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In a recent paper [1], we have implied that the position-momentum commutator is a 

diagonal matrix 

 

 [ ] Iipxxppx h=−=,  (1) 

 

where x and p are the position and the momentum of the atomic electron, respectively, i
2
 

= -1, π2h=h , and h is the Planck’s constant, and I the unit (or identity) matrix. 

 

And where: 

 

xij(t) = xij(0) exp(i2πfijt); fij being the oscillation frequency of the atomic electron, and 

therefore also the frequency of the light emitted by it: fij = (Ei - Ej)/h = Eij/h, when it 

goes from the level i to the level j (i > j), and where Ei and Ej are the energies of the 

electron corresponding to these levels and Eij the energy of the light emitted, and t is the 

time 

 

pij(t) = m dxij(t)/dt = m xij(0) exp(i2πfijt) i2πfij = m xij(t) i2πfij = a xij(t) fij; m being the 

electron moving mass and a = m i2π 
 

x = [xij], p = [pij], xji = xij*, fji = (Ej - Ei)/h = -fij 

 

[x, p] = xp - px = [∑k xik pkj] - [∑k pik xkj] = [∑k xik a xkj fkj] - [∑k a xik fik xkj] 

= a [∑k (fkj - fik) xik xkj] = a [(∑k (fkj - fik) xik xkj)i≠j + (∑k (fkj - fik) xik xkj)i=j] 

= a [0 + ∑k (fkj - fjk) xjk xkj] = a [∑k 2 fkj xkj* xkj] = a [∑k 2 fkj |xkj|
2
] 

= i [∑k 2 m 2π fkj |xkj|
2
] = ih I 

 

That is 

 

 [x, p] = i [∑k 2 m 2π fkj |xkj|
2
] = ih I (2) 

 

For the last relation, note that the stationary orbit condition of Bohr for the atomic 

electron was: m v r = nh ; then, nh  = m v r = m ω r r = m 2π f r
2
, where n is a positive 

integer, ω = 2π f the angular frequency and r the radius of the orbit. 

 

Note also that it would be 
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 (∑k (fkj - fik) xik xkj)i≠j = 0 (3) 

 

which implies that [x, p] = xp - px is a diagonal matrix. 

 

To demonstrate this, Jordan [2] used the Hamilton’s equations: pHdtdqq ∂∂==&  and 

qHp ∂∂−=& , where q, p and H are the (canonical) position, the momentum and the 

Hamiltonian, respectively. Then 

 

[ ] ( ) ( ) ( ) ( ) ( ) 000, =+=−+−=−−+=−= qppqqppqqpqppqpqdtpqqpddtpqd &&&&&&&&  

 

As 

 

 [x, p] = [∑k a (fkj - fik) xik xkj] = [∑k a (fkj - fik) xik(0) exp(i2πfikt) xkj(0) exp(i2πfkjt)] (4) 

 

where fij ≠ 0 for i ≠ j but fij = 0 for i = j, and as fik + fkj = fij, then [x, p] is a matrix of the 

type: g = [gij exp(i2πfijt)]. As dg/dt = [gij exp(i2πfijt) i2π fij], then dg/dt = 0 only if g is 

diagonal (i = j): g = [gii], which corresponds with (1), (2) and (3). 

 

Now, let be the equation [3] (pp. 207-210): 

 

dy/dt = B y, where B is a constant (independent of t) matrix with distinct characteristic 

roots (the equation, det(B - λI) = 0, has distinct values of λ) 
 

Doing y = T z, where T is a non singular (det T ≠ 0) constant matrix whose columns are 

the eigenvectors of B, we have 

 

T dz/dt = B T z 

 

dz/dt = T
 -1

 B T z 

 

If T
 -1

 B T = Λ, where Λ is a diagonal matrix, then we have k equations 
 

dzk/dt = λk zk 

 

whose solutions are 

 

zk(t) = exp(λkt) zk(0) 

 

But, using only matrices, it is also 

 

Z(t) = [exp(λkt)] Z(0) 

 

Y(0) = T Z(0), Z(0) = T
 -1

 Y(0) = T
 -1

 I = T
 -1

, doing Y(0) = I 

 

Y(t) = T Z(t) = T [exp(λkt)] Z(0) = T [exp(λkt)] T
 -1

 

 

If for the matrix B, it can be obtained a diagonal matrix [exp(λkt)], then, from the matrix 

(4), it can also be obtained the diagonal matrix (2) with the condition (3). 
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Note, however, that to make (1) applicable to any (elemental or fundamental) particle, 

free or bound, and not only for an electron bound to an atom, two methods were used: 

one due to Dirac and the other using the wave function. 

 

In the first method [4] (pp. 96-98): 

 

 [x, px] = x px - px x = ih {x, px} = ih  (5) 

 

where {x, px} is a (classical) Poisson’s bracket (PB), used in classical mechanics. For r 

dimensions, the general PB is 

 

{u, v} = ∑r ((∂u/∂qr) (∂v/∂pr) - (∂u/∂pr) (∂v/∂qr)) 

 

where u and v are dynamic variables. For the x dimension alone, it would be 

 

{ux, vx} = (∂ux/∂x) (∂vx/∂px) - (∂ux/∂px) (∂vx/∂x) 

 

then 

 

{x, px} = (∂x/∂x) (∂px/∂px) - (∂x/∂px) (∂px/∂x) = (1) (1) - (0) (0) = 1 

 

In the second method, using a function f and a Heisenberg’s observable Ω, instead of 

the Schrödinger’s wave function Ψ, which does not exist, it is only a supposition [1]; we 
have [5] (pp. 56, 183): 

 

(∂/∂x) ⋅ f Ω = (∂/∂x) (f Ω) = (∂f/∂x) Ω + f (∂Ω/∂x) = ((∂f/∂x) + f (∂/∂x)) Ω 
 

(∂/∂x) ⋅ f = (∂f/∂x) + f (∂/∂x) 

 

[∂/∂x, f] = (∂/∂x) ⋅ f - f (∂/∂x) = (∂f/∂x) + f (∂/∂x) - f (∂/∂x) = ∂f/∂x 

 

for f(x) = x: 

 

[∂/∂x, x] = ∂x/∂x = 1 

 

-ih [∂/∂x, x] = -ih  

 

-ih ((∂/∂x) ⋅ x - x (∂/∂x)) = -ih  

 

-ih (∂/∂x) ⋅ x - x (-ih ∂/∂x) = -ih  

 

and substituting the operator -ih ∂/∂x by px, it would be: 

 

px ⋅ x - x px = -ih  

 

x px - px ⋅ x = ih  

 

that is 
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 [x, px] = x px - px x = ih  (6) 

 

Note, for last, that from (1), it is obtained the Heisenberg’s uncertainty relation [5] (pp. 

276-277) 

 

 ∆x ∆p ≥ 
2

h
 (7) 

 

where ∆x and ∆p are the uncertainties in the position and in the momentum of the 

particle, respectively. (7) is applied to any particle (because of this it is considered a 

principle). Therefore, (1) has to be applicable to any particle. 

 

In summary, the position-momentum commutator is a diagonal matrix. 
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