered by Tegmark.5 Here we do not
discuss this matter.

As shown in some studies,1,2 it is possible to
formulated physically meaningful theories with two time
dimensions. Bars noted that ‘‘two-time physics could be
viewed as a device for gaining a better understanding of
one-time physics, but beyond this, two- time physics
offers new vistas in the search of the unified theory while
raising deep questions about the meaning of spacetime.’’2

For systems that are not yet understood or even
constructed, such as M-theory, two-time physics points
to a possible approach for a more symmetric and more
revealing formulation in 11þ 2 dimensionsa that can lead
to deeper insights, including a better understanding of
space and time. The two-time physics approach could be
one of the possible avenues to construct the most
symmetric version of the fundamental theory.1,2

As noted by Tegmark, ‘‘Even when m . 1, there is no
obvious reason why an observer could not, none the less,
perceive time as being one-dimensional, thereby main-
taining the pattern of having ‘thoughts’ in a one-
dimensional succession that characterizes our own reality
perception. If the observer is a localized object, it will
travel along an essentially one-dimensional (timelike)
world line through the (n þ m)-dimensional space-time
manifold.’’5,b Thus it is fully reasonable to ask the
question ‘‘What relations, effects, and features would

exist if we examined an object moving in multidimen-
sional time?’’

In order to find experimental evidence for the
existence of particles moving in multidimensional time,
it is necessary to know their physical properties. As noted
by Recami in another context—the experimental search
for the hypothetical particles named tachyons—‘‘it is not
possible to make a meaningful experiment without a good
theory.’’7

The main objective of this article is to generalize the
special theory of relativity (STR) for the cases of
multidimensional time and multidimensional space. There
is a need to clarify not only the mathematical but also the
physical meaning of multidimensional time.

In this respect, the study raises several basic tasks:

� deriving transformations for the transition between
inertial frames of reference for the case where the
number of time dimensions is greater than one;

� establishing the implications arising from the
existence of a large number of dimensions of time
on physical laws—the Lorentz covariance, CPT
symmetry, the constancy of the speed of light, the
law of addition of velocities, the energy-momentum
conservation law, etc.;

� deriving the Doppler effect for the case of
multidimensional time;

� examining the causal structure of space-time;
� deriving formulas for momentum and energy for

the case of more than one time dimension;
� establishing the exact relationship between the

energy of a particle and the number of time
dimensions in which the particle is moving;

� formulating the energy-momentum conservation
law;

� considering antiparticles in multidimensional time;
and

� distinguishing between tachyons and particles
moving in multidimensional time.

The problem with the generalization of STR for the
case of multidimensional time is still not sufficiently
studied and is only briefly mentioned in different studies
concerning the topic. The consequences on physical laws
of the existence of multidimensional time have also not
been well studied. Up to now there has been no
distinction between tachyons and particles moving in
multidimensional time.

II. GENERAL CONSIDERATIONS

Important for this study is following question: Are
there physical arguments and grounds allowing general
conclusions concerning the dimension of time? Related to
this question is another: Is Minkowski space-time real
and should we accept time as the fourth dimension, given
the fact that STR can be equally formulated in a three-
dimensional or a four-dimensional language? As noted by
Petkov, of course, we have to solve this issue before
seriously discussing a theory involving a large number of

a Two-time physics introduces one additional space dimension and

one additional time dimension.
b Here m is the number of time dimensions and n is the number of

space dimensions.
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dimensions (of space or of time).8 This question is
important because later in this article, additional time

dimensions are introduced. The arguments applying to

one time dimension will be valid for two, three, or more

time dimensions—i.e., they will be applicable also to these

cases. It has been shown that the block universe view,
regarding the universe as a timelessly existing four-

dimensional world, is the only one that is consistent with

special relativity.9 Some arguments have been made in

favor of the statement that special relativity alone can

resolve the debate on whether the world is three-
dimensional or four-dimensional. If the world were

three-dimensional, the kinematic consequences of special

relativity—and, more importantly, the experiments con-

firming them—would be impossible.9,10 Therefore, time is

indeed an extra dimension and it is fully justified and
reasonable to set and examine the issue of the dimen-

sionality of time.

The interval in Minkowski space-time is an invariant

and is given by the expression ds2¼ c2dt2� dx2� dy2� dz2.

But instead of the four-dimensional space-time of Min-
kowski, we can consider a general five-dimensional space-

time (dx, dy, dz, cdt, dn). Here the fifth dimension dn reflects

the proper time cdt0 or the proper length dl0 or is equal to 0.

(In Ref. 11 a similar model is considered, but the fifth

dimension corresponds to the proper time cdt0.) By
definition, cdt0 ¼

ffiffiffiffiffiffiffi
ds2
p

if ds2 � 0 and dl0 ¼
ffiffiffiffiffiffiffiffiffiffi
�ds2
p

if ds2

� 0. Therefore, if ds2 . 0, the fifth dimension dn¼ cdt0 is
spacelike; and if ds2 , 0, then dn¼dl0 is timelike. If ds2¼0,

then d¼ 0 is lightlike. If ds2 , 0, then dn (or dn/c) can be

regarded as a second, additional time dimension. It should
be noted that the fifth dimension is invariant. If the quantity

dn is not invariant, then the time is not one-dimensional in

the usual sense (see Section IV). (A five-dimensional model

of space-time is used in Sections X and XI.)

The number of time dimensions we will denote with
k, and that of space dimensions with n. The time

dimensions themselves we will denote with x1 ¼ ct1, x2 ¼
ct2, . . ., xk ¼ ctk, and the space dimensions with xkþ1,

xkþ2, . . ., xkþn.

The metric signature in the case of k-dimensional
t i m e a n d n - d i m e n s i o n a l s p a c e w i l l b e

ðþ;þ; . . . ;þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

;�;�; . . . ;�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

Þ.c Therefore, the (n þ k)-

dimensional interval dsn,k is given by the expression ds2n;k
¼ c2dt21þ���þ c2dt2k� ���� dx2kþn. It is clear that the (nþk)-

dimensional interval dsn,k is invariant.

In the case of multidimensional time, the velocities of

a particle according to different time dimensions cannot

be defined as a set of partial derivatives of the
independent variables t1, t2, . . ., tk. Indeed, the movement

of a pointlike particle in the general case can be presented

as a one-dimensional (timelike) world line in (k þ n)-

dimensional space-time. Let us set r ¼ r(t1, t2, . . ., tk);

accordingly, dr¼ (]r/]t1)dt1þ (]r/]t2)dt2þ� � �þ (]r/]tk)dtk,
where r ¼ (xkþ1, xkþ2, . . ., xkþn) is the radius vector,
defining the position of the particle. Then we have xg ¼
xg(t1, t2, . . ., tk) and dxg¼ (]xg/]t1)dt1þ (]xg/]t2)dt2þ � � �
þ (]xg/]tk), where g¼kþ1, kþ2, . . ., kþn. In the general
case, each one of the functions xg¼ xg(t1, t2, . . ., tk) must
be represented by a k-dimensional hypersurface in the (k
þ 1)-dimensional space-time t1, t2, . . ., tk, xg—that is, it
will not be presented as a one-dimensional world line.
Therefore, the functions xg ¼ xg(t1, t2, . . ., tk) could not
describe the movement of a pointlike particle in the space-
time. Each one-dimensional world line in the (k þ 1)-
dimensional space-time t1, t2, . . ., tk, xg is defined through
a system of k equations: F1g(t1, t2, . . ., tk, xg) ¼ 0, F2g(t1,
t2, . . ., tk, xg) ¼ 0, . . ., Fkg(t1, t2, . . ., tk, xg) ¼ 0. (During
the uniform and rectilinear movement of the particle,
which can be presented through a straight world line, the
functions F1g, F2g, . . ., Fkg are linear.) From here we can
derive the equalities xg ¼ f1g(t1) ¼ f2g(t2) ¼ � � � ¼ fkg(tk),
where f1g, f2g, . . ., fkg are different (linear) functions of the
variables t1, t2, . . ., tk, respectively. Thus, we have dxg ¼
f 0hg(th)dth, where h ¼ 1, 2, . . ., k. For the case where the
particle moves along a straight world line, the derivatives
f 01g(t1), f

0
2g(t2), � � �, f 0kg(tk) are constants which define the

velocities of the particle in relation to t1, t2, . . ., tk,
respectively. (We will find that f 0hg(th)¼ dxg/dth¼Vhg; see
the considerations at the end of Section II.)

In order to determine the velocities of a given particle
for the case of multidimensional time, we are going to use
following considerations. Let us consider a particle
moving uniformly and rectilinearly with velocity U in
relation to the frame of reference K. Let us assume that at
the moment T¼ (t1, t2, . . ., tk), the location of this particle
is defined by the radius vector r ¼ (xkþ1, xkþ2, . . ., xkþn),
and at the moment T þ dT ¼ (t1 þ dt1, t2 þ dt2, . . ., tk þ
dtk), the location of the particle is defined by the radius
vector r þ dr ¼ (xkþ1 þ dxkþ1, xkþ2 þ dxkþ2, . . ., xkþn þ
dxkþn). In the case of multidimensional time we will have
dT 3 U ¼ dr, where dT ¼ (dt1, dt2, . . ., dtk) and dr ¼
(dxkþ1, dxkþ2, . . ., dxkþn). As can be easily seen, the
velocity U is a k 3 n matrix having elements uhg (h ¼ 1,
2, . . ., k; g¼ kþ 1, kþ 2, . . ., kþ n), i.e., U¼ [uhg]k3n. Let
us denote

ug ¼

u1g
u2g

..

.

ukg

0
BBB@

1
CCCA;

where g¼ kþ 1, kþ 2, . . ., kþ n. Then we have dT3 ug¼
dxg, that is:

dt1
dxg

u1g þ
dt2
dxg

u2g þ � � � þ
dtk
dxg

ukg ¼ 1: ð1Þ

It is clear that if for a given d (1 � d � k) we have dtd
¼ 0, then the components of the velocity ud(kþ1),
ud(kþ2), . . ., ud(kþn) will be undefined quantities. If for a
given q (k þ 1 � q � k þ n) we have dxq ¼ 0, then it
follows that u1q¼ u2q ¼ � � � ¼ ukq ¼ 0.

c For the purpose of this article, we will use the timelike convention

for the metric signature (i.e., we choose positive signs for the squares

of timelike dimensions and negative signs for the squares of

spacelike dimensions).
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Let us set uhg¼ khg(dxg/dth), where
Pk

h¼1 khg¼ 1 and g
¼ k þ 1, k þ 2, . . ., k þ n. Let us further denote

dT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

dt2h

vuut . 0;

dX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

dx2g

vuut . 0;

dth ¼ ahdT;

dxg ¼ vgdX:

Then we have
Pk

h¼1 a2h¼ 1—that is, jahj � 1—and
Pkþn

g¼kþ1
v2g ¼ 1—that is, jvgj � 1.

Let us set

Ug ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

u2hg

vuut ¼ jdxgj
dT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

khg

ah

� �2

vuut ;

Uh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

u2hg

vuut ¼ dX

jdthj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

ðkhgvgÞ2
vuut ;

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1

u2hg

vuut :

For the velocity U we have

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

U2
g

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

U2
h

vuut

¼ dX

dT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1

khgvg

ah

� �2
vuut : ð2Þ

We will show the conditions for the velocities Ug, Uh,

and U. These conditions are imposed due to physical

considerations (see also Subsection IX.A). When the time-

axes basis of the frame K is changed (these are the so-

called passive linear transformations) and the value of

dT2 is still the same, then the quantity dX2¼ c2dT2� ds2n;k
remains the same as well. Likewise, when the basis of the

space axes of the frame K is changed, then the values dX2

and c2dT2 ¼ ds2n;k þ dX2 remain the same. It is clear that

the choice of time axes of the frame K can be made

independently from the choice of space axes of the frame

K, and vice versa (see also Section VII and Subsection

IX.A). Thus, when these transformations are applied,

some physical quantities (in our case the velocities) must

remain invariant.

Since in the expression for the velocity Ug all the time

axes of the frame K are represented in the denominator

(dT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

h¼1 dt
2
h

q
), we accept that the velocity Ug is

invariant when a change of the time-axes basis of the

frame K is made. Thus, the velocity Ug can be presented

as Ug ¼ cg(jdxgj/dT). Here cg . 0 is a parameter not

depending on the quantities dth, respectively on the

numbers ah (h ¼ 1, 2, . . ., k).

Since in the expression for the velocity Uh all the

space axes of the frame K are represented in the

numerator (dX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkþn

g¼kþ1 dx
2
g

q
), we accept that the

velocity Uh remains invariant when the space-axes basis of

the frame K is changed. Thus, the velocity Uh can be

presented as Uh¼ ch(dX/jdthj). Here ch . 0 is a parameter

not depending on the quantities dxg and consequently on

the numbers vg (g ¼ k þ 1, k þ 2, . . ., k þ n).

From these considerations we can conclude that the

velocity U is invariant when the space-axes basis and the

time-axes basis of the frame K are changed—i.e., the

velocity U can be presented as U¼ c(dX/dT). Here c . 0

is a parameter not depending on the values dth and dxg

and consequently on the numbers ah and vg [h ¼ 1,

2, . . ., k; g¼ kþ 1, kþ 2, . . ., kþ n; see Eq. (2)]. Indeed,

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

U2
g

vuut ¼ dX

dT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

v2gc
2
g

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

U2
h

vuut

¼ dX

dT

ffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

c2h
a2h

vuut :

Let us set c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkþn

g¼kþ1 v2gc
2
g

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
h¼1ðc2h=a2hÞ

q
. Since the

values vg and cg do not depend on the numbers ah,

neither does the parameter c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkþn

g¼kþ1 v2gc
2
g

q
. Since the

values ah and ch do not depend on the numbers vg,

neither does the parameter c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

h¼1ðc2h=a2hÞ
q

. Thus, the

parameter c does not depend on ah or vg, and

consequently does not depend on the values dth or dxg.

Let us assume that a1¼ a2¼ � � � ¼ ak¼ 1/
ffiffiffi
k
p

(that is,

dt1¼ dt2¼ � � � ¼ dtk¼ dT/
ffiffiffi
k
p

. 0) and vkþ1¼ vkþ2¼ � � � ¼
vkþn¼ 1/

ffiffiffi
n
p

(that is, dxkþ1¼ dxkþ2¼� � �¼ dxkþn¼ dX/
ffiffiffi
n
p

.

0). Let us apply a proper or improper rotation of the time

axes of the frame K in the hyperplane of time. The

transformation under consideration can be presented

through the orthogonal matrix A ¼ [ah1]k3k, belonging

to the orthogonal group O(k, R), where R denotes the real

numbers field (see also Section VII). (We have Atr¼ A�1,

det(A)¼61. Here Atr denotes the transpose of the matrix

A.) The new time axes, obtained after applying this

transformation, we will denote with t 0h, (h ¼ 1, 2, . . ., k).

Since
Pk

h¼1ða 0
hÞ

2 ¼
Pk

h¼1 a2h ¼ 1, we have

a 0
1

a 0
2

..

.

a 0
k

0
BBB@

1
CCCA ¼ A3

a1
a2
..
.

ak

0
BBB@

1
CCCA;

that is,
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a 0
h ¼

Xk
1¼1

ah1a1 ¼
1ffiffiffi
k
p
Xk
1¼1

ah1: ð3Þ

Since the velocity Ug remains invariant when the

time-axes basis is changed for the frame K, the expressionPk
h¼1ðkhg=ahÞ2 is constant when there is a change in the

values of ah—that is,

Xk
h¼1

k 0
hg

a 0
h

� �2

¼
Xk
h¼1

khg

ah

� �2

¼ k
Xk
h¼1

k2hg ¼ c2g; ð4Þ

where cg is a parameter not depending on the numbers ah

(h ¼ 1, 2, . . ., k).

Let us consider the orthogonal matrix B ¼ [bhm]k3k,

belonging to the orthogonal group O(k, R). Taking into

account Eq. (4), we likewise have

k 0
hg

a 0
h

¼
Xk
m¼1

bhmkmg

am
¼

ffiffiffi
k
p Xk

m¼1
bhmkmg: ð5Þ

From Eqs. (3) and (5) we can define the values k 0
hg:

k 0
hg ¼

Xk
m¼1

Xk
1¼1

ah1a1bhmkmg

am
¼
Xk
m¼1

Xk
1¼1

ah1bhmkmg: ð6Þ

Let us apply a proper or improper rotation of the space

axes of the frame K in the hyperplane of space. The

transformation under consideration can be presented

through the orthogonal matrix H ¼ [hpg]n3n, belonging

to the orthogonal group O(n, R). Here g ¼ k þ 1, k þ
2, . . ., k þ n; p ¼ k þ 1, k þ 2, . . ., k þ n. The new space

axes, obtained after applying this transformation, we will

denote with x 00
g (g¼ kþ 1, kþ 2, . . ., kþ n). Since

Pkþn
g¼kþ1

ðv 00
gÞ

2¼
Pkþn

g¼kþ1 v2g¼ 1, we have (v 00
kþ1, v

00
kþ2, � � � v 00

kþn¼ vkþ1,
vkþ2, � � �, vkþn) 3 H—that is,

v 00
g ¼

Xkþn
p¼kþ1

vphpg ¼
1ffiffiffi
n
p

Xkþn
p¼kþ1

hpg: ð7Þ

Since the velocity Uh is invariant when the space-axes

basis of K is changed, the expression
Pkþn

g¼kþ1ðk
0
hgvgÞ2

remains constant when the values of vg are changed—that

is,

Xkþh
g¼kþ1

ðk 00
hgv

00
gÞ

2 ¼
Xkþn

g¼kþ1
ðk 0

hgvgÞ2 ¼
1

n

Xkþn
g¼kþ1

k 0
hg ¼ c2h: ð8Þ

Here ch is a parameter not depending on vg (g¼ kþ 1, kþ
2, . . ., k þ n).

Let us consider the orthogonal matrix Q ¼ [qqg]n3n,

belonging to the orthogonal group O(n, R). Taking into

account Eq. (8), we likewise have

k 00
hgv

00
g ¼

Xkþn
q¼kþ1

k 0
hqvqqqg ¼

1ffiffiffi
n
p

Xkþn
q¼kþ1

k 0
hqqqg: ð9Þ

From Eqs. (6), (7), and (9) we can define the values

k 00
hg:

k 00
hg ¼

1Xkþn
p¼kþ1

vphpg

Xkþn
q¼kþ1

Xk
m¼1

Xk
1¼1

ah1a1bhmkmqvqqqg

am

 !

¼

Xkþn
q¼kþ1

Xk
m¼1

Xk
1¼1

ah1bhmkmqqqg

Xkþn
p¼kþ1

hpg

: ð10Þ

Here the values kmq are defined provided that ah ¼ 1/
ffiffiffi
k
p

,
vg ¼ 1/

ffiffiffi
n
p

are fulfilled. Since the parameter c does not

depend of the numbers ah or vg, we can set ah¼ 1/
ffiffiffi
k
p

, vg¼
1/

ffiffiffi
n
p

. In this case, we have

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1

khgvg

ah

� �2
vuut ¼

ffiffiffi
k

n

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1

k2hg

vuut : ð11Þ

[See Eq. (2).]

Let us set K 00
g ¼

Pk
h¼1 k 00

hg, g¼ kþ1 , kþ2, kþ n [see Eq.

(10)]. In the general case (i.e., at arbitrary values of a 0
h and

v 00
g ), we will have

dT3UK 00 ¼ dr;

where

UK 00

¼ uK 00

hg

h i
k3 n

; uK 00

hg ¼
k 00

hgv
00
gdX

K 00
ga

0
hdT

:

[See Eqs. (1), (3), (7), and (10).] If
Pk

h¼1 k 00
hg 6¼

Pk
h¼1 khg

(that is, K 00
g 6¼ 1, g ¼ k þ 1, k þ 2, � � �, k þ n), then

uK 00

hg ¼
k 00

hgv
00
gdX

K 00
ga

0
hdT
6¼ u 00

hg ¼
k 00

hgv
00
gdX

a 0
hdT

:

Let us denote dxg/dth ¼ uhg/khg ¼ Vhg. It is clear that
dxg¼V1g dt1¼V2g dt2¼ � � � ¼Vkg dtk. Let us denote Vh¼
(dr/dth), where dr ¼ (dxkþ1, dxkþ2, . . ., dxkþn). Then we

have Vh ¼ [Vh(kþ1), Vh(kþ2), . . ., Vh(kþn)]. We will say that
Vh is the velocity of the particle under consideration in
relation to the frame K, defined in relation to the time

dimension th. Let us set Vh¼ jjVhjj ¼ dX/jdthj ¼Uh/ch . 0.
Then the equation jdthj/jdt1j ¼V1j/Vh is fulfilled, where h,
1 ¼ 1, 2, . . ., k and dX 6¼ 0.

Let us set u¼ dX/dT¼U/c. We will say that u is the
total coordinate velocity of the considered particle in

relation to K. It is easy to see that

u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk
h¼1

1Xn
g¼1

V2
hg

0
BBBB@

1
CCCCA

vuuuuuuut

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

1

V2
h

vuut
:

We will say that a particle is at rest relative to the
frame of reference if

Pkþn
g¼kþ1 dx

2
g ¼ 0 and Vh ¼ 0 (h ¼ 1,

2, . . ., k).
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We assume that all time dimensions we are going to
consider—t1, t2, . . ., tk (or t, s, . . .)—are homogeneous
(i.e., all moments of a given time dimension are equal),
and that space is homogeneous and isotropic (i.e., all
points and all directions of the space are equal).

III. TRANSFORMATIONS FROM ONE INERTIAL
FRAME OF REFERENCE TO ANOTHER FOR THE
CASE OF (n, k) ¼ (3, 2)

A. Derivation of the transformations

First, we will consider case with (n, k) ¼ (3, 2), i.e.,
three space dimensions and two time dimensions. The
three space dimensions we will denote with x, y, z. The
first time dimension we will denote with t, and the second
with s.

The interval in the five-dimensional space-time under
consideration is given by the expression ds23;2 ¼ c2dt2 þ
c2ds2 – dx2 � dy2 � dz2. The interval ds3,2 is invariant.

