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Abstract

English mathematics Professor, Sir Andrew John Wiles of the University of Cam-
bridge finally and conclusively proved in 1995 Fermat’s Last Theorem which had
for 358 years notoriously resisted all gallant and spirited efforts to prove it even
by three of the greatest mathematicians of all time – such as Euler, Laplace and
Gauss. Sir Professor Andrew Wiles’s proof employs very advanced mathematical
tools and methods that were not at all available in the known World during Fer-
mat’s days. Given that Fermat claimed to have had the ‘truly marvellous’ proof, this
fact that the proof only came after 358 years of repeated failures by many notable
mathematicians and that the proof came from mathematical tools and methods
which are far ahead of Fermat’s time, this has led many to doubt that Fermat
actually did possess the ‘truly marvellous’ proof which he claimed to have had. In
this short reading, via elementary arithmetic methods, we demonstrate conclusively
that Fermat’s Last Theorem actually yields to our efforts to prove it. This proof is
so elementary that anyone with a modicum of mathematical prowess in Fermat’s
days and in the intervening 358 years could have discovered this very proof. This
brings us to the tentative conclusion that Fermat might very well have had the
‘truly marvellous’ proof which he claimed to have had and his ‘truly marvellous’
proof may very well have made use of elementary arithmetic methods.
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1 Introduction
The pre-eminent French lawyer and amateur[1] mathematician, Advocate – Pierre de

Fermat (1607−1665) in 1637, famously in the margin of a copy of the famous book

Arithmetica which was written by Diophantus of Alexandria (∼ 201 − 215 AD),

Fermat wrote:

“It is impossible to separate a cube into two cubes, or a fourth power into two fourth
powers, or in general, any power higher than the second, into two like powers. I
have discovered a truly marvellous proof of this, which this margin is too narrow to
contain.”

In the parlance of mathematical symbolism, this can be written succinctly as:

6 ∃ (x, y, z, n) ∈ Z+ : xn + yn = zn for (n > 2), (1)

where the triple [(x, y, z) 6= 0], is piecewise coprime, and Z+ is the set of all positive

integer numbers. This theorem is classified among the most famous theorems in

[1]While Fermat is ranked as one of the greatest mathematicians of the World, he

modestly considered himself an amateur in the field.
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all History of Mathematics and prior to 1995, proving it was – and is; ranked in

the Guinness Book of World Records as one of the “most difficult mathematical

problems” known to humanity. Fermat’s Last Theorem is now a true theorem since

it has been proved, but prior to 1995 it was only a conjecture. Before it was proved

in 1995, it is only for historic reasons that it was known by the title “Fermat’s Last

Theorem”.

Rather ‘notoriously’, it stood as an unsolved riddle in mathematics for well over

three and half centuries. Many amateur and great mathematicians tried but failed

to prove the conjecture in the intervening years 1637 − 1995; including three of

the World’s greatest mathematicians such as Italy’s Leonhard Euler (1707− 1783),

France’s Pierre-Simon, marquis de Laplace (1749−1827), and the celebrated mathe-

matical prodigy, genius and Crown Prince of Mathematics, Germany’s Johann Carl

Friedrich Gauss (1777− 1855), amongst many other notable and historic figures of

mathematics.

Without any doubt, the conjecture or Fermat’s Last Theorem is in-itself – as it

stands as a bare statement, deceptively simple mathematical statement which any

agile 10 year old mathematical prodigy can fathom with relative ease. As already

said, Fermat famously – via his bare marginal note; stated he had solved the riddle

around 1637. His claim was discovered some 30 years later after his death in 1665,

as an overly simple statement in the margin of the famous copy Arithmetica. As

is well known from the history of mathematics, Fermat wrote many notes in the

margins and most of these notes were ‘theorems’ he claimed to have solved himself.

Some of the proofs of his assertions were found. For those that were not found, all

the proofs save for one resisted all intellectually spirited efforts to prove it and this

was the marginal note pertaining the so-called Fermat’s Last Theorem.

This marginal note dubbed Fermat’s Last Theorem, was the last of the assertions

made by Fermat whose proof was needed, and for this reason that it was the last

of Fermat’s statement that stood unproven, it naturally found itself under the title

‘Fermat’s Last Theorem’. Because all of the many of Fermat’s assertions were even-

tually proved, most people believed that this last assertion must – too; be correct

as Fermat had claimed. Few – if any; doubted the assertion may be false, hence the

confidence to call it a theorem. Simple, the proof Fermat claimed to have had, had

to be found! Alas, reality could prove otherwise, that, the proof was not a mere

summer walk in the park.

