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1. Introduction 

 

In previous work [1], we have heuristically investigated the properties of new class of potential functions 

results from the concept of pq-radial functions with one main real radial variable and three real auxiliary 

parameters. In the present paper, we wish to generalize this concept to the field of complex numbers and 

study the resulting properties. Through this paper, we assume that the reader is familiar with [1] and also 

with the complex analysis. 

 

 

2. Properties of pq-functions:  

 

We begin our investigation on the aforementioned subject by the following specific definition of the 

concept of pq-functions.  

 

2.1. Specific definition: Suppose U is an open subset of the complex plan C, such that  qp

nF
, : U→C,            

  ,θρ,s,,zFz
qp,

n  ; Uρs, ; Nn ; Rθ,q,p,  ; denote a continuous and differentiable function; 

 qp

nF
,  is said to be pq-function if and only if is conceptually expressed in the following form: 

 

                                                             θρ,z,Hs,z,G,θρ,s,,zF
q

n

p

n

qp

n

 , ,                                             (1) 

                                

where  s,z,Gn  and   0θρ,z,Hn  are, respectively, the weight function and the characteristic function, 

both are defined by the expressions  

                                                              nnn

n ssznzs,z,G    sin)( 1 ,                                                   (2)                         

and 

                                                             nnn

n ρρznzθρ,z,H   cos)( 1 .                                                 (3) 

 

In the context of this work, n  and  qp,  are, respectively, called degree and orders of pq-functions whereas  

)( iyxz   with Ryx,  is the main complex variable and the complex parameters s  and ρ are treated as 

auxiliary variables; the real angular parameters   and θ stay in general fix. Moreover, with the help of the 

                                                 
1 E-mail:hassani641@gmail.com 

 



2 

 

Newton’s binomial (theorem) formula and its generalization, we can show that for the case when 10  z  

and )0,0(),( ρs ; the pq-function (1) may be written in the form   

 

                                  
















 










0 0

,,

,
1

k

kn

nkn

qp

n zθρ,z,hs,z,g
-q

k

p
,θρ,s,z,F









 ,                                 (4) 

where                   

                              
   

!

11

k

kppp

k

p 









,  

   
!

111







 








  qqq-q
, 

 

                                                 
   

  Ȟ

Ȟk

Ȟ

nk-pȞn
Ȟ

kn
zȞ-kȞ

ksn
s,z,g


 sin

!!

!
1

0

3

, 




 ,                                                   (5) 

and 

                                                   
   

  j

j

j

nq-jnj
j

n
zj-j

ρn
,ρz,h

 cos

!!

!
1

0

3

, 





 





.                                                 (6) 

 

In the present paper, we particularly focus our main interest in one special and important case, that is when 

2n . Hence, with this aim, (1), (2) and (3) take the forms 

 

                                                        θρ,z,Hs,z,G,θρ,s,,zF
qpqp  22

,

2  ,                                                  (7) 

where  

                                                            22

2 sin2 sszzs,z,G   ,                                                             (8) 

and 

                                                           22

2 cos2 ρθρzzθρ,z,H  .                                                            (9) 

 

Since the characteristic function  θρ,z,H2  plays the role of dominator in (7), thus  qp
F

,

2  is defined for 

each Uz such that i
eρz
 . Further, it is easy to show that the pq-function (7) is also a fundamental 

family of solutions of the following pq-PDE 

 

    02

2

2

2

2

2

2

2














































































W

H

H

qW
W

G

G

qW
W

z

H

H

q

z

G

G

p

z

W

z ρρρsss
,    (10)            

 

with                                                  

                                                           qp
FW

,

2 , 02 G ,  02 H . 

 

2.2. Specific properties of pq-function 

 

The following properties of  qp
F

,

2  are very similar to those of pq-radial functions [2].  

 

2.2.1. Properties of 
    ,θρ,s,,zFF

qp,qp, 22   with respect to θρ,s,,z and  

 

1/ R ,,, qp  and  iθ
eρρs,,z
 \U , we have for    ii

eis,eisz ,   0,

2 qp
F . 

 

2/ R ,,, qp  and  iθ
eρρs,,z
 \U , we have for 0p  and 0q ,   1,

2 qp
F . 
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3/ Homogeneity of  qp
F

,

2 with respect to ρands,,z  

 R ,,, qp  we have for  0\ R :      ,θρ,s,,zF,θρ,s,,zF
qp,qpqp,  2

)(2

2

 . 

 

4/ Periodicity of  qp
F

,

2  with respect to θand  

R ,,, qp  and  iθ
eρρs,,z
 \U  we have Zk :      ,θρ,s,,zFkθ,kρ,s,,zF

qp,qp,  22 22  . 

 

Remark: Properties (1) and (2) are very useful particularly for the orthogonality condition of pq-functions as 

we will see, and property (4) means that  qp
F

,

2 is double-periodic. 

 

2.2.2. Properties of  qp
F

,

2  with respect to the orders qandp  

 

The following series of properties is very important since it shows us how some basic operations performed 

on pq-functions should reduce to the operations performed on their orders. The demonstration of each 

property should be exclusively based on the compact expression   qpqp
HGF 22

,

2  . Therefore, R ,,, qp  

and  iθ
eρρs,,z
 \U , we have the following properties: 

 

1/      qpqp
FFF

,0

2

0,

2

,

2   

2/  Z :       qpqpqp
FFF

,

2

,

2

,

2


  

3/    qppqp
FGF

,

2

2

2

,

2

   

4/    qpqqp
FHF

,

2

2

2

,

2                                                        

5/ R qpqp ,,, :            qpqqqpqqqpqp
FHFHFF

,

22

,

22

,

2

,

2

   

6/ R qpqp ,,, :            qpqqqpqqqpqp
FGFGFF

,

22

,

22

,

2

,

2

   

7/ R qpqp ,,, :      qqppqpqp
FFF

  ,

2

,

2

,

2 /  

8/ R qpqp ,,, :      qqppqpqp
FFF

  ,

2

,

2

,

2  

 

2.2.3. Properties of 
 qp

F
,

2  with respect to its (partial) derivatives 

 

In this subsection, we study the properties of  qp
F

,

2 with respect to its (partial) derivatives, which are for 

instance very helpful as new tool to investigate fluid mechanics.   

 

 Holmorphicity of 
 qp

F
,

2 : Our main aim here is to show the holomorphicity of  qp
F

,

2 . This property is 

essential because as we know from complex analysis, the holomorphicity of any given function implies its 

analycity automatically. Since z  is the principal independent complex variable of  qp
F

,

2  and s , ρ  are only 

certain auxiliary complex (variable) parameters, hence, this allows us to focus our interest exclusively on 

the derivatives of  qp
F

,

2  with respect to z . But before all that, let us recall some well-known definitions. 

