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Abstract 
 
In this paper, the symmetric character of the conductivity tensor for linear heterogeneous 

anisotropic material is established as the result of arguments from tensor analysis and linear 

algebra for Fourier’s heat conduction.  The non-singular nature of the conductivity tensor plays 

the fundamental role in establishing this statement. 

 

1.  Introduction  
 
The conductivity tensor characterizes the general linear heat conduction relation between 

temperature gradients and heat flux in heterogeneous anisotropic material.  By using non-

equilibrium statistical mechanics, Onsager [1] has shown that the conductivity tensor is 

symmetric.  However, classical continuum thermodynamics has not been able to provide any 

direct reasoning for this property, nor can it explain why we have to appeal to non-equilibrium 

statistical mechanics. 

 

Here we establish the symmetric character of the conductivity tensor by using arguments from 

tensor analysis and linear algebra regarding the Fourier’s heat conduction law.   This includes 

results from the familiar eigenvalue problem concept and the theory of equations.  Interestingly, 

the fundamental step in this establishment is based on the invertibility of the conductivity tensor.  
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In the following section, we provide an overview of some important aspects ofelementary tensor 

analysis.  This includes the definitions of tensors, their invariants and the character of the 

eigenvalues of second order tensors based on the theory of equations.  In Section 3, we introduce 

the classical heat conduction relations for linear heterogeneous anisotropic material.  After that in 

Section 4, the symmetric character of the conductivity tensor is established by using the 

arguments from tensor analysis and linear algebra.  Finally, Section 5 contains a summary and 

some general conclusions.  

 

2.  Preliminaries 
 
Consider the three dimensional orthogonal coordinate system 321 xxx  as the reference frame,   

where 1e , 2e  and 3e  are unit base vectors.  This is the main coordinate system we use to 

represent the components of fundamental tensors and tensor equations.  We also consider the 

primed orthogonal coordinate system 1 2 3x x x     for further investigation, having the same origin, 

but with 1e , 2e  and 3e  as unit base vectors.  The general orthogonal transformation between 

these systems is represented by the 3 3  transformation matrix ija   , where 

im in mi ni mna a a a                                                             (1) 

Here the symbol ij  is the Kronecker delta.  We notice that the components ija  are the direction 

cosines among the axes ix  and jx ; that is 

 cos ,ij i ja x x                                                              (2) 

 

It should be noticed that the orthogonality relations (1) represents a set of six independent 

relations among the nine quantities ija .  This shows that the orthogonal transformation matrix 

ija    is generally specified at most by 3 independent values. 

 

The orthogonal transformations ija  among the different coordinate systems are essential in 

defining vectors and tensors based on the transformations of their components [2].  For example, 
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the scalar A , vector B   and second order tensor C  transform such that their components in the 

primed coordinate system are 

 A A                                                                    (3) 

 i ij jB a B                                                                (4) 

 ij ip jq pqC a a C                                                           (5) 

 

It should be noticed that under orthogonal transformations some scalar values related to the 

components of B  and C  do not change, which are called invariants of these quantities.  For the 

vector B  there is only one invariant, which is the length BL  of this vector.    In terms of 

components, this invariant is 

2 B i iL B B                                                                (6) 

 

For the second order tensor C , its three eigenvalues are the three independent invariants.   The 

eigenvalue problem is defined as 

ij j iC v v                                                              (7) 

where the parameter   is the eigenvalue or principal value and the vector v  is the eigenvector or 

principal direction.  The eigenvalue problem (7) can be written as 

  0 ij ij jC v                                                         (8) 

The condition for (8) to possess non-trivial solution for iv  is 

 det 0 ij ijC                                                      (9) 

which in terms of elements can be written as 

11 12 13

21 22 23

31 32 33

det 0






 
   
  

C C C

C C C

C C C

                                    (10) 

This gives the cubic characteristic equation for   as  

3 2 0     C C CI II III                                              (11) 

where the real coefficients CI , CII  and CIII  are  

 trace C iiI CC                                                    (12) 
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     2 221 1
trace trace 

2 2
         C ii ij jiII C C CC C                      (13) 

  1
det

6
  C ijk pqr ip jq krIII C C CC                                       (14) 

The symbol  ijk  in (14) is the alternating or Levi-Civita symbol.   

 

Let us call the eigenvalues 1 , 2  and 3 . The cubic equation (12) with real coefficients has at 

least one real root.  Therefore, in any case, one eigenvalue and its corresponding eigenvector are 

real, which we denote as the third eigensolution 3  and  3v .   We notice that the other two 

eigenvalues 1  and 2 , and their corresponding eigenvectors  1v  and  2v are either real or 

complex conjugate of each other.  As a result, we can see that 

1 2 3    CI                                                        (15) 

1 2 2 3 3 1       CII                                                 (16) 

1 2 3  CIII                                                           (17) 

 

It should be mentioned that the vector v  is usually normalized such that it becomes a unit vector, 

that is 

1i iv v                                                              (18) 

where iv  is the complex conjugate of iv .   

