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English mathematics Professor, Sir Andrew John Wiles of theUniversityof Cambridge finally and conclusively proved in
1995 Fermat’s Last Theorem which had for358 years notoriously resisted all gallant and spirited efforts to prove it even
by three of the greatest mathematicians of all time – such as Euler, Laplace and Gauss. Sir Professor Andrew Wiles’s
proof employs very advanced mathematical tools and methodsthat were not at all available in the known World during
Fermat’s days. Given that Fermat claimed to have had the ‘truly marvellous’ proof, this fact that the proof only came
after 358 years of repeated failures by many notable mathematicians and that the proof came from mathematical tools
and methods which are far ahead of Fermat’s time, this has ledmany to doubt that Fermat actually did possess the ‘truly
marvellous’ proof which he claimed to have had. In this shortreading,via elementary arithmetic methods which make use
of Pythagoras theorem, we demonstrate conclusively that Fermat’s Last Theorem actually yields to our efforts to prove it.
This proof is so elementary that anyone with a modicum of mathematical prowess in Fermat’s days and in the intervening
358 years could have discovered this very proof. This brings us to the tentative conclusion that Fermat might very well
have had the ‘truly marvellous’ proof which he claimed to have had and his ‘truly marvellous’ proof may very well have
made use of elementary arithmetic methods.
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“Subtle is the Lord.
Malicious He is not.”

Albert Einstein (1879− 1955).

1. Introduction

The pre-eminent French lawyer and amateur mathemati-
cian, PierredeFermat(1607−1665) in 1637, famously in
the margin of a copy of the famous bookArithmetica, he
wrote:

“ It is impossible to separate a cube into two cubes,
or a fourth power into two fourth powers, or in
general, any power higher than the second, into
two like powers. I have discovered a truly marvel-
lous proof of this, which this margin is too narrow
to contain.”

In the parlance of mathematical symbolism, this can be
written succinctly as:

6 ∃ (x, y, z, n) ∈ N
+ : xn + yn = zn for (n > 2), (1)

where the triple(x, y, z) 6= 0, is piecewise coprime, and
N+ is the set of all positive integer numbers. This theorem
is classified among the most famous theorems in all His-
tory of Mathematics and prior to1995, proving it was –

and is; ranked in theGuinness Book of World Recordsas
one of the “most difficult mathematical problems” known
to humanity. Fermat’s Last Theorem is now a true theo-
rem since it has been proved, but prior to1995 it was only
a conjecture. Before it was proved in1995, it is only for
historic reasons that it was known by the title “Fermat’s
Last Theorem”.

Rather notoriously, it stood as an unsolved riddle in
mathematics for well over three and half centuries. Many
amateur and great mathematicians tried but failed to prove
the conjecture in the intervening years1637 − 1995;
including three of the World’s greatest mathematicians
such as Italy’s Leonhard Euler(1707 − 1783), France’s
Pierre-Simon, marquisde Laplace(1749 − 1827), and
the celebrated genius and Crown Princeof Mathematics,
Germany’s Johann Carl Friedrich Gauss(1777 − 1855),
amongst many other notable and historic figures of math-
ematics.

Without any doubt, the conjecture or Fermat’s Last
Theorem is in-itself – as it stands as a bare statement, de-
ceptively simple mathematical statement which any agile
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10 year old mathematical prodigy can fathom with relative
ease. Fermat famously –via his bare marginal note; stated
he had solved the riddle around1637. His claim was dis-
covered some30 years later, after his death in1665, as an
overly simple statement in the margin of the famous copy
Arithmetica. Fermat wrote many notes in the margins and
most of these notes were ‘theorems’ he claimed to solved
himself. Some of the proofs of his assertions were found.
For those that were not found, all the proofs save for one
resisted all intellectually spirited efforts to prove it and this
was the marginal note pertaining the so-called Fermat’s
Last Theorem.

This marginal note dubbed Fermat’s Last Theorem,
was the last of the assertions made by Fermat whose proof
was needed, and for this reason that it was the last of Fer-
mat’s statement that stood unproven, it naturally found it-
self under the title ‘Fermat’s Last Theorem’. Because all
of the many of Fermat’s assertions were eventually proved,
most people believed that this last assertion must – too; be
correct as Fermat had claimed. Few – if any; doubted the
assertion may be false, hence the confidence to call it a
theorem. Simple, the proof Fermat claimed to have had,
had to be found!

