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                             In this article we determine the net magnetic forces  Fm developed on the 

                                  extended electron 
  
which is moving in a constant magnetic field B  with the 

                                  velocity  V  .  The electron has two particular motions :  parallel and normal to  

                                  the external magnetic field 
 
.  

                                  Part I :   When the electron moves parallel to  B  (  V   B ) , the net magnetic force 

                                  Fm  produced on the electron is zero :  Fm = 0 .  

                                  Part II :  When the electron moves normally to  B ( V  B ) , two opposite forces  F    

                                  and  F’  are produced on the electron  :  F   is the resultant of all magnetic forces  fm    

                                  produced on surface dipoles of the electron :  F  =  fm  ;  and F’  is  the magnetic 

                                  force produced on the core ( -q0 )  of the electron . The net magnetic force  produced  

                                  on the electron is thus  Fm = F + F’ .  

                                  Part  III :   These magnetic forces  ( fm , F , F’, Fm )  will help illustrating  the  

                                  mechanism of radiation of the extended  electron in the magnetic field .    

                            Key words : extended electron , electric dipole (-q ,+q ) , surface dipoles ,  

                                  interior dipoles , the core ( -q0 ) . 

Introduction  

 

The readers are recommended to read the previous article 
1(a) 

: "A new extended model 

for the electron "    to have a view on the extended model of the electron and the 

assumptions for calculations ; since all the calculations in this article will be based on 

this model and the assumptions on the electric and magnetic boundary conditions .  

 

In a nutshell , this extended model of the electron is a version of the image of the 

screened electron by vacuum polarization 
1(a) 

; it is a spherical composite structure 

consisting of the point-charged core (-q0 ) which is surrounded by countless electric 

dipoles (-q ,+q ) as schematically shown by Figs.1 & 2 .  

And hence , in the determination of the net force Fm , we will go through four sections : 

1.  Calculation of forces fm  which are produced on surface dipoles of the extended 

     electron and the resultant F  =  fm .  

2.  Calculation of forces which are produced on interior dipoles of the extended electron. 

     As we will argue in the text , the resultant of these forces cancels out .      

3.  Calculation of the force F'   which is produced on the core  -q0  of the electron . 

4.  Finally , the net force  Fm = F + F' .          

 

To reduce the length of the main text , all long calculations are put into the appendices  

(  A , B  and  C ) ; only the results of these calculations are showed in the main text .  The 

readers who are interested in these calculations can read them in the appendices . 

 

 

 

 

 

 



 2 

Part I : Extended electron moving parallel to the magnetic field  B : 

              (V   B)  
 

To calculate magnetic forces produced on the extended electron we make use of boundary 

conditions
 1(a) 

 to determine the magnetic field  B’  inside of the spherical surface of the 

electron and Lorentz’s magnetic force equation  FL =  q ( V  B )  to calculate magnetic 

forces produced on point charges like  –q  and +q  (of a dipole) and on  –q0  (of the core) .  

As for the direction of the magnetic forces we will use the following rule of  the observer  

( which is equivalent to  the  rule of three fingers of the right hand ) : 

“ An observer standing in the direction of the magnetic field  B , looks at the charge  q  in 

the direction of its motion  V .  If  q  is a positive charge , the magnetic force  fm directs 

in the direction of the right hand of the observer and is considered as a positive force .  

If  q  is  a negative charge , the magnetic force fm directs in the direction of the left hand 

of the observer and is regarded as a negative force ”.      

 

 

I. 1  Magnetic forces  fm  produced on surface dipoles of an extended electron 

         moving parallel to B ( V//B ) 

 

First , let us determine the magnitude and the direction of magnetic forces  fm  produced 

on a surface dipole M  of the extended electron . 

Let’s consider four surface dipoles M , N , P , Q   lying on the same great circle C of an 

electron moving parallel to the external constant magnetic field  B : V // B ( Figs.1 & 2 ).        

 

 

 

 

 

 

 

 

 

                                                                                                     

                                                                                                                     

 

 

 

 

 

 

 
Fig.1 .    1 , V  B  :  directions of magnetic               Fig.2 . Another view of the great circle  C  in Fig.1 : 

forces  fm  acting on four surface dipoles  M , N ,            the directions of  fm  on four dipoles M , N , P , Q.   

P , Q  on the great circle C .   

() fm  points  up from the page , 

  fm  points   down from the page .                                        

                                                                                                                          

 
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Calculations of magnitudes of  fm   produced on four surface dipoles  M , N , P , Q   are 

shown in the Appendix  A . The results are : 

 

When    1  :  f’t    f’n   ,  fm  =  f’t  -  f’n  =  (  - 1 ) q V B sin cos  :  fm  ()  (A.1)    

 where   0        ( Fig.5 )    . 

 

 

 

 

 

 

 

 

 

 

 

                                                                                        

 

 

 

 

 

 

 

 
Fig.5 .    1 , V  B  :  the magnetic force  fm                     Fig.6 .    1 , V  B :  on the upper hemisphere                              

acting on dipole  M  points up from the page ()                  fm  tend to rotate the electron clockwise ;  

                                                                                               on the lower hemisphere  fm  tend to rotate the  

                                                                                               electron  counterclockwise  ( if the electron is 

                                                                                               viewed from above ) .  

 

 

 

 

The same calculations on the remaining dipoles  N , P , Q  give the results ( Figs.1 & 2) :   

-   on dipole N  :  fm     , 

-   on dipole P   :  fm ()   , 

-   on dipole Q  :  fm      ,       

The magnitude of  fm  is the same on four dipoles  M , N , P , Q : 

 

                                   fm  =  (  - 1 ) q V B sin cos                                    (1)  or  ( A-1)                                         

 

where   1  and  0      is the angular position of the surface dipole .   

On the equator of the electron :   = /2  ,  cos = 0  , so  fm = 0 . 

At two poles of the electron  :   = 0  and   =  , sin = 0 , so  fm = 0 . 


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Fig.6  shows the case    1  : four forces  fm  acting on four dipoles  M , N , P , Q   the 

they are tangent to the spherical surface of the electron . 

On the upper hemisphere two forces fm  at  M and  N  form a couple of forces tending to 

rotate the electron clockwise .  On the contrary, two forces  fm  at P and Q  on the lower 

hemisphere form a couple of forces tending to rotate the electron counterclockwise . 

These two couples of forces cancel out : they have no effect on the motion of the electron 

in  B  because the net force  Fm =  fm  = 0  and the net torque  T =  = 0 . 

 

When    1 : f’n   f’t  , fm  reverse  their directions on all four dipoles M , N , P , Q , 

and their magnitudes  are  

  

                                             fm  =  f’n  -  f’t  = ( 1 -   ) q V B sin cos        (2)  or (A-2)                                          

 

 Two expressions  (1)  and  (2)  or  (A-1)  and  (A-2)  are calculated in the Appendix  A .     

 

This result can be generalized as follows :  magnetic forces produced on all surface 

dipoles on the upper hemisphere counteract  magnetic forces on the lower hemisphere, 

and hence they have no effect on the motion of the electron in  B . 