Let us consider the two inertial frames K and K0

(moving uniformly and rectilinearly to each other). We
assume that the velocity of the frame K0 against K, defined
in relation to the first time dimension t, is equal to the
vector v, and that defined in relation to the second time
dimension s it is equal to the vector w (see Section II).

Let us denote with x, y, and z the axes of the frame K,
and with x0, y0, and z0 the axes of the frame K0. The two
time dimensions defined in the frame K we will denote

with t and s; in the frame K0, with t0 and s0. Let us denote
with point Q the origin of the spatial frame of reference K
(that is, x¼ 0, y¼ 0, z¼ 0), and with point Q0 the origin of

the spatial frame of reference K0 (that is, x0¼0, y0¼0, z0¼
0). We choose the frames K and K0 in such a way that
point Q0 is moving along the axis x in the direction of
increasing values of x. Further, we can choose the axes of

the frames K and K0 in such a way that for an observer
connected to K, the axis x coincides with the axis x0; the
axes y and z are parallel to the axes y0 and z0, respectively;

and the homonymous axes have the same direction. As
the initial moment we accept (t, t0), (s, s0), where point Q0

coincides with point Q (i.e., at the moments t¼ t0 ¼ 0 and

s ¼ s0 ¼ 0, point Q0 ” point Q). Having all these
conditions fulfilled, we can say for K and K0 that they are
in a standard configuration. Let us set v¼ (v, 0, 0) and w¼
(w, 0, 0), where (v, 0, 0) are the respective projections of

the velocity vector v on the axes x, y, z of the frame K and
(w, 0, 0) are the respective projections of the velocity
vector w on the axes x, y, z of K. Let us assume that a

particle has coordinates (t, s, x, y, z) in K and (t0, s0, x0, y0,
z0) in K0.

Let us denote x1¼ ict, x2¼ ics, x3¼ x, x4¼ y, x5¼ z

and x 0
1¼ ict0, x 0

2¼ ics0, x 0
3¼x0, x 0

4¼ y0 , x 0
5¼ z0. In order to

derive the transformations between K and K0, we will use
the same approach as for the Lorentz transformations in

a more general case, the so-called Lorentz boost in an
arbitrary direction (transformations between two inertial
frames of reference whose x, y, z axes are parallel and
whose space-time origins coincide, i.e., Lorentz transfor-

mations with no rotation)—see, for example, Ref. 12.

First we will consider a proper rotation in the plane x1-x2
through angle a, where the other three dimensions (x3, x4,

x5) remain invariant. This transformation is described by

the matrix

R ¼

cos a sin a 0 0 0

�sin a cos a 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBB@

1
CCCCCCA:

Let us denote with x1R and x2R the new axes which

arise from the rotation R of the axes x1 and x2,

respectively. Then we will consider a proper rotation in

the plane x1R-x3 through angle u, where the other three

dimensions (x2R, x4, x5) remain invariant. This transfor-

mation is described by the matrix

L ¼

cosu 0 sinu 0 0

0 1 0 0 0

�sinu 0 cosu 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBB@

1
CCCCCCA:

In order to derive the transformations between K and

K 0, we will consecutively apply the operations R, L, and

R�1.

First, we will apply the R transformation. As can be

easily seen, tan a ¼ x2/x1. If x
0
3 ¼ 0, then x3 ¼�i(v/c)x1 ¼

�i(w/c)x2 . 0 and thus tan a¼ v/w. Here the angle a is a

real number. Let us set b ¼ 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2=v2Þ þ ðc2=w2Þ

p
, f ¼ 1/ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p

. (We will have 0 � b � 1 and f � 1; see also

Section IV.) We have cos a ¼ cb/v, sin a ¼ cb/w.
It is clear that if v¼ 0, then w¼ 0, and vice versa. We

will consider more specific cases in relation to the value of

a. Let us assume that a ¼ bp, where b ¼ 0, 61, 62, . . .

(i.e., the motion occurs only along the axis x1¼ ict). It is

clear that if v 6¼ 0, then w¼6‘. If we assume that a¼ p/2
þ bp (i.e., the motion occurs only along the axis x2¼ ics),
it is clear that if w 6¼ 0, then v ¼6‘.

We have accepted that point Q0 is moving in the

direction of increasing values of x, which means that if x0

¼ 0, then x¼ vt¼ws . 0. We have the following: If a � [0;

p/2], then t � 0 and s � 0, and therefore v . 0 and w . 0;

if a � (p/2; p], then t , 0 and s � 0, and therefore v , 0

and w . 0; if a � (p; 3p/2), then t , 0 and s , 0, and

therefore v , 0 and w , 0; if a � [3p/2; 2p), then t � 0 and

s , 0, and therefore v . 0 and w , 0.

Let us now apply the transformation L. It can be

easily seen that tan u ¼ x3/x1R ¼ x3/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
. Further,

if x 0
3 ¼ 0, then x3¼�i(v/c)x1¼�i(w/c)x2 . 0. Therefore,

we have tan u ¼�ib. Here the angle u is an imaginary

number. We have sin u ¼�ibf, cos u ¼ f. The signs in

these expressions are chosen so that when v � 0 and w

� 0, we have t 0 � t, s0 � s,x 0 � x, y 0 � y, z 0 � z.
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Finally, let us apply the transformation

R�1 ¼

cos a �sin a 0 0 0
sin a cos a 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0
BBBB@

1
CCCCA;

which is the inverse of the first transformation R. The matrix for the transfer from the coordinates x1, x2, x3, x4, x5 to
x 0
1,x

0
2, x

0
3, x

0
4, x

0
5 is equal to the product

R�1 3L3R ¼

1þ ðcosu� 1Þcos2 a ðcosu� 1Þsin a cos a cos a sinu 0 0
ðcosu� 1Þsin a cos a 1þ ðcosu� 1Þsin2 a sin a sinu 0 0
�cos a sinu �sin a sinu cosu 0 0

0 0 0 1 0
0 0 0 0 1

0
BBBB@

1
CCCCA:

Let us express sin a, cos a, sin u, cos u through v/c and w/c and go back to the old coordinates t, s, x, y, z, t0, s0, x0,
y0, z0. Then finally we obtain the following expression:

t 0

s 0

x 0

y 0

z 0

0
BBBB@

1
CCCCA ¼

1þ ðf� 1Þ c
2

v2
b2 ðf� 1Þ c

2

vw
b2 � 1

v
b2f 0 0

ðf� 1Þ c
2

vw
b2 1þ ðf� 1Þ c

2

w2
b2 � 1

w
b2f 0 0

� c2

v
b2f � c2

w
b2f f 0 0

0 0 0 1 0
0 0 0 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

t
s
x
y
z

0
BBBB@

1
CCCCA: ð12Þ

We can easily prove that if v¼ 0 and w¼ 0, then t0¼ t,

s0¼ s, x0¼x, y0¼y, z0¼ z. The transformations in Eq. (12)

belong to the group of proper orthochronous transfor-

mations, which we will denote with K��
þ (see Section

III.C). The transformations in Eq. (12) are equivalent to

the Lorentz transformations as s � 0 and accordingly as

w � 6‘.

Let us set u ¼ iU. Taking into account the fact that

cos u¼ cos(iU)¼ cosh U and sin u¼ sin(iU)¼ i sinh U, we

obtain cosh U ¼ f and sinh U ¼�bf.
In the plane of time t0-s0, one can apply a proper or

an improper rotation. These transformations present

change of the time-axes basis of the frame K (the so-

called passive linear transformation). The orthogonal

matrix M for the transfer from the old coordinates t0, s0,
x0, y0, z0 to the new coordinates t 001 , t

00
2 , x

00, y 00, z 00, is

M ¼

cos r sin r 0 0 0
�e sin r e cos r 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0
BBBB@

1
CCCCA;

where e ¼ þ1 (proper rotation) or e ¼ �1 (improper

rotation, rotary reflection). The following equations are

fulfilled: (t 001 )
2þ (t 002 )

2¼ (t0)2þ (s0)2, x 00¼ x0, y 00¼ y0, z 00¼ z0.

It is clear that for these transformations, the five-

dimensional interval ds23;2 is invariant. If a proper or

improper rotation is applied in the plane of time t0-s0, the

transformation D between K(t, s, x, y, z) and K 00(t 001 , t
00
2 , x

00,

y 00, z 00) is obtained by multiplying the matrix K from Eq.

(12) for the transfer from K to K0 by the matrixM; that is,

D ¼M 3 K.

Let us apply a (proper or improper) rotation in the

plane t0-s0. We obtain the equation (dt 001 )
2þ (dt 002 )

2¼ (dt0)2

þ (ds0)2. Here dt 001 ¼ dt0 cos rþds0 sin r, dt 002 ¼�edt0 sin rþ
eds0 cos r, where e ¼61. It is easy to prove that if dt 001 ¼
dt 002 . 0, then r¼a0� e(p/4)þ2bp, where tan a0¼ds0/dt0, b
¼ 0, 61, 62, . . . Since the vector dT0¼ (dt0, ds0) makes an

angle a0 with the axis t0, the axis t 001 makes an angle r with

the axis t0, and the axis t 002 makes an angle rþ e(p/2) with
the axis t0, the vector dT0 makes an angle a0�r¼ e(p/4)�
2bp with the axis t 001 and an angle a0� [rþ e(p/2)]¼�e(p/4)
� 2bp with the axis t 002 . The size of the angle between the

vector dT0 and each of the axes t 001 and t 002 is equal to p/4
(see Section VII).

Let us consider two events which are causally

connected, i.e., for which Ds23;2 ¼ c2Dt2 þ c2Ds2 – Dx2

�Dy2� Dz2 � 0 (see Section IV). From Eq. (12) it is seen

that if Dt¼ 0,Dx¼ 0,Dy¼ 0,Dz¼ 0, then Dt0 ¼ (f� 1)(c2/

vw)b2Ds and Dx0 ¼� (c2/w)b2fDs. Thus, if two events are

causally connected and if in an inertial reference frame K

the coordinates of these events, defined according to x, y,

z, t, coincide, then in another inertial frame K0 the

coordinates of the events according to x0, y0, z0, t0 cannot

coincide. In this case it is possible that Dt0 6¼ 0 and thus

Dx0 6¼ 0 (provided that Ds 6¼ 0 and w 6¼ 6‘).
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B. Backwards motion in the two-dimensional time

In STR, the condition s2¼ c2t2� x2� y2� z2 . 0, t .

0 cannot be changed through proper orthochronous
Lorentz transformations L�þ into the condition s2 . 0, t
, 0. If it could be done, then on account of continuity one
could also have t¼ 0—which is impossible if s2 . 0. For
this reason, the region s2 . 0, t . 0 (inside of the positive
light cone) is called the absolute future. Similarly, the
region s2 . 0, t , 0 (inside of the negative light cone) is
called the absolute past relative to t ¼ 0. These
considerations are not valid for the case of multidimen-
sional time. For example, for the case k¼ 2, the condition
s23;2 ¼ c2t2 þ c2s2 – x2 – y2 – z2 . 0, t . 0, s . 0 can be
changed through proper orthochronous transformations
K��
þ (see Subsection III.C) into the condition s23;2 . 0, t �

0, s � 0, the condition s23;2 . 0, t � 0, s � 0, or the
condition s23;2 . 0, t � 0, s � 0. Indeed, since t and s are
independent variables, it is possible that following
conditions are simultaneously fulfilled: t ¼ 0, s 6¼ 0, c2s2

� x2 � y2 � z2 . 0. Thus the equality t ¼ 0 does not
contradict the inequality s23;2 . 0. Due to the same
considerations, the equality s¼ 0 also does not contradict
the inequality s23;2 . 0.

The application of the transformations in Eq. (12),
which belong to the group of the proper orthochronous
transformations K��

þ , at certain conditions leads to
movement backward in the time dimensions t and s. Let
us assume s23;2 ¼ c2Dt2þ c2Ds2 – Dx2 – Dy2 – Dz2 � 0. We
accept that Dx . 0, Dy ¼ 0,Dz ¼ 0, Dt . 0,Ds � 0.
According to Eq. (12), following equality will be fulfilled:

Dt 0 ¼ 1þ ðf� 1Þ c
2

v2
b2

� �
Dtþ ðf� 1Þ c

2

vw
b2Ds

� 1

v
b2fDx: ð13Þ

We assume that v . 0. Further, we will examine for
which values of the velocities v and w the condition Dt0 ,

0 is fulfilled.
First, we will assume, that Ds¼ 0. Since Ds23;2 � 0, we

will have Dx � cDt. Let us set Dx ¼ cDt. In this case the
inequality Dt0 , 0 is equivalent to the inequality

Dt 0

Dt
¼ 1þ ðf� 1Þ c

2

v2
b2 � c

v
b2f , 0: ð14Þ

If we set r¼ c/v, then we obtain a quadratic inequality
in relation to the parameter r. Since in the expressions for
b and f there are two independent variables c/v and c/w,
for which the only restriction imposed is (c/v)2þ (c/w)2 �
1 (see Section IV), we can set (c/v)2 þ (c/w)2 ¼ const � 1
and therefore b ¼ const � 1 and f ¼ const � 1. Further,
we can find the first and second derivatives of the function
f(r) ¼ (f � 1)b2r2 � b2fr þ 1. Then we discover that the
function f(r) has a minimum at r ¼ f/2(f � 1) and f . 1.
This means that at a fixed value of 1 � b . 0 (and
accordingly of f . 1), the function f(r) reaches its
minimum at r¼ f/2(f� 1). Let us set r ¼ c/v ¼ f/2(f � 1)
and f . 1. According to the inequality in Eq. (14), we
have

�b2f2 þ 4f� 4, 0: ð15Þ

Taking into consideration that f¼1/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
, we find

that at b� 1, the expression in Eq. (15) tends toward�‘.

Therefore, if r¼ c/v¼ f/2(f� 1) and b � 1 (that is, f � ‘

and r � 1/2), then Dt0/Dt � �‘. Further, if b ¼ (2
ffiffiffi
2
p

)/3

(that is, f¼ 3 and r¼ 3/4), then the expression in Eq. (15)

becomes equal to 0. It is easy to find that if r�[1/2; 3/4),
then Eq. (14) is fulfilled and therefore Dt0/Dt , 0, which

we wanted to prove. If r ¼ 3/4, then Dt0/Dt ¼ 0—that is,

Dt0¼ 0—and if r� 1/2, then Dt0/Dt��‘—that is, Dt0 �
�‘.

According to Eq. (12), the following equality will be

valid:

Ds 0 ¼ ðf� 1Þ c
2

vw
b2Dtþ 1þ ðf� 1Þ c

2

w2
b2

� �
Ds

� 1

w
b2fDx: ð16Þ

Since Ds ¼ 0 and Dx ¼ cDt, we have

Ds 0 ¼ ðf� 1Þ c
2

vw
b2 � c

w
b2f

� �
Dt:

Let us assume that w . 0. It is easy to prove that if c/v¼ f/
2(f�1), then (f�1)(c2/vw)b2� (c/w)b2f , 0. Therefore, in

this case we have Ds0 , 0. If b � 1 and accordingly f �
‘, r � 1/2, then Ds0/Dt � �‘—that is, Ds0 � �‘.

Let us now assume that Ds . 0. In this case Dt0 is
given by Eq. (13) and Ds0 is given by Eq. (16). Further,

from the condition Ds23;2 � 0 (and Dy ¼ 0, Dz ¼ 0) it

follows that Dx � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2 þ Ds2
p

. Let us set Dx ¼
vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2 þ Ds2
p

, where 0 � v � 1. We are going to examine

for which values of the velocities v and w the conditions

Dt0 , 0 and Ds0 , 0 are fulfilled. We accept that r¼ c/v¼
f/2(f � 1) and r�[1/2; 3/4). In this case the following

inequalities are fulfilled: 1þ (f� 1)(c2/v2)b2� (c/v)b2f , 0

and (f�1)(c2/vw)b2� (c/w)b2f , 0. These two expressions

tend toward�‘ at b� 1, and accordingly f� ‘, r� 1/2.

Since Dt, Ds, and Dx are independent variables, we can

choose Dt large enough, Ds small enough, and v close

enough to 1 that the following expressions take arbitrarily

small values:

ðf� 1Þ c
2

vw
b2 Ds

Dt
;

c

v
b2f 1� v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ds2

Dt2

r !
;

1þ ðf� 1Þ c
2

w2
b2

� �
Ds
Dt
;

c

w
b2f 1� v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ds2

Dt2

r !
:

Therefore, if r � [1/2; 3/4), then for appropriate values of

Dt, Ds, and Dx the following inequalities will be fulfilled:
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1þ ðf� 1Þ c
2

v2
b2

� �
� c

v
b2f

� 	
þ ðf� 1Þ c

2

vw
b2 Ds

Dt

þ c

v
b2f 1� v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ds2

Dt2

r !
, 0;

ðf� 1Þ c
2

vw
b2 � c

w
b2f

� �
þ 1þ ðf� 1Þ c

2

w2
b2

� �
Ds
Dt

þ c

w
b2f 1� v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ds2

Dt2

r !
, 0;

that is,

Dt 0 ¼ 1þ ðf� 1Þ c
2

v2
b2

� �
Dtþ ðf� 1Þ c

2

vw
b2Ds

� c

v
b2fv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2 þ Ds2

p
, 0;

Ds 0 ¼ ðf� 1Þ c
2

vw
b2Dtþ 1þ ðf� 1Þ c

2

w2
b2

� �
Ds

� c

w
b2fv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2 þ Ds2

p
, 0:

An example of this is shown in Table I. From Table I

one can see that if b , 0.800, then the value c/w is an

imaginary number and Dt0 and Ds0 are complex numbers;

if b ¼ 0.800, then Dt0 . 0,Ds0 . 0; if b ’ 0.841649, then

Dt0 . 0,Ds0 ¼ 0; if b¼ 0.950, then Dt0 . 0,Ds0 , 0; if b ’

0.976556, then Dt0 ¼ 0,Ds0 , 0; if b ¼ 0.999, then Dt0 ,

0,Ds0 , 0. According to Table I, for the case of two-

dimensional time, it is possible that the conditions v . c

and Dt0 . 0 can be simultaneously fulfilled (unlike the

case of one-dimensional time in STR). For example, if r¼
c/v ¼ 0.694, then Dt0 ¼ 0.142 . 0.

C. General properties of the transformations

We are going to examine some of the properties of the

general transformations between K and K0. Let us denote

with x1, x2 the time dimensions and with x3, x4, x5 the

space dimensions; for example x1¼ ct, x2¼ cs, x3¼x, x4¼
y, x5 ¼ z. The following equality is fulfilled:

ðx1Þ2 þ ðx2Þ2 �
X5
g¼3
ðxgÞ2 ¼ ðx1 0Þ2 þ ðx2 0Þ2

�
X5
g¼3
ðxg 0Þ2: ð17Þ

The general relations which fulfill this condition must
have the form

xl= ¼ al
qx

q þ bl; ð18Þ

where l, q¼ 1, 2, 3, 4, 5.d Here bl are five constant values,
which are equal to the values of xl0 for the case when xl¼
0 (l¼ 1, 2, 3, 4, 5)—that is, bl is a five-dimensional vector
of translation in the space-time. If the origins of both
reference systems are the same, then bl¼ 0 (l¼ 1, 2, 3, 4,
5). We will further examine the transformations that do
not include translations in space and time, i.e.,

xl 0 ¼ al
qx

q: ð19Þ

Let us introduce the notation

glq ¼ gql ¼
1 l ¼ q ¼ 1; 2
�1 l ¼ q ¼ 3; 4; 5
0 l 6¼ q:

8<
:

In this way, Eq. (17) can be presented in the form

glqx
lxq ¼ glqx

l 0xq 0: ð20Þ

If we substitute Eq. (19) into the right-hand side of Eq.
(20) and compare the coefficients in front of x, we have

glq ¼ gkra
k
la

r
q: ð21Þ

(Here k, r¼ 1, 2, 3, 4, 5). Let us define a 53 5 matrix (A)lq,
with elements al

q: (A)lq ” al
q. Similarly, let us define the

elements of the matrix (G)lq: (G)lq ” glq. In matrix
presentation, Eq. (21) can be written as (G)lq¼ (AtrGA)lq;
therefore det(G) ¼ det(AtrGA) ¼ det(Atr)det(G)det(A).
Taking into consideration the fact that det(Atr) ¼ det(A)
and det(G)¼�1, we obtain

TABLE I. Some values of Dt0 and Ds0, provided that Dt¼ 1, Ds ¼ 0.3, v ¼ 0.999.

b f r ¼ c

v

c

w
Dt0 Ds0

0.799 1.663 1.254 Imaginary number Complex number Complex number

0.800 1.667 1.250 0.000 0.276 0.300

0.840 1.843 1.093 0.472 0.320 0.007

0.841649 1.852 1.087 0.480 0.320 0.000

0.950 3.203 0.727 0.761 0.189 �0.549
0.960 3.571 0.694 0.776 0.142 �0.659
0.970 4.113 0.661 0.791 0.071 �0.813
0.976556 4.645 0.637 0.802 0.000 -0.958

0.980 5.025 0.624 0.807 �0.051 �1.060
0.990 7.089 0.582 0.825 �0.336 �1.594
0.999 22.366 0.523 0.853 �2.487 �5.384
0.999999 707.107 0.501 0.866 �99.434 �173.329

d In this and the following formulas, the Einstein summation

convention for repeating indices is used.
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detðAÞ ¼ 61: ð22Þ

In Eq. (21), if we set l ¼ q ¼ 1 and l ¼ q ¼ 2, we

accordingly obtain

1 ¼ ða11Þ
2 þ ða21Þ

2 �
X5
g¼3
ðag

1Þ
2;

1 ¼ ða12Þ
2 þ ða22Þ

2 �
X5
g¼3
ðag

2Þ
2;

that is,

a11 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

X5
g¼3
ðag

1Þ
2 � ða21Þ

2

vuut ;

a22 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

X5
g¼3
ðag

2Þ
2 � ða12Þ

2

vuut :

Therefore, we have nine possible cases: a11 . 0 and

a22 . 0; a11 . 0 and a22 , 0; a11 , 0 and a22 . 0; a11 , 0

and a22 , 0; a11¼0 and a22 . 0; a11¼0 and a22 , 0; a11 .