 

Instead of the eigenvalues we may use their combinations CI , CII  and CIII   as the new 

invariants, which can be expressed directly in terms of the elements of the tensor.  Therefore, the 

real values CI , CII  and CIII  are called the fundamental invariants of the tensor C  .  

 

A second order tensor P  is symmetric, if  

ij jiP P                                                              (19) 

 
The eigenvalues of the symmetric tensor ijP  are all real and their corresponding eigenvectors are 

mutually orthogonal for distinct eigenvalues or can be taken mutually orthogonal for repeated 



5 
 

eigenvalues.  This means there is a primed orthogonal coordinate system 1 2 3x x x   , where the 

representation of ijP  is diagonal, that is 

11

22

33

0 0

0 0

0 0

 
       

  
ij

P

P P

P

                                                (20) 

 
A second order tensor Q  is skew-symmetric, if  

 ij jiQ Q                                                        (21) 

It can be easily shown that the determinant of this tensor vanishes; that is 

 det 0 QIII Q                                                 (22) 

 

This in turn shows that at least one of the eigenvalues of the skew-symmetric tensor ijQ  is zero. 

 

We notice that the symmetry and skew-symmetry character of tensors are preserved in 

orthogonal transformations.  Interestingly, the general second-order tensor ijC  can be 

decomposed into the unique sum of its symmetric  ijC and skew-symmetric  ijC  parts, such that 

    ij ij ijC C C                                                          (23) 

where 

     
1

2
  ij jiij jiC C C C                                                 (24) 

     
1

2
   ij jiij jiC C C C                                                (25) 

Notice that here we have introduced parentheses surrounding a pair of indices to denote the 

symmetric part of a second order tensor, whereas square brackets are associated with the skew-

symmetric part. 

 

3.  Fundamental heat conduction theory 
 
Consider the heat conduction in a heterogeneous anisotropic solid material continuum at rest.  In 

continuum mechanics, it is postulated that the amount of heat energy flow through a surface 

element dS  with outward directed unit normal vector in  is nq dS , where nq is the heat flux or 
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thermal flux.  Let us denote 1q , 2q  and 3q  as the heat fluxes through surfaces with unit normal in 

the direction of coordinate axes 1x , 2x  and 3x , respectively.  It can be shown that these 

quantities define a heat flux vector i iqq e  (see for example Carslaw and Jaeger [3]).  As a result 

of this, we have the relation  

  n i iq q nq n                                                      (26) 

 for the heat flux nq . 

 

The combination of the first and second law of thermodynamics [2] results in the Clausius-

Duhem inequality  

, 0i iq T                                                            (27) 

This inequality shows that the heat flux vector cannot have any positive component in the 

direction of temperature gradient.   

 
3.1. Linear heat conduction theory 
 
For linear heterogeneous anisotropic material, Duhamel’s generalization of Fourier’s heat 

conduction law [4] is 

,i ij jq k T                                                           (28) 

Here the tensor k  is the material thermal conductivity tensor, which can vary from point to 

point.  The minus sign in (25) assures that the heat flow occurs from a higher to a lower 

temperature.  In terms of components, the conductivity tensor in the original coordinate system 

1 2 3x x x  can be written as 

11 12 13

21 22 23

31 32 33

 
      
  

ij

k k k

k k k k

k k k

                                                (29) 

Because it is required that the linear relation (28) be invertible, the conductivity tensor needs to 

be non-singular, that is 

 det det 0   ijkk                                                (30) 
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Since we have not established the symmetry character of ijk , the nine components of  ijk  are 

independent of each other at this stage.  Therefore, the conductivity tensor ijk  is specified by 

nine independent components in the general case. 

 

By decomposing the thermal conductivity tensor ijk  into symmetric  ijk  and skew-symmetric 

 ijk  parts, we have 

   ij ij ijk k k                                                       (31) 

where 

     
1

2 ij jiij jik k k k                                                (32) 

     
1

2 ij jiij jik k k k                                                 (33) 

 

In the general case, the tensors  ijk  and   ijk  are specified by six and three independent 

components, respectively. 

 

By using the relation (28) for heat flux, we can write the Clausius-Duhem inequality (27) as  

, , 0ij i jk T T                                                          (34) 

 

Since  ijk  is skew-symmetric, we have 

  , , 0i jijk T T                                                          (35) 

and 

 , , , ,ij i j i jijk T T k T T                                                    (36) 

 

Therefore, the Clausius-Duhem inequality can be written as  

  , , 0i jijk T T                                                        (37) 

which requires that the tensor  ijk be positive definite.  However, the Clausius-Duhem inequality 

does not impose any restriction on the tensor  ijk .   In the following section, we prove that  ijk  
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vanishes based exclusively on tensor analysis.  It should be emphasized that this proof is 

independent of the second law of thermodynamics and Clausius-Duhem inequality (27), which 

impose only the positive definite condition restriction on the symmetric part of the tensor  ijk . 