Did Fermat actually posses the so-called ‘truly marvel-
lous’ proof which he claimed to have had? This is the
question many have justly and rightly asked over the years
and this reading makes the temerarious endeavour to vin-
dicate Fermat, that he very well might have had the ‘truly
marvellous’ proof he claimed to have had and this we ac-
complish by providing a proof that employs elementary
arithmetic methods that were available in Fermat’s day.

Surely, there are just reasons to doubt Fermat actually
had the proof and this is so given the great many notable
mathematicians that tried and monumentally failed and as-
well, given the number of years it took to find the first
correct proof. The first correct proof was supplied only
358 years later by the English Professor of mathematics
at the Universityof Cambridge – Sir Andrew John Wiles
(1953−), in 1995 [1].

To add salt to injuryi.e. add onto the doubts on whether
or not Fermat actually had his so-called ‘truly marvel-
lous’ proof is that Sir Professor Andrew Wiles’s proof∗

employs highly advanced mathematical tools and methods
that were not at all available in the known World during
Fermat’s days. Actually, these tools and methods were
invented (discovered) in the relentless effort to solve this
very problem. Herein, we supply a very simple proof of
Fermat’s Last Theorem.

That said, we must hasten to say that, as a difficult
mathematical problem that so far yielded only to the diffi-
cult, esoteric and advanced mathematical tools and meth-
ods of Sir Professor Andrew Wiles – Fermat’s Last The-
orem, as any other difficult mathematical problem in the
Historyof Mathematics, it has had a record number of in-

correct proofs of which the present may very well be an
addition to this long list of incorrect proofs. In the words
of historian of mathematics – Howard Eves [2]:

“Fermat’s Last Theorem has the peculiar distinc-
tion of being the mathematical problem for which
the greatest number of incorrect proofs have been
published.”

With that in mind, allow us to say, we are confident the
proof we supply herein is water-tight and most certainly
correct and that, it will stand the test of time and experi-
ence.

As stated in theante penultimateabove is that, in this
rather short reading, we make the temerarious endeavour
to answer this question – of whether or not Fermat actually
possessed the proof he claimed to have had. This we ac-
complish by supplying a simple and elementary proof that
does not require any advanced mathematics but mathemat-
ics that was available in the days of Fermat. Sir Professor
Andrew Wiles’s acclaimed proof, is at best very difficult
and to the chagrin of they that seek a simpler understand-
ing – the proof is nothing but highly esoteric. The question
thus ‘forever’ hangs in there to the searching and inquisi-
tive mind: “Did Fermat really possess the proof he claimed
to have had?” The proof that we supply herein leads us to
strongly believe that Fermat might have had the proof and
this proof most certainly employed elementary methods of
arithmetics!

2. Proof

The proof that we are going to provide is a proof by con-
tradiction. We assume that the statement:

∃ (x, y, z, n) ∈ N
+ : xn+yn = zn, for (n > 2), (2)

to be true. The tripple(x, y, z) is piecewisecoprime,
the meaning of which is that the greatest common divi-
sor[gcd()] of this triple or any arbitrary pair of the triple is
unity. For our proof, we shall proceed in a general way to
show that the statement (2) can never be true for(n > 2).
In our approach, we split the problem into two parts,i.e.:

1. Case (I) : This case proves for all powers of(n >
2) ∈ E+ whereE+ is the set of all positive even
integer numbers.

2. Case (II) : This case proves for all powers of(n >
2) ∈ O+ whereO+ is the set of all positive odd
integer numbers.

Since the set(n > 2) ∈ N+ contains only odd and even
values ofn, to prove that there does not exist an even and
odd (n > 2) ∈ N+ that satisfies (2) is a proof that there

∗ The proof by Sir Professor Wiles is well over100 pages long and consumed about seven years of his research time. For this notable achievement of
solving Fermat’s Last Theorem, he was KnightedCommander of the Order of the British Empirein 2000 by Her Majesty Queen Elizabeth (II), and
received many other honours around the World.
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does not exist(x, y, z, n) ∈ N+ : xn+yn = zn, (n >
2). This is a proof of the original statement (1).

Proof for the Casen = (3,4&5)

As is well known, the case for(n = 3), for all non-zero
(x, y, z) and(x, y, z) ∈ N+, the equationx3 + y3 = z3

has no solutions. This was first proved by the great Italian
mathematician Leonhard Euler in1770 [3], that is, 133
years after Fermat set into motion Fermat’s Last Theorem.
Euler used the technique ofinfinite descent. Euler’s proof
is not the only proof possible as other authors have pub-
lished their independent proofs [seee.g.Refs. 4, 5, 6, 7, 8,
amongst many others].