0 and a22¼ 0; a11 , 0 and a22¼ 0; and a11¼ 0 and a22¼ 0.

Adding into consideration Eq. (22), we have altogether 18

cases in general.

In the case of two-dimensional time it is possible that

the equalities a11¼ 0 and a22¼ 0 are fulfilled [e.g., if x1¼
ct,x2¼ cs, x3¼ x, x4¼ y, x5¼ z, then they are fulfilled at

the transformation (x1)0 ¼ cs,(x2)0 ¼�ct,(x3)0 ¼ x,(x4)0 ¼
y,(x5)0 ¼ z]. The transformations where a11 6¼ 0 and a22 6¼
0 we will call nonzero transformations.

Let us now consider only the nonzero transforma-

tions. There are in general eight nonzero transformations

(see Table II). The transformations conserving the

orientation—i.e., for which det(A) ¼ 1, a11 . 0, a22 .

0—we will call proper orthochronous transformations

and will denote with K��
þ . The transformations which do

not change the signs in front of t and s (that is, a11 . 0

and a22 . 0) we will call orthochronous in relation to t

and s; we will denote them with K��¼ {K��
þ ¨ K��

� }. The

transformations which do not change the sign in front of t

(that is, a11 . 0) we will call orthochronous in relation to

t; we will denote them with K��¼ {K��
þ ¨ K��

þ ¨ K��
� ¨

K��
� }. The transformations which do not change the sign

in front of s (that is, a22 . 0) we will call orthochronous in

relation to s; we will denote them with K�¼ {K��
þ ¨ K� 

þ ¨
K��
� K� 

� }. The transformations which change the signs in

front of t and s we will call nonorthochronous in relation

to the time dimensions; we will denote them with K� ¼
{K� 
þ ¨ K� 

� }. It is clear that the same transformation can

be orthochronous in relation to a given time dimension

and nonorthochronous in relation to another time

dimension (for example, the transformation K��
þ ). The

transformations responsible for the condition det(A)¼þ1
we will call proper transformations and will denote with

Kþ¼{K��
þ ¨ K��

þ ¨ K� 
þ ¨ K� 

þ }. The transformations for

which det(A)¼�1 we will call nonproper transformations

and will denote with K�¼ {K��
� ¨ K��

� ¨ K� 
� ¨ K� 

� }.

Let us define the following discrete operations which

present spatial or temporal reflection: xl0 ¼ Pl
qx

q, xl0 ¼
Cl

qx
q, xl0¼Xl

qx
q, xl0¼Nl

qx
q, where Pl

q¼ diag(þ1,þ1,
�1,�1,�1), Cl

q¼ diag(�1,�1,þ1,þ1,þ1), Xl
q¼ diag(�1,

þ1,þ1,þ1,þ1), Nl
q¼ diag(þ1,�1,þ1,þ1,þ1). Since after

these operations the scalar product remains invariant,

they belong also to the full group of transformations. We

can connect these operations to the transformations

obtained previously (see Table II).

The results obtained here will play a very important

role relative to an antiparticle moving in multidimension-

al time (see Section X).

Ifweassume that thes transformationsarevalid, then the

Lorentz covariance must be violated. The physical laws will

not be Lorentz covariant, i.e., they will not be transformed

according to theLorentz group.The four-dimensional space-

time interval in this case will not be invariant, while the five-

dimensional interval will be—see Section IV.

In the case ofmultidimensional time, theCPT symmetry

will be violated. STR and consequently the Lorentz

covariance is placed at the base of CPT symmetry. Indeed,

the even number of reflections of the coordinates in

Minkowski space-time (PT-symmetry) is formally reduced

to a rotation by an imaginary angle. Due to this fact, the

existing physical theories, which are invariant relative to the

Lorentz transforms (i.e., rotations inMinkowski space-time)

turn out to be automatically CPT invariant. We discuss the

problemwithCPT symmetry inmultidimensional timemore

precisely in Section X.

TABLE II. Decomposition of the group of nonzero transformations.

Transformations between K and K0 det(A) sign of a11 sign of a22 Operations applied on K��
þ :

K��
þ þ1 þ1 þ1 1 (unit matrix) ¼ diag(þ1, þ1, þ1, þ1, þ1)

K��
þ þ1 þ1 �1 PN ¼ diag(þ1, �1, �1, �1, �1)

K� 
þ þ1 �1 þ1 PX ¼ diag(�1, þ1, �1, �1, �1)

K� 
þ þ1 �1 �1 C ¼ diag(�1, �1, þ1, þ1, þ1)

K��
� �1 þ1 þ1 P ¼ diag(þ1, þ1, �1, �1, �1)

K��
� �1 þ1 �1 N ¼ diag(þ1, �1, þ1, þ1, þ1)

K� 
� �1 �1 þ1 X ¼ diag(�1, þ1, þ1, þ1, þ1)

K� 
� �1 �1 �1 PC (total inversion) ¼ diag(�1, �1, �1, �1, �1)
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D. Waves in two-dimensional time and three-
dimensional space and the Doppler effect

It is clear that in the case of two-dimensional time the

d’Alembert operator is not a scalar. Instead, another

operator must be used, obtained from the scalar product:

Ats ” glq ]

]xl

]

]xq
¼ ]

c]t

� �2

þ ]

c]s

� �2

�
X5
g¼3

]

]xg

� �2

;

where

glq ¼
1 l ¼ q ¼ 1; 2
�1 l ¼ q ¼ 3; 4; 5
0 l 6¼ q:

8<
:

(Here x1¼ ct,x2¼ cs.) Since the Ats operator is a scalar, it

follows that

Ats ¼ A 0
ts ¼

]

c]t 0

� �2

þ ]

c]s 0

� �2

�
X5
g¼3

]

]xg 0

� �2

:

For the case of two-dimensional time and three-

dimensional space, the wave equation takes the form

]2F

]x2
þ ]2F

]y2
þ ]2F

]z2
¼ j

xt

� �2
]2F

]t2
þ j

xs

� �
]2F

]s2
;

where xt and xs are the angular frequencies of the wave,

defined in relation to the time dimensions t and s
respectively, and j is the angular wavenumber (ultra-

hyperbolic partial differential equations—see Ref. 5). We

have set x3¼x, x4¼y,x5¼ z.) Here ut¼xt/j and us¼xs/j
are phase velocities, defined in relation to t and s,
respectively.

We will examine the Doppler effect in two-dimen-

sional time and three-dimensional space. In this case it is

possible that waves exist which have properties depend-

ing only on one or both time dimensions. We will

consider the general case, when a wave is moving in the

two time dimensions t, s and in the three space

dimensions x, y, z.

Let us denote with xt and xs the angular frequencies

of the wave in the frame K, defined relative to the time

dimensions t and s, and with j ¼ (jx, jy, jz) the wave

vector of this wave in K. The phase of the wave in K is

given by the expression xttþxss�jR, where R¼(x, y, z).
Let us denote with x 0

t and x 0
s the angular frequencies of

the wave in K0, defined relative to t0 and s0, and with j0 ¼
j 0
x, j 0

y, j 0
z the wave vector of the wave in K0. The phase of

the wave in K0 is given by x 0
tt
0 þ x 0

ss
0 � j0R0, where R0 ¼

(x0, y0, z0). In order to determine the Doppler effect for the

wave under consideration, we have to set to set the wave

phase to be invariant—that is, xttþxss – jR¼x 0
tt
0þx 0

ss
0

� j0R0.

We set j0 ¼ jjj0jj . 0 (angular wavenumber); u 0
t ¼x 0

t/

j0, u 0
s ¼x 0

s/j
0 (phase velocities determined according to t0

and s0, respectively); j 0
x/j

0 ¼ cos c0. Applying the

transformations in Eq. (12) from K to K0, we define the

relation between xt, xs, jx, jy, jz and x 0
t , x 0

sj
0
x, j 0

y, j 0
z:

xt ¼ x 0
t 1þ ðf� 1Þ c

2

v2
b2 þ c2

vu 0
t

b2f:cos c 0
� �

þ x 0
sðf� 1Þ c

2

vw
b2;

xs ¼ x 0
s 1þ ðf� 1Þ c

2

w2
b2 þ c2

wu 0
s
b2f:cos c 0

� �
þ x 0

tðf� 1Þ c
2

vw
b2;

jx ¼ j 0
xf 1þ u 0

t

v cos c 0
b2

� �
þ j 0

xb
2f

u 0
s

w cos c 0
;

jy ¼ j 0
y; jz ¼ j 0

z:

The expressions x 0
s(f� 1)(c2/vw)b2 and j 0

xb
2f(u 0

s/w cos c0)
in the formulas for the angular frequency xt and the wave
vector jx, respectively, can be regarded as corrections in
the formulas for the Doppler effect for the case of two-
dimensional time. If we set x 0

s ¼ 0, we will obtain the
formulas for the Doppler effect for the case in which the
wave is moving in only one time dimension, t0. Obviously
in this case, the expressions for xt and jx differ from the
formulas for the relativistic Doppler effect in STR.

IV. CAUSAL STRUCTURE OF SPACE-TIME (n, k)¼
(3, 2)

Let us have a five-dimensional vector A
l in space-

time (n, k) ¼ (3, 2). The scalar product of the vector Al

with itself will bee

ðAÞ2 ¼ AlAl ¼ glqA
lAq

¼ ðA1Þ2 þ ðA2Þ2 �
X5
g¼3
ðAgÞ2;

where l, q ¼ 1, 2, 3, 4, 5 and

glq ¼ gql ¼
1 l ¼ q ¼ 1; 2
�1 l ¼ q ¼ 3; 4; 5
0 l 6¼ q:

8<
:

Let us denote (A3,1)
2 ¼ (A1)2 �

P5
g¼3ðAgÞ2. Then we

will have (A)2 ¼ (A3,1)
2 þ (A2)2. While in Minkowski

space-time [(n, k)¼ (3, 1)] the value (A3,1)
2 is invariant, in

a space-time (n, k) ¼ (3, 2) it is not invariant—but the
value (A)2 is invariant. If, for example, the value (A3,1)

2 is
spacelike in one frame of reference K [(A3,1)

2 , 0], it can
be 0 [ðA 0

3;1Þ
2¼ 0] or timelike [ðA 0

3;1Þ
2

. 0] in another frame
of reference K0.

The causal region of the space-time (n, k) ¼ (3, 2)
encompasses the region (A)2 � 0, and the causal region of
the space-time (n, k) ¼ (3, 1) encompasses the region
(A3,1)

2 � 0.
Let us set: A1¼ cdt, A2¼ cds, A3¼ dx, A4¼ dy, A5¼

dz, q1 ¼ (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p
)/(cjdtj) ¼ V/c � 0, q2 ¼

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p
)/(cjdsj) ¼ W/c � 0, ds3.2 ¼ jjAjj ¼ffiffiffiffiffiffiffiffiffiffi

ðAÞ2
q

.

e In the formula, the Einstein summation convention is used.
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We will consider three cases for the value of (A)2.
First case: (A)2 . 0—that is, ds23;2 . 0. If A2¼ cds 6¼ 0,

then there are three possible cases: (A3,1)
2 . 0,(A3,1)

2 ¼
0,(A3,1)

2 , 0. If A2 ¼ cds ¼ 0, then (A3,1)
2 . 0. Let us

assume that in the frame of reference K, the following are
fulfilled: A2¼ cds 6¼ 0 and (A3,1)

2 , 0. It is clear that in the
system K0 moving uniformly and rectilinearly in relation
to K, we have (A0)2 ¼ (A 0

3;1)
2 þ (A20)2 ¼ (A)2 . 0. If we

assume that A2/¼ cds0¼0, then we have (A 0
3;1)

2 . 0. So we
have obtained that in the frame K the value A3,1 is
spacelike [(A3,1)

2 , 0] and in K0 the value A 0
3;1 is timelike [

(A 0
3;1)

2 . 0]. It is easy to prove that the condition (A)2 . 0
is equivalent to the following inequality:

1

q21
þ 1

q22
. 1: ð23Þ

If 0 � q1 , 1 (that is, 0 � V , c), then the inequality
in Eq. (23) will be fulfilled for all values of q2 � ‘ (i.e., for
all values of W, including W¼‘). If q1¼ 1 (that is, V¼ c),
then the inequality in Eq. (23) will be fulfilled provided
that q2 , ‘ (that is, W , ‘). Similar considerations are
valid for q2 (and accordingly for the velocity W).
Therefore, if the velocity of a particle defined in relation
to the one time dimension (as absolute value) is less than
or equal to the speed of light in vacuum, then the velocity
of this particle defined in relation to the other time
dimension can have an arbitrary value without violating
the causality principle. If simultaneously q1 . 1 and q2 .

1, then the inequality in Eq. (23) will be fulfilled for an
appropriate choice of the parameters q1 and q2 (e.g., q1¼
10/9,q2 ¼ 2). It is clear that the condition (A3,1)

2 . 0 is
equivalent to the inequality V , c, the condition (A3,1)

2¼
0 is equivalent to the equality V ¼ c, and the condition
(A3,1)

2 , 0 is equivalent to the inequality V . c.
Second case: (A)2 ¼ 0—that is, ds23;2 ¼ 0. In this case,

(A3,1)
2¼�c2ds2, and therefore it is not possible that (A3,1)

2

. 0. If A2¼ cds¼ 0, then (A3,1)
2¼ 0. If A2¼ cds 6¼ 0, then

we have (A3,1)
2 , 0. The condition (A)2¼ 0 is equivalent

to the following equality:

1

q21
þ 1

q22
¼ 1: ð24Þ

If q1 , 1 (that is, V , c) or q2 , 1 (that is, W , c),

then Eq. (24) is impossible. If q1¼ 1 (that is, V¼ c), then

Eq. (24) is possible under the condition that q2 ¼ ‘ (that

is, W¼ ‘). This means that dx2þ dy2þ dz2 . 0, dt2 . 0,

ds2¼0—i.e., the considered particle moves in space and in

the time dimension t but not in the time dimension s. The
same applies for the case q2¼ 1 (that is, W¼ c). From Eq.

(24) follows the equality (c2/V2)þ (c2/W2)¼ 1. Therefore,

if the considered particle is moving with velocity

V ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

W2

q ;

then we have (A)2¼ ds23;2 ¼ 0. According to the results of

Section VIII, if the equality (c2/V2) þ (c2/W2) ¼ 1 is

fulfilled for the velocities V and W of a particle in the

frame of reference K, then for the velocities V0 and W0 of

this particle in the frame K0, the similar equality

c2

ðV 0Þ2
þ c2

ðW 0Þ2
¼ 1

is fulfilled.

Third case: (A)2 , 0—that is, ds23;2 , 0. We have

(A3,1)
2 , 0. In this case it is not possible that (A3,1)

2 . 0

or (A3,1)
2¼ 0. The condition (A)2 , 0 is equivalent to the

following inequality:

1

q21
þ 1

q22
, 1: ð25Þ

The inequality in Eq. (25) is fulfilled only if the

following inequalities are simultaneously fulfilled: q1 . 1

and q2 . 1 (that is, V . c and W . c).

From these considerations we can conclude that the

causal region of (3 þ 2)-dimensional space-time includes

the causal region of (3 þ 1)-dimensional space-time and

presents a larger part of it.

Figure 1 shows graphs of the functions (c2/V2)þ (c2/

W2)¼ 1 and c/V¼ 1 for non-negative values of V and W.

It is clear that for each point in the darker region and

on the border of this region [i.e., the region confined by

the coordinate axes and the graph of the function (c2/V2)

þ (c2/W2)¼ 1] corresponds to a combination of values for

the velocities V and W where a given particle is moving in

the causal region of the space-time (n, k)¼ (3, 2), that is,

ds23;2 � 0. For each point outside this region there is a

combination of values of the velocities V andW where the

given point does not move in the causal region of the

space-time (n, k)¼ (3, 2), that is, ds23;2 , 0. For each point

in the region between the abscissa and the straight line c/V

¼ 1 there exists a combination of values for the velocities

V and W where the particle is moving in the causal region

of space-time (n, k)¼ (3, 1); this is the case of STR [(A3,1)
2

� 0.]

FIG. 1. (Color online) The values of the velocities V and W at which an

object is moving in the causal regions of the space-time (n, k)¼ (3, 2) and

(n, k)¼ (3, 1).
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Let us denote with x1, x2 the time dimensions and

with x3, x4, x5 the space dimensions. Let us further for

simplicity consider only one space dimension x3 and the

two time dimensions x1 and x2 (that is, x1¼ ct, x2¼ cs, x3

¼ x, x4¼ 0, x5¼ 0). Let us assume that at point O, having

coordinates x1¼ 0, x2¼ 0, x3¼ 0 (x4¼ 0, x5¼ 0) defined in

the frame K, there has been an event E. Let us further

assume that a given interval of time DT¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2 þ Ds2
p

� 0

has passed since the event. Our task is to examine the

causal region attached to the event E. Since the time is

two-dimensional, all possible combinations of coordi-

nates x1, x2 for which the inequality (x1)2þ (x2)2 � c2DT2

is valid form a circle in the plane x1-x2 with center at point

O and radius equal to cDT. If we add the space dimension

x3 in such a way that for an arbitrary value of x3 the

inequality (x1)2 þ (x2)2 � c2DT2 is fulfilled, then we will

obtain a right circular cylinder with the obtained circle as

its base. According to the previous considerations, in

order for a exist causal relation between two events to

exist, the inequality s23;2 � 0 must be fulfilled—that is,

(x1)2 þ (x2)2 � (x3)2 � 0. This inequality can be rep-

resented graphically by a double right circular cone. The

generatrices of the lateral surface of the cone make an

angle of p/4 with the plane x1-x2. Therefore, we obtain a

double cone inscribed in the cylinder [Fig. 2(a)]. From the

inequalities (x1)2 þ (x2)2 � (x3)2 � 0 and (x1)2 þ (x2)2 �
c2DT2 we obtain jxj3 � cDT—that is, cDT � x3 ��cDT.
The cone and the cylinder have common bases: a circle

with its center at the point x3¼�cDT (x1¼ 0,x2¼ 0) and

radius cDT, and a circle with its center at the point x3 ¼
cDT (x1 ¼ 0, x2 ¼ 0) and radius cDT.

Let us with C1 denote the border region which includes

all points lying on the lateral surface of the cone and the

lateral surface of the cylinder. The region C1 includes also

FIG. 2. (Color online) Causal structure of the space-time (a); causal region in the plane l1 (b) and in the plane l2 (c).
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the origin O—i.e., it includes all points (x1, x2, x3) for
which the conditions {(x1)2 þ (x2)2 � (x3)2 ¼ 0 and jxj3 �
cDt} or {(x1)2þ (x2)2¼ c2DT2 and jxj3 � cDt} are fulfilled.

Let us denote with C2 the inner region limited by the

lateral surface of the cone and the lateral surface of the
cylinder. The region C2 does not include the origin O or
the lateral surfaces of the cone and the cylinder (i.e., it

does not include the border region C1)—it includes all
points (x1, x2, x3), for which the inequalities (x1)2þ (x2)2�
(x3)2 . 0 and (x1)2 þ (x2)2 , c2DT2 are fulfilled. From

these two inequalities we obtain jxj3 � cDT. If x3¼0, then
0 , (x1)2 þ (x2)2 , c2DT2.

Let us denote with C3 the region which includes all
points lying in the inner volume of the cone. The region C3

does not include the origin O or the lateral surface of the

cone. It includes the inner parts of the circles that form the
bases of the cones (and the cylinder), but does not include
the points lying on the directrix circumference restricting

these circles (bases)—i.e., the region C3 includes all points
(x1, x2, x3), for which the inequalities (x1)2þ (x2)2� (x3)2 ,

0 and jxj3 � cDT are fulfilled. It is clear that if x3¼6cDT,
then (x1)2þ (x2)2 , c2DT2.

Let us denote with C4 the region including all points
outside the cylinder. It does not include the lateral surface
of the cylinder or the two bases of the cylinder—i.e., it

includes all points (x1, x2, x3) for which the inequality (x1)2

þ (x2)2 . c2DT2 or the inequality jxj3 . cDT is fulfilled.

The causal region includes the regions C1 and C2; the
noncausal region includes the regions C3 and C4.

In Fig. 2(a), the vector OM shows the motion of a

pointlike particle M. The point M1 is the projection of
pointM on the plane x1-x3, and pointM2 is the projection
of point M on the plane x2-x3.

Let us consider the plane l1, which is parallel to the

plane x1-x2 and includes point M, and the plane l2, which
is perpendicular to the plane x1-x2 and includes points O
and M. Let us set tan a ¼ x2/x1 and tan w ¼ x3/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ ðx2Þ2

q
. If we set x1¼ ct,x2¼ cs,x3¼ x . 0, then

tan a ¼ v/w and tan w ¼ 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2=v2Þ þ ðc2=w2Þ

p
. (In this

case, v and w are the velocities of the particle M defined
relative to the time dimensions t,and s—see Subsection

III.A). Let us denote with w1 the angle between x1 and
OM1, and with w2 the angle between x2 and OM2. It is
easy to see that tan w1¼ (tan w)/(cos a) [if in Fig. 2(c) one

can imagine the plane x1-x3] and tan w2¼ (tan w)/(sin a)
(if one can imagine the plane x2-x3). Let us denote with L
the point where the axis x3 intersects the plane l1—i.e.,
point L is the projection of the origin O (x1¼ 0, x2¼ 0, x3

¼ 0) on the plane l1.

The causal region r2 in Fig. 2(b) represents the region
between the two circumferences having a common center;
the outer circumference has a radius R ¼ cDT, and the

inner one has a radius r¼ cDT tan w. The causal region r4

in Fig. 2(c) represents two congruent right-angled isosceles
triangles, namely OAC and OA1C1, which have a common

apex at point O. It is clear that jACj ¼ jA1C1j ¼ 2cDT, jOBj
¼ jABj ¼ jOB1j ¼ jA1B1j ¼ cDT, jOAj ¼ jOCj ¼ jOA1j ¼
jOC1j ¼ cDT

ffiffiffi
2
p

. Further, we have jOLj ¼ cDT tan w.

We have assumed that since event E an interval of
time DT has passed. In this case, the causal region in the
plane l1 (that is, r2) includes all events which are causally

connected with event E and happen at a distance jOLj ¼
cDT tan w from O (along the axis x3). The causal region in

the plane l2 (that is, r4) includes all events which are
causally connected with event E and happen in a plane
making an angle a with the plane x1-x3.