 

4.  Symmetric character of the conductivity tensor 
 
Consider the heat conduction law in the original coordinate system 321 xxx  

,i ij jq k T                                                           (38) 

 

Let us look for a direction of temperature gradient ,iT , which is parallel to the heat flux vector, 

that is 

, i iq T                                                           (39) 

 

Therefore, by using (39) in (38), we obtain the eigenvalue problem 

, ,ij j ik T T                                                          (40) 

 

By considering the normalized unit vector v  in the direction of the principal direction ,iT , we 

obtain the eigenvalue problem as 

ij j ik v v                                                           (41) 

which can be written as 

  0 ij ij jk v                                                      (42) 

Therefore, the condition for (42) to have a non-trivial solution for iv  is 

 det 0 ij ijk                                                    (43) 

This is the characteristic equation for the tensor ijk , which can also be written as 

11 12 13

21 22 23

31 32 33

det 0






 
   
  

k k k

k k k

k k k

                                       (44) 

As a result, the characteristic equation is the cubic equation  
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3 2 0     k k kI II III                                               (45) 

where 

 trace k iiI kk                                                     (46) 

     2 221 1
trace trace 

2 2
         k ii ij jiII k k kk k                      (47) 

  1
det

6
  k ijk pqr ip jq krIII k k kk                                      (48) 

 

Since kIII  is non-zero, all eigenvalues are non-zero.  Therefore, the characteristic equation (45) 

has at least one real non-zero eigenvalue 3  with the corresponding real normalized eigenvector 

 3v , where 

   3 3 1i iv v                                                         (49) 

 

It should be mentioned that the relation (49) shows that the normalized eigenvector  3v  is 

specified by two independent values in the original coordinate system 321 xxx . 

 

Now we choose the orthogonal coordinate system 1 2 3x x x    such that the axis 3x  coincides with the 

direction of this real unit eigenvector  3v .   Therefore, we have 

  3

0

0

1


 
    
 
 

i                                                        (50) 

 

Let us denote the plane normal to this direction as  .  In this plane, we choose the orthogonal 

axes 1x  and 2x  arbitrarily.   The Fourier’s heat conduction law in this special primed coordinate 

system 1 2 3x x x    becomes 

,   i ij jq k T                                                         (51) 

As a result, for the eigenvalue problem (41) in this special primed coordinate system 1 2 3x x x    ,  we 

have 
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  ij j ik v v                                                         (52) 

where the conductivity tensor is represented in the form 

11 12 13

21 22 23

31 32 33

   
         
    

ij

k k k

k k k k

k k k

                                              (53) 

By examining the eigenvector (50) in the eigenvalue problem (52), we obtain 

13

23

33 3

0

0



   
       
      

k

k

k

                                                      (54) 

As we can see, this relation requires that 

      13 0 k , 23 0 k  , 33 3 k                                             (55) 

Therefore, the representation of the conductivity tensor in the special primed orthogonal 

coordinate system 1 2 3x x x     reduces to 

11 12

21 22

31 32 33

0

0

  
        
    

ij

k k

k k k

k k k

                                               (56) 

 

Since the determinant of the conductivity is invariant, we have from (30) 

11 12
33

21 22

det det 0
  

         
ij

k k
k k

k k
                                      (57) 

This obviously requires 

33 3 0  k                                                        (58) 

and 

11 12
11 22 12 21

21 22

det 0
  

        

k k
k k k k

k k
                                     (59) 

 

Now let us consider the temperature field, such that 

 1 2,    T T T x x                                                 (60) 

 

As a result, the relation (51) for the heat flux becomes 
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             1 11 ,1 12 ,2      q k T k T  

                 2 21 ,1 22 ,2      q k T k T                                                  (61) 

             3 31 ,1 32 ,2      q k T k T   

We notice that one should be able to obtain ,1T  and ,2T  for given heat flux    1 2 3      iq q q q .  

However, the system (61) for ,1T  and ,2T  is over-determined.  Therefore, there must be a linear 

dependency among these equations. 

 

By scrutinizing the relation (59), we realize that the first two equations 

   1 11 ,1 12 ,2      q k T k T                                                  (62) 

               2 21 ,1 22 ,2      q k T k T  

are the required set of equations to obtain  ,1T  and ,2T  for given heat flux components  1q  and 

2q .  As a result, the components of temperature gradient are explicitly expressed as 

  ,1 22 1 12 2
11 22 12 21

1      
   

T k q k q
k k k k

                                      (63) 

           ,2 11 2 21 1
11 22 12 21

1      
   

T k q k q
k k k k

  

 

From these relations, it is clearly seen that ,1T  and ,2T  are independent of the component 3q .  