  

Definition.1:  Given a complex-valued function f of a single complex variable, the derivative of f at 

point 0z in its domain is defined by the limit 

                                                                  
0

0

0
0

)()(
lim)(

zz

zfzf
zf

zz 





.                                                        (11) 

 

This is the same as the definition of the derivative for real-valued function, except that all the parameters are 

complex. In particular, the limit is taken as the complex variable z  approaches 0z , and must have the same 

value for any sequence of complex values for z approaches 0z on the complex differentiable at every point 
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0z in an open set S , we say that f is complex-differentiable at the point 0z . From all that occurs the 

following definition. 

 

Definition.2:  If f is complex differentiable at every point 0z in an open set S , say that f is holo- 

morphic on S . We say that f is holomorphic at the point 0z if it is holomorphic on some neighborhood of 

0z . 

 

Thus, with the help of definitions (1) and (2), we can prove the holomorphicity of  qp
F

,

2  as follows. Let  

 iθ
eρz,z
 \0 U  and       θρ,z,Hs,z,G,θρ,s,,zF

qpqp

22

,

2    such that  

 

                              
0

020222
0

,

2
0

lim
zz

θρ,,zHs,,zGθρ,z,Hs,z,G
,θρ,s,,zF

qpqp

zz

qp









 .                            (12) 

 

Adding and subtracting    θρ,z,Hs,,zG
qp 

202  from the numerator of (12), we get 

 

 

                                   
0

022
0202

0

lim
zz

s,,zGs,z,Gθρ,,zH,θρ,s,,zF
pp

q

zz

qp,




 



   

                                                                                                                                                   

                                                             
0

022
02

0

lim
zz

θρ,,zHθρ,z,H
s,,zG

qq
p

zz 






 .                                      (13) 

Finally, we find         

                                             θρ,,zHs,,zGs,,zGθρ,,zH,θρ,s,,zF
qppqqp,

0202020202  .                 (14) 

 

Therefore, it follows that  qp
F

,

2  is holomorphic on  iθ
eρ \U  and consequently is analytic. 

 

2.2.4. Derivatives of 
 qp

F
,

2 with respect to z  

 

After we have proved the holomorphicity/analycity of pq-functions let us now investigate the properties of 
 qp

F
,

2  through its first derivative with respect to z :  iθiθiθ
ise,eis,eρz  \U . Hence, the first order 

derivative of  qp
F

,

2 has the form 

                                                            
 

 qp
qp

F
H

H
q

G

G
p

dz

dF ,

2

2

2

2

2

,

2








 



 .                                                       (15) 

 

We have, according to the property (2) in subsection (2.3) that is       qpqpqp
FFF

,

2

,

2

,

2


 , thus after 

derivation, we get  

                                                           
 

 qp
qp

F
H

H
q

G

G
p

dz

dF ,

2

2

2

2

2

,

2 


 






 



   .                                                 (16) 

 

Introducing the power   in (15) to obtain 

 

                                                        
 

 qp
qp

F
H

H
q

G

G
p

dz

dF ,

2

2

2

2

2

,

2 










 












 .                                                 (17) 
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From (16) and (17), we find the relations 

 

                                                    
    

 













 







dz

dF

H

H
q

G

G
p

dz

dF
qpqp ,

2

1,

2 ,                                                (18) 

and 

                                           
   

dz

dF

H

H
q

G

G
p

dz

dF
qpqp ,

2

1

2

2

2

2

,

2 1













 












 ,  N .                                     (19) 

 

2.2.5. First Order Partial Derivatives of  qp
F

,

2 with respect to x  and y  via z  

 

If we take into account the algebraic form of z , i.e., iyxz   with Ryx, . This algebraic form of the 

principal complex variable implies, among other things, that  qp
F

,

2  is conceptually and implicitly depending 

on x  and y . That’s why we can also evaluate the partial derivatives of  qp
F

,

2  with respect to x  and y  to 

determine the Wirtinger pq-(partial) derivatives in order to establish the link between  qp
F

,

2  and Laplace 

equation  

                                                                        0
2

2

2

2









y

u

x

u
.                                                                     (20) 

 

Indeed, following Rudin [2], suppose   qp
F

,

2  is defined in an open subset CU   with i
eρz
 . Then 

writing iyxz   for every Uz , in this sense, we can also regard U as an open subset of 2R , and  qp
F

,

2  

as a function of two real variables x  and y , which maps 2RU  to C . These considerations allow us to 

say that the existence of the partial derivatives  
xF

qp  ,

2  and  
yF

qp  ,

2  are in fact a direct consequence of 

the expressions: ziyx   and      ,θρ,s,,zF,θρ,s,,iyxF
qpqp  ,

2

,

2  , from where we get  

 

                                          
     


















x

z

z

,θρ,s,,zF

x

,θρ,s,,iyxF
qpqp  ,

2

,

2 ,                                            (21) 

and                                       

                                          
     



















y

z

z

,θρ,s,,zF

y

,θρ,s,,iyxF
qpqp  ,

2

,

2 ,                                            (22) 

 

since   1/  xz   and   iyz  / , hence (21) and (22) become, respectively 

 

                                                                 
   

z

F

x

F
qpqp







 ,

2

,

2 ,                                                                        (23)                

                                                                  

                                                                 
   

z

F
i

y

F
qpqp







 ,

2

,

2 .                                                                       (24) 

                                                                                                                                        
From (23) and (24), we can deduce the following equations just after performing a simple substitution and 

multiplication                                                                   

                                                                
   

y

F
i

x

F
qpqp







 ,

2

,

2 ,                                                                     (25)            
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   

x

F
i

y

F
qpqp







 ,

2

,

2 .                                                                        (26) 

 

Here, Eqs.(25) and (26) play exactly the same role as the Cauchy-Riemann equations for standard complex 

functions. Now, multiplying the two sides of (24) by i  and adding to (23), to obtain 

 

                                                    
     





















y

F
i

x

F

z

F
qpqpqp ,

2

,

2

,

2

2

1
.                                                            (27) 

 

Further, if we replace z  with its conjugate iyxz  in (21) and (22), and following exactly the same 

process as for (27), we get 

                                                    
     





















y

F
i

x

F

z

F
qpqpqp ,

2

,

2

,

2

2

1
.                                                             (28) 

 

Eqs.(27, 28) are the well-known two Wirtinger [3] derivatives, which in the context of the present work, 

i.e., the formalism of pq-functions, we recall them Wirtinger pq-(partial) derivatives because, here, they are 

generalized since Rqp, . Finally, from (25) or (26) we deduce the equation 

 

                                                           
   

0

2
,

2

2
,

2 






















y

F

x

F
qpqp

.                                                            (29) 

 

2.2.6. Second Order Partial Derivatives of  qp
F

,

2 with respect to x  and y  via z  

 

Our main aim in this subsection is firstly to show that  qp
F

,

2  is also a fundamental family of solutions of 

Laplace equation (20) and secondly establishing the link between Eq.(29) and that to be derived in the form 

of identity. To this end, we have from (23) and (24) 

 

                                              
     
