 

In short , when an extended electron moves parallel ( or anti-parallel ) to B , magnetic 

forces  fm  are developed on all surface dipoles but their net force  fm  and net torque   

   cancel  out , and thus they have no effect on the motion of the electron (V  B  ).  

 

I. 2   The resultant of magnetic forces produced on all interior dipoles of the  

         extended electron is cancelled out . 

                  

 All interior dipoles have the same velocity  V   and  are subject to the same magnetic 

field  B’  inside the electron .  Two magnetic forces produced on two ends of an interior 

dipole ( -q , +q ) are thus equal and opposite ;  they cause a slight “rotation on-the-spot ” 

( re-orientation ) of all electric dipoles , but the resultant force is zero . So , the resultant 

of all magnetic forces produced on all interior dipoles is zero .  

        

I. 3  Magnetic force produced on the core –q0   of the extended electron is zero .       
 

The core (–q0 )   is a point charge at the center of the electron where the magnetic field  B’  

is created by the external field  B .  Because of the spherical symmetry of the structure of 

the electron ,  B’ must be  parallel to  B . So when the electron moves parallel to  B  , the 

core –q0   moves parallel to B’  and hence the magnetic force that  B’ produces on the core 

is zero ( according to the Lorentz 's force equation when  V  B  ) . The calculation of the 

magnitude of  B'  is presented in the appendix  C . 

  

I. 4  The net magnetic force Fm  produced on the extended electron is equal to zero 

        when V  B  
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We have determined magnetic forces produced on different components of the extended 

electron when it moves parallel to the external magnetic field  B  (  V  B  ) : 

-  the resultant of forces produced on all surface dipoles is zero ( section  I.1 ), 

-  the resultant of forces produced on all interior dipoles is zero ( section  I.2 ) , 

-  the magnetic force produced on the core  (–q0 ) is zero  (section  I.3 ) . 

 

So , the net magnetic force  Fm  which is the sum of these forces is equal to zero .  

  

 

Conclusion  :  This result appears to be the same as the Lorentz magnetic force  FL 

produced on a point electron of electric charge   e  that moves parallel to the external 

magnetic field  B :  

                                         FL =  e ( V  B )  = 0  

 

This expression means that the magnetic force  FL  is simply not produced on the point 

electron , or in other words ,  FL  does not exist . And hence it has no effect at all on the 

electron .  

But for the extended electron , the elementary magnetic forces  fm  ≠  0 , although their 

resultant    Fm =  fm  = 0  as they are shown in Fig.6 .  As noted  from two expressions  

(1) and  (2) , fm  =  0  only on the equator and at two poles ( north and south ) and on the 

core  of the extended electron,  but  fm ≠  0   elsewhere .   

These non-zero magnetic forces  fm cause the electric dipoles of the electron to be  

slightly re-oriented , leading to a change in its permeability    ; and this change affects 

the effective electric charge of the electron  .   

 

The readers who are interested in this topic are invited to read the thought experiment 

described in section  4   of the article 
1(b) 

: " A Foundational Problem in Physics : Mass 

versus Electric Charge "  which tried to prove the variability of the effective electric 

charge of the extended electron in the magnetic field.  

 

 

 Part II  :  Extended  electron moving normally to  B  :  V  B 

 
When an extended electron moves normally to the external constant magnetic field  B , 

two opposite forces  F  and  F’  are produced on the electron  :  F   is the resultant of all 

magnetic forces  fm produced on surface dipoles of the electron ( i.e.,  F  =  fm ) ,  and 

F’  is  the magnetic force produced on the core ( -q0 )  of the electron . The net magnetic 

force is thus Fm   =  F + F’ .   

As before , to determine the net force Fm , we have to go through four sections : 

1.  Calculation of forces fm  which are produced on surface dipoles of the extended 

     electron and the resultant F  =  fm .  

2.  Calculation of forces which are produced on interior dipoles of the extended electron. 

     As we will argue in the text , these forces cancel out .      

3.  Calculation of the force F'   which is produced on the core  -q0  of the electron . 

4.  Finally , the net force  Fm = F + F' .          
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II . 1 : Determination of  fm  on surface dipoles  and the resultant F  =  fm 

 

First we determine the direction and magnitude of  fm  produced on surface dipoles lying 

on three particular great circles C1 , C2  and  C3  ( Figs.7 , 8 &  9 ) .  The results of these 

three steps will help determine fm on an arbitrary surface dipole in step 4  .  

 

In the following figures , V  B  and the magnetic force-axis  is normal to the plane   

( V , B ) . 

As before ,  we use the rule of the observer (stated at the beginning of  Part I ) to 

determine the direction of the magnetic force . 

 

      

 

 

 

 

 

                                                                                                        

 

     
 

 

 

 

Fig.7 .  The great circle  C1          Fig.8 .  The great circle  C2    lies in the        Fig.9 .  The great circle C3   lies   

lies in the horizontal plane          plane  ( B , V ) .                                            in the plane ( B , fm ) .   

( V , fm ) .  

 

Step 1 : Magnetic forces fm produced on surface dipoles lying on the great circle C1   

       

C1   is the equatorial circle of the electron ; it lies in the plane ( V , fm ) ( Fig.7 ) . 

Calculations in Appendix  B  (for step 1)  give the magnitudes and directions of the 

forces  fm  : 

Fig.14 : for    1  : all  forces fm  point to the left of the observer and have magnitudes 

                                 fm  =  ft  -  f’t  =  ( 1 -  ) q V B    

Fig.15 : for    1  :  all forces fm point to the right of the observer and have magnitudes  

                                fm  =  f’t  -  ft  =  (  - 1 ) q V B                                        (3)  or  (B.1)        

All forces  fm produced on surface dipoles lying on C1 are parallel to each other because 

they are perpendicular to the plane ( V , B )  and have equal magnitude . 
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Observer                                                                         Observer                                                                                                                                                                                                                                   
 

Fig.14 .  For    1  :  all magnetic forces  fm                   Fig.15 .  For     1  : all magnetic forces  fm                                        

produced on the great circle  C1  point to the left               produced on the great circle  C1  point to the right         

of the observer .                                                                 of the observer .  

 

 

Step 2 :  Magnetic forces fm produced on surface dipoles lying on the great circle C2 

       

The great circle C2  lies in the plane ( B , V ) ( Fig.8) .  Calculations in Appendix  B   

(for step 2)  give the magnitudes and the directions of the forces  fm  : 

 

Fig.20 : For   1 : all magnetic forces  fm  produced on the great circle C2   point to the 

             left of the observer and have magnitude  

  

                            fm  =  ft  -  f’t  =  ( 1 -  ) q V B sin
2 
      

 

Fig.21 : For   1 : all magnetic forces  fm  produced on the great circle C2   point to the 

             right of the observer and have magnitude 

  

                            fm  =  f’t  -  ft  =  (  - 1 ) q V B sin
2 
                                  (4) or ( B.2)  

 

All magnetic forces  fm  produced on  C2  are parallel  to each other because they are 

perpendicular to the plane ( V , B)  , but  their magnitudes depend on the angle     

(  0      ) , the angular position of the dipole .  