Fermat was the first to provide a proof for the case
(n = 4) which stated that for all non-zero piecewise co-
prime triple(x, y, z) ∈ N+, the equationx4+y4 = z4 ad-
mits no solutions. This proof by Fermat is the only surviv-
ing proof of Fermat’s Last Theorem and as is the case with
Euler’s proof for the case(n = 3), Fermat’s proof makes
use of the technique of infinite descent. Further, as is the
case with Euler’s proof for(n = 3), Fermat’s proof is not
the only proof possible as other authors have published
their independent proofs [seee.g. Refs. 5, 6, 9, 10, 11,
amongst many others]. Even after Sir Professor Andrew
Wiles’s 1995 breakthrough [1], researchers are still pub-
lishing variants of the proof for the case(n = 4) [seee.g.
12, 13, 14].

The case(n = 5) was first proved independently by
the French mathematician Adrien-Marie Legendre (1752 -
1833) and the German mathematician Johann Peter Gustav
Lejeune Dirichlet (1805 - 1859) around1825 and alterna-
tive and independent proofs were developed in the later
years by others [seee.g.Refs. 5, 15, 16, 17, 18, 19, 20, 21,
22, amongst many others].

-oOo-

Now, before we proceed to give our proof, we shall give a
Lemma which is vital for path of the proof.

-oOo-

Lemma 1: If (a, b) ∈ N+ such that:

a
√
b = c+ d, (3)

for some numbers(c, d), then, insofar as whether or not√
b is an integer or not, there are two conditions, and these

are:

1.
√
b ∈ N+.

2.
√
b /∈ N+. That is,

√
b is an irrational number.

—

1. If,
√
b ∈ N+, then,(c, d) ∈ N+.

2. If,
√
b /∈ N+, then

√
b is a surd – it is an irrational

number and(c, d) /∈ N+; and there must exist some
((c1 < c) & (d1 < d)) ∈ N+ such thatc = c1

√
b

andd = d1
√
b so thata

√
b = c1

√
b + d1

√
b, which

implies that:

a = c1 + d1. (4)

The above stated Lemma is a self evident truth which is
not only necessary but vital and pivotal for the proof that
we now give below.

2.1. Case (I): Even Powers of(n > 2)

If (n > 2) ∈ E+, then we can writen = 2k were
k = 2, 3, 4, 5, . . . etc ⇒ (k > 1). In this case, the equa-
tion xn + yn = zn, will read:

x2k + y2k = z2k, (5)

and this can be rewritten as:

(xk)2 + (yk)2 = (zk)2. (6)

The non-zero piecewise coprime numbers(xk, yk, zk) are
all integers, thus, the triple(xk, yk, zk), is a Pythagorean
triple in the true sense of a Pythagorean triple. As is
well known from Euclid’s formula for generating primi-
tive Pythagorean triples, if(pk, qk) are any arbitrary inte-
gers i.e. (p, q : p > q) ∈ N+ such thatpk andqk are
coprime andpk − qk is odd, the triple(xk, yk, zk) is such
that:





xk

yk

zk



 =





p2k − q2k

2pkqk

p2k + q2k



 . (7)

Proof for the above is that:

(

zk
)2

=
(

xk
)2

+
(

yk
)2

⇓ ⇓ ⇓
(

p2k + q2k
)2 ≡

(

p2k − q2k
)2

+
(

2pkqk
)2

.

(8)
Now, for our proof, we simple need to take they-
component of (7) i.e. yk = 2pkqk which implies that
y = k

√
2pq. Sincey ∈ N+, it follows fromy = k

√
2pq, that

for y ∈ N+, k
√
2 ∈ N+. We all know that for k

√
2 ∈ N+,

this is only so whenk = 1. Since(k > 2), it follows that
there is no solution to the equation (7) for (x, y, z) ∈ N+

and(k > 2). Since we have no solution to equation (7), it
follows that (6) has no solutions too, hence (2) has no inte-
ger solutions for all non-zero piecewise coprime(x, y, z)
for all powers of(n > 2) ∈ E+.