2

2

2

2

2

2

2

2

x

z

z

F

x

z

z

F

x

F
qp,

2

qp,

2

qp,

,                                                   (30) 

and 

                                            

     

































2

2

2

2

2

2
2

2

y

z

z

F

y

z

z

F

y

FF qp,

2

qp,

2

qp,

qp,

,                                                (31) 

 

sine    1
2

/  xz ,     0/ 22  xz ,   1
2

/  yz   and    0/ 22  yz , thus (30) and (31) reduce to  

 

                                                                 
   

2

qp,

2

qp,

z

F

x

F







 2

2

2

2

,                                                                    (32)     

                                                                     

                                                                
   

2

qp,

2

qp,

z

F

y

F







 2

2

2

2

.                                                                   (33) 

 

Therefore, from (32) and (33) we obtain the expected equation  
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   

02

2

2

2










2

qp,

2

qp,

y

F

x

F
.                                                                (34) 

 

Eq.(34) means that  qp,
F2  is also a fundamental family of solution of Laplace equation (20). Hence, this 

with result, we can affirm that the pq-functions are also a new class of harmonic functions. Finally, from 

(29) and (34) we get the important identity 

 

                                           
       

2

qp,

2

qp,qp,qp,

y

F

x

F

y

F

x

F































 2

2

2

2
2

2

2

2 .                                                (35) 

 

 

2.3. Orthogonality of pq-functions  

 

We end the study of the properties of pq-functions with the determination of orthogonality condition of pq-

functions on open contour (C) of extremities 1z  and 2z  when pq-functions are independent of the complex 

parameters s  and  . With this aim, it is worthwhile to note that 

  

                                 21

22

2 sin2 zzzzsszzs,z,G   ,  i
isez 1 ,   i

isez2  ,                    (36)                 

and  

                                 43

22

2 cos2 zzzzρθρzzθρ,z,H  ,   i
ez 3 ,   i

ez
4  .                    (37)              

 

Therefore, by substituting (36) and (37) in (7), we get the important expression 

 

                                                       
 q

p

qp,

zzzz

zzzz
,θρ,s,,zF

))((

))((

43

21
2 


 .                                                      (38) 

 

It is clear from the expression (38), 3zz   and  4zz   are two poles of  qp,
F2 . Consequently, since  qp,

F2 is 

supposed independent of the complex parameters s  and  , thus in such a case Eq.(10) reduces to 

 

                                              0
2

2

2

2 














 



 W

H

H
q

G

G
pW

dz

d
,  qp

FW
,

2 .                                               (39) 

 

Eq.(39) will be henceforth be called ‘pq-differential equation’ or shortly pq-DE, which here should play a 

central role as follows. Let 
 11 ,

21

qp
FW  and 

 22 ,

22

qp
FW  be two fundamental families of solutions of the 

following pq-DEs: 

 

                                                        01

2

2
1

2

2
11 















 



 W

H

H
q

G

G
pW

dz

d
,                                                      (40) 

and 

                                                       02

2

2
2

2

2
22 















 



 W

H

H
q

G

G
pW

dz

d
,                                                     (41) 

 

with   ),(),( 2211 qpqp   and R2211 ,,, qpqp . Integrating Eqs.(40) and (41), to get 
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                                                            11

2

2
1

2

2
11 cW

H

H
q

G

G
pW 







 



 ,                                                         (42)    

                                                       

                                                           22

2

2
2

2

2
22 cW

H

H
q

G

G
pW 







 



 .                                                        (43) 

                                                                                                           

Multiplying (42) by 22WG  and (43) by 12WH , to find 

 

                                                    21

2

22
1211122 WW

H

GH
qGpcWWG 







 
 ,                                             (44) 

and 

                                                   21

2

22
1222212 WW

H

GH
qGpcWWG 







 
 .                                             (45) 

 

Subtracting (45) from (44) to obtain, after omitting the integration constants 

 

                                     21

12

2

12

2

2

2
121212212 WW

qq

G

pp

H

H

G
qqppWWWWG 















 .                    (46) 

Integrating from 1zz   to 2zz  to get 

 

                             















2

1

2

1

21

12

2

12

2

2

2
121221221

z

z

z

z

dzWW
qq

G

pp

H

H

G
qqppdzGWWWW .               (47) 

 

If we take into account the property (1) in Sub-subsection 2.2.1 and the expression (36), the left hand side of 

(47) should equal to zero, therefore, we have 

 

                                           0

2

1

21

12

2

12

2

2

2
1212 















 
z

z

dzWW
qq

G

pp

H

H

G
qqpp .                                 (48) 

 

 Since ),(),( 2211 qpqp  , thus (48) becomes 

 

                                                      0

2

1

21

12

2

12

2

2

2 















z

z

dzWW
qq

G

pp

H

H

G
.                                               (49) 

 

Furthermore, according to property (10) in Sub-subsection 2.2.2, we have 
 2121 ,

221

qqpp
FWW

 , hence the 

relation (49) becomes after substitution 

 

                                                
 

0

2

1

2121 ,

2

12

2

12

2

2

2 














 
z

z

qqpp
dzF

qq

G

pp

H

H

G
.                                           (50) 

 

The relation (50) is exactly the very expected orthogonality condition of pq-functions. 
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3. Consequences of pq-functions  

 

In this section we will show the existence of two new types of polynomials called in the context of this 

work, p-polynomials and q-polynomials as a direct consequence of pq-functions. The study of some 

properties of these polynomials revealing that the well-known the Legendre polynomials are in fact special 

case of q-polynomials. 

 

3.1. p-Polynomials 

 

In order to establish the existence of p-polynomials, we must return to pq-function (7) and write it in its 

explicit form 

                                                      
 q

p

qp

ρθρzz

sszz
,θρ,s,,zF

22

22
,

2

cos

sin

2

2






 .                                               (51) 

 

The property (1) in Sub-subsection 2.2.2 allow us to write      qpqp
FFF

,0

2

0,

2

,

2  . First, focusing our 

attention on  0,

2

p
F for the case 1z , that is 

   

                                                         pp
sszz,θρ,s,,zF

22,0

2 sin2   .                                              (52) 

 

As we can remark it, the pq-function (52) for 0q  is explicitly independent of the parameters   and  , 

hence it may be written as follows 

                          

                                   ppp
s,θρ,s,,zF

22,0

2 sin21   , with  sz /  and  1 .                      (53) 

 

We have according to the Newton’s generalized binomial (theorem) formula 

 

                         












  n

n

n...
...

!

11

!3

21

!2

1

!1
11 32  ,             (54) 

with 1  and R . 

