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Abstract: This report surveys the applications of Smarandache’s notion for presenting
new conceptions and generalizing problems in classical graph theory. Topics covered in this
report include (1)What is a Smarandache System?; (2)Vertex-Edge Labeled Graphs with
Applications: (i)Smarandachely k-constrained labeling of a graph; (ii)Smarandachely super
m-mean graph; (iii)Smarandachely uniform k-graph; (iv)Smarandachely total coloring of a
graph; {3)Covering and Decomposing of a Graph: (i)Smarandache path k-cover of a graph;

(ii)Smarandache graphoidal tree d-cover of a graph; (4)Furthermore.



61. Smarandache Systems

1] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, Ameri-
can Research Press, 2005.

2] L.F.Mao, Smarandache Multi-Space Theory, Hexis, Phoenix, USA, 2006.

Definition 1.1 A rule in a mathematical system (X;R) is said to be Smarandachely denied if
it behaves in at least two different ways within the same set X, i.e., validated and invalided, or
only invalided but in multiple distinct ways.

A Smarandache system (X:R) is a mathematical system which has at least one Smaran-

dachely denved rule in R.



Definition 1.2 For an integerm > 2, let (X1:Rq), (X9 Ra), -, (Em: Ryn) be m mathematical
systems different two by two. A Smarandache multi-space 1s a pair (E’R) with

N m _ m
¥=U%, ad R=|R.
i=1 i=1
Definition 1.3 An aziom is said to be Smarandachely denied if the aziom behaves in at least
two different ways within the same space, i.e., validated and invalided, or only mvalided but in
multiple distinct ways.
A Smarandache geometry is a geometry which has at least one Smarandachely denied

aziom(1969 ).



Example 1.1 Let us consider an Euclidean plane R* and three non-collinear points 4, B and
(" Define s-points as all usual Euclidean points on R* and s-lines any Euclidean line that
passes through one and only one of pomts A, B and C, such as those shown m Fig.1.1.

(i) The axiom (A5) replaced by two statements: one parallel, and no parallel

(11) The axiom replaced by; one s-line, and no s-line.
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Fig.1



Definition 1.4 A combinatorial system 6 is a union of mathematical systems (£1: Ry1),(X2: Ra),

oo (S Ryn) for an integer m, t.e.,
T T
%o =(UZi URi)
i=1 =1
with an underlying connected graph structure G, where

V(G)={Z1, 50 . Sl
E(G)={(S.5) | SiNZ #0.1<ij <m).



§2. Vertex-Edge Labeled Graphs
2.1 Application to Principal Fiber Bundles

1] L.E.Mao, Combinatorial Geometry with Applications to Field Theory, InfoQuest, USA,2000.
2] LF.Mao, Combinatorial Fields - An Introduction, International J. Math. Combin., Vol.3,2009,
1-22.

Definition 2.1 A labeled graph on a graph G = (V. E) is a mapping 0y, : VUE — L for a label
set L, denoted by GV

If; : E—=0orf, :V =10 then G is called a vertex labeled graph or an edge labeled
graph, denoted by GV or GE, respectively. Otherwise, it is called a vertez-edge labeled graph.



Example:




Definition 2.2 For a given integer sequence O < nqy < ng < +++ < iy, m > 1, a combina-

torial manifold M is a Hausdorff space such that for any point p € ﬁ there is a local chart

(Up-0y) of p, i.e.. an open neighborhood U, of p in M and a hﬂmommomhaﬁm pp 2 Up =

R(ny(p), na(p), -+ o1 g }(p)), a combinatorial fan-space with {ny(p).na(p). -~ Ny )(p)} C

{ny,ng, - m} and U {n1(p).na(p). -+ sy (p)} = {n1.ng,- -+, }. denoted by U( ny. 1.
pE'lJ

o Ty) OT M on the context and

A={(Up.0,)|p € M(ng,ng, -+ ,ny))}

an atlas on M(ny.ng. - np).



A combinatorial manifold A 1s finite if 1t 15 just combined by finite manifolds with an
underlying combmatorial structure G without one manifold contamed m the union of others.
Certainly, a finitely combinatorial manifold 1s indeed a combinatorial manifold. Examples of

combimatorial manifolds can be seen 1 Fig.3.