Q.E.D.
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2.2. Case (II): Odd Powers of(n > 2)

Now, we have to prove for the case were(n > 2) ∈ O+.
As before, we are going to employ Pythagoras theorem.
We begin by rewritingx2k+1 + y2k+1 = z2k+1 as:

(

xk
√
x
)2

+
(

yk
√
y
)2

=
(

zk
√
z
)2

. (9)

The fact that(n > 2) ∈ O+, this implies that we can
set n = 2k + 1 where k = 1, 2, 3, 4, 5, . . . , etc ⇒
(k > 2). The triplet, trio or the three numbers
(xk

√
x, yk

√
y, zk

√
z) are not necessarily integers, thus

this triple is not a Pythagorean triple in the traditional par-
lance of mathematics. However, this handicap does not
stop us (or anyone for that matter) from finding real and
irrational numbers(p2k+1, q2k+1 : p > q) which are not
necessarily integers, where these numbers(p,2k+1 q2k+1)
are such that:





xk
√
x

yk
√
y

zk
√
z



 =





p4k+2 − q4k+2

2p2k+1q2k+1

p4k+2 + q4k+2



 . (10)

As in equation (8), the proof for the above is that:

(

zk
√
z
)2

=
(

xk
√
x
)2

+
(

yk√y
)2

⇓ ⇓ ⇓
(

p4k+2 + q4k+2
)2 ≡

(

p4k+2 − q4k+2
)2

+
(

2p2k+1q2k+1
)2

.

(11)
We are now going to look at thez-component of equation
(10). For

√
z, we have two an only two cases (conditions)

and these are:

1.
√
z ∈ N

+.

2.
√
z /∈ N

+, is an irrational number.

In case (1)where
√
z = w ∈ N+, it follows that(p, q) ∈

N+. If (p, q) ∈ N+, it follows that(
√
x,

√
y) ∈ N+. Let√

x = u and
√
y = v, we will have:





u2k+1

v2k+1

w2k+1



 =





p4k+2 − q4k+2

2p2k+1q2k+1

p4k+2 + q4k+2



 . (12)

Now, as before, we take they-component of (12) i.e.
v2k+1 = 2p2k+1q2k+1. From this equation, it follows
that v = 2k+1

√
2pq. We know thatv ∈ N+. For this to

be so, 2k+1
√
2 ∈ N+ and the only way for this to be so is

if (2k + 1 = 1) ⇒ (k = 0). But in our case, we have
(k > 1) ∈ N+.

In case (2)where
√
z /∈ N+ is an irrational number, it

follows from Lemma (1) that for thez-component of the
equation (10), there must exist some(a, b : a > b) ∈ N+,
such thatp4k+2 = a

√
z andq4k+2 = b

√
z i.e., zk

√
z =

a
√
z + b

√
z. Fromp4k+2 = a

√
z andq4k+2 = b

√
z it

follows thatp2k+1 =
√

a
√
z andq2k+1 =

√

b
√
z. Sub-

stituting all this into (10), we will have:




xk
√
x

yk
√
y

zk
√
z



 =





(a− b)
√
z

2
√
a
√
b
√
z

(a+ b)
√
z



 . (13)

What does equation (13) as a whole mean? Well, we know
thatxk ∈ N+ but (13) is telling us thatxk = (a−b)

√

z/x.
Since(a − b) ∈ N+, for xk = (a − b)

√

z/x ∈ N+,
√

z/x = s ∈ N
+ i.e. z = s2x. This means thatx andz

share a common factors2, the meaning of which is that the
triple (x, y, z) is not piecewise coprime. Since our initial
assertion runs contrary to our final conclusion, hence, by
way of contradiction, it follows that our initial assertionis
wrong as it has lead us to an illogical conclusion. Hence,
(2) has no integer solutions for all non-zero piecewise co-
prime triple(x, y, z) for all powers of(n > 2) ∈ O+.

Q.E.D.

2.3. Summary of the Two Proofs

In §(2.1.) and (2.2.), we have proved that (2) has no in-
teger solutions for any(x, y, z) > 0 and(x, y, z) ∈ N

+

for all powers of(n > 2) ∈ E+ and for all powers
(n > 2) ∈ O+. Combining these two proofs, it follows
from the foregoing as stated and outlined at the begin-
ning of this section, that (2) has no integer solutions for
any (x, y, z) > 0 and (x, y, z) ∈ N+ for all powers of
(n > 2) ∈ N+. Hence Fermat’s Last Theorem is here
proved in a simpler, much more general and truly marvel-
lous manner.

Q.E.D.

3. Discussion and Conclusion

If the proof we have provided herein stands the test of time
and experience, then, it is without a doubt that Fermat’s
claim to have had a ‘truly marvellous’ proof may very
well resonate with truth. If this proof employed the use
of Pythagoras theorem as in the present case, then, for any
book, the standard ‘margin is too narrow’ to contain the
present proof, the meaning of which is that Fermat was
most certainly right in his famous claim.