 

By putting   sin22  and p  in (54), and after rearranging and collecting terms in powers of 

 , we find 

    





















 222

!1
sin

!2

14
sin

!1

2
1sin21 ȟpppȟpȟȟ p



    














 33 sin
!2

14
sin

!3

218 ȟppppp
                                                                                      (55) 

        








 





 424

!2

1
sin

!3

2112
sin

!4

32116 ȟppppppppp   

           








 





 535 sin
!3

216
sin

!4

32132
sin

!5

432132 ȟpqpppppppppp                  

 

Therefore, the coefficients of   should take the explicit expressions 

 

  1sin0  p,A ;  



10 

 

   







 sin

!1

2
sin1

p
p,A ;   

   













!1
sin

!2

14
sin 2

2

ppp
p,A ;                                                                                                                                                           

      














 sin

!2

14
sin

!3

218
sin 3

3

ppppp
p,A ;                                                                       (56)                                         

          







 






 

!2

1
sin

!3

2112
sin

!4

32116
ins 24

4

ppppppppp
p,A   

          

  






















sin
!3

216

sin
!4

32132
sin

!5

432132
sin 35

5

ppp

ppppppppp
p,A

                        

… 

 

The coefficients  p,An sin  are exactly the very expected p-polynomials. Thus (55) may be written as  

                       

                                               





0

2 sinsin1 2
n

n

n

p ȟp,Aȟȟ ,   1 .                                          (57) 

 

Result: for the case when q = 0 and 1z , the pq-function (51) may be written in the form of p-series as 

follows                                                                   

                                           
    






0

20,

2 sin
n

n

n

npp
zp,As,θρ,s,,zF  ,   1z .                                       (58) 

 

3.2. Properties of p-Polynomials 

3.2.1. Expression of p-polynomials for 2/   

 

Many important properties of p-polynomials can be obtained from (57). Here, we derive immediately a few 

ones as follows. Let 2/  in (57), and then the left-hand side is 

 

            









 nnp

n

np...pppppppp

!

12122
1

!3

22122

!2

122

!1

2
11 322

 

 

The right-hand side is 

 

           n

n p,Ap,Ap,Ap,Ap,A 11111 3

3

2

210  

 

Comparing the coefficients of n  on both sides we get  

 

                                                               
!

12122
11

n

np...pp
p,A

n

n


 .                                            (59) 

 

And when we substitute 2/   in (57), we obtain 
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                                                               
!

12122
1

n

np...pp
p,An


 .                                                 (60) 

 

3.2.2. Recurrence Relation for p-Polynomials  

 

To obtain the recurrence relation, first we put sint  in (57) to get 

 

                                                                 





0

2
21

n

n

n

p ȟpt,Aȟtȟ .                                                    (61) 

 

Differentiating (61) with respect to   on both sides and rearranging to obtain 

                                   

                                                   





0

122
22 112

n

n

n

p ȟpt,Anȟtȟȟtȟtȟp ,                         (62) 

or equivalently 

                                                      










0

12

0

212
n

n

n

n

n

n ȟpt,Anȟtȟȟpt,Atȟp .                           (63) 

 

Equating the coefficients of powers of n  to get the very expected recurrence relation  

 

                                                           pt,Apnpt,Atpnpt,An nnn 11 1221   ,                         (64)                             

with                                        

                                                             10 pt,A ,   tppt,A 21    and  sint . 

 

The recurrence relation (64), along with the first two p-polynomials  pt,A0  and  pt,A1 , allows the  

p-polynomials to be explicitly expressed. 

 

3.2.3. Associated p-Functions 

 

Our purpose here is to show the existence of p-functions. As we will see, this kind of functions is in fact a 

direct consequence of p-polynomials. First, it is important and easy to show that the special case when  

1/2p , the p-polynomials become a fundamental solution of the second order homogeneous ODE: 

 

                                                                  01
1





 

 
L

L
nn

d

d
cos

d

d

cos
,                                      (65) 

 

or by substituting sint , we find 

 

                                                        011 2 



  L

L
nn

dt

d
t

dt

d
,   1/2 ,tAnL .                           (66) 

 

Accordingly, for the general case that is R p , the p-polynomials    pt,Ap,sinA nn   should be also a 

fundamental solution of the following second order non-homogenous ODE: 
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                                               p,tfnn
dt

d
t

dt

d
n



  K

K
11 2 ,   p,tAnK .                              (67) 

 

It is worthwhile to note that Eq.(67) should reduce to Eq.(66) when 1/2p , this implies 

 

                                                                        01/2 t,fn , Nn .                                                      (68)                           

 

Result: It follows from all that the p-functions  p,tfn  are associated to p-polynomials  p,tAn  through 

Eq.(67) that ‘s why are called ‘associated p-functions’. To illustrate this association, the Table 1 below 
gives us the first few p-polynomials and their associated p-functions. 

 

 

   p-polynomial                                                             associated p-function 

       

     pt,A1                 01 pt,f                                                                

           

       pt,A2                  1222  pppt,f  

         

     pt,A3                       tppppt,f 12143              

         

     pt,A4                           121212214
2

4  ppptpppppt,f         

                      

                   pt,A5                             tqppptppppppt,f 1221412321
3
8 3

5   

   
                                     

                                                Table 1: Expressions of the associated p-functions  pt,fn , 5...21,n  

 

3.2.4. Orthogonality of p-Polynomials 

 

We have already seen the orthogonality of pq-functions, now we will show the orthogonality of p-

polynomials on the interval )11( , . With this aim, let  pt,Ag m  and  pt,Ah n  then by Eq.(67), we 

have 

                                                                      mm fgkgt
dt

d
 21 ,                                                        (69) 

 and                                                     

                                                                      nn fhkht
dt

d
 21 ,                                                       (70) 

with            

                                  t,pff mm  ;  t,pff nn  ; )1(  mmkm ; )n(nkn 1 and nm  . 

 

Multiplying (69) by h  and integrating from 1t  to 1t  to obtain 

 

                                                        



1

1

1

1

1

1

21 dtfhdthgkdthgt
dt

d
mm . 

 

Integrating the first integral by parts we get 
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                                                 


 
1

1

1

1

1

1

21

1

2 11 dtfhdthgkdthgthgt mm . 

 

But since  21 t  is zero both at 1t  and 1t  this becomes 

 

                                                      



1

1

1

1

1

1

21 dtfhdthgkdthgt mm .                                             (71) 

 

In exactly the same way we can multiply (70) by g  and integrating from 1t to 1t to get 

 

                                                       



1

1

1

1

1

1

21 dtfgdthgkdthgt nn .                                             (72) 

 

Subtracting (72) from (71), we find  

 

                                                             



1

1

1

1

1

1

dtfgdtfhdthgkk nmnm . 