 

 

 

                                                                                      

 

                                                                                     

 

 

 

 

                                                                  

 

           

 

 

 
 

 

Fig.20 . For    1 :  all magnetic forces  fm                  Fig.21 . For    1 :  all magnetic forces  fm                   

produced on the great circle  C2   point to the                  produced on the great circle  C2   point to the 

left of the observer .                                                         right of the observer .     
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Step 3 :  Magnetic forces fm produced on surface dipoles lying on the great circle C3  

      
The great circle  C3  lies in the plane ( B , fm ) :  Fig.9 

Calculations in  Appendix  B  ( for step 3 ) give the following results : 

  

 Fig.26 :  For    1  : all magnetic forces  fm  produced on C3  point to the left of the 

              observer . Magnitudes of  fm are      

                             

                            fm  =  ft  -  f’t  =  ( 1 -  ) q V B sin     

 

Fig.27 :  For   1  :  all magnetic forces  fm  produced on C3  point to the right of the 

              observer . Magnitudes of  fm are     

 

                           fm  =  f’t  -  ft  =  (  - 1 ) q V B sin
 
                                    (5) or (B.3)  

 

Magnetic forces  fm   produced on  C3 are not parallel to each other ; their magnitudes 

depend on the angle   .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                        
Fig.26 . For    1 : all magnetic forces  fm                     Fig.27 . For    1  : all magnetic forces  fm                         

produced on  C3  point to the left of the observer .            produced on  C3  point to the right of the observer . 

 

 

We have determined the directions and magnitudes of  magnetic forces  fm  produced on 

three great circles  C1 , C2  and  C3 .  By comparing the magnitudes of  fm on these great 

circles  we find that  fm  on C1  ( which is the equator of the electron )  are strongest .  

 

 

Figs.28 & 29  show an overall view of these forces  fm on three great circles C1 , C2   and 

C3   in two cases   1   and    1  respectively . 

 

 



fm=0

N
fm

fm

fm

fm

fm

fm

fm=0

fm

fm

fm

fm=0

fm

fm

fm=0

N



fm
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Fig.28 . For    1 :  all magnetic forces  fm                       Fig.29 . For    1 : all magnetic forces  fm                        

produced on surface dipoles lying on three                          produced on surface dipoles lying on three             

great circles  C1  , C 2 ,  C 3   point to the left                         great circles  C1  , C 2 ,  C 3   point to the right 

of the observer .                                                                    of the observer .   

 

 

These two overall views of these forces  fm  allow us to confirm the direction of  the 

magnetic force  fm  produced on an arbitrary surface dipole  A  : 

 -     fm points to the left of the observer when      1    as shown in Fig.30 

 -     fm points to the right of the observer when    1    as shown in Fig.31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.30 . For    1 :  magnetic force  fm  produced        Fig.31. For    1 : magnetic force  fm  produced               

on an arbitrary surface dipole  A  points to the left         on an arbitrary surface dipole  A  points to the right 

of the observer ; and hence its projection  fm*  on         of the observer ; and hence its projection  fm* on  

the force-axis also points to the left : fm* is thus           the force-axis also points to the right : fm* is thus                         

regarded as a negative force .                                          regarded as a positive force . 

fm

fm

fm

fm
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The magnitude of  fm  and the resultant  F  =  fm  are calculated in the Appendix  B 

( for step 4 ) .  The projection  fm*  is used in the calculation of the resultant  F .                                                                                                             

 

 

Step 4 : Calculation of magnitude of  fm  produced on an arbitrary surface dipole 

              and the resultant  F  =  fm      

 

Let’s consider an arbitrary surface dipole  A  ; n  is the normal at  A ;  t  is the tangent at  

A  , lying in the plane (OB , n) ;    =  ( B , n ) ;    =  ( V , Bt )  =  ( V , t ) ;  V  B  . 

 

The appendix  B  ( for step 4 ) gives the magnitude of   fm  produced on the dipole  A  : 

-   for    1    :  fm  =  ft  -  f’t  =  ( 1 -  ) q V B sin sin                             (6) or (B.4)               

-   for    1    :  fm  =  f’t  -  ft  =  (  -1 )  q V B sin sin                             (7) or (B.5) 

   

Since  fm  are symmetric around the force-axis ,  their resultant  F  =  fm  =  fm*.    

When    1 ,   F  points to the left as shown in  Fig.32   and is thus considered as a 

negative force .  

When   1  ,  F  points to the right as shown in  Fig.33  and is  considered as a positive 

force .   

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                

 

 

 

 
Fig.32 . For    1 : the resultant force  F  of all          Fig.33 . For    1 : the resultant force  F  of all           

magnetic forces  fm  produced on all surface              magnetic forces  fm  produced on all surface              

dipoles of the electron points to the left of the             dipoles of the electron points to the right of the 

observer :  F  is negative .                                             observer :  F  is positive . 

 

 

Let    be the angle between  fm and the force-axis , we have  fm*  =  fm cos  ; 

and hence , in magnitude   F   =  fm*  =  fm cos  ;  where fm  are given by (6) and (7)             

Therefore ,  for    1    :  F  =   ( 1 -  ) q V B sin sin cos    

                    for    1    :  F  =   (  -1 )  q V B sin sin cos 
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 Using the index  i   to indicate the surface dipole  i  and  n  is the total number of surface 

dipoles , these two expressions can be written in the general form       

 

For   1  ( Fig.32 )    F  =  ( 1 -   ) q V B  


n

i 1

sini sini cosi                                   (8)  

Since  F  is negative , the sum  


n

i 1

sini sini cosi      0                                                                  

For    1 ( Fig.33 )   F  =  (  - 1  ) q V B  


n

i 1

sini sini cosi                                   (9)       

Since  F  is positive , the sum 


n

i 1

sini sini cosi       0                                             (10)  

 

Through four steps 1 , 2 , 3 , 4  we have finished determining the direction and magnitude 

of the resultant force  F  which is produced on surface dipoles of the extended electron .   

Its direction is shown in two figures 32 & 33 for    1   and    1 , respectively . 

Its magnitude is given by two expressions (8)  and  (9) for two cases    1  and    1 .  

 

II. 2   The resultant magnetic force produced on interior dipoles  is zero   

 

Here we repeat the Section I.2  (on page 4)  that the resultant magnetic force produced on 

all interior dipoles of the electron cancels out .  

But since these magnetic forces exist and create couples of forces on all interior dipoles , 

they cause a re-orientation on-the-spot of these dipoles .  The result is a change in the 

permeability    of the electron which affects its effective electric charge  in a variable 

magnetic field . 

 

II. 3  Calculation of the magnetic force  F’ produced on the core (- q0 ) of  the electron 

 

To calculate the magnetic force  F’ produced on the core ( -q0 ) we need to know the 

magnetic field  B’  created on the core O  by the external field  B . B’  is determined in 

Appendix C :  B'  is parallel to B  because of the spherical symmetry  of the structure of 

the extended electron ; it has magnitude 

 

                                     B’   =     B                                                                  (11) or (C.6)                           

 

This means that when the magnetic field  B  is applied on the electron , the magnetic field 

B’  parallel  and equal to   B   is produced at the core of the electron . 