Clearly, the problem with the proof is not that it is diffi-
cult and only accessible to the highly esoteric, no! We our-
selves (i.e., amateur and seasoned mathematicians alike)
have made this problem appear very difficult, highly eso-
teric and only accessible to foremost and advanced mathe-
matical minds. Without the historic and personal encodes
that will soon follow, this proof (i.e., the morass substance
of the present reading) can be typed using a standard font
size of between10−12, back-to-backon a single standard
a4-page. Few – if any; would believe that this is possible.
The level difficulty and esoteric nature associated with this
problem has been – until the present reading, very high.

What could have happened leading to the elevation of
this problem to a point where it came to become one of
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the most difficult problems in all Historyof Mathematics
is that – perhaps; the plethora of maiden failures to pro-
vide a proof must have led people to think that this prob-
lem must be very difficult. Failure after failure and espe-
cially so by great mathematicians must then have led to it
[Fermat’s Last Theorem] achieving ‘international, world-
wide and historic notoriety’ as a very difficult problem that
eluded even great minds like Euler, Laplace and Gauss.
With this kind of background, certainly, when people ap-
proached this problem, they most probably did so with in
mind that it was a very difficult problem probably to be
solved by ‘real super geniuses’ and not mortals of modest
meanse.g.ourself.

If someone told you that a given problem is so difficult,
so much that it has thus far eluded the finest, advanced
and most esoteric minds that have attempted to find its so-
lution, one naturally tries to use higher advanced methods
to prove it. Further, if someone told you that a given prob-
lem is so difficult, so much that it have eluded the finest,
advanced and most esoteric minds that have attempted to
find its solution, one naturally is discouraged from using
simple elementary methods to prove it because the feeling
one has is that, if it can be solvedvia a simple method,
surely, advanced minds before me must have discovered
this, thus leading one to try and climb higher than those
before them. If what we have presented stands the test
of time and experience, then, the way we approach diffi-
cult problems may need recourse, especially the way the
public media projects and posts the level difficulty and the
supposed esoteric effort required in-order to solve these
problems.

Our approach to solving so-called outstanding prob-
lems is that one must not be let down by the public media
projections of the level difficult and the supposed esoteric
effort required in-order to solve the problem. First, as we
climb the ladder of level difficultly, we tackle it [problem]
from a level simplicity accessible to the ‘layman’ and step-
by-step as we move up the ladder. To us, we have come to
realise that this has helped us in understanding the problem
at a much deeper level. At each level, we make sure we ex-
haust ‘all’ the possible avenues. As to how one knows they
have exhausted all the possible avenues, this is a difficult
question to answer but the most potent and virile tool for
us has been a deep and strong inner intuition, unshakable
confidence in the solubility of the problem and singular
conviction that victory is certain if one persists.

As we anxiously await the World to judge our proof,
effort and work, we must — if this be permitted at this
point of closing, say that, we are confident that – sim-
ple as it is or may appear, this proof is flawless, it will
stand the test of time and experience. It strongly appears
that the great physicist and philosopher – Albeit Einstein
(1879 − 1955), was probably right in saying that “Sub-
tle is the Lord. Malicious He is not.” because in Lemma
(1), there exists deeply embedded therein, a subtlety that
resolves and does away with the malice and notoriety as-
sociated with Fermat’s Last Theorem in a simpler and

truly marvellous and general manner.

Conclusion

We hereby make the following conclusion:

1. By use of the method of ‘Pythagorean triples’, we have
demonstrated that a solution to Fermat’s Last Theorem
exists in the realm of elementary arithmetic.

2. This proof employs elementary arithmetic tools and meth-
ods that were certainly accessible to Fermat, thus making
it highly likely that Fermat’s claim that he possessed a
‘truly marvellous’ proof may very be true.

3. From the proof we have given, three generalizations can
be made and these are:

(a) If (x, y, z) is a primitive Pythagorean triple, then,
the triple( n

√
x, n

√
y, n

√
z) ∈ N

+ can never be such
that( n

√
x, n

√
y, n

√
z) /∈ N

+ for any(n > 1) ∈ N
+.

(b) If (x, y, z) is a non-zero piecewise coprime triple,
then, the equations:

zn = x2n − y2n, (14)

zn = x2n + y2n, (15)

have no solutions for(n > 1) ∈ N
+.

3.1. After Thought

Looking at Fermat’s Last Theorem, it appears as though
the number of terms which are added to obtainzn in (1)
may need to be increased in-order for there to be a solu-
tion. We thus wonder if there is in a general minimum
(m > 2) ∈ N+ for any (n > 2) ∈ N+ such that the
equation:

yn =

m
∑

k=1

xn

k , (16)

has a solution for some non-zero piecewise coprime set
(y, xk : k > 2) ∈ N+.
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