 

Or since  pt,Ag m ;  pt,Ah n ;  pt,ff mm   and  pt,ff nn  , hence we obtain after substitution 

 

                                         



1

1

1

1

dtpt,fpt,Apt,fpt,Adtpt,Apt,Akk nmmnnmnm , 

 

this gives us the following expected orthogonality condition 

 

                                         
 

 
  nm,dt

pt,A

pt,f

pt,A

pt,f

kk
pt,Apt,A

n

n

m

m

nm

nm 






















0
1

1

1

1

.                       (73) 

 

According to (68), we should have     01/21/2  ,f,f tt nm , thus as a special case the orthogonality 

condition (73) reduces to 

                                                            nm,dt,A,A tt nm 


0

1

1

1/21/2 .                                                (74)  

Besides the important property (73), there is another, namely  


1

1

2
dtpt,An , which may be determined as 

follows: first putting sint  in (57), squaring and integrating from 1t to 1t .  Due to orthogonality 

only the integrals of terms having  pt,An

2  survive on the right-hand side. So we have 

 

                                                          


 


0

1

1

22

1

1

22
21

n

n

np
dtpt,Adtt  .                                            (75) 

 

For the special case when 1/2p , we have from (75) 
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                                                  


 




















 0

1

1

22

0

2

1/2
12

2

1

1
ln

1

n

n

n

n

n

dtt,A
n

.                                          (76) 

 

Comparing the coefficient of n2  we get the important relation 

 

                                                                  
12

2
1/2

1

1

2




 n
dtt,An

.                                                           (77) 

 

 Hence, what we need for the general case is only to put 

 

                                                               



1

1

2
dtpt,ApK nn

,  Rp .                                                        (78) 

 

The formula (78) defines us the polynomials  pKn  that exclusively depend on the real parameter p . As we 

will see,  pKn  are characterized by the following properties: 

 

                                                                   20 pK ,  R p ,                                                                 (79) 

and  

                                                             00 nK ,  Nn , 0n .                                                             (80) 

 

Expressions of  pKn  for 3,2,1,0n : 

 

   



1

1

2

00 2dtpt,ApK ;     2

1

1

2

11
3

8
pdtpt,ApK  



; 

        2222

1

1

2

22 21
3

8
1

5

8
pppppdtpt,ApK  



; 

             2222222

1

1

2

33 1
3

8
21

15

32
21

63

32
 



ppppppppdtpt,ApK . 

 

3.2.5. Series of p-Polynomials 

 

As a direct consequence of the existence of p-polynomials we can refer to the series of p-polynomials; that is 

to say any continuous function  tf  such that 11  t , may be expanded in series of p-polynomials. More 

precisely, let us prove that if 

 

                                                     





0k

kk pt,Actf ,  11  t , R p ,                                               (81) 

this implies 

                                                                 



1

1

1
dttfpt,ApKc kkk .                                                          (82) 

 

To this end, multiplying the series (81) by  ptAn ,  and integrating from 1t  to 1t , and taking into 

account the previous result, namely formula (78), we get 
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                                                     dttfp,tAp,tAcdttfp,tA kn

k

kn 







1

10

1

1

, 

 

for the case when kn  , we have 

 

                                                     pKcdtpt,Acdttfpt,A nnnnn  


1

1

2

1

1

, 

 

from where we obtain the very expected formula (82). Furthermore, if we consider the important special 

case that is when 1/2p , we get according to (77), (81) and (82)  

                                 

                                                           





0

21
k

kk /t,Actf ,  11  t ,                                                    (83) 

and 

                                                              






1

1

21
2

12
dttf/t,A

k
c kk .                                                      (84) 

 

3.3. q-Polynomials 

 

After we have established the existence and studied the properties of p-polynomials which are a direct 

consequence of pq-functions, at present, we would derive the other polynomials, namely q-polynomials. For 

this purpose, we must follow exactly the same previous process that led to p-polynomials. Thus let us return 

to the expression (51) and consider the second case that is when 0p , 0q and 1z  to obtain 

 

                                               qq θzρz,θρ,s,,zF


 220,

2 cos2  ,   1z  .                                   (85) 

 

As we can remark it, the pq-function (85) for 0p  is explicitly independent of the parameters s  and  , 

hence it may be written as follows 

 

                               qqq θ,θρ,s,,zF
  220,

2 cos21  ,    with  


 z
   and  1 .                    (86) 

 

By putting  θcos22  and q  in (54), and after rearranging and collecting terms in powers of 

 , we find 

 

    























 222

!1
cos

!2

14
cos

!1

2
1cos21

qqqq
θθθ

q

 

    








 


 33 cos
!2

14
cos

3

218
θθ

qq

!

qqq
                                                                                         (87)                         

        








 





 424

!2

1
cos

!3

2112
cos

!4

32116 qqqqqqqqq
θθ    

           








 





 535 cos
!3

216
cos

!4

32132
cos

!5

432132
θθθ

qqqqqqqqqqqq
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Therefore the coefficients of   should take the explicit expressions 

 

  1cos0 q,B θ ;   θθ
q

q,B cos
!1

2
cos1  ;    

!1
cos

!2

14
cos 2

2

qqq
q,B θθ 


 ;    

      
θθθ

qqqqq
q,B cos

!2

14
cos

!3

218
cos 3

3





 ;                                                                                (88)                                 

          
!2

1
cos

!3

2112
cos

!4

32116
cos 24

4










qqqqqqqqq
q,B θθθ ; 

             
θθθθ

qqqqqqqqqqqq
q,B cos

!3

216
cos

!4

32132
cos

!5

432132
cos 35

5








  … 

 

The coefficients  q,B θn cos  are exactly the expected q-polynomials. Further, it is clear that when 1/2q , 

the q-polynomials (88) reduce to those of Legendre, that is 

 

                                                                θθ nn P,B coscos 1/2  .                                                                (89) 

 

This implies, among other things, that the Legendre polynomials  θnP cos  are in fact a special case of  

q-polynomials  q,B θn cos  for the case 1/2q . Therefore, expression (88) may be written as 

 

                                           





 

0

2 coscos1 2
n

n

n

q

q,B θθ ,   1 ,                                               (90) 

 

Result: for the case when 0p  and 1z , the pq-function (51) may be rewritten in the form of q-series: 

 

                                        





0

)2(0,

2 cos
n

n

n

nqq
zq,B,θρ,s,,zF θ ,    1z .                                       (91) 

 

Recall that since the beginning our main interest is essentially focused on the investigation of structure, 

properties and consequences of pq-functions as an extension of pq-radial functions [1] that’s why, here, we 
are not particularly concerned with the study of the Legendre polynomials because they are well-known 

since their introduction in 1784 by the French mathematician A. M. Legendre [4]. Also, the q-polynomials 

have already been studied in [1] but in the present work )(cos q,Bn   are direct consequences of pq- 

functions. However, the reader who is interested in q-polynomials and their properties can refer to [1]. 

Nevertheless, it seems that the determination of the recurrence relation for q-polynomials is necessary 

because, as we shall see, )(sin q,An   and )(cos q,Bn   are essential for pq-series. 