So the question is: Did Fermat actually posses the so-called ‘truly marvellous’

proof which he claimed to have had? This is the question many have justly and

rightly asked over the years and this reading makes the temerarious endeavour to

vindicate Fermat, that he very well might have had the ‘truly marvellous’ proof

he claimed to have had and this we accomplish by providing a proof that employs

elementary arithmetic methods that were available in Fermat’s day.

Surely, there are just reasons to doubt Fermat actually had the proof and this

is so given the great many notable mathematicians that tried and monumentally

failed and as-well, given the number of years it took to find the first correct proof.

The first correct proof was supplied only 358 years later by the English Professor of

mathematics at the University of Cambridge – Sir Professor Andrew John Wiles,

in 1995 [23].
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To add salt to injury i.e. add onto the doubts on whether or not Fermat actu-

ally had his so-called ‘truly marvellous’ proof is that Sir Professor Andrew Wiles’s

proof[2] employs highly advanced mathematical tools and methods that were not

at all available in the known World during Fermat’s days. Actually, these tools

and methods were invented (discovered) in the relentless effort to solve this very

problem. Herein, we supply a very simple proof of Fermat’s Last Theorem.

That said, we must hasten to say that, as a difficult mathematical problem that

so far yielded only to the difficult, esoteric and advanced mathematical tools and

methods of Sir Professor Andrew Wiles – Fermat’s Last Theorem, as any other

difficult mathematical problem in the History of Mathematics, it has had a record

number of incorrect proofs of which the present may very well be an addition to

this long list of incorrect proofs. In the words of historian of mathematics – Howard

Eves [10]:

“Fermat’s Last Theorem has the peculiar distinction of being the mathematical prob-
lem for which the greatest number of incorrect proofs have been published.”

With that in mind, allow us to say, we are confident the proof we supply herein is

water-tight and most certainly correct and that, it will stand the test of time and

experience.

As stated in the ante-penultimate above, is that, in this rather short reading, we

make the temerarious endeavour to answer this question – of whether or not Fermat

actually possessed the proof he claimed to have had. This we accomplish by supply-

ing a simple and elementary proof that does not require any advanced mathematics

but mathematics that was available in the days of Fermat. Sir Professor Andrew

Wiles’s acclaimed proof, is at best very difficult and to the chagrin of they that seek

a simpler understanding – the proof is nothing but highly esoteric. The question

thus ‘forever’ hangs in there to the searching and inquisitive mind: “Did Fermat

really possess the proof he claimed to have had?” The proof that we supply herein

leads us to strongly believe that Fermat might have had the proof and this proof

most certainly employed elementary methods of arithmetics!

2 Proofs for Specific Indices
Before we go into the main business of the day, we shall give a short history of some

notable efforts in finding a proof to Fermat’s Last Theorem. As is well known, the

case for (n = 3), for all non-zero (x, y, z) and (x, y, z) ∈ Z+, the equation x3 + y3 =

z3 admits no solutions. This was first proved by the great Italian mathematician

Leonhard Euler in 1770 [17], that is, 133 years after Fermat set into motion Fermat’s

Last Theorem. Euler used the technique of infinite descent. Euler’s proof is not the

only proof possible as other authors have published their independent proofs [cf.

3, 4, 9, 15, 16, amongst many others].

Fermat was the first to provide a proof for the case (n = 4) which stated that

for all non-zero piecewise coprime triple (x, y, z) ∈ Z+, the equation x4 + y4 = z4

[2]The proof by Sir Professor Wiles is well over 100 pages long and consumed about

seven years of his research time. For this notable achievement of solving Fermat’s

Last Theorem, he was Knighted Commander of the Order of the British Empire in 2000 by

Her Majesty Queen Elizabeth (II), and received many other honours around the

World.
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admits no solutions. This proof by Fermat is the only surviving proof of Fermat’s

Last Theorem and as is the case with Euler’s proof for the case (n = 3), Fermat’s

proof makes use of the technique of infinite descent. One wonders whether or not

Fermat conducted this proof as part of a more general proof for all (n > 2). As is the

case with Euler’s proof for (n = 3), Fermat’s proof is not the only proof possible as

other authors have published their independent proofs [see e.g. Refs. 4, 8, 11, 14, 15,

amongst many others]. Even after Sir Professor Andrew Wiles’s 1995 breakthrough

[23], researchers are still publishing variants of the proof for the case (n = 4) [cf.