Therefore, the last equation in (61) has to be trivially satisfied for any arbitrary given 1q  and 2q .  

This condition requires 

 3 0 q ,  31 0 k ,  32 0 k                                                          (64) 

 

As a result of this, the conductivity tensor is specified by five independent elements in the 

special primed coordinate system 1 2 3x x x   ; that is 

 

11 12

21 22

33

0

0

0 0

  
        

  
ij

k k

k k k

k

                                                  (65) 
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The components of the conductivity tensor in the original unprimed coordinate system 321 xxx  

are obtained by using the transformation 

ij mi nj mnk a a k                                                           (66) 

 
where 

 3
3 i ia v                                                              (67) 

 
or explicitly 

 3
31 1a v  ,    3

32 2a v ,      3
33 3a v                                         (68) 

 

Because of the normalizing condition (49), the relations in (68) enforce only two independent 

constraint values in (66).   As a result, the conductivity tensor ijk  is specified by seven 

independent elements in the original coordinate system 321 xxx . 

 

This result is in contradiction with our original statement that the conductivity tensor ijk  is 

specified by nine independent components.  To resolve this inconsistency, we consider the 

symmetric and skew-symmetric parts of the tensor ijk .  It is seen that the symmetric tensor  ijk  

and skew-symmetric tensor  ijk  cannot be simultaneously specified by six and three independent 

components any more.  For further investigation, we consider the three following possible cases:    

 

Case (i).  ijk  and  ijk  are specified by four and three independent values, respectively.  

However,  ijk  is a general symmetric tensor with six independent values.  This contradiction 

requires  

  0ijk ,   ij ijk k                                                       (70) 

However, we notice that for this case 

 det det 0       ij ijk k                                                  (71) 

which violates the non-singularity condition for ijk .  This case is obviously not acceptable. 
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Case (ii).  ijk  and  ijk  are specified by five and two independent values, respectively.  This 

contradicts with the generality of the conductivity tensor.  As a result, both tensor parts vanish; 

that is 

      0  ij ij ijk k k                                                      (69) 

Therefore, this case also is not acceptable. 

 

Case (iii).  ijk  and  ijk  are specified by six and one independent values, respectively.  However, 

 ijk  is a general skew-symmetric tensor with three independent values.  This contradiction 

requires  

  0ijk                                                             (72) 

 

Consequently, it is seen that this case is the only acceptable case, which states that the 

conductivity tensor is symmetric 

   ij ijk k                                                           (73) 

This simply means 

ij jik k                                                            (74) 

 

Therefore, the general conductivity tensor is specified by six independent components.  Because 

of this symmetry character, the eigenvalues of this tensor are real and their corresponding 

eigenvectors are orthogonal.  This shows that in our primed coordinate system 1 2 3x x x   , the 

conductivity tensor given by (65) is specified by four independent elements such that 

                 12 21 k k                                                                        (75) 

 

As a result, we can choose the axes 1x   and 2x   along the other orthogonal eigenvectors such that 

the conductivity tensor becomes diagonal, that is 

11

22

33

0 0

0 0

0 0

 
       

  
ij

k

k k

k

                                               (76) 
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where, we have 

11 1 k ,  22 2 k ,   33 3 k                                           (77) 

 

It is seen that the Clausius-Duhem inequality (37) can be written as  

, , 0ij i jk T T                                                         (78) 

 

Since ijk  is non-singular and symmetric, this inequality which requires that the tensor ijk  be 

positive definite.  This means that all eigenvalues (77) are positive. 

 

As we mentioned before, the second law of thermodynamics and Clausius-Duhem inequality do 

not have any role here in establishing the symmetry character of the conductivity tensor.  Our 

proof has been solely based on the tensorial character of quantities in Duhamel’s generalization 

of Fourier’s heat conduction law (28) by using some fundamentals of algebra. 

 

5.  Conclusions 
 
By using arguments from tensor analysis and linear algebra, the symmetric character of the 

conductivity tensor for linear heterogeneous anisotropic material has been established.  This 

shows that classical continuum mechanics can provide the mathematical reason for the 

symmetric character of the conductivity tensor, which is a necessary condition for having the 

consistent tensorial relations in classical heat conduction theory. 

 

The method of proof here shows the subtle character of the tensors and their interrelationships, 

which has not been fully utilized in studying physical phenomena from this mathematical view.  

By using the character of tensor relations, we may find important results, which could not have 

been imagined previously in classical continuum mechanics. 

 

Interestingly, the symmetric character of the resistivity tensor in Ohm’s law for electric 

conduction and the diffusion coefficient tensor for Fick’s law in mass transfer and other diffusive 

systems can be established using analogous methods. 
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