 

3.3.1. Recurrence Relation for q-Polynomials 

 

The recurrence relation for q-polynomials is so important, although it was already determined in the 

previous work [1], here we are obliged to drive it again in the context of pq-functions since with the aid of 

this relation and the first two q-polynomials )(cos0 q,B   and )(cos1 q,B  we can explicitly express the 

 q-polynomials of any degree. To this aim, putting  cosτ  in (90), we get 

 

                                                          







0

2
21

n

n

n

q

q,B ττ  .                                                    (92) 
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Differentiating (92) with respect to   on both sides and rearranged to obtain 

 

                                           
 

 
   










0

12

2
2

2
1

1

2

n

n

nq
q,Bn

q ττ
τ
τ

,                                      (93) 

or equivalently 

                                         










0

12

0

212
n

n

n

n

n

n q,Bnq,Bq ττττ  .                                (94) 

 

Replacing the dominator with its definition (92), and equating the coefficients of powers of n in the 

resulting expansion gives the expected Recurrence Relation for q-polynomials  

 

                                

                                                 q,Bqnq,Bqnq,Bn ττττ nnn 11 1221   ,                                (95) 

with    

                                                        10 q,B τ   and    ττ qq,B 21   

 

This relation, along with the first two polynomials  q,B τ0  and  q,B τ1 , allows the Legendre Polynomials 

to be generalized recursively. Furthermore, it may be worth noting that the p-polynomials and q-

polynomials have almost the same general properties, for instance,  p,tAn  and  q,B τn  both have the 

same periodicity with respect to their angular parameters since sint   and cosτ . Also, there is 

another interesting particular case that is when )π/,π/(),( 44  and qp  , we get 

   ,qBq,A nn 2/22/2  . 

 

3.4. pq-Series  

 

The existence of p-series (58) and q-series (91), as a direct consequence of pq-functions, allows us to 

introduce the notion of pq-series that may be considered as a very important useful tool particularly for 

expanding any pq-function with Rq,p  and 1z , also may be used for evaluating certain ‘new’ type of 

integrals as we will see. 

 

Since p-series and q-series are in fact power series, therefore, to arrive at the explicit expression of  

pq-series, it suffices to multiply side to side the above mentioned series (58) and (91) to obtain: 

 

                    
       


















0

2

2

2
,

2 cossin
n

n

nnnq

np

q,p

qp
zq,Bp,A

ρ
s

,θρ,s,,zFF θ ,    1z ,                           (96) 

with                       

                                        )()( 00,s,,,s   CU    and  R θ,,q,p . 

 

 

3.4.1. Properties of pq-Series  

 

i) Let      ,θρ,s,,zFF
qpqp ,

2

,

2   be an expandable pq-function in pq-series for any   i
eρz \U  and 

1z ; let U z  such that if  zz
     ,θρ,s,,zF,θρ,s,,zF

qpqp  ,

2

,

2  . This means there is 

parity between   qp
Fz

,

2  and  qp
Fz

,

2  via the pq-series. 
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ii) Let Rq,p  and Nk . If  qpk
F

,

2  is an expandable pq-function in pq-series for any   i
eρz \U   

and 1z : we should have  

                         

















0

2

2

2
,

2 cossin
n

n

nnnkq

nkp
qpk

zkq,B,kpA
ρ
s

,θρ,s,,zF θ ,   1z ,  Nk .                 (97) 

 

3.4.2. Application of pq-Series                                                    

 

By the present pedagogical example, we would show how a given standard complex function may be 

expanded in pq-series.  With this aim, let   be a standard complex functions defined as follows. 

       -2/31/2
111 ,\:  zzzz  CU  such that   is continuous and differentiable for 

all  1\| Uzz . Our goal is to expand  z  in pq-series with 1z . For this reason, we must rewrite   

in the form of pq-function (51), for the particular case when    1/31/4, ,qp  ,    11,, ρs ,     ,θ 2/,   . 

After substitution, we get 

                                                                       
 2/3

1/2

1/31/4

2
1

1
211

z
π/





z

,,,,zF
,  . 

 

Now, with this expression, we can expand  in pq-series (96) through   ,,,,zF
,

211 π/1/31/4

2  and we find 

 

            





0

21/31/4

2 1/311/41/2211 π/
n

n

nn

,
z,B,A,,,,zF  ,   1z  

 

The coefficients  1/41/2,nA  and  1/31,Bn   may be easily determined from the recurrence relations (64) 

and (95), respectively.  

 

4. pq-Integrals  

 

As it was already mentioned, at the present we are dealing with the application of p-series, q-series and pq-

series for the purpose of evaluating some ‘new’ kind of integrals, the pq-integrals of general form: 
 

D

qp
dzF

,

2  which, according to the explicit expression (38) of pq-function, it is not easy task to evaluate the 

integral of (38) even with the help of the usual methods. Indeed, the notion of pq-integrals is a natural 

consequence of pq-functions that may be defined as follows. Let     ,θρ,s,,zFF
qpqp ,

2

,

2   be a 

holomorphic pq-function on the complex plane CU   with i
eρz
  and in the unit disc 

  1:\z  
zeρD

iU ; we call pq-integral any integral of the general form: 

 

                                                                      
 

D

qp
dzF

,

2 ,  1z .                                                                   (98) 

 

There are two special cases that may be derived from the pq-integral (98), namely the p-integral for the case 

when 0p  and 0q : 

                                                                      
 

D

p
dzF

,0

2 ,  1z .                                                                   (99) 

 

And the q-integral for the opposite case, that is when 0p  and 0q : 
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                                                                        
D

q
dzF

0,

2 ,  1z .                                                                (100) 

 

The integrals (98), (99) and (100) should be evaluated by using the pq-series, p-series and q-series, 

respectively. 

 

4.1. Properties of pq-Integrals  

 

Generally, all the properties of pq-functions with respect to the orders p and q are transposable to 

 pq-integrals. Here, we are particularly concerned with four properties: 

 

i)   R q,p :                                       
D

qp

D

qp
dzFFdzF

0,

2

,0

2

,

2 ,   1z ,                                              (101) 

 

ii)    ZR ,q,p :                       
D

qp

D

qp
dzFdzF

,

2

,

2


,   1z ,                                                  (102) 

 

iii)   R q,p :                               
dzFdzFF

D

qqpp

D

qpqp    ,

2

,

2

,

2 ,   1z .                                        (103) 

 

To illustrate the practical importance of pq-series and its strong link with pq-integrals, let us examine the 

following pedagogical example: Let     ,θρ,s,,zFF
qpqp ,

2

,

2   be a holomorphic pq-function in the unit 

disc   1:\z  
zeρD

iU , here, our aim is to determine the explicit expression of another pq-

function   0

,
z,zf

qp , Dzz 0,  such that  

                                                                
z

z

qpqp
dzFzzf

0

,

20

, , ,   1z .                                                   (104) 

 

Since  qp
F

,

2 is holomorphic in D and 1z , thus  qp
F

,

2  is expandable in pq-series (96). Therefore, for the 

purpose of finding this pq-integral, substituting (96) in (104) to get, after integration from z  to 0z : 
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As we can remark it, by using the pq-series, we have easily and rapidly determined the explicit expression 

(105) of pq-function   0

, , zzf
qp  by evaluating the pq-integral (104). However if, for example, we want to 

evaluate the same pq-integral without using pq-series, in such situation we must, first, rewrite (104) 

according to (38) as follows:  

                                                    
  




z

z

q

pz

z

qpqp
dz

zzzz

zzzz
dzFzzf

00
))((

))((
,

43

21,

20

, . 