1, 2, 7].

The case (n = 5) was first proved independently by the French mathematician

Adrien-Marie Legendre (1752−1833) and the German mathematician Johann Peter

Gustav Lejeune Dirichlet (1805− 1859) around 1825 and alternative and indepen-

dent proofs were developed in the later years by others [cf. 4–6, 12, 13, 19–22,

amongst many others].

3 Lemma (I)
If [(a > 1); (aj ≤ a); (b > 1); (c > 1); (n > 2)] ∈ Z+ where (b > c) and aj is one of

the prime factors of a, then, the following will hold true always:

an = aj(b± c). (2)

The above statement is clearly evident and needs no proof. However, below we

demonstrate that this statement is true. This demonstration does not constitute a

proof.

What this statement really means is that the number an [for any (n > 2) and

(a > 1)], can always be written as a sum or difference of two numbers p and q where

[(p, q) ∈ Z+] are not co-prime, i.e.:

an = p± q : gcd(p, q) 6= 1, (3)

since one can always find some (p, q) such that a will always be a common factor of

(p, q), that is to say:

an = a(g ± h), (4)

in which case we will have p = ag and q = ah where (g ± h) = an−1 ≥ 4 such that

(g, h) ∈ Z+ and (g > h). To see this, we know that if {a1, a2, a3 . . . aj . . . am} is the

set of all the prime factors of a, then (a = aje) where (e ≤ a). Substituting all this

into (4), we will have:

an = aj(eg ± eh). (5)
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Setting (b = eg) and (c = eh), (5) leads us to (2). As we did with Beal’s Conjecture

in [18], equipped with this simple fact, we will demonstrate that as we did with that

Fermat’s Last Theorem yields to a proof in the simplest imaginable manner.

Proof.

If [(a > 1) ∈ Z+], then, according to the fundamental theorem of arithmetic, we

can decompose the number a into its prime factors i.e.:

a = aα1
1 · a

α2
2 · a

α3
3 · · · a

αj

j · · · a
αn
n , (6)

where [αj ∈ Z+ ∪ {0}] and the ak’s are the prime factors of a and these are such

that (1 < aj ≤ a : k = 1, 2, 3 . . . ). We will have (aj = a) if and only if a is prime.

Now, (an = a · an−1) and since (a > 1) and (n > 2), it is clear that (an−1 ≥ 4).

Clearly, if (an−1 ≥ 4), we can write (an−1 = b± c ≥ 4) where [(b, c) > 1]. From the

foregoing, it follows from (an = a·an−1) and (an−1 = b±c ≥ 4), that [an = a(b±c)].
From (6), it follows that:

an = aα1
1 · a

α2
2 · a

α3
3 · · · a

αj

j · · · aαn
n (b± c),

= aj

[
aα1

1 · a
α2
2 · a

α3
3 · · · a

αj−1
j · · · aαn

n b± aα1
1 · a

α2
2 · a

α3
3 · · · a

αj−1
j · · · aαn

n c)
]
,

= aj(g ± h).

(7)

where (g = aα1
1 ·a

α2
2 ·a

α3
3 · · · a

αj−1
j · · · aαn

n b) and (h = aα1
1 ·a

α2
2 ·a

α3
3 · · · a

αj−1
j · · · aαn

n c)

where (αj > 1). Hence result is proven. Now we proceed to the main task of the

present reading.

4 Proof of Fermat’s Last Theorem (I)
Now, the proof that we are going to provide of FTL is a proof by contradiction and

this proof makes use of Lemma §(3) whereby we demonstrate that the triple (x, y, z)

is such that it will always have a common factor if the equation, (xn + yn = zn)

for all (n > 2); is to hold true. We begin by assuming the statement:

xn + yn = zn . . . . . . [∀n > 2], (8)

to be true for some piecewise co-prime triple [(x, y, z) > 1] ∈ Z+, the meaning of

which is that the greatest common divisor of this triple or any pair of the triple is

unity i.e., gcd(x, y) = gcd(x, z) = gcd(y, z) = gcd(x, y, z) = 1.