Therefore , the magnetic force  F’  produced on the core ( - q0  )  has magnitude  

                  

                                  F’  =  -  q0   V B        ( V B )                                                      (12)  

 

F’  is  negative , i.e.,  F’   points to the left of the observer as shown in Fig.35  
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                                                                  Fig.35 .  B  is the external magnetic field ; 

                                                                              B’  is the magnetic field produced on the core . 

                                                                              F’  is negative , i.e.,  F'  points to the left of the 

                                                                                             observer .                     

 

 

 

 

 

 

 

 

 

 

 II.4 Calculation of the net magnetic force Fm  produced on the electron when V  B 

 

So , the net magnetic force  Fm  produced on the extended electron when it moves 

normally to the magnetic field  B  is the sum   Fm = F  +  F’ .   

While  F’  always points to the left of the observer for all values of   ( Fig.35 ) , F  has 

two possible directions depending on   :   

 

-  for    1    F  points to the left of the observer :    Fig.32 

-  for    1    F  points to the right of the observer :  Fig.33 

Therefore ,  we come to two possible situations showed in two Figs. 36 & 37 below , of 

which we will choose one, based on two following experimental properties of the real  

electron :    

 

1)  Experiments of injecting electrons normally to the magnetic field have showed that 

the radius of curvature  R  of the trajectory of the electron increases with its velocity  V   

and when  V   c  ,  R     ;  that is , when the velocity of the electron approaches  c , 

the electron traverses the magnetic field without deflection ; and this implies that   

Fm  0  as  V  c :  this is a required condition  for the magnetic force  Fm .    

 

Now let us examine  Fig.36  for    1 : both F  and  F’  are negative, they point to the 

left of the observer ; the net force Fm ( = F + F’ ) is thus always negative ; i.e., in the 

interval    1  Fm cannot tend to zero  ; the requirement  Fm  0   is not satisfied ;  so 

we reject the interval    1  :  i.e.,  the case shown in Fig.36 is rejected .  

In Fig.37  for    1  :  F    0  and  F’  0  , they point in opposite directions  ;  so ,   

Fm   = F + F’ = 0  when  F = - F’   ; the requirement  Fm  0  can be satisfied , so we 

accept this case     1 : i.e., the case shown in   Fig.37 is acceptable . 

 

Therefore    1 so that  Fm can tend to zero as  V → c . 

' 0
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 When    1 ,  from Eqs.(9) and (12) we have   

     Fm  =  F + F’  =  (  - 1) q V B
n

i

sini  sini  cosi   -    q0  V B                           (13)   

or            Fm =  [ (  - 1) (q / q0 )  
n

i

sini  sini  cosi  -    ]  q0  V B                         (14)                                                         

In Eq.14  we set     b     (q / q0 )  
n

i

sini  sini  cosi                                                (15)  

b   is thus a dimensionless , positive number because the sum  
n

i

sini  sini  cosi   

is positive according to Eq.(10)  .   Eq.(14)  becomes   

                                                                     

                                 Fm  =  [  ( b-1 ) – b ] q0  V B                                                       (16) 

 

So , the net magnetic force  Fm  developed on an extended electron when  V  B  is 

modified by the factor  [ ( b-1) – b ]   depending on two parameters     and  b  which 

represent the magnetic characteristic and the physical structure of the extended electron 

respectively .The requirement   Fm  0  as V  c   (for the electron to traverse the 

magnetic field  B  without deflection )  occurs when the factor [ ( b-1) – b ]  0 ; i.e., 

when    
1b

b
.   Since    1 , 

1b

b
 1  gives  b  1.   

2) Experiments on the motion of the electron in  B  ( in the case   V  B )   showed that 

the electron deflects to the left of the observer (who stands in the direction of  B  , 

looking at the electron in the direction of velocity V  as shown in Fig.38 ) . This means 

that the net magnetic force  Fm  is negative; and hence , from Eq.(16) we have 

                                             [ ( b-1) – b ]    0       or       
1b

b
 

So , in the Eq.(16) the relative permeability    is greater than 1  but less than  
1b

b
 .   

  

 

 

 

 

 

 

                                                                                                             
 

 

 

 

Fig.36 . V  B ;    1 :  F  and  F’  are both        Fig.37 . V  B ;     1 :  F  is positive ; F’  is negative; 
negative ; their resultant  Fm = F + F’  is thus      their resultant  Fm = F + F’  →  0  when  F → - F’  

always negative ; the condition   Fm → 0             i.e., when   = b / ( b-1 ) ; this case is thus acceptable .   

as  V → c  cannot be satisfied ; so , this   

case is rejected . 
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                                                                          Fig.38 . Shows when     1 the circular orbit of the  

                                                                                         electron in constant  B   when  V  B  .  F  and  F’  

                                                                                         point in opposite  directions :  F  points to the right 

                                                                                         while  F’  to the left of the observer .  The electron 

                                                                                         deflects to the left hand of the observer , this means 

                                                                                         that the net force   Fm (= F + F’)  is  negative .   

 

 

 

 

 

 

 

In short ,  based on two experimental properties of the real electron which travels 

normally to the magnetic field  B , namely : 

-  Fm → 0  as V → c : the electron traverses the magnetic field without deflection ,  

-  Fm  0  when  V  c : the electron deflects to the left hand side of the observer ,  

we come to the actual interval of variation of    :    1         
1b

b
      where  b  1 .  

From (16) the effective electric charge Q of the electron can be deduced as  

  

                                  Q = [  ( b-1 ) – b ] q0                                                                                  (17)    

where   b  1  ,    1         
1b

b
                 

For this interval of     ,  Q  varies in the interval (-q0 , 0 ) . 

 

If we insert  b  from the expression (15) into Eq.9 , we get a simpler expression for  F :   

                                        

                                 F =  (  -1 ) bq0 V B                                                                    (18)       

  

If   = 1  , Q = - q0    ,  F = 0  and  F' = - q0 VB   [ from Eq.(12) ] :  this means that the 

electron has no surface dipoles , but only the core (- q0 )  , i.e., it is a point electron .  

So ,  when   = 1 , the extended electron is equivalent ( in term of charge and force ) to 

the point electron  .  

We note that if  b  is a large number then    
1b

b
≈ 1+   , the interval of variation of    of 

the extended electron becomes  a narrow one  :  1         1+   ;    i.e.,    ≈  1+    .    

Macroscopic magnetic materials that have   ≈  1+    are called  paramagnetic materials 
2
 

such as air (  = 1. 00000037 ) , aluminum ( 1.000021 ) , tungsten ( 1.00008 ), platinum  

( 1.0003 ) , manganese ( 1.001 ) ;  these materials have nonzero permanent magnetic 

moment . The extended electron has its own intrinsic magnetic moment : its spin 

magnetic moment .      