If a¼0 (i.e., the vector OM is in the plane x1-x3), then
the plane l2 coincides with the plane x1-x3. (We will have
M1 ” M.) This case is considered in STR. If a¼ p/2 (i.e.,

the vector OM is in the plane x2-x3), then the plane l2
coincides with the plane x2-x3. (We will have M2 ” M.)

We can consider two more specific cases depending

on the value of the angle w.
First case: w ¼ 0—that is, the plane l1 coincides with

the plane x1-x2. In this case the particle M is at rest; i.e., it

does not move in the space dimension x3, but only in the
time dimensions x1 and x2. We have tan w¼ tan 0¼ 0. In

this case the radius of the inner circle r1 in Fig. 2(b) is
equal to 0 (r¼ cDT tan w¼ 0), i.e., the causal region r2 of
event E includes all points of the outer circle. Therefore,

the causal region of event E in the plane l1 (and
accordingly in the plane x1-x2) in this case coincides with

the circle for which (x1)2 þ (x2)2 � jjOMjj2 ¼ c2DT2. In
this case we have tan w1¼ 0, w1¼ 0 if Fig. 2(c) shows the
plane x1-x3 and tan w2 ¼ 0, w2 ¼ 0 if Fig. 2(c) shows the

plane x2-x3. One can say that the two-dimensional time
‘‘flows’’ from the origin O in all directions in the plane x1-

x2; as a result of this, the described circle is obtained. If we
assume that the moments lying on the circumference of
this circle are contemporary moments, then the moments

of the inner part of the circle are past moments and the
moments outside the circle are future moments (according

to the moments defined as contemporary). These consid-
erations are valid also for the case of k-dimensional time.

It is evident that k-dimensional time will ‘‘flow’’ in the
form of a k-dimensional hypersphere having its center at
the origin O. Let us assume that between point O and the

event E a period of time DT . 0 has passed, which is
determined according to the frame of reference K. In this

case all moments inside the k-dimensional hypersphere
with center O and radius DT are in the past and all
moments outside the k-dimensional hypersphere are

future moments. The surface which defines the k-
dimensional hypersphere is a (k � 1)-dimensional hyper-

sphere. All moments lying on the mentioned (k � 1)-
dimensional hypersphere are present moments.

Second case: w ¼ p/4—that is, the upper bases of the

cylinder and the cone lie in the plane l1. In this case the
vector OM lies on one of the generatrices of the conical

surface. We have tan w¼ tan(p/4)¼x3/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ ðx2Þ2

q
¼ 1.

If we further set x1¼ ct, x2¼ cs, x3¼ x . 0, then for the

velocities v and w of the particleM defined in relation to the
time dimensions t and s, respectively, the equality (c2/v2)þ
(c2/w2)¼1 will be fulfilled (see Subsection III.A). Since cos a
¼ 1/v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=v2Þ þ ð1=w2Þ

p
, sin a ¼ 1/w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=v2Þ þ ð1=w2Þ

p
, in

this case we can express the velocities v and w in terms of
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angle a: v ¼ (c/cos a) and w ¼ (c/sin a)—see Subsection
III.A. Since tan w¼ 1, in this case the radius r of the inner
circle r1 from Fig. 2(b) is equal to the radius R of the outer
circle (r¼ cDT tan w¼ cDT¼R), i.e., the causal region r2

includes only the points lying on the outer circumference. In
this case we have tan w1¼ (1/cos a) if Fig. 2(c) shows the
plane x1-x3 and tanw2¼ (1/sin a) if Fig. 2(c) shows the plane
x2-x3.

Let us project the intersection of the plane l1 with the
cylinder and with the cone [shown in Fig. 2(a)] onto the
plane x1-x2 . Let us do the same with the intersection of
the plane l2 with the cylinder and the cone onto x1-x3 and
x2-x3. Then we obtain Fig. 3(a) and the darker areas
shown in Figs. 3(b) and 3(c), respectively. If the vector
OM presents the motion of a given particle M, then the
projections of the motion of this particle onto the plane
x1-x3 (i.e., the vector OM1) or onto the plane x2-x3 (i.e.,
the vector OM2) can lie only in the darker regions of Figs.
3(b) 3(c), respectively. In the opposite case—if the
projections OM1 or OM2 do not lie in the indicated
regions—then the motion shown by the vector OM is not
causally related. In Fig. 3(a), the point M3 is the
projection of point M onto the plane x1-x2.

Figures 3(a), 3(b), and 3(c) show what happens when
the angle a is changed (i.e., the angle a changes to angle
a0). Here tan a1¼ (1/cos a), tan a 0

1 ¼ (1/cos a0) [Fig. 3(b)]
and tan a2 ¼ (1/sin a), a 0

2 ¼ (1/sin a0) [Fig. 3(c)].
At a¼ 0 or a¼ p/2 we obtain the well-known case of

motion along only one axis of time (x1 or x2, respectively).
This case (a ¼ 0) is considered in STR.

If, for example, a ¼ 0 and x1 ¼ ct, x3 ¼ x, then the
projection of the causal region onto the plane x1-x3 [Fig.
3(b)] will coincide with the causal region according to
STR. If a¼ 0, then cos a¼ 1, tan a1¼ 1, a1¼ p/4, tan a2¼
‘, a2 ¼ p/2. If a ¼ 0, then the projection of the causal
region onto the plane x2-x3 [Fig. 3(c)] will be a line
segment lying on the axis x3 (a2 ¼ p/2). In this case, if
jjOM2jj ¼ 0, then the velocity of the particle M
determined in relation to the two time dimensions x1

and x2 is equal to 0; but if jjOM2jj 6¼ 0, then the velocity
of the particle M defined in relation to x1 is greater than 0
and less than or equal to the speed of light in a vacuum,
and the velocity of the particle defined in relation to x2 is
infinitely large. (See the considerations at the beginning of
Section IV.) Likewise, one can apply the same consider-
ations for the case a ¼ p/2.

FIG. 3. (Color online) Projection of the causal region (a) on the plane x1-x2, (b) on the plane x1-x3, and (c) on the plane x2-x3, for a change of the angle

a (from a to a0).
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For the angle a0 ¼6aþ bp (b¼ 0, 61, 62, . . .), one
can obtain the same projections of the causal region [Figs.
3(b) and 3(c)] as for angle a.

For an observer in the frame K, each coordinate plane
x1 ¼ const, x2 ¼ const represents space in the respective
instant of time—i.e., these are a set of events which occur
for the observer simultaneously. These regions in STR are
called simultaneous spaces of the given observer. By
analogy with STR, each timelike straight line [or line
segment—see, for example, OM in Fig. 2(a)] is parallel to
one of the time axes of a frame of reference K0 moving
uniformly and rectilinearly against K. Therefore, each
timelike straight line ‘‘separates’’ the three-dimensional
space into countless simultaneous regions.

Let us assume that the line segment OM lies in the
plane x1-x3 and not on the axis x1. In this case, the three-
dimensional velocity of K0 in relation to K defined in
relation to the time dimension x2 is infinitely large.
However, as noted earlier, the three-dimensional velocity
of K0 against K determined in relation to the time
dimension x1 must be less than the speed of light in a
vacuum. Obviously, in this causal region there exist
infinitely many inertial frames like K0 which posses the
previously mentioned properties. Similar considerations
are valid if the line segment OM lies in the plane x2-x3 and
not on the axis x2.

In space-times with at least two time dimensions, it is
always possible to construct closed timelike curves.f,4 In the
space-time (n, k)¼ (3, 2), we can consider a ‘‘motion’’ in the
causal region in the plane t-s which begins at the originO (t
¼ 0,s¼ 0) and ends at the same point. Indeed, let us set t¼
X.sin H, s ¼ X(1 – cos H); x, y, z ¼ const. (Here X ¼
const,H � [0; 2p].) Then we have ds23;2¼ c2dt2þ c2ds2 – dx2–
dy2 � dz2 ¼ X2dH2 . 0—i.e., the world line is everywhere
timelike.4 As pointed out by Foster and Müller,4

The existence of closed time-like curves implies that an
observer can revisit the past and, if we accept the tenet
of ‘‘freewill,’’ change it in amanner that is incompatible
with the already experienced future. Obviously, any-
thing resembling the common notion of causality
cannot be maintained under such circumstances.

It has been argued, however, that such cases arise
only due to the misidentification of different space-time
points as identical points of the manifold.13 Other authors
have argued that the paradoxes arising from closed
timelike curves are real, but can be resolved by an
appropriate extension of the space-time manifold14 (see
Subsection III.B).

V. GENERALIZATION OF THE TRANSFORMATION
FOR n-DIMENSIONAL SPACE AND k-DIMENSIONAL
TIME

First, we will consider the simplest case, without
rotations or translations in space or time (i.e., general-

ization of the Lorentz boost in a fixed direction in the field

of multidimensional space and multidimensional time).

Equation (12) can be easily generalized for an arbitrary

number of space and time dimensions (n � 1, k � 1). The

time dimensions we will denote with t1, t2, . . ., tk, and the

space dimensions we will denote with xkþ1, xkþ2, . . ., xkþn.

We assume that the frames K and K0 are in a standard

configuration. Let us denote with

v1 ¼ ðv1; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
n�1

Þ;

v2 ¼ ðv2; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
n�1

Þ;

..

.

vk ¼ ðvk; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
n�1

Þ

the vectors of the velocities of K0 against K, defined

respectively in relation to the time dimensions t1,

t2, . . ., tk. Let us set

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiXk
q¼1

c2

v2q

vuut
and f¼ 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
. Let us denote with Klq the matrix for

transfer between

X ¼

t1
..
.

tk
xkþ1
..
.

xkþn

0
BBBBBBB@

1
CCCCCCCA

and

X 0 ¼

t 01
..
.

t 0k
x 0
kþ1

..

.

x 0
kþn

0
BBBBBBBB@

1
CCCCCCCCA
;

where l, q¼ 1, 2, . . ., kþ n. Here we have X0¼KlqX. If l
� k and q � k, then Klq ¼ dlq þ (f � 1)(c2/vlvq)b

2. Here
dlq is the Kronecker delta, i.e.,

dlr ¼
1 l ¼ q
0 l 6¼ q

:

�
If l ¼ q ¼ k þ 1, then Klq ¼ f. Furthermore, Kr(kþ1) ¼
�(1/vr)b

2f, K(kþ1)h¼�(c2/vh)b
2f, where r, h¼ 1, 2, . . ., k.

If l � kþ 2 or q � kþ 2, then Klq¼ dlq. Therefore, we

have

f This is different from the case of curved manifolds, where closed

timelike curves may arise under certain circumstances.
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t 0r ¼
Xk
h¼1

drhth þ
c2

vrvh
b2ðf� 1Þth

� �
� 1

vr
b2fxkþ1;

ð26Þ

x 0
kþ1 ¼ �c2b2f

Xk
h¼1

th
vh
þ fxkþ1; x 0

u ¼ xu; ð27Þ

where r, h¼ 1, 2, . . ., k, and u¼ k þ 2, kþ 3, . . ., kþ n.

The transformations in Eqs. (26) and (27) are equivalent

to the Lorentz transformations at t2� 0, t3� 0, . . ., tk�
0 and accordingly v2 � 6‘, v3 � 6‘, . . ., vk � 6‘.

Let us set (dxkþ1/dt1)¼ v1, (dxkþ1/dt2)¼ v2, . . . (dxkþ1/

dtk)¼ vk. Applying Eq. (26), we obtain

dt 0r ¼ dtr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
;

that is,

ðdt 01Þ
2 þ � � � þ ðdt 0kÞ

2 ¼ ðdt21 þ � � � þ dt2kÞð1� b2Þ:

(We used the equalities

dth
dtr
¼ dth

dxkþ1
3

dxkþ1
dtr

¼ vr

vh
;

where r, h ¼ 1, 2, . . ., k.) Let us apply rotation in the

hyperplane of time t 01-t
0
2- � � �-t 0k (see Section VII). We

obtain the equality

ðdt 001Þ
2 þ � � � þ ðdt 00kÞ

2 ¼ ðdt 01Þ
2 þ � � � þ ðdt 0kÞ

2

¼ ðdt21 þ � � � þ dt2kÞð1� b2Þ:
ð28Þ

If we set dt 001 ¼ dt 002 ¼ � � � ¼ dt 00k . 0, then we obtain the

following equalities:

dt 001 ¼ dt 002 ¼ � � � ¼ dt 00k

¼ 1ffiffiffi
k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdt21 þ dt22 þ � � � þ dt2kÞð1� b2Þ

q
:

We will use these equations in Section IX.A.

Let us consider more general transformations, which

do not include translation in space and time. Let us

introduce the indefinite metric

Ik;n ¼ diagð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
k

;�1; . . . ;�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

Þ:

Let us denote with O(k, n, R) the group of all (kþ n)3 (k

þ n) matrices M for which Mtr(Ik,n)
�1M ¼ Ik,n. (Here Mtr

denotes the transpose of the matrix M and R denotes the

field of real numbers.) The inverse of M is given by M�1¼
(Ik,n)

�1MtrIk,n. The indefinite orthogonal group O(k, n, R)
conserves the quadratic form defined through the metrics

Ik,n and is isomorphic to the group of all proper and

improper rotations in the space-time being considered.

The indefinite special orthogonal group SO(k, n, R) is the
subgroup of O(k, n, R) consisting of all elements with

determinantþ1. The group SO(k, n, R) corresponds to the

group of all proper rotations in the space-time. The

proper Lorentz group of four-dimensional Minkowski

space-time is SO(1, 3, R); together with parity and time-
reversal it becomes O(1, 3, R). If we introduce an (nþ k)-
dimensional vector of translation in the space-time, then
by analogy with (n, k) ¼ (3, 1)—that is, the inhomoge-
neous Lorentz group or Poincaré group in STR—we can
obtain the most general transformations [see Eq. (18)].

VI. VELOCITY-ADDITION LAW

From the transformations obtained in Eqs. (26) and
(27), it is easy to derive the velocity-addition formulas.
Let us denote (dxg/dtr)¼Vrg and x 0

g/dt
0
r ¼V 0

rg, where r¼
1, 2, . . ., k and g ¼ k þ 1, k þ 2, . . ., k þ n. The velocity-
addition formulas are given as follows:

V 0
rðkþ1Þ ¼

Vrðkþ1Þf 1� b2
Xk
h¼1

c2

vhVhðkþ1Þ

" #

1þ Vrðkþ1Þ
vr

b2 ðf� 1Þ
Xk
h¼1

c2

vhVhðkþ1Þ
� f

" # ;

ð29Þ

V 0
ru ¼

Vru

1þ Vrðkþ1
vr

b2 ðf� 1Þ
Xk
h¼1

c2

vhVhðkþ1Þ
� f

" # ; ð30Þ

where r, h¼1, 2, . . ., k and u¼kþ2, kþ3, . . ., kþn. We
have used the equalities

dth
dtr
¼ dxg

dtr
3

dth
dxg
¼ Vrg

Vhg
:

We note that (V1g/V1p) ¼ (V2g/V2p) ¼ � � � ¼ (Vkg/Vkp),
where g, p ¼ k þ 1, k þ 2, . . ., k þ n. Indeed, (Vrg/Vrp)¼
(dxg/dxp), where r ¼ 1, 2, . . ., k.

VII. ROTATIONS IN THE HYPERPLANE OF TIME
AND IN THE HYPERPLANE OF SPACE

Let us assume that a particle under consideration is
moving in k time dimensions (t1, t2, . . ., tk) and in n space
dimensions (xkþ1, xkþ2, . . ., xkþn). According to our
considerations, separately and independently from each
other we can apply some rotations of the time axes (t1,
t2, . . ., tk) in the hyperplane of time and some rotations of
the space axes (xkþ1, xkþ2, . . ., xkþn) in the hyperplane of
space (see Section II and Subsection IX.A). These
transformations are expressed in a change of the basis
of the time axes or of the space axes of the frame of
reference under consideration (these are the so-called
passive linear transformations). The group of all proper
and improper rotations in the hyperplane of time is
isomorphic to the orthogonal group O(k, R), and the
group of all proper and improper rotations in the
hyperplane of space is isomorphic to the orthogonal
group O(n, R), where R denotes the field of real numbers.
During the simultaneous rotation of the space axes in the
hyperplane of the space and the time axes in the
hyperplane of time, the origin will remain invariant. The
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time interval dT2¼ dt21þ dt22þ � � � þ dt2k, the space interval
dX2¼ dx2kþ1 þ dx2kþ2 þ � � � þ dx2kþndx

2
kþ2, and the (nþ k)-

dimensional interval ds2n;k ¼ c2dT2 – dX2 are invariant
during these operations.

Let us apply a proper or improper rotation of the
time axes t1, t2, . . ., tk in the hyperplane of time. The new
time axes obtained after this transformation we will
denote with t 01, t 02, . . ., t

0
k. Let us denote dT ¼ (dt1,

dt2, . . ., dtk). For the vector components of dT before and
after the transformation we have (dt 01)

2 þ (dt 02)
2 þ � � � þ

(dt 0k)
2 ¼ dt21 þ dt22 þ � � � þ dt2k .The transformation under

consideration can be presented through the orthogonal
matrix A ¼ [a1r]k3k, which belongs to the orthogonal
group O(k, R). Here, 1, r¼ 1, 2, . . ., k. Then we will have
Atr¼A�1, det(A)¼þ1 [proper rotation, A � SO(k, R)] or
det(A)¼�1 (improper rotation). The relation between the
components dt 01, dt 02, � � �, dt 0k and the components dt1,
dt2, . . ., dtk is given by dT 0 ¼ dT 3 A—that is,

dt 0r ¼
Xk
1¼1

dt1a1r:

Let us set dt 01 ¼ dt 02 ¼ � � � ¼ dt 0k ¼ dT/
ffiffiffi
k
p

. 0. This is
possible if the size of the angle made by the vector dT and
each of the time axes t 01, t

0
2, . . ., t

0
k is equal to p/4.

We can similarly consider a proper or improper
rotation of the space axes xkþ1, xkþ2, . . ., xkþn in the
hyperplane of space.

VIII. GENERALIZATION OF THE PRINCIPLE OF
INVARIANCE OF THE SPEED OF LIGHT IN STR

In the case of multidimensional time, the principle of
invariance of the speed of light defined in STR is violated.
This requires a generalization of this principle for the case
k � 1.

Let us assume that the particle under consideration is
moving in k time dimensions, denoted with t1, t2, . . ., tk,
and in n space dimensions, denoted with xkþ1,
xkþ2, . . ., xkþn. We consider the motion of the particle in
relation to the frame of reference K. The (n þ k)-
dimensional interval in this case is expressed as ds2n;k ¼
c2dt21 þ � � � þ c2dt2k � dx2kþ1 � � � � � dx2kþn. Let us set

Vh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

dx2g

vuut
jdthj

;

where h¼ 1, 2, . . ., k. The total coordinate velocity in this
case (see Section II) is equal to

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

dx2g

Xk
h¼1

dt2h

vuuuuuuut . 0:

Let us now assume that ds2n;k ¼ 0. It is easy to prove
that in this case we have u ¼ c—that is,

Xk
h¼1

c2

V2
h

¼ 1: ð31Þ

In Eq. (31), let us set V1¼V2¼ � � � ¼Vk. This can be
done by appropriate rotation in the hyperplane of time so
that the condition dt1¼ dt2¼ � � � ¼ dtk is fulfilled (see Sec.
VII). Then we will obtain

V1 ¼ V2 ¼ � � � ¼ Vk ¼ c
ffiffiffi
k
p

: ð32Þ

Let us consider the motion of the particle in relation
to the reference frame K0, which is moving uniformly and
rectilinearly in relation to K. The (n þ k)-dimensional
interval in this case is given by the expression (ds 0n;k)

2 ¼
c2(dt 01)

2þ � � � þ c2(dt 0k)
2 – (dx 0

kþ1)
2� � � � � (dx 0

kþn)
2. Let us

denote

V 0
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

ðdx 0
gÞ

2

vuut
jdt 0hj

;

(h ¼ 1, 2, . . ., k), and

u 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

ðdx 0
gÞ

2

Xk
h¼1
ðdt 0hÞ

2

vuuuuuuut :

Since the (n þ k)-dimensional interval ds2n;k is invariant,
the equality ds2n;k ¼ (ds 0n;k)

2¼ 0 will be fulfilled. From here
it follows that u0 ¼ c—that is,

Xk
h¼1

c2

ðV 0
hÞ

2
¼ 1: ð33Þ

In Eq. (33), let us set V 0
1 ¼V 0

2 ¼ � � � ¼V 0
k. This can be

obtained through an appropriate rotation in the hyper-
plane of time so that the condition dt 01 ¼ dt 02 ¼ ��� ¼ dt 0k is
fulfilled (see Section VII). Then we will obtain

V 0
1 ¼ V 0

2 ¼ � � � ¼ V 0
k ¼ c

ffiffiffi
k
p

: ð34Þ

Let us summarize: If for the velocities u and Vh of a
particle in K Eq. (31) is fulfilled, then for the velocities u0

and V 0
h of the particle in K0 the similar Eq. (33) will be

fulfilled. If for the velocities Vh of a particle in K Eq. (32)
is fulfilled, then for the velocities V 0

h of this particle in K0

the similar Eq. (34) will be fulfilled. These two statements
are equivalent. For k ¼ 1 we obtain the principle of
constancy of the speed of light in a vacuum, defined in
STR: If V ¼ c, then V0 ¼ c.

IX. MOTION OF A PARTICLE IN n-DIMENSIONAL
SPACE AND IN k-DIMENSIONAL TIME

A. Proper time and generalized velocity

Let us assume that the particle under consideration is
moving in k temporal dimensions, denoted with t1,
t2, . . ., tk, and in n spatial dimensions, denoted with
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xkþ1, xkþ2, . . ., xkþn. By analogy with the term ‘‘proper
time’’ in STR, we will introduce the term ‘‘proper time’’
for the case k � 1, which we will denote with T0.