 

With this above expression and under the condition ‘do not use the pq-series’, the advanced student or even 

the professional mathematician should have a great difficulty and hard task to arrive at the expected explicit 

expression of   0

, , zzf
qp  by using the usual methods only. Even with the help of the repetitive usage of the 

usual processes of evaluation, there is always some residual pq-integral to evaluate again! Hence, the pq-

series is essential for pq-integrals. 
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In what follows it is a systematic application of the concept of pq-functions to standard complex functions 

in order to rewrite their integrals in the form of pq-integral with the pedagogical aim to show how for 

example pq-integral apply to evaluate some standard integrals.  

 

4.2. Application of pq-Integral  

 

Let u be a standard complex functions defined as follows.       22
1,\:


 zzuziu CU  and u is 

holomorphic in unit disc   1:\z  ziDu U . Our goal is to evaluate the integral of function  zu  

from z  to 0z  with uDzz 0, . This is equivalent to find new standard complex function defined by  

   
z

z

dzzuz,zu

0

0 , uDzz 0, , 1z . First, we look at the function  zu , which has singularities at iz   

and iz   but since  zu  is holomorphic in the unit disc   1:\z  ziDu U  this allows us to 

rewrite it in the form of pq-function that is  zu  should be a special case of pq-function (51). Note that there 

are, in fact, several manners to rewrite  zu  in the form of pq-function by, of course, selecting the adequate 

values for the parameters and orders. For example, in addition to its initial standard form,  zu  may be 

rewritten in the form     22
1


 zzu this means  12 z  may be interpreted as a weight function or a 

characteristic function. This remark allows us to choose according to the expression (51):    11,, qp ; 

   11,, ρs  and    2/,,  θ , and we get after substitution in (51) 

 

                                            
   

  22

2212

12
11,

2 1
1

1

1

1
11 2/




 






 z

zz

z
,,,,zF  .                                     (1.a) 

  

After this process, we can say: we have rewritten the standard complex function  zu  in the form of 

complex pq-function or we have transformed the standard complex function  zu  into complex pq-function 

or simply we write:     2/11
11,

2  ,,,,zFzu
  and its integral becomes via this transformation  

    0

1,1

0 ,, zzfzzu
  or more explicitly 

                                                                    
z

z

dzFzzfzzu

0

1,1

20

1,1

0 ,, .                                                 (1.b) 

 

Since  1,1

2


F is holomorphic in  1,1

2
Fu

D  and 1z , thus  1,1

2


F is expandable in pq-series (91) 

 

                                                          




 
0

211,

2 101011 2/
n

n

nn z,B,A,,,,zF  .                                      (1.c) 

 

The coefficients  10 ,An  and  10 ,Bn  may be easily determined from the expressions (61) and (95), 

respectively. Therefore substituting (1.c) in (1.b), to find, after a direct evaluation  
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5. Physical Interpretation of pq-Functions  

 

In this section, we are particularly interesting in the importance of pq-functions in physics especially when 

the phenomena depend at the same time on the main complex variable z , the auxiliary complex parameters 

)( ρ,s  and the real angular parameters ),( θ . For instance, in the framework of fluid mechanics,  qp
F

,

2 may 

be interpreted under, of course, some experimental and/or theoretical conditions as a power law of complex 

potential flow. This power law should be defined by the expression (38). The pq-DE that governing such a 

complex potential is, according to (38) and (39), of the form 

 

                                                  0
4321

2 























 W
zzzz

ȕz
q

zzzz

αz
pW

dz

d
,                           (106) 

with 

                                                                    
2

21 zzα 
 ,  

2

43 zzȕ 
 .         

 

As illustration, let us show that the well-known Joukowski function (JF) is a special case of pq-function. 

This property should, among other things, extend the field of application of pq-functions. Historically, the 

Russian scientist N. E. Joukowski (1847-1921) who first studied the properties of the function  

 

                                                                     





 

z
zzJ

1

2

1
,  0z ,                                                        (107) 

 

in the early 20th century. He showed that the image of a circle passing through 11 z  and 12 z  is 

mapped onto a curve shaped like the cross section of an airplane wing. We call this curve the Joukowski 

airfoil as shown in Figs. 1 and 2. 

 
                                                       

                                                        Fig.1: Image of a fluid flow under the Joukowski function 
  

 

 
                                                       

                                                                       Fig.2: Illustration of Joukowski airfoil 
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JF is very important for its applications in fluid mechanics. For example, if the streamlines for a flow 

around the circle are known, then their images under the mapping  zJw   will be streamlines for a flow 

around Joukowski airfoil. However, technically, the Joukowski airfoil/profile suffers from a cusp at trailing 

edge. This implies that if, for instance, one had to build wings with such a profile, and one should obtain a 

very thin, hence fragile rear part of the wing. For this reason more general profiles having a singularity with 

distinct tangents at the trailing edges have been introduced (Karman-Trefftz profile).  

 

Another generalization of Joukowski profile goes in the direction of enlarging the number of parameters 

(Von Mises profile). Now, returning to the explicit expression (51) and showing that with the help of 

property (3) in Sub-subsection 2.2.1 regarding the homogeneity of  qp
F

,

2 with respect to ρands,,z , and by 

an appropriate choice of some values for the real angular parameters ),( θ , we can generalize JF. For this 

purpose, let us begin by rewriting (51) 
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Thus, according to the above mentioned property (3), we have  0\ R : 
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So let us deduce the expected generalized JF for the case when    2/, ppqp,  ,    0,sρs,   and 

   θθ, ,  : 

                                                    
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1
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Here, the generalization is done in power form with the presence of two parameters ε  and s . Furthermore, 

it is worthwhile to note that (109) reduces to the usual JF (107) for the special case when 1p , 2ε  and 

1s . Therefore, the study of properties and behavior of (109) via its graphical representations should 

depend on the appropriate choice of the numerical values for p , ε  and s , respectively. 

 

6. Structural Properties of pq-DE  

 

In this section, we would focus our attention exclusively on the structural properties of pq-DE (39), which 

as we know is derived from pq-PDE (10) when the pq-function is supposed independent of the complex 

auxiliary parameters s  and ρ . But first, let us rewrite (39) in its more explicit form, namely: 
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We remark from Eq.(110) that the orders, the weight function, the characteristic function and their 

derivatives all are essential elements that entering in the structure of this equation. This allows us to say that 

the study of structural properties of Eq.(110) is completely depending on those mentioned elements as we 

shall see. 
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6.1. Relationship between pq-DE and Fuchs’ class 

 

Our aim, here, is to prove that under some conditions relative to very interesting particular cases, Eq.(110) 

belongs to Fuchs’ class. For this purpose, considering the following cases. 