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Conclusion  

 

In this part II , we have come to the Eq.(16) :     Fm  =  [  ( b-1 ) – b ] q0  V B  

which proves that  the magnetic force  Fm   depends on  V  ,  B  and also on two 

parameters    and   b .  While  b , representing the physical structure of the electron , 

may be considered as constant , the relative permeability     changes with the strength of 

the elementary forces  fm  which eventually affects the effective electric charge of the 

electron . 

 

From Eq.(16) we deduce the Eq.(17)  :  

                     Q = [  ( b-1 ) – b ] q0   ,       where   b  1 ,        1         
1b

b
                 

which shows that the electric charge  Q  varies linearly with    , the relative permeability 

of the extended electron .  The variability of    can be explained physically by the  

re-orientation of all electric dipoles inside the electron under the action of the couples of 

forces which are developed on two ends -q  and +q  of the dipole . The re-orientation of 

the dipoles ( already mentioned in sections I.2 , page 4  and  II.2 , page 11 )  causes a 

change in the screening effect
*
  and hence affects the electric charge  Q  of the electron : 

-  as     → 1  ,   Q → -q0    :  the screening effect is negligible ( or zero ): the electric 

   charge of the extended electron tends to that of the core ; i.e., there is no screening 

   effect at all ; 

-  as     → 
1b

b
 ,   Q →  0   : the screening effect becomes maximum : the electric  

   charge of the extended electron tends to vanish .                                                                
 

We conclude that when the extended electron is subject to an external magnetic field , the 

field exerts couples of forces on all electric dipoles of the electron , causes them to be re-

oriented and changes the screening effect on the core - q0  ,  and thus  affects the effective 

electric charge  Q of the electron .  The permeability    is the measure of the strength of 

the screening effect .    

_____________ 

*The screening of the electron by the vacuum polarization  is a concept of QED .  

   The image of the screened electron  and its caption are showed on page 2  of the article 
1(a) 

 "A New Extended Model of the Electron " . 

   The extended model of the electron is a version of this image of the screened electron in which  

   all virtual pairs ( e
- 
, e

+ 
) are replaced by the real electric dipoles (-q +q)  which will be identified  

   as photons when the electron radiates .   

 

 

 

Part III.   Radiation of the extended electron in constant magnetic field  
 

III. 1  Introduction : radiation by forces  
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Radiation process is a tough topic to discuss because of the dual nature of light and the 

unknown structure of the electron that emits light .  In this part III , the extended model of 

the electron
1(a)

 will be used in the discussion of the radiation process .  As for light , it is 

assumed that the electron emits  light that may be particles ( called photons , as 

conceived by Feynman* ) or  it may be a  chunk of self-sustaining field** which 

detaches from the electron and travels through space , as conceived by the classical 

theory of radiation .    

In this article , we choose to consider light as particles which are identified as tiny 

dipoles carrying two opposite charges  -q  and  +q  on their two ends ; these   "electric 

dipoles"  form the outer part of the extended electron 
1(a)

 .  When the electron emits its 

electric dipoles into the surrounding space under the action of an external field , we say it 

is radiating .  

The following presentation will introduce the readers to a novel way of explaining the 

radiation process :  this is radiation by forces  . 

 

 

________________ 
*  Feynman : " I want to emphasize that light comes in this form – particles .  It is very important to know 

that light behaves like particles , especially for those of you who have gone to school , where you were 

probably told something about light behaving like waves . I’m telling you the way it does behave – like 

particles . ”   ( Optics , E.Hecht , p.138 ) 

**  " If the point charge is subjected to a sudden acceleration caused by some external force , then pieces of 

the electric and magnetic fields break away from the point charge and propagate outward as a self-

supporting electromagnetic wave pulse . "  ( Classical Electrodynamics , 1988 ,  H. C. Ohanian , p. 411 )       

  

 

 

 

 

 

 

III. 2  Radiation of the extended electron moving normally to the magnetic field :  

     cyclotron radiation    
 

First let us recall the inherent forces  G  which attract all surfaces dipoles toward the core 

of the electron ; they are centripetal and produced by the self-field  E0   of the electron ;  

Their magnitude is     

 

                                        G  =  [(1/) – 1] q E0                                                                                       

  

which has been determined on page  8 (  Fig.19 )   of the article 
1(a)

 "A New Extended 

Model for the Electron ".   
 

The inherent forces  G  are crucial in the radiation process because they keep all surface 

dipoles attached to the electron until there exist external forces which counteract and 

overcome the forces  G  on certain dipoles ; these dipoles are then set free and emitted 

outwards ; i.e., the electron is radiating .        
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In the previous part ( part II ) , we have determined the magnitudes and directions of the 

magnetic forces  fm  which are produced on all surface dipoles of the electron as shown 

in  Fig.29  in the case   1 ( this  is the case when the extended electron behaves like a 

real electron ) .   

 

Fig.29   shows that on the right hemisphere , fm  point outwards , while  G  always point 

inwards : so , the radiation can occur if  fm  G  in magnitude .  

On the contrary , on the left hemisphere , fm point inwards , i.e.,  in the same direction as 

the inherent forces  G : the radiation cannot occur . 

 

Therefore , the radiation of the electron moving normally to a constant  B   is 

characterized by a beam of radiation which emits straight outwards in the direction of the 

right hand of the observer . ( The beam of radiation is in the same direction as the force  

F that points to the right hand of the observer as shown in Fig.38 ) 

Moreover , the photons of the beam do not issue from the whole surface of the right 

hemisphere , but only from regions alongside the equator of the electron because  fm  are 

strongest there .    

Fig.15 shows forces fm on the great circle  C1  ( the equator ) where fm  are strongest 

(α = π/2 , sinα = 1)  :  fm =  (  - 1 ) q V B  ( Eq.(3) .    

Since  the strength of  fm depends on the product V B  and also on the angular position  

( α ) of the surface dipole , if  on the equator   fm    G  in magnitude , the electron 

cannot radiate .     

 

This is the cyclotron radiation of the electron in constant magnetic field .  

It is different from the synchrotron radiation which occurs in a time-varying magnetic 

field .  The beam ( the cone ) of synchrotron radiation does not emit straight outwards ,   

( like the cyclotron radiation) but bends in the direction of spin of the electron due to the 

spinning forces which are produced  by the induced electric field ( Synchrotron Radiation 

will be discussed in the next article ) .  

  

 

                                                Summary & Conclusion  

 
This article presents a theory on the extended  model 

1(a)
 of the electron which shows that 

its electric charge is an effective one ; it is also intended  to explain the radiation process 

of the extended electron by magnetic forces .   This model is a version of the image of the 

screened electron 
 
in which the virtual pairs  (e

- 
, e

+ 
) are replaced by the real electric 

dipoles (-q +q) . This extended electron is a real particle consisting of a central core (-q0)  

surrounded by countless electric dipoles . When subjected to an external field , the 

actions of the field on these point charges  ( -q ,+q  , -q0 )  create various properties of the 

electron such as the variability of its electric charge , its radiation and its spin .   