Since time has k dimensions, the proper time dT0 will
be a k-dimensional vector. We have dT0 ¼ (dt01,
dt02, . . ., dt0k), where dt01, dt02, . . ., dt0k are the projec-
tions of the proper time on the different time axes. Let us
set

dT0 ¼ jjdT0jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

dt20h

vuut � 0:

Let us consider the motion of a particle in relation to
the frame K. The (n þ k)-dimensional interval, being
invariant, is given in this case by the expression ds2n;k ¼
c2dt21 þ � � � þ c2dt2k � dx2kþ1 � � � � � dx2kþn � 0.

By analogy with STR, we have to assume that the
proper time is invariant. If we consider the quotient of the
two invariant quantities dsn,k and c, we obtain an
invariant value having the physical dimension of time.
We assume that this value is equal to the length of the
vector dT0. In the general case (k � 1), the obtained value
will be the proper time. We will have dT0 ¼ jdsn,kj/c.
Hence, the length of the vector dT0 is invariant.

In order to understand the physical meaning of
proper time, we will make the following considerations:
We will have ds2n;k ¼ c2(dt21 þ dt22 þ � � � þ dt2k)(1 – b2) ¼
c2dT2

0, where

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
1¼1

c2

V2
1

vuut
;

V1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
p¼kþ1

dx2p

vuut
jdt1j

. 0:

Let us assume that the (n þ k)-dimensional vector of the
location of the particle R¼ (ct1, . . ., ctk, xkþ1, . . ., xkþn) is
a function of the proper time T0¼ (t01, t02, . . ., t0k)—that
is, xl¼ xl(T0), where l¼ 1, 2, . . ., kþ n; here xl¼ ctl at l
¼ 1, 2, . . ., k. Let us consider the motion of a particle in
the inertial frame of reference K0, the velocity of which at
a given moment T0 ¼ (t01, t02, . . ., t0k) coincides with the
velocity of the particle. Let the coordinates of the particle
at this moment be x0l ¼ x0l(T0). Since at the considered
moment the particle is at rest relative to K0, at l ¼ kþ1,
kþ2, . . ., kþn we will have x0l¼ x0l(T0þ dT0). So we will
obtain x01(T0þ dT0)� x01(T0)¼ dx01, x02(T0þ dT0)� x02
(T0) ¼ dx02, � � �, x0k(T0 þ dT0) – x0k(T0)¼ dx0k.

Let us set dx0h¼ cdt0h, where h¼ 1, 2, . . ., k. Here t0h¼
x0h/c are the time axes of the frameK0.Hencewehave cdT0¼
dsn,k¼ ds0n;k¼ cdT0

0, where dT
0
0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dt201 þ dt202 þ � � � þ dt20k

q
.

We have dT0¼ dT0
0—that is,

dT2
0 ¼ dt201 þ � � � þ dt20k ¼ ðdt21 þ � � � þ dt2kÞð1� b2Þ:

ð35Þ

The obtained formula coincides with Eq. (28) (see
Section V). We can see that the values dt201, dt

2
02, � � �, dt20k are

transferred according to the same law as (dt 001 )
2, (dt 002 )

2, � � �,
(dt 00k)

2 in Eq. (28)—which had to be expected. The frame K0

we will call the proper frame of reference. Taking into
consideration Eqs. (28) and (35), we can understand the
physical meaning of proper time: It is the time measured in
the proper frame of referenceK0 where the particle is at rest.
The values dt01, dt02, . . ., dt0k are projections of the proper
time dT0 on the axes t01, t02, . . ., t0k, respectively, of K0.

We note that if
Pk

1¼1ðc2=V2
1Þ ¼ 1—that is, ds2n;k ¼ 0

and accordingly dT2
0 ¼ 0—then the particle will not move

in time (for the observed particle, time will not exist).
Indeed, in this case we have dT2

0¼ dt201þ dt202þ � � �þ dt20k¼
0—that is, dt201 ¼ dt202 ¼ � � � ¼ dt20k ¼ 0. Thus, for the
observed particle the time axes t01, t02, . . ., t0k do not
exist.

Let us set dt0h¼ a0hdT0. We have
Pk

h¼1 a20h ¼ 1—that

is, ja0hj � 1. Let us set dX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkþn

g¼kþ1 dx
2
g

q
. 0, dT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

r¼1 dt
2
r

q
. 0. From Eq. (35) we obtain dT0 ¼

dT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
.

If we use the equalities ds2n;k � c2dT2
0 ¼ 0, dT2

0 ¼
Pk

h¼1
dt20h ¼ (dt0h/a0h)

2, we will have

c2dt21 þ � � � þ c2dt2k � dx2kþ1 � � � � � dx2kþn � c2dt201
� � � � � c2dt20k
¼ 0; ð36Þ

c2dt21 þ � � � þ c2dt2k � dx2kþ1 � � � � � dx2kþn � c2dT2
0

¼ 0; ð37Þ

c2dt21 þ � � � þ c2dt2k � dx2kþ1 � � � � � dx2kþn

� c2
dt0h
a0h

� �2

¼ 0; ð38Þ

c2dT2 � dX2 � c2dT2
0 ¼ 0: ð39Þ

According to Eq. (36), instead of (nþ k)-dimensional
space-time, we can consider a generalized [(n þ k) þ k)]-
dimensional space-time, where k dimensions are related to
the projections of the proper time. In the generalized
space-time, k dimensions are timelike (ct1, ct2, . . ., ctk)
and (nþ k) dimensions are spacelike (xkþ1, xkþ2, . . ., xkþn,
ct01, ct02, . . ., ct0k). In accordance with Eqs. (37) and (38),
instead of (nþk)-dimensional space-time, we can consider
a generalized [(nþ 1)þ k)]-dimensional space-time, where
the additional dimension is related to the proper time cT0

or to the proper time (ct0h/a0h). In this case, k dimensions
are timelike (ct1, ct2, . . ., ctk) and (n þ 1) dimensions are
spacelike (xkþ1, xkþ2, . . ., xkþn, cT0 or xkþ1, xkþ2, . . ., xkþn,
ct0h/a0h). According to Eq. (39), instead of (n þ k)-
dimensional space-time, we can consider a generalized (2
þ 1)-dimensional space-time. In this case, one of the
dimensions is timelike (cT) and two of the dimensions are
spacelike (X, cT0). Similar considerations are valid in STR
(see Section II).
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By analogy with STR, in the case of (n þ k)-

dimensional space-time we can define the generalized

velocity U. Let us assume that the location of an observed

particle in the frame K0 is given by the (nþk)-dimensional

vector R0 ¼ (ct01, . . ., ct0k, x0(kþ1), . . ., x0(kþn)); then the

location of the particle in K is given by the (n þ k)-

dimensional vector R¼ (ct1, . . ., ctk, xkþ1, . . ., xkþn). If the

location of the particle in K0 is given by the (n þ k)-

dimensional vector R0 þ dR0 ¼ [ct01 þ cdt01, . . ., ct0k þ
cdt0k, x0(kþ1), x0(kþ2), . . ., x0(kþn)], then the location of the

particle in K is given by the (nþk)-dimensional vector Rþ
dR ¼ (ct1 þcdt1, . . ., ctk þ cdtk, xkþ1 þ dxkþ1, . . ., xkþn þ
dxkþn). For the case of multidimensional time we have

dT0 3U¼ dR, where dT0¼ (dt01, dt02, . . ., dt0k) and dR¼
(cdt1, cdt2, . . ., cdtk, dxkþ1, dxkþ2, . . ., dxkþn)—see also

Section II. It is easy to prove that the generalized velocity

U is a k3 (kþ n) matrix with elements uhl (h¼ 1, 2, . . ., k;

l¼ 1, 2, . . ., kþn)—that is, U¼ [uhl]k3(kþn). Let us denote

ul ¼

u1l
u2l

..

.

ukl

0
BBB@

1
CCCA:

Then we have dT0 3 ur ¼ cdtr,dT0 3 ug ¼ dxg (r ¼ 1,

2, . . ., k; g ¼ k þ 1, . . ., k þ n)—that is,

dt01
cdtr

u1r þ
dt02
cdtr

u2r þ � � � þ
dt0k
cdtr

ukr ¼ 1; ð40Þ

dt01
dxg

u1g þ
dt02
dxg

u2g þ � � � þ
dt0k
dxg

ukg ¼ 1: ð41Þ

It is clear that if for a given d (1 � d �k) it is true that
dt0d ¼ 0, then the components of the velocity ud1,

ud2, . . ., ud(kþn) will be undefined values. If for a given u
it is true that dtu¼ 0 (where 1 � u � k) or dxu¼ 0 (where

k þ 1 � u � k þ n), then u1u ¼ u2u ¼ � � � ¼ uku ¼ 0.

Let us assume that uhr ¼ khr(cdtr/dt0h),uhg ¼ khg(dxg/

dt0h), where h, r¼ 1, 2, . . ., k; g¼ kþ 1, kþ 2, . . ., kþ n.

Then we have
Pk

h¼1 khl ¼ 1, where l ¼ 1, 2, . . ., k þ n.

Let us set dtr¼vrdT and dxg¼vgdX (r¼1, 2, . . ., k; g
¼ kþ 1, kþ 2, . . ., kþ n). We then have

Pk
r¼1 v2r ¼ 1 andPkþn

g¼kþ1 v2g ¼ 1—that is, jvrj � 1 and jvgj � 1.

Let us set

Utr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

u2hr

vuut ¼ cjdtrj
dT0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

khr

a0h

� �2

vuut ;

Ut0h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

u2hr

vuut ¼ cdT

jdt0hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1
ðkhrvrÞ2

vuut ;

Ut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1

u2hr

vuut :

Then for the velocity Ut we have

Ut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

U2
tr

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

U2
t0h

vuut
¼ cdT

dT0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1

khrvr

a0h

� �2

vuut : ð42Þ

Let us set

Usg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

u2hg

vuut ¼ jdxgj
dT0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

khg

a0h

� �2

vuut ;

Ush ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

u2hg

vuut ¼ dX

jdt0hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

ðkhgvgÞ2
vuut ;

Us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1

u2hg

vuut :

Then for the velocity Us we have

Us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

U2
sg

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

U2
sh

vuut
¼ dX

dT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1

khgvg

a0h

� �2
vuut : ð43Þ

We are going to show the conditions for the velocities

Utr,Ut0h,Ut and Usg,Ush,Us. These conditions are imposed

by physical considerations (see also Sections II and VII).

Since during a change of the basis of the time axes of

K0 (the so-called passive linear transformation) the value

of dT2
0 does not change, the values dX2 and dT2 remain

the same as well [see Eq. (39)]. Likewise, during a change

of the basis of the spatial or the temporal axes of K, the

values dX2, dT2, and dT2
0 remain constant. It is clear that

the temporal axes of the frame K0 and the spatial and

temporal axes of frame K can be chosen independently

from each other (see Sections II and VII). Therefore,

when applying these transformations, some physical

values (in this case velocities and consequently energy or

momentum—see further) must remain invariant.

In the expression for the velocity Utr, all time axes of

K0 are included in the denominator (dT0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

h¼1 dt
2
0h

q
);

we thus assume that the velocity Utr is invariant during a

change of the basis of the time axes of K0. Therefore, the

velocity Utr can be presented in the form Utr¼ ctr(jcdtrj/
dT0), where ctr . 0 is a parameter that does not depend

on dt0h or, consequently, on the numbers a0h (h ¼ 1,

2, . . ., k).

In the expression for the velocity Ut0h, all time axes of

K are included in the numerator (dT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

r¼1 dt
2
r

q
); we

thus assume that the velocity Ut0h is invariant during a

change of the basis of the time axes of K. Therefore, the

velocity Ut0h can be presented in the form Ut0h¼ ct0h(cdT/
jdt0hj), where ct0h . 0 is a parameter that does not depend
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on dtr or, consequently, on the numbers vr (r ¼ 1,

2, . . ., k).

From here we can conclude that the velocity Ut is

invariant during a change of the basis of the time axes of

K0 and during a change of the basis of time axes of K—

i.e., the velocity Ut can be presented in the form Ut ¼
ct(cdT/dT0), where ct . 0 is a parameter that does not

depend on dt0h and dtr or, consequently, on the numbers

a0h and vr (r, h ¼ 1, 2, . . ., k)—see Eq. (42). Indeed,

Ut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

U2
tr

vuut ¼ cdT

dT0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

v2rc
2
tr

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

U2
t0h

vuut
¼ cdT

dT0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

c2t0h
a20h

vuut :

Let us set

ct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

v2rc
2
tr

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

c2t0h
a20h

vuut :

Since the values vr and ctr do not depend on the numbers

a0h, the parameter ct¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

r¼1 v2rc
2
tr

q
will not either. Since

the values a0h and ct0h do not depend on the numbers vr,

the parameter

ct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

c2t0h
a20h

vuut
will not either. Therefore, the parameter ct does not

depend on the numbers a0h and vr or, consequently, on

dt0h and dtr.

In the expression for the velocity Usg, all the time axes

of K0 are included in the denominator (dT0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
h¼1 dt

2
0h

q
); we thus assume that the velocity Usg is

invariant during a change of the basis of the time axes of

K0. Therefore, the velocity Usg can be presented in the

form Usg ¼ csg(jdxgj/dT0), where csg . 0 is a parameter

that does not depend on dt0h or, consequently, on the

numbers a0h (h ¼ 1, 2, . . ., k)—see Eq. (4).

In the expression for the velocity Ush, all the space

axes of the frame K are included in the numerator (dX ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkþn
g¼kþ1 dx

2
g

q
); we thus assume that the velocity Ush is

invariant during a change of the basis of the space axes of

K. Therefore, the velocity Ush can be presented in the

form Ush ¼ csh(dX/jdT0hj), where csh . 0 is a parameter

that does not depend on dxg or, consequently, on the

numbers vg (g ¼ k þ 1, k þ 2, . . ., k þ n)—see Eq. (8).

We can prove by analogy that the velocity Us is

invariant during a change of the basis of the time axes of

K0 and during a change of the basis of the space axes of

K—i.e., the velocity Us can be presented in the form Us¼
cs(dX/dT0), where cs . 0 is a parameter that does not

depend on dt0h and dxg or, consequently, on the numbers

a0h and vg (h¼ 1, 2, . . ., k; g¼kþ1, kþ 2, . . ., kþ n)—see

Section II and Eq. (43).

Let us set

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
l¼1

Xk
h¼1

u2hl

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

t þU2
s

q
:

Since Ut ¼ ct(cdT/dT0) and Us ¼ cs(dX/dT0), we obtain

U2 ¼ c2t
cdT

dT0

� �2

þc2s
dX

dT0

� �2

:

In support of these assumptions we can present one

more argument. In STR, the real space-time is compared

to the dual space of the energy-momentum. These

considerations must apply also for the case of multidi-

mensional time. Therefore, between the total energy and

total momentum in the multidimensional time there

should be a relation similar to the one in Eq. (39). The

velocities Ut and Us participate accordingly in the

formulas for the total energy and for the total

momentum—see Eqs. (61), (71), and (73). If the

equalities Ut ¼ ct(cdT/dT0) and Us ¼ cs(dX/dT0) are

valid, then between the total energy and the total

momentum there will be a dependence which is similar

to the relation in Eq. (39)—see Eqs. (73) and (74).

Let us assume that a01¼a02¼� � �¼a0k¼1/
ffiffiffi
k
p

(that is,

dt01¼ dt02¼ � � � ¼ dt0k¼ dT0/
ffiffiffi
k
p

. 0), v1¼ v2¼ � � � ¼ vk¼
1/

ffiffiffi
k
p

(that is, dt1¼ dt2¼ � � � ¼ dtk¼ dT/
ffiffiffi
k
p

. 0), and vkþ1
¼ vkþ2¼ � � � ¼ vkþn¼ 1/

ffiffiffi
n
p

, (that is, dxkþ1¼ dxkþ2¼ � � � ¼
dxkþn ¼ dX/

ffiffiffi
n
p

. 0). Let us apply a proper or improper

rotation of the time axes of the frame K0 in the

hyperplane of the time. The transformation under

consideration can be presented through the orthogonal

matrix A ¼ [ah1]k3k, belonging to the orthogonal group

O(k, R), where R denotes the real numbers field (see also

Section VII). The new time axes obtained after applying

this transformation we will denote with t 00h (h ¼ 1,

2, . . ., k). Since
Pk

h¼1ða 0
0hÞ

2 ¼
Pk

h¼1 a20h ¼ 1, we will have

a 0
01

a 0
02

..

.

a 0
0k

0
BBB@

1
CCCA ¼ A3

a01
a02
..
.

a0k

0
BBB@

1
CCCA;

that is,

a 0
0h ¼

Xk
1¼1

ah1a01 ¼
1ffiffiffi
k
p
Xk
1¼1

ah1: ð44Þ

Since the velocity Utr is invariant during a change of

the basis of the time axes of K0, the expression

Xk
h¼1

khr

a0h

� �2

remains constant during a change of the numbers a0h—
that is,

Xk
h¼1

k 0
hr

a 0
0h

� �2

¼
Xk
h¼1

khr

a0h

� �2

¼ k
Xk
h¼1

k2hr ¼ c2tr; ð45Þ
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where ctr is a parameter that does not depend on the

numbers a0h (h ¼ 1, 2, . . ., k).

Let us consider the orthogonal matrix B ¼ [bhm]k3k,

belonging to the orthogonal group O(k, R). Taking into

account Eq. (45), we likewise obtain

k 0
hr

a 0
0h

¼
Xk
m¼1

bhmkmr

a0m
¼

ffiffiffi
k
p Xk

m¼1
bhmkmr: ð46Þ

From Eqs. (44) and (46) we can define the quantities k 0
hr:

k 0
hr ¼

Xk
m¼1

Xk
1¼1

ah1a01bhmkmr

a0m
¼
Xk
m¼1

Xk
1¼1

ah1bhmkmr: ð47Þ

Let us apply a proper or improper rotation of the

time axes of the frame K in the hyperplane of the time.

The transformation under consideration can be presented

through the orthogonal matrix J ¼ [ jdr]k3k, belonging to

the orthogonal group O(k, R). The new time axes

obtained applying this transformation we will denote

with t 00r (r¼ 1, 2, . . ., k). Since
Pk

r¼1ðv 00
rÞ

2 ¼
Pk

r¼1 v2r ¼ 1,

we will have (v 00
1 , v

00
2 , � � �, v 00

k)¼ (v1, v2, � � �, vk)3J—that is,

v 00
r ¼

Xk
d¼1

vdjdr ¼
1ffiffiffi
k
p
Xk
d¼1

jdr: ð48Þ

Since the velocity Ut0h is invariant during a change of

the basis of the temporal axes in K, the expression

Xk
r¼1
ðk 0

hrvrÞ
2

remains constant during change of the numbers vr—that is,

Xk
r¼1
ðk 00

hrv
00
rÞ

2 ¼
Xk
r¼1
ðk 0

hrvrÞ
2 ¼ 1

k

Xk
r¼1
ðk 0

hrÞ
2 ¼ c2t0h; ð49Þ

where ct0h is a parameter that does not depend on vr (r¼ 1,

2, . . ., k).

Let us consider the orthogonal matrix L ¼ [lqr]k3k,

belonging to the orthogonal group O(k, R). Taking into

account Eq. (49), we likewise obtain

k 00
hrv

00
r ¼

Xk
q¼1

k 0
hqvqlqr ¼

1ffiffiffi
k
p
Xk
q¼1

k 0
hqlqr: ð50Þ

From Eqs. (47), (48), and (50) we can define the

quantities k 00
hr:

k 00
hr ¼

1Xk
d¼1

vdjdr

Xk
q¼1

Xk
m¼1

Xk
1¼1

ah1a01bhmkmqvqlqr

a0m

 !

¼

Xk
q¼1

Xk
m¼1

Xk
1¼1

ah1bhmkmqlqr

Xk
d¼1

jdr

; ð51Þ

where the numbers kmq are defined provided that a0h¼ vr

¼ 1/
ffiffiffi
k
p

. Since the parameter ct does not depend on the

numbers a0h and vr, we can set a0h ¼ vr ¼ 1/
ffiffiffi
k
p

. In this

case we have

ct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1

khrvr

a0h

� �2

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1

k2hr

vuut : ð52Þ

[See Eq. (42).]

Similar considerations apply for the velocities Usg and

Ush (see Section II). For example, if the quantities k 00
hg are

defined at arbitrary values of a 0
0h and v 00

g , and the

quantities kmq are defined provided that a0h ¼ 1/
ffiffiffi
k
p

, vg ¼
1/

ffiffiffi
n
p

, then we have

k 00
hg ¼

1Xkþn
p¼kþ1

vphpg

Xkþn
q¼kþ1

Xk
m¼1

Xk
1¼1

ah1a01bhmkmqvqqqg

a0m

 !

¼

Xkþn
q¼kþ1

Xk
m¼1

Xk
1¼1

ah1bhmkmqqqg

Xkþn
p¼kþ1

hpg

:

ð53Þ

[See Eq. (10).] Here ah1, bhm, hpg, qqg are elements of the

orthogonal matrices A¼ [ah1]k3k, B¼ [bhm]k3k,H¼ [hpg]n3n,

Q¼ [qqg]n3n, respectively. [The matrices A and B belong to

the orthogonal group O(k, R), and the matrices H and Q

belong to the orthogonal group P(n, R).] For the

parameter cs we have

cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1

khgvg

a0h

� �2
vuut ¼

ffiffiffi
k

n

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1

k2hg

vuut :

ð54Þ

[See Eqs. (11) and (43).] In Eq. (54) the quantities khg are

determined provided that a0h ¼ 1=
ffiffiffi
k
p

; vg ¼ 1=
ffiffiffi
n
p

.

Let us set K 00
l¼
Pk

h¼1 k 00
hl, l¼ 1, 2, . . ., kþ n. [See Eqs.

