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It is shown that the position-momentum commutator is a diagonal matrix.
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In a recent paper [1], we have implied that the position-momentum commutator is a
diagonal matrix

[x,p]zxp—pxzih] (1)

where x and p are the position and the momentum of the atomic electron, respectively, i’
=-1, h="h/27 , and h is the Planck’s constant, and / the unit (or identity) matrix.

And where:

x;(t) = x;5(0) exp(i2 7f;t); f; being the oscillation frequency of the atomic electron, and
therefore also the frequency of the light emitted by it: f; = (E; - E;)/h = E;/h, when it
goes from the level 7 to the level j (i > j), and where E; and E; are the energies of the
electron corresponding to these levels and Ej; the energy of the light emitted, and ¢ is the
time

pii(t) = m dxy(t)/dt = m x;(0) exp(i27f;t) i27f; = m x;(t) i27f; = a x;(?) fij; m being the
electron moving mass and a = m i27x

x = [xyl, p = [pil , Xji = x5, fi = (Ej - E)/h = fj;
[x, p] =xp - px = [ 2k Xix pii] - [ 2k pir Xii] = [ 2k Xk @ X fu] - [ 2k @ Xi fir X/
=a [2i (fig - fir) Xk xi5] = a [(2k (Fig - fir) Xi Xig)i= + (2 (fig - fir) Xike Xig)i=i]
=a [0+ 2% (fiy - f) Xpe xi] = a [ 20 2 fig xi5* xi] = a [25 2 fig 1xgl’]
=i /5 2m 2xfy |xgl’] =inl
That 1s
[x, p] = i[5 2m 27fi; |xyl’] = inl )

For the last relation, note that the stationary orbit condition of Bohr for the atomic
electron was: m v r =nh;then,nh =mvr=m @rr=m2xfr’, where n is a positive
integer, @ = 27 f'the angular frequency and 7 the radius of the orbit.

Note also that it would be



(Zk mg 'fik) Xik xkj)i;g' =0 (3)

which implies that /x, p/ = xp - px is a diagonal matrix.

To demonstrate this, Jordan [2] used the Hamilton’s equations: ¢ = dq/dt =0dH/dp and

p=—-0H/dq, where ¢, p and H are the (canonical) position, the momentum and the
Hamiltonian, respectively. Then

dlq, p)/dt = d(qp - pq)/dt = ip +qp - pq - pg =gp — pa)+(dp - pg)=(0)+(0)=0
As

[x, p] = [2k a (fig - fir) Xix xig] = [2k a (fig - fix) xi(0) exp(i27fixt) x15(0) exp(i27figt)] (4)
where f;; #0 for i #j but f; = 0 for i = j, and as fix + fi; = fj;, then [x, p/ is a matrix of the
type: g = [gij exp(i27f;t)]. As dg/dt = [g; exp(i2xf;t) i2 7 f;], then dg/dt = 0 only if g is
diagonal (i =j): g = [gi;/, which corresponds with (1), (2) and (3).
Now, let be the equation [3] (pp. 207-210):

dy/dt = B y, where B is a constant (independent of 7) matrix with distinct characteristic
roots (the equation, det(B - Al) = 0, has distinct values of 1)

Doing y = T z, where T is a non singular (det T # () constant matrix whose columns are
the eigenvectors of B, we have

Tdzdt=BTz

dz/dt=T" BTz

If 7' B T = A, where A is a diagonal matrix, then we have k equations
dzi/dt = A zi

whose solutions are

zi(t) = exp(At) zi(0)

But, using only matrices, it is also

Z(t) = [exp(A)] Z(0)

Y(0) =TZ0),Z2(0)=T" Y(0) =T I=T", doing Y(0) =1

Y(t) = TZ(1) = T [exp(Mt)] Z(0) = T [exp(Ad)] T

If for the matrix B, it can be obtained a diagonal matrix [exp(As¢)], then, from the matrix
(4), it can also be obtained the diagonal matrix (2) with the condition (3).



Note, however, that to make (1) applicable to any (elemental or fundamental) particle,
free or bound, and not only for an electron bound to an atom, two methods were used:
one due to Dirac and the other using the wave function.

In the first method [4] (pp. 96-98):

[% D] =Xpxc-peXx=ih{x, p} =ih (5)

where {x, p,} is a (classical) Poisson’s bracket (PB), used in classical mechanics. For r
dimensions, the general PB is

{u. v} = 2. ((du/dly,) (N/dp,) - (u/dp,) (N/dyy))

where u and v are dynamic variables. For the x dimension alone, it would be

{1tx, i} = (0t Ok) (Mi/Pps) - (his/Ipx) (Vs/ k)

then

{x, px} = (ck/ck) (dp/dpx) - (k/dps) (dpx/'k) = (1) (1) - (0) (0) =1

In the second method, using a function fand a Heisenberg’s observable (2, instead of
the Schrodinger’s wave function ¥, which does not exist, it is only a supposition [1]; we
have [5] (pp. 56, 183):

(k) - f 2= (k) (f ) = (/ck) 2+ f (k) = (k) + f (k) 2

(k) -f = (k) + f (k)

[k, f] = (k) -f-[f(dk) = (k) + [ (k) - f(dk) = ok

for f(x) = x:

[k, x] = A/ck =1

-ih [k, x] =-ih

sih (k) -x-x (k) =-ih

-ih(dk) -x-x(-ihdk) =-ih

and substituting the operator -i i d/dk by py, it would be:

Dx -X-Xpy=-ih

XPpx-px-X=1ih

that is



[%, px] =Xpc-pxx=ih (6)

Note, for last, that from (1), it is obtained the Heisenberg’s uncertainty relation [5] (pp.
276-277)

AxAng (7)

where Ax and Ap are the uncertainties in the position and in the momentum of the
particle, respectively. (7) is applied to any particle (because of this it is considered a
principle). Therefore, (1) has to be applicable to any particle.

In summary, the position-momentum commutator is a diagonal matrix.
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