Fig.3



Let ﬁ(”l Nng. . Ny,) be a finitely combinatorial manifold and d.d > 1 an integer. We
J[(Hl L TRRREE ”'*.rn)] b}r

construct a vertex-edge labeled graph G¢

—

1'(@‘3’![‘1[({?1 no, -, ”'ﬂl)]) _ 1';]_ U 1,2
Where L-*']_ = {T:’-i — mﬂ.ﬂitDldS ﬂf?li iﬂ j}(”]_ Cee ”_m)|]_ E 3 E _”:,.} El,ﬂd Tr?_rz _ {iSDl&ted interﬁection

points Opygn; ppmy of M™ M™ in ﬂ'(m.ng.--~ ) for 1< i, < m}. Label n; for each

n;-manifold m 14 and 0 for each vertex m V5 and

E(G1

ﬁ(rsl ng, - ny)]) = Eq U Es.

where Ey ={(M", M"i) labeled with dim(M" (Y M") | dim(M™ (\M"™) > d,1 <i,j < m}
and Ey = {(Oppri ppmi . M™). (Opgrs pgmi . M™) labeled with 0|A/™¢ tangent A" at the point
Opgri yrsfor 1<, j <mi.



Now denote by H(n1,n2,-++ ,ny,) all finitely combinatorial manifolds ﬁ(ral ng. M)
and G[0, ny,| all vertex-edge labeled graphs Gt with 0 - V(GHY U E(GF) — {01, iy}
with conditions following hold.

(1)Each induced subgraph by vertices labeled with 1 in G is a union of complete graphs
and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2)For each edge e = (u,v) € E(G), 1a(e) < min{ri(u), 71(v)}.

Then we know a relation between sets H(n1,na.- -, ) and G([0, n,,]. [0, 1,,]) following.
Theorem 2.1 Letl < ny < ng < - < n,.m = 1 be a given integer sequence. Then
every finitely combinatorial manifold M € H(ny.ng. -+ .ny) defines a vertez-edge labeled graph

G([0,n.,]) € G0, 0], Conversely, every vertez-edge labeled graph G([0.n,,]) € G[0, n,,] defines
a finitely combinatorial manifold M e H(ny.ng, i) with a 1—1 mapping 6 : G *([0 nm]) —
M such that O(u) is a O(u)-manifold in M, 71i(u) = dimf(u) and To(v,w) = dim(0(v) ) 0(w)
for Yu e V(G([0.n,)) and ¥(v, w) € E(G([0,n:,])).




Definition 2.3 A principal fiber bundle consists of a manifold P action by a Lie group 4, which
is a manifold with group operation 4 x 4 — 4 given by (g, h) — g o h being C™ mapping. a
projection @ : P — M, a base pseudo-manifold M. denoted by (P.M.¥4). seeing Fig.4d (where
V =7 YU)) such that conditions (1), (2) and (3) following hold.

(1) there is a right freely action of 9 on P., i.e., for Vg € 4, there is a diffeomorphism
Ry : P — P with Ry(p) = pg for ¥p € P such that p(g1g2) = (pg1)g2 for ¥p € P, Yg1,92 € 9
and pe = p for some p € P, e € 9 if and only if ¢ is the identity element of 4.

(2) the map @ : P — M is onto with 7= (7 (p)) = {pglg € ¥}

(3) for Yz € M there is an open set U with x € U and a diffeomorphism Ty : 7= 1(U) —
U x4 of the form Ty (p) = (7(p). su(p)), where sy : 7Y U) — % has the property sy (pg) =
sul(plg forVge 9. p e ﬁ_l(U).

Pl ®---® L,

Fig.4



Question For a family of k principal fiber bundles By(My.9), Bo(My. %), Py(M;. %)
over manifolds My, My, -+, My, how can we construct principal fiber bundles on a smoothly

combinatorial manifold consisting of My, My, -+ My, underlying a connected graph G

The answer 1s YES.

The technique 1s by voltage assignment on labeled graphs.



Definition 2.4 A voltage labeled graph on a vertez-edge labeled graph G* is a 2-tuple (G*;a)

with a voltage assignments o : E(G*) — T such that
a(u.v) =a o), Y(uv)e E(GP).
with its labeled lifting GT= defined by
V(GE) = V(GF) x T, (u.q) € V(G*) x T abbreviated to u,;
E(GEY={ (uy,v,0n) | for Y(u,v) € B(GY) with a(u,v) =h }
with labels O, : G« — L following:

Or(ug) =0r(u), and Of(u,, v4on) =0rn(u,v)

for u,v € V(GY), (u,v) € E(G) with a(u,v) =h and g.h € T.



For a voltage labeled graph (G*, o) with its lifting G, a natural projection 7 : Gt« — G*
is defined by 7(u,) = u and 7(ug. vgon) = (u.v) for Yu.v € V(G*) and (u.v) € E(G*) with
a(u,v) = h. Whence, (G*=,7) is a covering space of the labeled graph G*. A voltage labeled

graph with its labeled lifting are shown in Fig.4.4, in where, G¥' = C} and T = 7.