(51) and (53).] In the general case (i.e., at arbitrary values

of a 0
0h, v 00

r, and v 00
g ), we will have

dT0 3UK 00 ¼ dR;

where

UK 00

¼ uK 00

hl

h i
k3ðkþnÞ

; uK 00

hr ¼
k 00

hrv
00
rcdT

K 00
ra

0
0hdT0

;

uK 00

hg ¼
k 00

hgv
00
gdX

K 00
ga

0
0hdT0

:

[See Eqs. (40), (41), (44), (48), (51), and (53).] If
Pk

h¼1
k 00

hl 6¼
Pk

h¼1 khl (that is, K 00
l 6¼ 1, l ¼ 1, 2, . . ., k þ n),

then

uK 00

hr ¼
k 00

hrv
00
rcdT

K 00
ra

0
0hdT0

6¼ u 00
hr ¼

k 00
hrv

00
rcdT

a 0
0hdT0

and
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uK 00

hg ¼
k 00

hgv
00
gdX

K 00
ga

0
0hdT0

6¼ u 00
hg ¼

k 00
hgv

00
gdX

a 0
0hdT0

:

Let us set us¼ (dX/dT0)¼ (Us/cs). We will say that us
is the total proper velocity of the particle under
consideration. The relation between the total coordinate
velocity uc ¼ (dX/dT) ¼ (Uc/c)—see Section II—and the
total proper velocity us is given through the expression us¼
uc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
. We have Us ¼ csUc/(c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
)—see Eqs. (2),

(11), (43), and (54). If dt0h¼ dth

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
(h¼ 1, 2, . . ., k),

then cs¼ c (see Sections II and V).
Let us consider the frame K000, moving uniformly and

rectilinearly in relation to K. It is clear that in the frame
K000 a particle will have a different generalized velocity U000,
given by the matrix U000 ¼ [u 000

hl]k3(kþn). Let us choose the
frames K0 and K000 in such a way that a0h ¼ dt0h/dT0 ¼ 1/ffiffiffi
k
p

, v 000
r ¼ dT 000

r /dT
000 ¼ 1/

ffiffiffi
k
p

, v 000
g ¼ dx 000

g /dX
000 ¼ 1/

ffiffiffi
n
p

, where
h, r¼ 1, 2, . . ., k; g¼ kþ 1, kþ 2, . . ., kþ n. In this case
the quantities k 000

hl,defined in the frame K000—as with khl,
defined in K—can take arbitrary (real) values. The only
condition for this is defined with the equality

Pk
h¼1 k 000

hl ¼
1, where l ¼ 1, 2, . . ., k þ n. (For the quantities khl, the
similar equality

Pk
h¼1 khl ¼ 1 applies.) Due to this fact we

can assume that the values of k 000
hl in the frame K000 coincide

with the corresponding values of khl in the frame K—that
is, k 000

hl¼khl, where h¼1, 2, . . ., k; l¼1, 2, . . ., kþn. (The
values k 000

hl are determined provided that a0h¼ v 000
r ¼ 1/

ffiffiffi
k
p

,
v 000

g ¼ 1/
ffiffiffi
n
p

, and the values khl are determined provided
that a0h ¼ vr ¼ 1/

ffiffiffi
k
p

, vg ¼ 1/
ffiffiffi
n
p

.)
For the velocities uhl (h¼ 1, 2, . . ., k; l¼ 1, 2, . . ., kþ

n) we have

uhr ¼ khr
cdtr
dt0h
¼ khrvrc

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; ð55Þ

uhg ¼ khg
dxg

dt0h
¼

khgvgcb

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; ð56Þ

where r ¼ 1, 2, . . ., k; g ¼ k þ 1, k þ 2, . . ., k þ n.

B. Energy and momentum of a particle moving in k-
dimensional time

Let us consider the motion of a particle in relation to
the frame K. In the case of the one-dimensional time of
STR, a (3 þ 1)-dimensional energy-momentum vector is
defined. Likewise, in the case of multidimensional time we
can define a k 3 (k þ n) energy-momentum matrix p ¼
m0U, where m0 . 0,U¼ [uhl]k3(kþn). The physical meaning
of the constant m0 will be clarified later.

Let us denote pl ¼ m0ul and phl ¼ m0uhl (h ¼ 1,
2, . . ., k; l ¼ 1, 2, . . ., k þ n). First, let us consider the
components phr, where r,h¼ 1, 2, . . ., k. By analogy with
STR, if we multiply by the velocity of light in a vacuum c,
we will obtain the components of the energy ehr. The
energy of the particle defined in relation to the time
dimension tr has k components:

Er ¼

e1r
e2r
..
.

ekr

0
BBB@

1
CCCA;

where

ehr ¼ m0uhrc ¼
khrvrm0c

2

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; ð57Þ

r, h ¼ 1, 2, . . ., k [see also Eq. (55)]. The energy of the
particle will have k2 total components. If for a given d (1
� d � k) the condition dt0d ¼ 0 is fulfilled, then the
velocity components ud1, ud2, . . ., udk will be undefined
values and thus the energy components ed1, ed2, . . ., edk

will also be undefined values. If for a given d (1 � d � k)
the condition dtd ¼ 0 is fulfilled—i.e., a given particle is
not moving in the time dimension td—then we have u1d¼
u2d ¼ � � � ¼ ukd ¼ 0 and therefore e1d¼ e2d ¼ � � � ¼ ekd ¼0.

From Eqs. (40) and (57) the following important
equalities are obtained:

dt01e1r þ dt02e2r þ � � � þ dt0kwkr

m0c
¼ cdtr;

that is,

a01e1r þ a02e2r þ � � � þ a0kekr
vr

¼ m0c
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q . 0: ð58Þ

Let us assume that for a given d (1 � d � k) we have
vd ,0—that is, the particle under consideration is moving
backward in the time dimension td (dtd , 0). Let us
simultaneously multiply the numbers vd, a01, a02, . . ., a0k
by �1. This operation corresponds to an inversion of the
time dimension dtd¼ vddT and an inversion of the proper
time dT0 ¼ (dt01, dt02, . . ., dt0k) ¼ (a01dT0, a02dT0, . . .,
a0kdT0). According to Eq. (58), this operation will not
change the components of the energy e1d, e2d, . . ., ekd. (If
r 6¼ d, during this operation the number vr does not
change its sign but the numbers a01, a02, . . ., a0k change
their signs, and therefore the energy components e1r,
e2r, . . ., ekr change their signs, as well.) Therefore, if a
given particle is moving backward in the time dimension
td (that is, dtd , 0) and the projections of the proper time
on the time axes are dt01, dt02, . . ., dt0k, then we can
assume that the particle is actually moving forward in the
time dimension td (that is, dtd . 0) but the projections of
the proper time on the time axes are �dt01, �dt02, . . .,
�dt0k. These results have important consequences for
antiparticles in multidimensional time (see Section X).

If in Eq. (57) we set a0h¼vr¼1/
ffiffiffi
k
p

, then we will have

ehr ¼ khrm0c
2/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
. From here we can define the

quantities khr:

khr ¼
ehr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
m0c2

: ð59Þ

In this case, if khr . 0 then we have ehr . 0, and vice
versa. If khr , 0 then we will have ehr , 0, and vice versa.
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As pointed out in Subection IX.A, if the frame K000 is
moving uniformly and rectilinearly in relation to K, then
for an appropriate choice of the axes of K0 and K000 (a0h¼
v 000

r ¼ 1/
ffiffiffi
k
p

), the quantities khr will conserve their value
during the transfer from K to K000.

Let us denote Er ¼ jjErjj � 0. The aggregate energy,
defined in relation to the time dimension tr, is equal to

Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

e2hr

vuut ¼ m0c
2jvrjffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

khr

a0h

� �2

vuut
¼ m0c

2jvrjctrffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; ð60Þ

where ctr . 0 is a parameter that does not depend on the
numbers a0h (h ¼ 1, 2, . . ., k)—see Subsection IX.A and
more precisely Eq. (45). [If we assume that the given
particle does not move in the time dimension td (1 � d �
k), then we will have vd ¼ 0 and accordingly Ed¼ 0.]

The total energy of the particle which is moving in k
time dimensions will be defined through the expression E

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

r¼1 E
2
r

q
. 0—that is,

E ¼ m0c
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

v2rc
2
tr

vuut ¼ m0c
2ctffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q ; ð61Þ

where ct . 0 is a parameter that does not depend on the
numbers vr and a0h [see Subsection IX.A and more
precisely Eqs. (42) and (52)].

Let us assume that the frame K coincides with the
proper frame of reference K0 (see Subsection IX.A). In
this case we have dtr ” dt0r (that is, dT¼ dT0,vr¼a0r),dxg

¼ 0, where r¼ 1, 2, . . ., k; g¼ kþ 1, kþ 2, . . ., kþ n. The
proper energy or the rest energy of the particle defined in
relation to the time dimension tr ” t0r has k components:

E0r ¼

e01r
e02r
..
.

e0kr

0
BBB@

1
CCCA;

where e0hr ¼ khra0rm0c
2/a0h,r, h ¼ 1, 2, . . ., k. The

aggregate proper energy defined in relation to the time
dimension tr is equal to E0r ¼ m0c

2jvrjctr.
The total proper energy of the particle moving in k

dimensions is defined by the expression E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

r¼1 E
2
0r

q
. 0—that is,

E0 ¼ m0c
2ct: ð62Þ

It is clear that if k¼ 1 (and accordingly ct¼ 1), then E
¼m0c

2. This is the well-known formula obtained in STR.
Hence, the constant m0 . 0 is equal to the proper mass or
to the rest mass of the particle (at V1¼V2¼ � � � ¼Vk¼ 0).

By analogy with the case k ¼ 1 (i.e., STR), we will
assume that if a particle has rest mass m0 and is moving
with velocities V1, V2, V3, . . ., Vk (defined in relation to
the time dimensions t1, t2, . . ., tk) in relation to a given
frame of reference K, this particle will have relativistic

mass m ¼ m0/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
defined in K. Let us set V1¼ V2 ¼

� � � ¼ Vk ¼ V. (This can be obtained through an

appropriate rotation in the hyperplane of time—see

Section VII.) Then we have

m ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

kc2

q : ð63Þ

Equation (63) gives the relationship between relativ-

istic mass m, rest mass m0, velocity V of a particle, and the
number of time dimensions k in which the particle is

moving. According to Eq. (63), a given particle has zero

rest mass if b ¼ 1—that is,

Xk
1¼1

c2

V2
1
¼ 1

(and accordingly V ¼ c
ffiffiffi
k
p

). At k ¼ 1 we obtain the well-
known case of STR. From Eq. (63) it follows that at

constant velocity V (V ¼ const), as the number of time

dimensions increases, the relativistic mass m decreases.

If in Eq. (61) we set V1¼V2¼ � � � ¼ Vk¼ V, then we

obtain

E ¼ m0c
2ctffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2

kc2

q ¼ mc2ct: ð64Þ

Through Eq. (64) we determine the relation between

total energy E, rest mass m0, relativistic mass m, velocity
V of a particle, and number of time dimensions k in which

the particle is moving.

As can be seen from Eq. (64), only for the case k¼ 1

do we have following peculiarity: If V� c, then E� ‘—

that is, the energy of the particle is an infinite quantity
(see Figs. 4 and 5). It is clear that if k . 1 and V¼ c, then

E ¼ m0c
2ct

ffiffiffi
k
p

/
ffiffiffiffiffiffiffiffiffiffiffi
k� 1
p

. Therefore, if a particle with rest

mass (rest energy) differing from 0 and moving in a
number k . 1 of time dimensions with the same

velocity—which is equal to the speed of light in

vacuum—then its energy is not infinite, but will have a
finite value. However, if V � c

ffiffiffi
k
p

, then E � ‘—that is,

the energy of the particle is an infinite value. (As noted in
Section VIII, the velocity V¼ c

ffiffiffi
k
p

is a constant, invariant

value in relation to all inertial frames of reference.)

Let us consider two particles L and N, moving
uniformly and rectilinearly to each other. Let us assume

that particle N is moving in only one time dimension (t1)

and that particle L is moving in k time dimensions (t1,
t2, . . ., tk), where k . 1. We assume that particle N is not

a luxon—i.e., the rest mass of the particle N differs from
0. Let us assume, as well, that particle L is a luxon—i.e.,

the velocity of L in relation to N defined according to the

different temporal dimensions t1, t2, . . ., tk is the same
and is equal to the speed of light in a vacuum. According

to Eq. (64), the total energy of particle L defined in

relation to particle N is equal to E ¼ m0 c2ct
ffiffiffi
k
p

/
ffiffiffiffiffiffiffiffiffiffiffi
k� 1
p

(where k . 1). Although particle L is moving in relation

to particle N with a velocity equal to the speed of light in a

vacuum, the rest mass of particle L differs from 0: m0 ¼
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E
ffiffiffiffiffiffiffiffiffiffiffi
k� 1
p

/c2ct
ffiffiffi
k
p
6¼ 0. The reason for this result is that

particle L is moving in more than one time dimension (k

. 1). Therefore, the particles which are moving with a

velocity equal to the speed of light in a vacuum (i.e., the

luxons) can have nonzero rest mass, but on the condition

that they move in two, three, or more time dimensions.

Let us assume k21l ¼ k22l ¼ � � � ¼ k2kl—that is, jk1lj ¼
jk2lj ¼ � � � ¼ jkklj, l¼ 1, 2, . . ., kþ n. Since

Pk
h¼1 khl ¼ 1,

the minimum value which the quantity jkhlj can take in

this case is 1/k (here h ¼ 1, 2, . . ., k). If k is an odd

number, then the maximum value which the quantity jkhlj
can take is 1; and if k is an even number, then the

maximum value which jkhlj can take is 1/2. If we take into

account Eqs. (52) and (54), then for odd values of k we

will obtain 1 � ct � k and accordingly 1 � cs �k. For
even values of k we will have 1 � ct � k/2 and accordingly

1 � cs � k/2. We note that if k¼ 2, then ct¼ 1 and thus cs
¼ 1.

Since 1 � ct � k, according to Eq. (64) we have

m0c
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2

kc2

q � E � moc
2kffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2

kc2

q : ð65Þ

If k ¼ 2, then ct ¼ 1—that is,

E ¼ m0c
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2

2c2

q :

If we set V¼ 0, then according to Eq. (65) we obtain the
following expression for the proper energy of the particle:

m0c
2 � E0 � m0c

2k: ð66Þ

From Eq. (64) it follows that if V¼ const and ct¼k (k
is an odd number) or ct¼ k/2 (k is an even number), then
as the number of time dimensions increases, so does the
total energy (see Fig. 4). In this case, the additional time
dimensions ‘‘add’’ additional energy to the energy of the
particle. Let us set ct¼ k at k¼ 2k1þ 1 and ct¼ k/2 at k¼
2k1, where k1¼ 0, 1, 2, 3, . . . . Let us denote e1¼E/m0c

2.
According to Eq. (64) we obtain

e1 ¼
kffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2

kc2

q
at k ¼ 2k1 þ 1 and

e1 ¼
k

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

kc2

q
at k¼2k1. Figure 4 gives the relation between the quantity

FIG. 4. (Color online) Relation between the quantity e1 and the number of time dimensions k.

FIG. 5. (Color online) Relation between the quantity e2 and the number of time dimensions k.
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e1 and the number of time dimensions k at different values
of the ratio V/c (0.000, 0.990, 1.000, 1.900, 2.500, 3.000).

According to Eq. (64), if V¼ const and ct¼ 1, then as
the number of time dimensions increases, the total energy
decreases (see Fig. 5). In this case, the additional time
dimensions ‘‘subtract’’ from the energy of the particle. Let
us set ct ¼ 1 and e2 ¼ E/m0c

2. According to Eq. (64) we
obtain

e2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2

kc2

q
Figure 5 gives the relation between the quantity e2 and the
number of time dimensions k at different values of the
ratio V/c.

As can be seen from Figs. 4 and 5, only in the case k¼
1 do we have following peculiarity: If V � c, then e1,2 �
‘ and accordingly E � ‘. Further, if k¼ 9 and V � 3c,
then e1,2 � ‘ and accordingly E � ‘.

In the case of multidimensional time, the momentum
of the particle defined in relation to the space dimension
xg has k components:

pg ¼

p1g
p2g

..

.

pkg

0
BBB@

1
CCCA;

where

phg ¼ m0uhg ¼
m0khgvgcb

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q : ð67Þ

[Here h¼ 1, 2, . . ., k; g¼ kþ 1, kþ 2, . . ., kþ n—see also
Eq. (56).] The momentum of the particle has nk total
components. If for a given d (1 � d � k) the condition
dt0d¼ 0 is fulfilled, then the velocity components ud(kþ1),
ud(kþ2), . . ., ud(kþn) will be undefined values and therefore
the momentum components pd(kþ1), pd(kþ2), . . ., pd(kþn)
will also be undefined. If for a given u (kþ1 � u � kþ n)
the condition dxu ¼ 0 is fulfilled—i.e., the particle does
not move in the space dimension xu—then we will have
vu¼ 0 and therefore p1u¼ p2u¼ � � � ¼ pku¼ 0. It is seen
that if for a given q (1 � q � k) the condition Vq¼ 0 is
fulfilled, then b¼ 0 and therefore phg¼ 0 for all values of
h and g.

From Eqs. (41) and (67) we obtain the following:

a01p1g þ a02p2g þ � � � þ a0kpkg
vg

¼ m0cbffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q . 0: ð68Þ

From Eq. (68) it follows that if we simultaneously
multiply the numbers a01, a02, . . ., a0k, vkþ1, vkþ2, . . ., vkþn
by the number�1, then in this operation the momentum
components phg will not change.

According to Eqs. (58) and (68), the multiplication of
the value m0 by the number �1 is equivalent to the
multiplication of all numbers a01, a02, . . ., a0k by�1—that
is, the rest-mass sign inversion is equivalent to the proper
time inversion dT0¼ (dt01, dt02, . . ., dt0k). The application

of these two operations leads to identical results, namely

changing the signs of all components of the energy and of

the momentum. A similar statement is valid in STR.

These results have important significance in relation to

antiparticles in multidimensional time (see Section X).

If in Eq. (67) we set a0h ¼ 1/
ffiffiffi
k
p

, vg ¼ 1/
ffiffiffi
n
p

, then we

obtain

phg ¼
m0khgcb

ffiffiffi
k
p

ffiffiffi
n
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q :

From here we can define the quantities khg:

khg ¼
phg

ffiffiffi
n
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q

m0cb
ffiffiffi
k
p : ð69Þ

In this case, if khg . 0 then we have phg . 0, and vice

versa. If khg , 0 then we have phg , 0, and vice versa. As

already pointed out in Subsection IX.A, if the frame K000 is

moving uniformly and rectilinearly in relation to K, then

for appropriate choice of the axes of K0 and K000 (a0h¼ 1/ffiffiffi
k
p

, v 000
g ¼ 1/

ffiffiffi
n
p

), the quantities khg conserve their value

during transfer from K to K000.

Let us denote pg ¼ jjpgjj . 0. The momentum of the

particle defined in relation to the space dimension xg is

given through the following formula:

pg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

p2hg

vuut ¼
m0jvgjcsgcbffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q : ð70Þ

Here

csg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
h¼1

khg

a0h

� �2

vuut . 0

is a parameter which does not depend on the numbers a0h
(see Subsection IX.A).

The total momentum is defined through the following

formulas:

ps ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

p2g

vuut � 0;

that is,

ps ¼
m0cscbffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ¼ mcscb; ð71Þ

where cs¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkþn

g¼kþ1 v2gc
2
sg

q
. 0 is a parameter which does

not depend on the numbers vg and a0h [see Subsection

IX.A and more precisely Eqs. (43) and (54)].

Let us set V1 ¼ V2 ¼ � � � ¼ Vk ¼ V. (This can be

obtained through an appropriate rotation in the hyper-

plane of time—see Section VII.) We have

ps ¼
m0csVffiffiffiffiffiffiffiffiffiffiffiffiffi
k� V2

c2

q ¼ mcsVffiffiffi
k
p : ð72Þ
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Equation (72) gives the relation between total
momentum ps, rest mass m0, relativistic mass m, velocity

V of a particle, and number of the time dimensions k in
which the particle is moving.

As is easy to see, following equalities are fulfilled:

cdT

dT0
¼ cffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q ¼ E

m0cct
;

dX

dT0
¼ cbffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q ¼ ps

m0cs
:

ð73Þ

[See Eqs. (61) and (71).] Taking into consideration Eqs.

(39) and (73), we obtain the following important equality:

E2

c2t
� p2s c

2

c2s
¼ m2

0c
4: ð74Þ

Equation (74) gives the relation between total energy
E, total momentum ps, and rest mass m0. If k ¼ 1, then

from Eq. (74) we obtain the well-known equality derived
in STR: E2 – c2p2s ¼ m2

0c
4.