 

In two parts I  and  II , we have determined the direction and strength of  the magnetic 

forces  fm  produced on the dipoles of the electron when it moves parallel and normally 

to the constant magnetic field  B . The determination of these forces led to the idea that 
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the electric charge of the electron is not constant but changes with the strength of the  

magnetic forces  fm  that exert on the dipoles of the electron  .  

In the conclusion of part I ( page 5 ) a thought experiment was cited ; it is intended to 

prove the variability of the electric charge of the extended electron when it travels 

parallel to a magnetic field .   

 

In part III , these forces  fm   help explain the radiation process of the electron in the  

magnetic field and in this way they help distinguish the cyclotron radiation from the 

synchrotron radiation when the electron moves normally to the magnetic field . 

 

In the case when the electron  moves parallel to the magnetic field , since the forces  fm 

are tangent to the spherical surface of the electron  (as shown in Figs.1, 2 & 6 , on pages  

2 and  3 of part  I ), it is safe to think that the radiation cannot occur because as 

mentioned previously that the radiation occurs only when  fm  are in opposite direction 

and stronger than the cohesive forces  G   which are inherently centripetal .    

 

As we will see in the coming articles , this extended model of the electron can provide a 

way to explore the mechanisms of radiation and spin of the electron in time-varying 

electric and magnetic fields .  

   

__________________ 
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Appendices 
 

There are three appendices  :  A , B and  C . 

Two appendices  A , B   present the calculations of the forces  fm  and their resultant 

produced on the dipoles of the electron in two cases V  B  and   V  B  .   

The appendix  C  is the determination of the magnetic field  B'  produced on the core  

( -q0 ) of the electron by applying the boundary conditions . 
 

 

   

Appendix  A :  Calculation of  fm when V  B   

 

Magnetic fields  B  and  B’  applied on two ends –q  and  +q  of  surface dipole M  have 

components  ( Fig.3 )  

                              

                              B  =  Bn  + Bt 

                              B’ =  B’n + B’t 

 

Boundary conditions give  B’n  =  Bn   and  B’t  = Bt    

where    is the relative permeability of the electron to the free space ; i.e.,  = ’/0  . 

Fig.3  shows normal and tangential components of  B  and  B’  at two ends of dipole M  :   

V //B  ,      =  ( V, Bn ) ,    =  ( V , Bt )  ,    +    =  /2   hence  sin  =  cos .  

Two point charges  -q  and  +q   of dipole  M  have the same velocity  V .   

B’n  =  Bn  =  B cos  ,  Bt  =  B sin  ,  B’t  =   Bt   =   B sin . 

Fig.4  shows components  fn , f’n , ft , f’t  of magnetic forces acting on two ends –q  

and  +q  of dipole  M ;  their magnitudes and directions are     

-    fn  =  q V Bn sin  =  q V B cos sin  :   fn   ()  (i.e., fn  points up from the page )  

-    f’n  =  fn  =   q V B cos sin      :  f’n       ( i.e., f’n  points down from the page) 

-   ft  =  q V Bt sin  =  q V B sin cos    :  ft      ( ft  points down ) 

-   f’t  =   ft  =   q V B sin cos           :   f’t  ()   (f’t  points up ) 
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Fig.3 .  Normal and tangential components of magnetic      Fig.4 .  Components  fn  , ft , f’n , f’t  of  

fields  B  and  B’  acting on two ends of dipole  M .            magnetic forces acting on two ends of dipole  M. 

                                                                                              -  fn  and  f’t   point up from the page  ()     

                                                                                              -  ft   and  f’n  point down from the page   

 

 

 

We notice that on the negative end ( -q ) of dipole  M  two components   fn  () and  

ft     are equal and opposite , their resultant is thus equal to zero . This is because  

V // B  at this end ( Fig.3 ) . Meanwhile , at the positive end ( +q) of dipole  M  ,  V  and  

B’  are not parallel, and hence  f’n     and  f’t  () , although in opposite direction , 

have different magnitude , their resultant is thus different from zero .   

All four components  fn , f’n , ft , f’t   are perpendicular to the plane ( OB , M ) ; i.e., 

perpendicular to the plane of the great circle  C .  Their resultant  fm   acting on dipole  M  

is     fm  =  fn  +  f’n  +  ft  +  f’t  =  f’n  +  f’t    ( because  fn  +  ft  =  0 ) .  

( Since the dipole is extremely small the resultant  fm  of these four component forces 

can be regarded as applied at one point on the dipole  M ) .      

When    1  :  f’t    f’n   ,  fm  =  f’t  -  f’n  =  (  - 1 ) q V B sin cos  :  fm  ()  (A.1)   

where   0          ( Fig.5  , p. 3)    

 

The same calculations on the remaining dipoles  N , P , Q  give the results : 

-   on dipole N  :  fm     , 

-   on dipole P   :  fm ()   , 

-   on dipole Q  :  fm      ,    ( Figs.1 & 2  , p.2 ) 

The magnitude of  fm  is the same on four dipoles  M , N , P , Q : 

 

                                   fm  =  (  - 1 ) q V B sin cos                                                (A-1 )                

 

where   1  and  0      is the angular position of the surface dipole .   

On the equator of the electron :   = /2  ,  cos = 0  , so  fm = 0 . 

At two poles of the electron  :   = 0  and   =  , sin = 0 , so  fm = 0 . 

 

When    1 : f’n   f’t  , fm  reverses  its direction on all four dipoles M , N , P , Q , and 

its magnitude  becomes  

  

                                  fm  =  f’n  -  f’t  = ( 1 -   ) q V B sin cos                           ( A-2 )                                      

 

Fig.6  ( p. 3 ) shows four forces  fm  acting on four dipoles  M , N , P , Q  in the case    

1   ; they are tangent to the spherical surface of the electron . 

On the upper hemisphere two forces fm  at  M and  N  form a couple of forces tending to 

rotate the electron clockwise .  On the contrary, two forces  fm  at P and Q  on the lower 

hemisphere form a couple of forces tending to rotate the electron counterclockwise . 

These two couples of forces cancel out : they have no effect on the motion of the electron 

in  B  because the net force  Fm =  fm  = 0  and the net torque  T =  = 0 . 
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This result can be generalized as follows :  magnetic forces produced on all surface 

dipoles on the upper hemisphere counteract all magnetic forces on the lower hemisphere, 

and hence they have no effect on the motion of the electron in  B . 

 

In short , when an extended electron moves parallel ( or anti-parallel ) to B , magnetic 

forces  fm  are developed on all surface dipoles but their net force Fm (=  fm)  and net 

torque T (= )  cancel out, and thus they have no effect on the motion of the electron . 

 

___________ 

 

 

Appendix B  : Determination of  fm  and the resultant F  =  fm  when  V  B     

 

Step 1 : Magnetic forces fm produced on surface dipoles lying on the great circle C1   

       

C1   is the equatorial circle of the electron ; it lies in the plane ( V , fm ) ( Fig.7 ) ( p.6 ) 

Fig.10  shows an arbitrary surface dipole  M  lying on C1 . 