1 We must realise that if just one of the members of the triple (x, y, z) is equal

to unity for any (n > 2), then, the other two members of this triple can not

be integers, hence, from this it follows that if a solution exists, then, all the

members of this triple will be greater than unity i.e. [(x > 1; y > 1; z >

1) ∈ Z+].
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2 By way of contradiction, we assert that there exists a set of positive integers

[(x, y, z) > 1] that satisfy the simple relation (xn + yn = zn) for some

piecewise co-prime triple [(x, y, z) > 1]. Having made this assumption, if we

can show that [gcd(x, y, z) > 1], then, by way of contradiction FTL holds true.

3 If the statement (8) holds true, then – clearly; there must exist some [(p, q) ∈
Z+] such that [gcd(p, q) = 1], such that xn, yn and zn can be decomposed as

follows:

 xn

yn

zn

 =

 p− q
2q

p+ q

 . (9)

4 According to the Lemma §(3), the equation zn = p + q; for any (z > 1)

and for any (n > 2), this equation, can always be written such that p = azj

and p = bzj for some (a > 1; b > 1) ∈ Z+ and zj : (1 < zj ≤ z) is any of the

prime factors of z. Putting everything together, we will have zn = (a + b)zj .

Substituting p = azj and q = bzj into (9), we will have: xn

yn

zn

 =

 (a− b)zj
2bzj

(a+ b)zj

 . (10)

5 From (10), it is clear that gcd(xn, yn, zn) 6= 1 since there exists a common

divisor [cd()] of the triple (xn, yn, zn) which is (zj > 1), that is to say, (zj > 1)

is a common divisor of the triple (xn, yn, zn). If gcd(xn, yn, zn) 6= 1, conse-

quently, gcd(x, y, z) 6= 1 and this is in complete violation of the critical, crucial

and sacrosanct assumption that gcd(x, y, z) = 1. Q.E.D.

Alternatively, according to the Lemma §(3), the equation xn = p − q for any

(n > 2) and for any (xj > 1), this equation, can always be written such that p = axj

and q = bxj for some (a > 1; b > 1) ∈ Z+ and xj : (1 < xj ≤ x) is any of the

prime factors of x; putting everything together, we will have xn = (a− b)xj . Now,

substituting p = axj and q = bxj into (9), we will have: xn

yn

zn

 =

 (a− b)xj
2bxj

(a+ b)xj

 . (11)

Again, from (11), it is clear that [gcd(x, y, z) 6= 1] since the cd(xn, yn, zn) = xj , that

is to say, xj is a common divisor of triple (xn, yn, zn). From the foregoing, it follows

that the prime factors of (x, z) are common divisors of the triple (xn, yn, zn), the

meaning of which is that [gcd(x, y, z) 6= 1].

Therefore, by way of contradiction, Fermat’s Last Theorem is true since we arrive

at a contradictory result that [gcd(x, y, z) 6= 1]. What this effectively means is that

the equation (xn + yn = zn) for (n > 2) has a solution and this solution is such

that the triple (x, y, z) always has a common factor as is the case with all those

values of x, y, z that satisfy Fermat’s Last Theorem.



Nyambuya Page 7 of 7

5 General Discussion
If the proof we have provided herein stands the test of time and experience, then, it

is without a doubt that Fermat’s claim to have had a ‘truly marvellous’ proof may

very well resonate with truth. The proof provided herein is not only simple, but

surprisingly simple, so simple that one wonders how great mathematicians would

have missed this. All this simplicity is embodied in Lemma (3). As we anxiously

await the World to judge our proof, effort and work, we must — if this be permitted

at this point of closing, say that, we are confident that – simple as it is or may

appear, this proof is flawless, it will stand the test of time and experience. It strongly

appears that the great physicist and philosopher – Albeit Einstein (1879 − 1955),

was probably right in saying that “Subtle is the Lord. Malicious He is not.” because

in Lemma §(3), there exists deeply embedded therein, a subtlety that resolves and

does away with the malice and notoriety associated with Fermat’s Last Theorem in

a simpler and truly marvellous and general manner.

6 Conclusion
Given that the method used here to prove Fermat’s Last Theorem are so elementary,

it is very much possible that Fermat actually processed the correct proof.
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