C. Energy-momentum conservation law

In STR, the energy-momentum conservation law is
derived as a consequence of continuous space-time

symmetry (Noether’s theorem). For example, let us

consider the process of decay of a particle. Applied to a
decay process, energy-momentum conservation states that

the vector sum of the energy-momentum four-vectors of
the decay products should equal the energy-momentum

four-vector of the original particle. Some aspects of the

problem for conservation of energy and momentum in
multidimensional time are discussed by Dorling.3 Until

now it was accepted that in the case of k-dimensional
time, the energy is a k-dimensional vector3–5. But

according to the previous considerations, in the case of

k-dimensional time and n-dimensional space, the energy is
a k 3 k matrix and the momentum is a k 3 n matrix. In

this case the energy-momentum conservation law applied
to the process of decay of a particle will state following:

The matrix entrywise sum of the energy-momentum k3 (

k þ n) matrices of the decay products is equal to the
energy-momentum k 3 (k þ n) matrix of the original

particle. In particular, the matrix entrywise sum of the
energy k3k matrices of the decay products is equal to the

energy k3k matrix of the original particle. Moreover, the

matrix entrywise sum of the momentum k3 n matrices of
the decay products is equal to the momentum k 3 n

matrix of the original particle. For example, if we denote
with pH[pHhl]k3(kþn) the energy-momentum matrix of the

original particle (particle H) and with pA¼ [pAhl]k3(kþn), p
B

¼ [pBhl]k3(kþn), �� �, pD ¼ [pDhl]k3(kþn) the energy-momentum
matrices of the decay products (of the particles A,

B, . . ., D, respectively), then we have

pH ¼ pA þ pB þ � � � þ pD;

that is,

pHhl ¼ pAhl þ pBhl þ � � � þ pDhl; ð75Þ

(h ¼ 1, 2, . . ., k; l ¼ 1, 2, . . ., k þ n). For the energy and
the momentum, respectively, we have EH¼EAþEBþ � � �
þED—that is, eHhr¼ eAhrþ eBhrþ� � �þ eDhr—and pHs ¼pAs þpBs
þ � � � þ pDs —that is, pHhg ¼ pAhg þ pBhg þ � � � þ pDhg (r ¼ 1,
2, . . ., k; g¼kþ1, . . ., kþn). For the total energies of the
considered particles, we have

EH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1
ðeHhrÞ

2

vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1
ðeAhr þ eBhr þ � � � þ eDhrÞ

2

vuut ;

EA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1
ðeAhrÞ

2

vuut ;

EB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1
ðeBhrÞ

2

vuut ; . . . ;ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1
ðeDhrÞ

2

vuut :

The total energies EH, EA, EB, . . ., ED are the
Frobenius norms of the matrices EH ¼ [eHhr]k3k, EA ¼
[eAhr]k3k, E

B¼ [eBhr]k3k, � � � ED¼ [eDhr]k3k, respectively—i.e.,
EH¼ jjEHjjF¼ jjEAþEBþ � � � þEDjjF, EA¼ jjEAjjF, EB¼
jjEBjjF, � � �, ED ¼ jjEDjjF. (The total momentums pHs , p

A
s ,

pBs , � � �, pDs are the Frobenius norms of the matrices pHs ¼
[pHhg]k3n, pAs ¼ [pAhg]k3n, pBs ¼ [pBhg]k3n, � � �, pDs ¼ [pDhg]k3n,
respectively.) The Frobenius norm possesses the following
property: jjEAþ EBþ � � � þ EDjjF � jjEAjjFþ jjEBþ � � � þ
E
DjjF � � � � � jjEAjjFþ jjEBjjFþ � � � þ jjEDjjF (the triangle

inequality property). Therefore, we have

EH � EA þ EB þ � � � þ ED: ð76Þ

We obtained the result that in the case of multidi-
mensional time, the energy conservation law as defined in
STR will be violated—the magnitude of the total energy
of the original particle H is less than the sum of the
magnitudes of the total energies of the decay products
(the particles A, B, . . ., D). The same applies also for the
momentum of the considered particles—the momentum
conservation law for the case of multidimensional time
differs from the momentum conservation law for the case
of one-dimensional time (STR).

Let us assume that the particle H is moving only in
one time dimension t1 and that the remaining particles A,
B, . . ., D are moving in k . 1 time dimensions t1, . . ., tk.
According to the energy conservation law, the equality EH

” eH11¼ eA11þ eB11þ� � �þ eD11 will be fulfilled. Further, at r .

1 or h . 1 the equality eHhr ¼ 0,will be fulfilled—i.e.,
eAhr þ eBhr þ � � � þ eDhr ¼ 0.

Up to now, it has been accepted that particles moving
in multidimensional time are more unstable and decay
more easily than those moving in one-dimensional time.3

However, this is only valid if we suppose that in the case
of k-dimensional time and n-dimensional space the energy
is a k-dimensional vector and the momentum is an n-
dimensional vector. According to our obtained results, in
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the case of k-dimensional time and n-dimensional space

the energy is a k3 k matrix and the momentum is a k3 n

matrix. We are going to prove that in multidimensional

time, like in one-dimensional time, the sum of the rest

masses of the decay products is always less than or equal

to the rest mass of the original particle. Therefore,

particles moving in multidimensional time are as stable

as those moving in one-dimensional time. Indeed, let us

consider the process of decay of the particle H into the

particles A, B, . . ., D. Let us choose the values of khl in

such a way that for a particular choice of time axes in the

frame K, of some space axes in K, and of some time axes

in K0 (i.e., at a given vr, vg, a0h), the following equalities

are fulfilled:

kHhlv
H
l

aH0h
¼

kAhlv
A
l

aA0h
¼

kBhlv
B
l

aB0h
¼ � � � ¼

kDhlv
D
l

aD0h
: ð77Þ

(Here h, r¼ 1, 2, . . ., k; g¼ kþ 1, kþ 2, . . ., kþ n; l¼ 1,

2, . . ., k þ n—see Subsection IX.A.) It is obvious that in

this case the parameters ct, cs will be the same for all

particles H, A, B, . . ., D—i.e., cHt ¼ cAt ¼ cBt ¼ � � � ¼ cDt ¼ ct
. 0, cHs ¼ cAs þ cBs ¼ � � � ¼ cDs ¼ cs . 0 [see Eqs. (52) and

(54)]. For the total energies and the total momentums of

the particles we have

EH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1
ðeHhrÞ

2

vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1
ðeAhr þ eBhr þ � � � þ eDhrÞ

2

vuut ;

EA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1
ðeAhrÞ

2

vuut ; . . . ;

ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
r¼1

Xk
h¼1
ðeDhrÞ

2

vuut ;

pHs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1
ðpHhgÞ

2

vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1
ðpAhg þ pBhg þ � � � þ pDhgÞ

2

vuut ;

pAs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1
ðpAhgÞ

2

vuut ; . . . ;

pDs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXkþn
g¼kþ1

Xk
h¼1
ðpDhgÞ

2

vuut :

[See Eqs. (60), (61), (70), and (71)]. According to Eq. (74),

we have

ðEHÞ2

c2t
� ðp

H
s Þ

2c2

c2s
¼ ðmH

0 Þ
2c4;
ðEAÞ2

c2t
� ðp

A
s Þ

2c2

c2s
¼ ðmA

0 Þ
2c4; . . . ;

ðEDÞ2

c2t
� ðp

D
s Þ

2c2

c2s
¼ ðmD

0 Þ
2c4:

It is clear that if the inequalityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEHÞ2

c2t
� ðp

H
s Þ

2c2

c2s

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEAÞ2

c2t
� ðp

A
s Þ

2c2

c2s

s
þ � � �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEDÞ2

c2t
� ðp

D
s Þ

2c2

c2s

s

is fulfilled, then the inequality mH
0 � mA

0 þmB
0 þ � � � þmD

0

will be valid as well. However, the first inequality is
equivalent to the following inequality:

Xk
r¼1

Xk
h¼1
ðeAhr þ � � � þ eDhrÞ

2

c2t

�
c2
Xkþn

g¼kþ1

Xk
h¼1
ðpAhg þ � � � þ pDhgÞ

2

c2s

�

Xk
r¼1

Xk
h¼1
ðeAhrÞ

2

c2t
�
c2
Xkþn

g¼kþ1

Xk
h¼1
ðpAhgÞ

2

c2s

þ � � � þ

Xk
r¼1

Xk
h¼1
ðeDhrÞ

2

c2t
�
c2
Xkþn

g¼kþ1

Xk
h¼1
ðpDhgÞ

2

c2s

þ 2mA
0m

B
0 c

4 þ � � � þ 2mA
0m

D
0 c

4 þ � � � :

From this inequality we obtain

Xk
r¼1

Xk
h¼1

eAhre
B
hr

c2t
�
c2
Xkþn

g¼kþ1

Xk
h¼1

pAhgp
B
hg

c2s

þ � � � þ

Xk
r¼1

Xk
h¼1

eAhre
D
hr

c2t
�
c2
Xkþn

g¼kþ1

Xk
h¼1

pAhgp
D
hg

c2s
þ � � �

� mA
0m

B
0 c

4 þ � � � þmA
0m

D
0 c

4 þ � � � :

In order to find whether the obtained inequality is
fulfilled, we have to compare the expressions on each side
of the inequality concerning the respective pairs of
particles. For example, let us consider the expressions
concerning the pair A and B—these are the expressions

Xk
r¼1

Xk
h¼1

eAhre
B
hr

c2t
�
c2
Xkþn

g¼kþ1

Xk
h¼1

pAhgp
B
hg

c2s

and mA
0m

B
0 c

4. (The comparison for the remaining pairs of
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particles is done similarly.) Taking into account Eqs. (57),

(67), (52), and (54), we have

Xk
r¼1

Xk
h¼1

eAhre
B
hr

c2t
�
c2
Xkþn

g¼kþ1

Xk
h¼1

pAhgp
B
hg

c2s

¼ mA
0m

B
0 c

4ð1� bAbBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðbAÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðbBÞ2

q :

[We have accepted that (kAhlv
A
l /a

A
0h)¼ (kBhlv

B
l /a

B
0h); therefore

we have

Xk
r¼1

Xk
h¼1

kAhrv
A
r kBhrv

B
r

aA0ha
B
0h

¼
Xk
r¼1

Xk
h¼1

kAhrv
A
r

aA0h

� �2

¼
Xk
r¼1

Xk
h¼1

kBhrv
B
r

aB0h

� �2

¼ c2t

and

Xkþn
g¼kþ1

Xk
h¼1

kAhgv
A
g kBhgv

B
g

aA0ha
B
0h

¼
Xkþn

g¼kþ1

Xk
h¼1

kAhgv
A
g

aA0h

 !2

¼
Xkþn

g¼kþ1

Xk
h¼1

kBhgv
B
g

aB0h

 !2

¼ c2s :

See Eqs. (52), (54), and (77).] We have obtained the

expressions

mA
0m

B
0 c

4ð1� bAbBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðbAÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðbBÞ2

q
and mA

0m
B
0 c

4, which have to be compared. Because bA and

bB are real numbers, we have 0 � �(bA � bB)2 and

1� bAbBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðbAÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðbBÞ2

q � 1;

respectively. (Both are equivalent.) From here it follows

that

Xk
r¼1

Xk
h¼1

eAhre
B
hr

c2t
�
c2
Xkþn

g¼kþ1

Xk
h¼1

pAhgp
B
hg

c2s
� mA

0m
B
0 c

4:

It is clear that the same inequality will be valid also for the

remaining pairs of particles. Therefore, if Eq. (77) is

fulfilled for particles undergoing decay (i.e., the values of

khl are chosen in an appropriate way), then the inequality

mH
0 � mA

0 þmB
0 þ� � �þmD

0 will be fulfilled. (If bA¼bB¼� � �
¼ bD then this inequality becomes an equality.) The

obtained inequality is similar to that derived in STR.

X. ANTIPARTICLES IN MULTIDIMENSIONAL TIME

In relativistic quantum mechanics, an antiparticle is

attached to every particle. The so-called switching

principle (SP) (or reinterpretation principle) was formu-

lated by Stückelberg, Feynman, Sudarshan, and Reca-

mi.15–27 According to this principle,

positive energy objects traveling backwards in time

do not exist; and any negative energy particle

travelling backwards in time can and must be

described as its antiparticle, endowed with positive

energy and motion forward in time (but going the

opposite way in space).21

Thus the antiparticle moving forward in time and

possessing positive energy in fact can be regarded as a

particle moving backward in time and possessing negative

energy.7

This principle can be generalized for the case of k-

dimensional time t1, t2, . . ., tk. A particle moving back-

ward in a given time dimension td (that is, dtd , 0, where 1

� d � k) and possessing energy

�Ed ¼

�e1d
�e2d
..
.

�ekd

0
BBB@

1
CCCA

defined in relation to td can be described as an antiparticle

moving forward in the time dimension td (that is, dtd . 0)

and possessing energy

Ed ¼

e1d
e2d
..
.

ekd

0
BBB@

1
CCCA

defined in relation to td. In the case of multidimensional

time, the components of energy ehr (r, h¼ 1, 2, . . ., k) can

accept not only positive but also negative values (unlike

the case of one-dimensional time).

First, we will consider the case (n, k) ¼ (3, 1). Some

authors11,21,23,25,28–33 have shown that the nonorthochro-

nous, proper Lorentz transformations (i.e., transforma-

tions which include ‘‘total inversion’’ �1) can be

connected with the existence of antimatter. The asser-

tion24 is reasonable that the term ‘‘antimatter’’ is strictly

relativistic, and that on the ground of the double sign in

the formula for energy, the existence of antiparticles could

be predicted right after 1905, provided that the switching

principle is applied.

It is important to note that the full group of Lorentz

transformations acts as the four-dimensional vector on

the position of a given object, and also on the other four-

dimensional vectors (four-momentum, four-current, etc.)

which are connected with the object. We will introduce

the new notations P
_
for strong parity and T

_
for strong

time reversal, in order to denote the inversion of the sign

of the first component and of the next three components

of all four-vectors. The operation strong reflection, P
_
T
_
,

which changes the sign of the three-vector x and of the

time t, will change the sign of the three-momentum p and

of the energy E as well. We can write P
_
” Pp̂ and T

_
” TÊ,

where p̂ and Ê are operators respectively changing the
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signs of the three-momentum p and of the energy E

(operations of three-momentum and energy reversal). In

this new formalism, the operation P
_
is in fact equivalent

to the standard operation P (parity), but the operation T
_

is not equivalent to the standard operation T (time

reversal transformation) because T
_
does not contain the

operation X, which performs the exchange of emission

and absorption.

It can be proven29,30,34 that the strong reflection PT is

equivalent to the normal CPT operation: P
_
T
_
�!SP CPT.

Indeed, applying the switching principle (SP), we

obtain33,34

SP ” CÊp̂; ð78Þ

where C is the conjugation of all conserved additive

charges. Since P
_

” Pp̂ and T
_
” TÊ, we have P

_
T
_
” Pp̂TÊ.

Thus we have34

SPP
�
T
� ” ðCÊp̂ÞPp̂TÊ ” CPT: ð79Þ

If we apply the switching principle, then we have11

SP ” CCmX ” C
�
X; ð80Þ

where C
_
” CCm; here Cm is the rest-mass sign inversion

and X operates the exchange of absorption and emission.

The operation C
_
will be called strong conjugation.h One

can easily realize that in the frame of quantum mechanics

(in the case of states with definite parity), C
_
” P5, where

P5 is the chirality operator (C
_
�1wC

_
” c5w¼P�15 wP5)—see

Ref. 11. Let us now consider generalized five-dimensional

space-time instead of the four-dimensional of space-time

of Minkowski, where the fifth dimension corresponds to

proper time and consequently is connected with the rest

mass.11,35–46 It turns out that from the geometric point of

view, chirality P5 in fact means inversion of the fifth axis

(i.e., inversion of the proper time or accordingly of the

rest mass). Taking into account Eq. (80), we can write SP

¼ P5X (see Ref. 11). Therefore, SP is a combination of

inversion in relation to the fifth axis (proper time and

accordingly rest mass) and application of the operator X.

Since P
_
T
_
means the sign inversion of all components

of all four-vectors, for getting such an effect it is enough

to write P
_
T
_
” PTûX�1, where X�1 ” X has been

introduced because ordinary T contains the exchange X

of emission and absorption exchange (different from T
_
)—

see Ref. 33. With û here is denoted the four-velocity

inversion. We obtain

SPP
�
T
�
” C
�
XðPTûX�1Þ ” CPT: ð81Þ

The switching principle changes the sign of the three-

momentum but does not change the sign of the three-

velocity—i.e., it changes the sign of the rest mass. In fact,

the four-velocity inversion is equivalent to the rest-mass

inversion: û ” Cm.

If we denote with L�þ the proper orthochronous
Lorentz transformations (i.e., transformations including
the unit matrix 1) and with L�þ the proper nonorthochro-
nous Lorentz transformations (i.e., transformations
including total inversion �1), then we will have11,21

L�þ ” ð�1ÞL�þ ” P
�
T
�
L�þ�!

SP
CPTL�þ: ð82Þ

[Here the operation (�1) means total inversion, as in (�1)
” P

_
T
_
” CPT—see Refs. 11, 29, 30, and 34.i]

According to the results obtained in Section IX.B, in
the case of one-dimensional time the formula E ” e11 ¼
m0u11c is valid for all free particles, where u11 is the time
component of the four-velocity. According to Eq. (58), at
k ¼ 1 we have

E ” e11 ¼
v1m0c

2

a01

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q :

(In the case dT¼ jdt1j . 0, dT01¼ jdt01j . 0, k11¼ 1—see
Subsection IX.B.) Let us assume that v1 . 0 and a01 .

0—that is, the energy of the particle is a positive quantity:
E ” e11 . 0. Let us consider the proper nonorthochro-
nous Lorentz transformations L�þ, which lead to the
exchange of the signs of all time components:

E 0 ¼ �E ¼ m0ð�u11Þc ¼
ð�v1Þm0c

2

a01

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q , 0:

Let us apply the switching principle, which is expressed in
the inversion of the fifth axis (i.e., inversion of the proper
time dt01¼ a01dT0 or, accordingly, of the rest mass). The
switching principle will mean multiplying the number a01
¼ dt01/dT0 by the number �1. We obtain the related
antiparticle:

E 00 ¼ �E 0 ¼ ð�v1Þm0c
2

ð�a01Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ¼ ð�v1Þð�m0Þc2

a01

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q . 0:

We determined that for the antiparticle (moving in
one-dimensional time) we have to attach negative proper
time or, accordingly, negative rest mass, but of course
positive full relativistic mass and energy.11

Recmi and Ziino11 formulated so-called strong C
_
P
_
T
_
-

symmetry: The physical world is symmetric (i.e., physical
laws are invariant) during total five-dimensional inversion
of the axes x, y, z, ct, ct01 (where t01 is the proper time).

If the number of time dimensions in which a particle
is moving is greater than one, then the particle will have
more than one antiparticle. There will be a violation of
Lorentz covariance and therefore of CPT symmetry. In
the case of multidimensional time, CPT symmetry must
be exchanged with another generalized symmetry. Now
we are going discuss this issue.

Here we will consider the case (n, k)¼ (3, 2). The time
dimensions we will denote with t, s and the space
dimensions with x, y, z. In the case of two-dimensional

h We point out that in the formalism used here, the strong conjugation

is a unitary operator when acting on the state space, as well as strong

time reversal.

i In the formalism used here, CPT is a linear operator in pseudo-

Euclidean space.
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time the term ‘‘switching principle’’ will mean inversion of

the proper time dT0¼ (dt01, dt02)¼ (a01dT0, a02dT0)—that

is, multiplication of the numbers a01 and a02 by �1. (See
Subsection IX.A.) This is equivalent to rest-mass sign

inversion. Therefore, every object moving backward in

the time dimension t (that is, dt , 0) and having energy

�E1 ¼
�e11
�e21

� �
defined in relation to t can be described as the

corresponding antiobject moving forward in the time

dimension t (that is, dt . 0) and having energy

E1 ¼
e11
e21

� �
defined in relation to t. The same considerations apply to

the time dimension s as well.

Let us denote with A�þ, A�0, A��, A0�, Aþ� the

different kinds of antiparticles in two-dimensional time.

The antiparticle A�þ is moving backward in the time

dimension t and forward in the time dimension s (that is,

dt , 0 and ds . 0). The antiparticle A�0 is moving

backward in the time dimension t but does not move in

the time dimension s (that is, dt , 0 and ds ¼ 0). The

antiparticle A��moves backward in the time dimensions t

and s (that is, dt , 0 and ds , 0). The antiparticle A0�
moves backward in the time dimension s but does not

move in the time dimension t (that is, dt¼ 0 and ds , 0).

The antiparticle Aþ�moves forward in the time dimension

t and backward in the time dimension s (that is, dt . 0

and ds , 0).

By analogy with Eq. (78), we have the equality

SPts ” CÊp̂; ð83Þ

where Ê is an operator changing the signs of all

components of the energy E [the quantities ehr (r, h ¼ 1,

2)], p̂ is an operator changing the sign of all components

of the momentum p [the quantities phx, phy, phz (h¼ 1, 2)],

and C is the conjugation of all conserved additive charges.

By analogy with Eq. (80), we have the equality

SPts ” CCmX; ð84Þ

where the operation Cm is the rest-mass sign inversion and

the operator X performs the exchange of emission and

absorption (and vice versa).

If in Eq. (36) we set (n, k) ¼ (3, 2), then we obtain

c2dt2 þ c2ds2 � dx2 � dy2 � dz2 � c2dt201 � c2dt202 ¼ 0:

ð85Þ

By means of Eqs. (84) and (85) we can interpret the

meaning of the operation SPts from the geometrical point

of view. According to Eq. (85), we could consider a

generalized [(3 þ 2) þ 2]-dimensional space-time, where

the two additional dimensions are the projections of the

proper time t01 and t02. Therefore, SPts is a combination

of inversion in relation to the axes ct01 and ct02 and

application of the operator X.

By analogy with Eq. (82), in the case of two
dimensional time we have the following three formulas:

K� 
� ” ð�1ÞK��

þ ” PCK��
þ �!

SPts
CPt̂ŝK��

þ ; ð86Þ

K� 
þ ” PXK��

þ �!
SPts

CPt̂K��
þ ; ð87Þ

K��
þ ” PNK��

þ �!
SPts

CPŝK��
þ ; ð88Þ

where the operators t̂ and ŝ correspond to the standard t-
reversal transformation and s-reversal transformation
operations, and P is the standard operation parity (see
Subsection III.C and more precisely Table II). The
transformations K� 

� lead to a change of the signs of
the numbers v1¼ dt/dT and v2¼ ds/dT and therefore to a
change of the signs of all components of the energy ehr (r,
h¼ 1, 2)—see Eq. (58). The transformations K� 

þ lead to a
change of the sign of the number v1 and therefore to a

change of the signs only of the t-components of the energy
eh1 (h¼1, 2). The transformations K��

þ lead to a change of
the sign of the number v2 and therefore to a change of the
signs only of the s-components of the energy eh2 (h¼ 1, 2).
The transformations K� 

� , K� 
þ , and K��

þ lead to a sign
change of the numbers v3¼ dx/dX, v4¼ dy/dX, v5¼ dz/dX
and therefore to a sign change of all momentum
components phx, phy, phz (h ¼ 1, 2)—see Eq. (68). The
same is valid also for the respective components in the
dual spaces.

Let particle M be moving forward in the time
dimensions t and s. Application of the proper orthochro-
nous transformations K��

þ in some cases leads to a
direction change of the time dimensions t or s (see
Subsection III.B). Therefore, as a result of the transfor-
mations K��

þ applied on the particle M, in these cases we
obtain some of the listed antiparticles: A�þ, A�0, A��, A0�,
or Aþ�.

Let us assume, for example, that as a result of the
transformations K��

þ applied on the particle M, the
antiparticle A�� (dt , 0,ds , 0) has been created. In this
case, when applying the operations in Eqs. (86), (87), and
(88) we will have the respective antiparticles of the particle

A��. For example, if to the obtained antiparticle A�� we
apply the operations in Eq. (86), then we will obtain the
given particle M. Therefore, with application of the
operations in Eqs. (86), (87), and (88) the directions of t or
s are reversed, but it is possible to obtain antiparticles
moving backward in the time dimensions t or s as well as
particles moving forward in the time dimensions t or s
(depending on the transformations K��

þ ).