Boundary conditions for the magnetic field  B  on two ends of dipole  M are  

 

         B   =  Bn  +  Bt       ( on outside end –q  of the dipole )  

         B’  =  Bn  +   Bt   ( on inside end +q  of the dipole ) 

 

Since  B  is tangent to the spherical surface of the electron , Bn  =  0  and  B  =  Bt     

B’  =   Bt   =    B  ;  hence  fn  =  f’n   =  0     

Fig.11  :  on the end  -q  : since V  B  , ft  =  q V Bt  =  q V B :  ft  points to the left of 

the observer ;  

on the end +q :  f’t  =  q V B’t  =   q VB   :  f’t   points to the right of the observer . 

Since ft  and  f’t  are perpendicular to ( V , B ) , they are parallel . Their resultant is     

-  for    1  :  fm  =  ft  -  f’t  =  ( 1 -  ) q V B  :  fm  points to the left  ( Fig.12 ) , 

-  for    1  :  fm  =  f’t  -  ft  =  (  - 1 ) q V B  :  fm points to the right ( Fig.13 )     (B.1)  

 

The same method of calculation gives the magnitude and direction of  fm  produced on 

all other dipoles lying on C1 :  they are parallel to one another because they are 

perpendicular to the plane ( V , B )  and have equal magnitude ( Figs. 14  &  15 , p. 6) .  

 

 

 

 

 

 

 

 

 

 

 

 

t
t

t

t
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Fig.10 .  Components   Bt  and  Bt  acting              Fig.11 . Magnetic fields  Bt  and  Bt   produce                       

on two ends of an arbitrary dipole  M on C1 .            magnetic forces  ft  and  f’t   on two ends of dipole M . 

 

 

 

 

 

 

 

 

 

        

 

                                                                                      

 

 

 

 

 

 

 

 

 
Fig.12 .  For    1  , V  B  : the resultant              Fig.13 . For     1  , V  B  :  the resultant               

force  fm  acting on dipole  M  points in the            force  fm  acting on dipole  M  points in the        

direction of the left hand of the observer .               direction of the right hand of the observer . 

 

 

 

Step 2 :  Magnetic forces fm produced on surface dipoles lying on the great circle C2 

       

The great circle  C2  lies the plane ( V , B ) : Fig. 8 (p.6) 

Using boundary conditions and the same method of calculation as above we come to the 

following results :  

Fig.16: Components of  B  and  B’ act on two ends of dipole N  on the great circle C2 ,   

Fig.17: Directions of component forces fn , f’n , ft , f’t , acting on two ends of dipole  N : 

- fn  and  ft  point down from the page    

- f’n  and  f’t  point up from the page  () 

Fig.18 : For   1 : the resultant force  fm  acting on dipole  N  points to the left of the 

            observer ; i.e.,  fm    

Fig.19 : For   1 : the resultant force  fm  acting on dipole  N  points to the right of the    

             observer ; i.e.,  fm () 

Fig.20 ( p. 7 ) : For   1 : all magnetic forces  fm  produced on the great circle C2  

              point to the left of the observer and have magnitude  

             fm  =  ft  -  f’t  =  ( 1 -  ) q V B sin
2 
      
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Fig.21 ( p. 7 ): For   1 : all magnetic forces  fm  produced on the great circle C2 

                point to the right of the observer and have magnitude 

             fm  =  f’t  -  ft  =  (  - 1 ) q V B sin
2 
                           (B.2)                                  

 

All magnetic forces  fm  produced on  C2  are parallel  because they are perpendicular to  

the plane ( V , B)  , but  their magnitudes depend on the angle    (  0      ) .  

 

 

 

 

 

 

        

 

 

 

 

 

                                                                                                    

 

 

 

 
 Fig.16 .  Components of magnetic fields   B  and  B’               Fig.17 .  Directions of component forces    

acting on two ends of dipole  N  on the great circle C2                   fn , f’n , ft , f’t  acting on two ends of  
                                                                                                   dipole  N  : 

                                                                                                   -  fn  and  ft  point down from the page      

                                                                                                   -  f’n  and  f’t  point up from the page () 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

                                                                                            
Fig.18 .  For    1 :  the resultant force  fm                   Fig.19 . For    1  :  the resultant force  fm                              

acting on dipole  N  on  C2   points to the left                   points to the right of the observer :   fm ()     

of the observer :   fm   

 




t






 
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Fig.22 .  V   ;  V  B  :  components of         Fig.23 . Components of magnetic forces  fn , ft , f’n , f’t 

magnetic fields  B  and  B’  acting on two       acting on two ends of surface dipoles  M  and  N on  C3  . 

ends of surface dipoles  M and  N  on  C3  .      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                               
Fig.24 . For    1  : the resultant force  fm                      Fig.25 . For    1  : the resultant force  fm           

produced on dipole  M  is centripetal ;                              produced on dipole  M  is centrifugal ;      

while  fm  acting on dipole  N is centrifugal .                   while  fm  acting on dipole  N is centripetal . 

 

 

Step 3 :  Magnetic forces fm produced on surface dipoles lying on the great circle C3  

      
The great circle  C3  lies in the plane ( B , fm ) :  Fig.9  (p.6) 

 

Using boundary conditions and the same method of calculation as above we come to the 

following results :  

  

Fig.22 : Components of  B  and  B’ acting on two ends of two arbitrary dipoles M  and  N 


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             on the great circle C3  .  

Fig.23 :  Components forces fn , f’n , ft , f’t acting on dipoles  M and  N  on  C3  .  

Fig.24 :  For   1   : the resultant  fm acting on dipole  M  is centripetal ;  

              meanwhile  fm  acting on dipole N  is centrifugal .  

Fig.25 :  For   1   : the resultant  fm acting on dipole  M  is centrifugal ;  

              meanwhile  fm  acting on dipole N  is centripetal . 

Fig.26 :  For    1  : all magnetic forces  fm  produced on C3  point to the left of the 

              observer . Magnitudes of  fm are     fm  =  ft  -  f’t  =  ( 1 -  ) q V B sin     

Fig.27 :  For   1  :  all magnetic forces  fm  produced on C3  point to the right of the 

              observer . Magnitudes of  fm are  fm  =  f’t  -  ft  =  (  - 1 ) q V B sin
 
      (B.3)   

   

Magnetic forces  fm   produced on  C3 are not parallel to each other ; their magnitudes 

depend on the angle   .  

 

We have determined the directions and magnitudes of  magnetic forces  fm  produced on 

three great circles  C1 , C2  and  C3 .   

Figs.28 & 29  ( p.9) show an overall view of these forces  fm on three great circles in two 

cases   1   and    1  respectively . These overall views allow us to confirm that  the 

magnetic force fm  produced on an arbitrary surface dipole  A  points to 

       

 -     the left of the observer when      1    as shown in Fig.30  (p.9) 

 -     the right of the observer when    1    as shown in Fig.31  (p.9) 

 

Step 4 : Calculation of magnitude of  fm  produced on an arbitrary surface dipole 

              and the resultant  F  =  fm      

 

This result gives the direction of the projection  fm*  of  fm  onto the force-axis       

which is perpendicular to  ( V , B ) : 

 

-   when   1   :  fm* points to the left of the observer ( Fig.30 ) .  