 

Case.1: when 0p  and 0q , Eq.(110) takes the dorm 
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Anyone well familiarized with the equations of Fuchs’ class can immediately affirm that Eq.(111) is really 

belonging to Fuchsian class since its variable coefficients satisfying Fuchs’ condition, and according to the 

explicit expression of the weight function (36), Eq.(111) has two regular singular points:  1zz   and 2zz  . 

 

Case.2: when 0p  and 0q , Eq.(110) takes the dorm 
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Also, the variable coefficients of Eq.(112) satisfying Fuchs’ condition, and the explicit expression of the 
characteristic function (37) implies that Eq.(112) has two regular singular points: 3zz   and 4zz  . 

 

6.2. Relationship between pq-DE and DE of Sturm-Liouville form 

 

After we have proven that pq-DE (110) belongs to Fuchs’ class under some well-established conditions, at 

present we shall show that the same equation may be written in classical form of Sturm-Liouville DE, 

particularly, when its spectral (eigenvalue) 1λ , and when the orders    11,, qp  for Eq.(110). First, let 

us write the classical form of Sturm-Liouville DE: 

 

                                               0 RzȖzȕRzα
dz

Rd  ,   zRR  ,    0zα .                                 (113) 

 

Considering the very important case when 1λ  and R is supposed holomorphic in its domain. Hence, after 

substitution, differentiation and rearrangement, we get 
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Concerning Eq.(110), we have for the case    11,, qp : 
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Or equivalently 
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As we can remark it, the expression of Eq.(116) is comparable to that of Eq.(114), consequently we can 

rewrite it in the following form    

 

                                       0
2

2

2

2

2

2

2

2
222222 















 



 W

H

GH

G

HG
GHHGWHG

dz

d
.                      (117) 

 

Eq.(117) is exactly the expected classical form of Sturm-Liouville DE for the case when 1λ . However, if 

we take into account the previous result we find that the variable coefficients of Eq.(117) do not justify 

Fuchs’ condition, therefore, Eq.(117) does not belong to Fuchsian class, in this sense we call it “ pq-DE in 

Sturm-Liouville form for 1λ  and    11,, qp  ”. 
 

6.3. Question 

 

From all that we arrive at the central question that arises in the context of pq-DEs: Is there some relationship 

between the DEs of Fuchsian class and the DEs of Sturm-Liouville form in spite of their quite distinct 

structures? 

 

From previous result concerning the structure of pq-DEs that are belonging to Fuchsian class and Eq.(116), 

we begin to answer this question as follows. The above mentioned relationship may be really exist through 

pq-DEs if and only if    01,, qp  or    10,, qp  when 1λ . Indeed, for the case    01,, qp , 

Eq.(110) reduces to 
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It is clear from the expression of Eq.(118), which is also an important special case of Eq.(111) when 

1p , therefore it follows that the variable coefficients of Eq.(118) satisfying Fuchs’ condition and 
consequently the equation has two regular singular points similar to those of Eq.(111). Furthermore, the 

structure of Eq.(118) allows us to write in Sturm-Liouville form for the case 1λ : 
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Eq.(119) is precisely the first answer to our question relating to the relationship between the DEs of 

Fuchsian class and the DEs of Sturm-Liouville form. The second answer comes from the case when 

   10,, qp , thus Eq.(110) reduces to 
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Eq.(120) is also an interesting special case of Eq.(112) when 1q . Hence, it follows that the variable 

coefficients of (120) satisfying Fuchs’ condition therefore the equation has two regular singular points 
similar to those of Eq.(112). Moreover, the structure of Eq.(120) permits us to write in Sturm-Liouville 

form for the case 1λ : 
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Eq.(121) is exactly the second answer to our central question. That is to say, in the context of pq-DEs, there 

is really a certain relationship between the DEs of Fuchsian class and the DEs of Sturm-Liouville form.  

 

6.4. Reciprocal characteristic properties 

 

The main purpose of this subsection is to show the existence of some reciprocal properties that characterize 

at the same time the structure of pq-function and its pq-DE. Hence, we must return to (110), which has in 

reality three independent families of solutions, namely: 
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21  ;   dzWWW  -1

112 ;   22113 WcWcW  ;   C21 c,c .                          (122) 

 

In order to make the understanding of this investigation more easy let us, first, begin with the following 

theorem. 

 

Theorem: The Wronskian of two fundamental families of solutions of pq-DE (110) is itself a fundamental 

family of solutions of the same equation. 

 

Proof of theorem  

 

Let  qp
FW

,

21   and dzWWW  -1

112  two fundamental families of solutions of pq-DE (110), thus their 

Wronskian is   

                                                            122121, WWWWWWW  . 

 

We have for the derivative of 2W , the expression 1
-1

11   dzWWW2 . Hence, after substitution in the 

Wronskian, we get                  
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-1

111

-1

11121 1, WdzWWWdzWWWWWW   . 

 

Secondly, we would show that the solutions (122) and their pq-DE (110) are in fact special case. With this 

aim, let  0\Z , hence the property (2) in Sub-subsection 2.2.2 allows us to write 
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112 ;   22113 wcwcw  .                                     (123) 

 

Note that since the solutions (122) are special case of (123) when 1 , this implies that the solutions (123) 

themselves should be families of solutions of the following pq-DE: 

 

                                                                0
2

2

2

2 














 



 w

H

H
q

G

G
pw

dz

d
 .                                            (124) 

 

The mutual presence of the parameter   in the solutions (123) and their pq-DE (124) defines us, in this 

sense, the reciprocal characteristic properties of pq-DE and its solutions. Indeed, like its solutions, pq-DE 

(124) reduces to (110) when 1 . Moreover, if presently we suppose   0\N  such that   is not fixed, 

thus in such a case w  is not simply a fundamental family of solutions, but it should be a system of 

fundamental families of solutions defined by finite summation: 
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Therefore, pq-DE (124) becomes 
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or equivalently  
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Recall that until now the orders  q,p are always considered as fixed real numbers, however, if hereafter 

they are supposed to be non fixed positive integers, that is  Nq,p ; in such case we can distinguish two 

systems (of fundamental families) of solutions defined as a finite summation. 

 

Case 1:  0\N ; Nq,p  and qp >  such that 
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this justifies the following system of pq-DEs 
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Case 2:  0\N ; Nq,p  and qp   such that 
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The corresponding system of pq-DEs takes the form 
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Hence, Eqs.(129) and (131) define us two systems of pq-DEs when p and q are non fixed positive integers 

and nw  is defined by (128) and/or (130). Furthermore, as it was previously mentioned, the different 

structural properties of Eq.(112) as a system of pq-DEs depend exclusively on the expressions of pq-

function and vice versa. 

 

 

7. Conclusion 

 

In this paper, we have developed a theory based exclusively on the concept of pq-functions which should 

regard as an extension of previous work [1]. We have studied the specific properties of pq-functions and the 

structural properties of pq-(P) DE and their consequences which, to our knowledge, have not previously 

been reported in the literature. 
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