Let us assume that the proper orthochronous
transformations K��

þ have not changed the directions of
the time dimensions t and s—that is, dt . 0,ds . 0.

The transformations K� 
� lead to a sign change of all

energy components ehr (r, h ¼ 1, 2). Therefore, for the
energy components (after application of K� 

� ) we will have

E 0
t ¼ �Et ¼

�e11
�e21

� �
;
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where

�eh1 ¼ m0ð�uh1Þc ¼
kh1ð�v1Þm0c

2

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; h ¼ 1; 2;

E 0
s ¼ �Es ¼

�e12
�e22

� �
;

where

�eh2 ¼ m0ð�uh2Þc ¼
kh2ð�v2Þm0c

2

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; h ¼ 1; 2:

If we apply SPts we obtain dt 0001¼�dt01 (that is, a 00
01¼�a01)

and dt 0002¼�dt02 (that is, a 00
02¼�a02. According to Eq. (58),

we will have

E 00
t ¼ �E 0

t ¼
e11
e21

� �
and

E 00
s ¼ �E 0

s ¼
e12
e22

� �
;

where eh1¼ (�m0)(�uh1)c and eh2¼ (�m0)(�uh2)c. As a result
of these operations we obtain the antiparticle A��.

The transformations K� 
þ lead to a sign change only

of the t-components of the energy eh1 (h¼1, 2). Therefore,
for the energy components (after application of K� 

þ ) we
will have

E 0
t ¼ �Et ¼

�e11
�e21

� �
;

where

�eh1 ¼ m0ð�uh1Þc ¼
kh1ð�v1Þm0c

2

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; h ¼ 1; 2;

E 0
s ¼ Es ¼

e12
e22

� �
;

where

eh2 ¼ m0uh2c ¼
kh2v2m0c

2

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; h ¼ 1; 2:

If we apply SPts we obtain dt 0001¼�dt01 (that is, a 00
01¼�a01)

and dt 0002 ¼�dt02 (that is, a 00
02 ¼�a02). According to Eq.

(58), we will have

E 00
t ¼ �E 0

t ¼
e11
e21

� �
and

E 00
s ¼ �E 0

s ¼
�e12
�e22

� �
;

where eh1¼ (�m0)(�uh1)c and�eh2¼ (�m0)uh2c. As a result
of these operations we obtain the antiparticle A�þ or the
antiparticle A�0.

The transformations K��
þ lead to a sign change only

of the s-components of the energy eh2 (h ¼ 1, 2).
Therefore, for the energy components (after application
of K��

þ ) we will have

E 0
t ¼ Et ¼

e11
e21

� �
;

where

eh1 ¼ m0uh1c ¼
kh1v1m0c

2

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; h ¼ 1; 2;

E 0
s ¼ �Es ¼

�e12
�e22

� �
;

where

�eh2 ¼ m0ð�uh2Þc ¼
kh2ð�v2Þm0c

2

a0h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; h ¼ 1; 2:

If we apply SPts we obtain dt 0001¼�dt01 (that is, a 00
01¼�a01)

and dt 0002 ¼�dt02 (that is, a 00
02 ¼�a02). According to Eq.

(58), we will have

E 00
t ¼ �E 0

t ¼
�e11
�e21

� �
and

E 00
s ¼ �E 0

s ¼
e12
e22

� �
;

where�eh1¼ (�m0)uh1c and eh2¼ (�m0)(�uh2)c. As a result
of these operations we obtain the antiparticle Aþ� or the
antiparticle A0�.

According to these considerations, a negative rest
mass equal to �m0 must be attached to the antiparticles
A�þ, A�0, A��, A0�, Aþ�.

On the ground of the obtained results, it is possible to
make a generalization of the strong CPT symmetry
formulated by Recami and Ziino.11 In the case of two-
dimensional time the physical world is symmetric (i.e., the
physical laws are invariant) for inversion of the axes x, y,
z, ct, cs, ct01, ct02 [see Eqs. (84) and (85)].

Let us summarize the obtained results: If k¼ 1, then
the number of antiparticles is 1; if k¼ 2, then the number
of antiparticles is 5. With similar considerations, one can
find that if the number of time dimensions is equal to k,
then the number of the different antiparticles is equal to
3k�2k. For example, for the case k¼3 we obtain 33�23¼
19 different antiparticles. Indeed, let us denote with t1,
t2, . . ., tk the time dimensions. Since we consider antipar-
ticles, it must be true that dtd , 0 for at least one of the
time dimensions td (1 � d � k). Obviously, for each of the
quantities dtr (r¼ 1, 2, . . ., k) there are three possibilities:
dtr . 0 or dtr , 0 or dtr¼ 0. If we take into consideration
these three possibilities and the circumstance that the
number of time dimensions is equal to k, then we have a
total of V

_
(3, k) ¼ 3k cases. (Here V

_
(3, k) denotes the

respective variations with repetition.) From these cases we
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have to exclude those in which all quantities dt1,
dt2, . . ., dtk are non-negative. These are the cases where
for all values of r (r¼1, 2, . . ., k), either dtr . 0 or dtr¼0
is true. This comes to V

_
(2, k) ¼ 2k cases. Therefore, the

total number of different kinds of antiparticles is equal to
3k � 2k.

As we pointed out, the antiparticles must move
backward in at least one of the time dimensions; in the
remaining k� 1 time dimensions they can move forward,
backward, or not at all. It is easy to prove that there exist

k
q

� �
ð2k�q � 1Þ

different antiparticles which do not move in q of a total k
time dimensions. Here 1 � q � k and

k
q

� �
is the binomial coefficient. [If q¼ 0, then for each r (r¼ 1,
2, . . ., k) the condition dtr 6¼ 0 is fulfilled.]

Let us have an antiparticle A moving in k-dimen-
sional time. We can prove that in the case of k-
dimensional time there exist 2k � 1 different particles M
corresponding to the antiparticle A. [Concerning the
movement of the particle M in the hyperplane of time, the
condition dtr � 0 is fulfilled for all values of r (r ¼ 1,
2, . . ., k) and the condition dtr . 0 is fulfilled for at least
one value of r.) For example, in the case k¼ 2 we obtain
22 � 1 ¼ 3 different particles M corresponding to the
antiparticle A: Mþþ (dt . 0, ds . 0), Mþ0 (dt . 0, ds¼ 0),
M0þ (dt ¼ 0, ds . 0).

XI. DISTINCTION BETWEEN TACHYONS AND
PARTICLES MOVING IN MULTIDIMENSIONAL TIME

Recami pointed out that in the course of any
generalization of STR in such a way that tachyons are
included, it will turn out that these particles move in three
time dimensions and one space dimension.7

Tegmark5 pointed out that the case (n, k) ¼ (1, 3) is
mathematically equivalent to the case (n, k) ¼ (3, 1), so
that ‘‘all particles are tachyons with imaginary rest
mass.’’47

However, from the physical point of view these two
cases are not equivalent. It is necessary to distinguish
between the transformations bradyon� tachyon, where a
particle is created moving with a velocity greater than the
speed of light in a vacuum,j and the transformations (n, k)
¼ (3, 1) � (n, k) ¼ (1, 3), where a particle is created
moving in three-dimensional time and one-dimensional
space.

It has been proven48–56 that if both postulates of STR
are fulfilled (namely the principle of invariance of the
speed of light and the principle of relativity), then the
transformations describing the transfer between the two

inertial reference frames must be such that

ðx1=Þ2 � ðx2=Þ2 � ðx3=Þ2 � ðx4=Þ2

¼ 6 ðx1Þ2 � ðx2Þ2 � ðx3Þ2 � ðx4Þ2
h i

ð89Þ

for each four-vector x ¼ (x1, x2, x3, x4), which can be a
four-dimensional vector on the position of a given
particle, a four-momentum, four-velocity, four-current,
etc. In the special case where space-time coordinates are

considered, Eq. (89) takes the following form:

ðct 0Þ2 � ðx 0Þ2 � ðy 0Þ2 � ðz 0Þ2

¼ 6 ðctÞ2 � ðxÞ2 � ðyÞ2 � ðzÞ2
h i

: ð90Þ

The plus sign in the right-hand side of Eqs. (89) and
(90) corresponds to the standard case of subluminal
relative velocities, i.e., concerns bradyons [here (n, k)¼ (3,
1)]; the minus sign must be chosen in the case of
superluminal relative velocities, i.e., concerns tachyons
(see, for example, Refs. 57 and 58).

The difference between the transformations bradyon
� tachyon and the transformations (n, k)¼ (3, 1)� (n, k)
¼ (1, 3) can be understood best if, instead of four-
dimensional Minkowski space-time, we consider a gener-
alized five-dimensional space-time (x, y, z, ct, ct01), where
the fifth dimension corresponds to proper time t01 and
therefore is related to the rest mass (see Section X). If we
set (s)2 ¼ (x1)2 � (x2)2 � (x3)2 �(x4)2 and (s0)2 ¼ (x10)2 �
(x20)2 � (x3)2 � (x40)2, then according to Eq. (89) we will
have (s0)2¼6(s)2(s0)2¼6(s)2, where (s)2 . 0. Therefore,

Eqs. (89) and (90) can be written as

ðx1 0Þ2 � ðx2 0Þ2 � ðx3 0Þ2 � ðx4 0Þ2 � ðs 0Þ2 ¼ 0

¼ 6 ðx1Þ2 � ðx2Þ2 � ðx3Þ2 � ðx4Þ2 � ðsÞ2
h i

; ð91Þ

ðct 0Þ2 � ðx 0Þ2 � ðy 0Þ2 � ðz 0Þ27ðct01Þ2 ¼ 0

¼ 6 ðctÞ2 � ðxÞ2 � ðyÞ2 � ðzÞ2 � ðct01Þ2
h i

: ð92Þ

[Here, s ¼ ct01—see Eq. (36).] Since in the case of
superluminal relative velocities one should choose the
minus sign in the right-hand side of Eq. (91), during the
transformations bradyon � tachyon the signs in the
expressions (x1)2, (x2)2, (x3)2, (x4)2, (s)2 will change. This
is equivalent to a multiplication of the row matrix S¼ (x1,
x2, x3, x4, s) by the complex diagonal matrix D¼ diag(i, i,
i, i, i), where i ¼

ffiffiffiffiffiffiffi
�1
p

—that is, the product S 3 D. The
multiplication of the row matrix S by the matrix D

corresponds to rotation of all axes x1, x2, x3, x4, s through
an angle of p/2 (arg i ¼ p/2).

According to Eq. (92), in the case of superluminal
relative velocities we have (ct0)2 – (x0)2 – (y0)2 – (z0)2 þ
(ct01)

2. Therefore, instead of (3 þ 1)-dimensional space-
time, we could consider a generalized [3 þ (1 þ 1)]-
dimensional space-time, where the additional dimension
corresponds to proper time ct01. In the generalized space-
time, 1 þ 1 dimensions are timelike (ct0, ct01) and three
dimensions are spacelike (x0, y0, z0). These considerations
also concern the dual space: In the generalized dual space,

j We point out that the velocities of the bradyon and of the tachyon

are defined from the point of view of an observer situated in (n, k)¼
(3, 1) space-time.
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1 þ 1 dimensions are timelike (x10 ¼ E0, s0 ¼ m0c
2) and

three dimensions are spacelike (x20 ¼ p 0
xc, x

30 ¼ p 0
yc, x

40 ¼
p 0
z
C). (Here m2

0 . 0.) The energy E0 of the tachyon will
have only one component, and the momentum p 0

s of the
tachyon will have three components. The expression (E0)2

– (p 0
s)
2c2 ¼ � m2

0c
2 , 0 will be valid. Obviously, the

tachyon will have imaginary rest mass: (im0)
2¼�m2

0 , 0.
As we know, in the case of (n, k)¼ (1, 3) the following

equality is fulfilled for each four-vector x¼ (x1, x2, x3, x4):

�ðx1 0Þ2 þ ðx2 0Þ2 þ ðx3 0Þ2 þ ðx4 0Þ2

¼ �ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2: ð93Þ

(Here x1 is spacelike dimension and x2, x3, x4 are timelike
dimensions.) If we set (s)2¼�[(x1)2� (x2)2�(x3)2� (x4)2]
and (s0)2 ¼ �(x10)2 þ (x20)2 þ (x30)2 þ (x40)2, then in
accordance with Eq. (93) we will have ðs 0Þ2 ¼ (s)2 . 0.
Therefore, Eq. (93) can be written in the form

�ðx1 0Þ2 þ ðx2 0Þ2 þ ðx3 0Þ2 þ ðx4 0Þ2 � ðs 0Þ2 ¼ 0

¼ � ðx1Þ2 � ðx2Þ2 � ðx3Þ2 � ðx4Þ2
h i

� ðsÞ2: ð94Þ

It is clear that if (n, k) ¼ (3, 1), then we have (s)2 ¼
(x1)2� (x2)2�(x3)2� (x4)2 . 0. [See Eq. (91) for the case of
subluminal relative velocities, i.e., those with the plus sign
in the right-hand side of Eq. (91).] If (n, k) ¼ (1, 3), then
we have (s)2 ¼�[(x1)2 � (x2)2 �(x3)2 � (x4)2] . 0 [see Eq.
(94)]. Therefore, in the transformations (n, k) ¼ (3, 1) �
(n, k) ¼ (1, 3) the signs are changed in front of the
expressions (x1)2, (x2)2, (x3)2, (x4)2, but unlike in the
transformations bradyon � tachyon, the sign is not
changed in front of the expression (s)2. This is equivalent
to multiplication of the row matrix S ¼ (x1, x2, x3, x4, s)
by the complex diagonal matrix J¼diag(i, i, i, i, 1), where
i¼

ffiffiffiffiffiffiffi
�1
p

—that is, the product S3J. The multiplication of
S by J reflects rotation of the axes x1, x2, x3, x4 through
angle p/2 around the axis s (the axis s is invariant in
relation to the applied operation).

According to Eq. (94), in the special case of space-
time coordinates we have

�ðx 0Þ2 þ ðct 01Þ
2 þ ðct 02Þ

2 þ ðct 03Þ
2 � ðct01Þ2 � ðct02Þ2

�ðct03Þ2 ¼ 0: ð95Þ

Here t01, t02, t03 are the projections of the proper time T0

[see Eq. (36)]. According to Eq. (95), instead of (1 þ 3)-
dimensional space-time we can consider a generalized [(1
þ 3)þ 3]-dimensional space-time, where three dimensions
correspond to the projections of proper time (ct01, ct02,
ct03). In the generalized space-time, three dimensions are
timelike (ct 01, ct

0
2, ct

0
3) and 1 þ 3 dimensions are spacelike

(x0, ct01, ct02, ct03).
These considerations also concern the dual space: In

the generalized dual space, three dimensions are timelike
(x20 ¼E 0

1/ct, x
30 ¼E 0

2/ct, x
40 ¼E 0

3/ct) and 1þ 3 dimensions
are spacelike (x10 ¼ p 0

xc/cs, s
10 ¼ E01/ct, s

20 ¼ E02/ct, s
30 ¼

E03/ct)—see Eqs. (62) and (74). (Here p 0
s ” p 0

x.)
According to the considerations in Subsection IX.B,

the total energy of the particle will have nine components
e 0hs ¼ m0u

0
hrc (r, h ¼ 1, 2, 3)—see Eq. (57). The particle’s

momentum will have three components p 0
hx¼m0u

0
hx (h¼1,

2, 3)—see Eq. (67). The following relation will be fulfilled
[see Eq. (74)]:

ðE 0Þ2

c2t
� ðp

0
xÞ

2c2

c2s
¼ E2

0

c2t
¼ m2

0c
4 . 0:

The particle will have real rest mass (m2
0 . 0).

According to these considerations (see Section IV), in
the case (n, k) ¼ (1, 3) the particle can have velocity
(defined in relation to one of the time dimensions) which
is greater than, less than, or equal to the speed of light in a
vacuum. Until now it was accepted that if a particle
moves according to one observer with a velocity which is
greater than the speed of light in a vacuum, then the
particle has imaginary rest mass (and accordingly it has
real mass measured by the observer). However, this is not
fulfilled if the particle moves in multidimensional time—
in this case it will have real rest mass.

If the particle moves in the space-time (n, k) ¼ (1, 3)
and the condition

X3
1¼1

c2

ðV 0
1Þ

2
, 1

is fulfilled, where V 0
1 ¼ jdx0j/jdt 01j (see Sections IV and

VIII), then by analogy with Eqs. (91) and (92) we have

�ðx1 0Þ2 þ ðx2 0Þ2 þ ðx3 0Þ2 þ ðx4 0Þ2 � ðs 0Þ2 ¼ 0

¼ � �ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2 � ðsÞ2
h i

and

�ðx 0Þ2 þ ðct 01Þ
2 þ ðct 02Þ

2 þ ðct 03Þ
2 þ ðct01Þ2 þ ðct02Þ2

þðct03Þ2 ¼ 0 ¼ � �ðxÞ2 þ ðct1Þ2 þ ðct2Þ2 þ ðct3Þ2
h
�ðct01Þ2 � ðct02Þ2 � ðct03Þ2

i
:

Here (s0)2 ¼�(s)2 , 0.

XII. CONCLUSION

The simplest way of thinking about and considering
multidimensional time is using a branching or train-track
model. Meiland proposed a more formal model of
multidimensional time, where the past can be changed.59

Despite the changes, however, there is only one past.
According to Meiland, his two-dimensional time model is
not radically different from our ordinary, one-dimension-
al perception of time. He treats ‘‘the past as a continuant,
as existing at each of several times.’’59

In multidimensional time, like in one-dimensional
time, every localized object is moving along a one-
dimensional timelike world line.5 Therefore, even in two
or more dimensions time will look one-dimensional,
because all physical processes (including thinking) will
run in a linear sequence, which is characteristic of the
perception of reality. Clocks will work in their usual
manner. Every localized object will have one single
‘‘history’’ in the multidimensional time. In this sense,
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the notion an observer will build of multidimensional time
will not differ very much from the well-known notion of
time. However, in the case of multidimensional time there
are problems concerning well-posed causality4,5,13,14 (see
Section IV).

As stated in Section IV, for multidimensional time the
notions of past, present, and future can be defined as well.
If time is one-dimensional, then one point (the present
moment) divides the time axis into two separate regions:
past and future. If the number of time dimensions is equal
to k, then time can be divided into two k-dimensional
regions from one (k�1)-dimensional hypersurface—more
precisely, from the (k � 1)-dimensional hypersphere (see
Section IV). The two obtained k-dimensional regions can
conditionally be called past and future, and the border
region—i.e., the (k� 1)-dimensional hypersphere—can be
called present (see Section IV).

Let us consider two nonrelativistic observers moving
in different time directions. (In this consideration
relativistic effects are neglected.) These observers can
meet in the space-time and can synchronize their clocks
only if their directions of movement are crossing in time.
Let us assume that the observers meet at point O on the
hyperplane of time. Then these observers will separate
again and will continue to move in their time directions,
without any opportunity to meet.5 Let us assume that,
according to the one of the observers, from the moment of
their meeting (point O) a period DT . 0 has passed.
Because in the case of k-dimensional time the present is a
(k � 1)-dimensional hypersphere, in this case both
observers will be at points (moments) which lie on the
(k� 1)-dimensional hypersphere with center O and radius
DT (see Section IV).

In a universe of multidimensional time many other
strange things can happen. If two observers are not
moving against each other (in space) but they move in
different directions in the hyperplane of time, then
according to their opinion the same physical process will
run with different speeds (see, e.g., Subsection III.A). If
two observers move in orthogonal directions to each
other in the hyperplane of time, then according to each
one of them time for the other observer will ‘‘stand still,’’
i.e., will not run. If these observers move relative to each
other in space, then according to each one of them the
other will move with infinitely high velocity (see Section
IV).

In this study, there are results which can be proven
experimentally. If there exist particles moving in multidi-
mensional time, the following physical effects can be
found which are different from the effects derived from
STR:

� The transformations derived in Sections III and V
will be valid for transfer from one inertial frame of
reference to another.

� The law derived in Section VI will be valid for
addition of velocities.

� The Doppler effect derived in Subsection III.D will
be valid.

� The principle of invariance of the speed c
ffiffiffi
k
p

will be
valid instead of the principle of the invariance of
the speed of light c in STR (Section VIII).

� The causal region in multidimensional time (which
is described in Section IV) will differ from the
causal region in STR.

� The relations derived in Subsection IX.B will be
valid between total energy E, total momentum ps,
rest mass m0, relativistic mass m, and velocity V of
a particle. They differ from the relations in the
STR.

� The energy-momentum conservation law derived in
Subsection IX.C will be valid. This law differs from
the energy-momentum conservation law of STR.

� A new, different CPT symmetry will be valid
(Section X).

� In the case of k-dimensional time, there will exist 3k

� 2k different antiparticles (Section X).

According to the results obtained in the study:

� It is proven that in multidimensional time, particles
can move in the causal region with a velocity which
is greater than, less than, or equal to the speed of
light in a vacuum (Section IV). For the case of
multidimensional time, it is possible that a particle
can move simultaneously faster that the speed of
light in a vacuum and forward in the time
dimensions, which is not true for the case of one-
dimensional time (STR; Subsection III.B). Thus, if
the results for the superluminal neutrinos are
confirmed,60 this can be explained with the
existence of additional time dimensions in which
these neutrinos are moving.

� In the case of multidimensional time, application of
the proper orthochronous transformations at
certain conditions leads to movement backward
in the time dimensions (Subsection III.B).

� It is shown that particles moving faster than the
speed of light in a vacuum can have a real rest mass
(unlike tachyons), provided that they move in
multidimensional time (Subsection IX.B).

� Thus the existence of particles moving in multidi-
mensional time can be proven or rejected through
proper experiments.

As a conclusion, we want to point out that if in our
universe exist particles moving in two, three, or more time
dimensions, then the relations between energy, mass,
velocity, and momentum of these particles will be
expressed through the formulas derived in this article.
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