                            Since  fm  are symmetric around the force-axis ,  their resultant   

                            F  =  fm  =  fm*    points to the left as shown in  Fig.32  (p.10) 

                            F  is thus considered as a negative force .  

-   when   1   :  fm* points to the right of the observer ( Fig.31 ).  

                            Since  fm  are symmetric around the force-axis , their resultant   

                            F  =  fm  =  fm*  points to the right as shown in  Fig.33 (p.10) 

                            F  is thus considered as a positive force .   

The magnitudes of  fm ,  fm* and  F  (=  fm  =  fm*)  are calculated below  
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                                                                          Fig.34  shows an arbitrary surface dipole with the 
                                                                          external magnetic field  B acting on the outside end             
                                                                          -q  ,  and  B'  acting on the inside end +q .                           

 

 

 

 

 

 

 

 

 Let’s consider an arbitrary surface dipole  A  ( Fig.34 )   ; n  is the normal at  A ;  t  is the 

tangent at  A  lying in the plane (OB , n) ;    =  ( B , n ) ;    =  ( V , Bt )  =  ( V , t ) ;   

V  B  . 

Boundary conditions for the magnetic field  B  applied on dipole  A   are     

B   =  Bn  +  Bt       ( on the outer end  -q )  

B’  =  Bn  +   Bt    ( on the inner end  +q ) 

where  Bn  =  B cos    and    Bt  =  B sin .   

Since  Bn  =  B’n  , fn  and  f’n  are equal and opposite , hence  fn  + f’n  =  0  ;   

ft  =  q V Bt sin  =  q V B sin sin ;     f’t   =  q V B’t sin  =   q V B sin sin  . 

The resultant  fm  produced on dipole  A  is    fm  =  fn  +  f’n  +  ft  +  f’t = ft  +  f’t 

The magnitude of   fm  is  : 

-   for    1    :  fm  =  ft  -  f’t  =  ( 1 -  ) q V B sin sin                                        (B.4)  

-   for    1    :  fm  =  f’t  -  ft  =  (  -1 ) q V B sin sin                                         (B.5) 

The direction of  fm  is perpendicular to the plane ( V , t ) .  

    ____________ 

 

Note : Two expressions (B.4) and (B.5) give magnitude of  fm  produced on an arbitrary 

surface dipole ; so we can use them to check the magnitudes of  fm  on three great circles  

C1 , C2 and  C3  that we have calculated in three sections II .1 , II .2 and  II .3 . 

For dipoles on C1  :   = /2  and   = ( V, Bt ) = ( V,B ) = /2  ; hence sin = sin = 1 . 

Eq.(B.5) for   1  becomes  fm  =  f’t  -  ft  =  (  -1 ) q V B      :             this is Eq. (B.1)                                          

 

For dipoles on C2  :   = ( V, Bt ) = ( V,B ) + ( B,Bt )  = /2  + (/2  -  ) =  -  ; 

                                 hence  sin = sin( - ) = sin  . 

Eq.(B.5) for   1  becomes   fm  =  f’t  -  ft  =  (  -1 ) q V B sin
2
    :    this is Eq. (B.2)                                                                                       

 

For dipoles on C3  :   = ( V, Bt ) = /2  ; and hence  sin = 1 . 

Eq.(B.5) for   1  becomes  fm  =  f’t  -  ft  =  (  -1 ) q V B sin    :        this is Eq. (B.3)                                                                                       

____________ 

 

B't


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Let    be the angle between  fm and the force-axis , we have  fm*  =  fm cos  ; 

and hence          F   =  fm*  =  fm cos  ;  where fm  are given by (B.4) and (B.5)             

-   for    1    :  F  =   ( 1 -  ) q V B sin sin cos    

-   for    1    :  F  =   (  -1 ) q V B sin sin cos 

Generally, for   1  :  F  =  ( 1 -   ) q V B  


n

i 1

sini sini cosi                               (B.6)  

The index  i   indicates the surface dipole  i  ;  n  is the total number of surface dipoles .     

F  points to the left of the observer as shown in Fig.32 and is considered as a negative 

force ; and hence the sum  


n

i 1

sini sini cosi      0                                                                        

For    1    :        F  =  (  - 1  ) q V B  


n

i 1

sini sini cosi                                     (B.7) 

F  points to the right of the observer as shown in Fig.33  and is considered as a positive 

force ; and hence the sum 


n

i 1

sini sini cosi       0                                                (B.8)   

 

_________________ 

 

 

Appendix  C : Determination of the magnetic field  B'  at the core (-q0 ) 

 

To determine the magnitude of  B’ at the core , we apply boundary conditions to a point  

A  on the surface of the electron and the core O . (  Since the electron is too small , we 

can consider  A  and  O  as lying on two sides of the interface which is the spherical 

surface of the electron ) .    

    

                                        B  =  Bn  +  Bt                (at  A)                                            (C.1)        

           

                                        B’ =  Bn  +   Bt             (at  O)                                           (C.2)    

 

Because of the spherical symmetry of the structure of the electron ,  B'   must be parallel 

to B  , and hence we can write : 

 

                                        B’  =  k B                                                                               (C.3) 

 

where  k  is a positive number different from  1  :    0  k   1  .     

k  is positive because  B’  is parallel to  B ;  k   1   because if  k  =  1  ,  B’  =  B   

and this means  B’ is independent of the medium of the electron .  But because  B’ is 

expected to depend on the medium of the electron , so , k  must be different from  1 . 

Eq.(C.3)  can be rewritten as   B’  =  k B  =  kBn   + k Bt                                           (C.4) 
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Comparing (C.2)  and  (C.4) we get  

-     Bn  =  k Bn      (k -1) Bn  =  0     Bn  =  0   since   ( k -1 )    0  

-      Bt  =  k Bt        =  k    1 . 

So , (C.1)   gives  :                   B  =  Bt                      ( at A )                                       (C.5)                                                           

                                             

and  (C.2)   gives                     B’ =    Bt  =   B      ( at O )                                      (C.6)                            

 

We conclude that when the electron  is subject to the magnetic field  B  , the magnetic 

field B’  parallel  and equal to   B   is produced at the core of the electron .  And hence 

the magnetic force produced on the core is zero when the electron moves parallel to  B 

and equal to  - q0 VB  ( Eq.(12)  when it moves normally to  B .  

It is noteworthy that since   ˃ 1 ,  B' ˃ B. 

 

Note  : From these results ( Bn  =  0  and   B  =  Bt )  , the position of the point  A is not 

arbitrary  on the surface of the extended electron ,  it must lie on the equator of the 

electron because  Bn  =  B cos  =  0     gives  cos  =  0    or    =  /2  . 

If  A  takes an arbitrary position on the surface of the extended electron , we cannot solve 

the equations given by the boundary conditions for  the magnetic field B' at the core .   

 

______________ 
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