Construction 2.1 For a family of principal fiber bundles over manifolds My, M. -

such as those shown in Fig.0,

'-%%1 '}ggg e '-%tf);

(] P P (] P Py (Pu)

HM‘J HM;{ e o JHH;

@ @ @

Fig.6
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where A, is a Lie group acting on Py, for 1 <i <[ satisfying conditions PFB1-PFB3, let M
be a differentiably combinatorial manifold consisting of M;, 1 <1 <1 and ( JL[ﬁ] ) a voltage
graph with a voltage assignment o : G- [ﬁ] — & over a finite group O, which naturally induced
a projection 7 : GF [P] — G [ﬁ] For YM € V(GF [ﬁ]) if 1(Pyr) = M, place Py on each
lifting vertex M*= in the fiber 7=1(M) of GLﬂ[ﬁ] such as those shown in Fig.7.

& @ W

e

7~ M)

Fig.7



Let II = 7l m~t for YM € V(GE [ﬁ]) Then P = U Py 1s a smoothly combinato-
MeV (GE[M])

rial manifold and %q = U 1 a Lie multi-group by definition. Such a constructed
MeV(GL[M])
combinatorial fiber bundle is denoted by ﬁLﬂ(ﬂI..’?Gy

For example, let ® = Z5 and G’L[ﬁ] = (3. A voltage assignment o : GL[ﬁr] — 75 and its

imduced combinatorial fiber bundle are shown in Fig.8.

g N 7 (\
P,

Fig.8



Then we know the existence result following,

Theorem 2.2 A combinatorial fiber bundle Pﬂ(q] \, %) is a principal fiber bundle if and only
if for WM )0") € E(GHM)) and (Pyr, Pyr) = (M, ") € E(GHP)), Ty
IV

Py 0Py =

_M'.r[ ]P_M'” *



2.2 Smarandachely k-constrained labeling of a graph

1] ShreedharK, B. Sooryanarayana and Raghunath P., Smarandachely k-Constrained labeling
of Graphs, International J.Math. Combin. Vol.1 (2009), 50-60.

2] P. Devadas Rao, B. Sooryanarayana and M. Jayalakshmi, Smarandachely k-Constrained
Number of Paths and Cycles, International J.Math. Combin. Vol.3 (2009), 48-60.

Definition 2.5 A Smarandachely k-constrained labeling of a graph G(V, E) is a bijective map-
ping f : VUE — {12, |V| + |[E|} with the additional conditions that |f(u) — f(v)| > k
whenever uv € E, | f(u) — f(uv)
k> 2. A graph G which admits a such labeling 1s called a Smarandachely k-constrained total
graph, abbreviated as k — CTG.

>k oand | f(uv) — flow)| = k whenever u # w, for an integer



An example for k = 5:
A6 ANV 12 /AN 2 A9 8 /)14 4 10
e () e O e e O O U O

Fig.9: A 5-constrained labeling of a path .




Definition 2.6 The minimum positive integer n such that the graph GUK,, is a k — CTG is
called k-constrained number of the graph G and denoted by ti(G). the corresponding labeling is

called a minimum k-constrained total labeling of .

Problem 2.1 Determine t.(G) for Yk € ZT and a graph G.



»Update Results for Problem 2.1:

Case 1. k=1

In fact, t,(G) = 0 for any graph G since any bijective mapping f: VUE — {1.2,..,|V] 4+
|E|} satisfies that | f(u)—f(v)| > 1 whenever uv € E, |f(u)—f(uv)| > Land | f(uv)- f(vw)| > 1

whenever u # w.




Case 2. k=2

(9 if n=2
(1) ta(Po)=4 1 if n=3,
h 0 else.

Proof Let V(P,) = {vy,v9.....0,} and E(P,) = {v;v;41/1 <i <n—1}. Consider a total
labeling f: VUE — {1,2,3,....2n—1} defined as f(vy) = 2n—=3; f(vg) =2n—-1; f(vy09) = 2
flugug) = 4; and f(vy,) = 2k =5, f(vgvper) = 2k, for all k > 3. This function f serves as a
Smarandachely 2-constrained labeling for Py, for n > 4. Further, the cases n =2 and n = 3

are easy to prove, ]



2 4 6
oyt ——()——()

Fig.10




(2) t5(C) = 0if 1 > 4 and #,(Cy) = 2.

Proof 1t n > 4, then the result follows immediately by jommg end vertices of P, by an
edge v1v, , and, extending the total labeling f of the path as in the proot of the Theorem 2.4
above to include f(viv2) = 2n.

Consider the case n = 3. If the integers @ and a +1 are used as labels, then one of them
18 assigned for a vertex and other 1s to the edge not incident with that vertex. But then, a + 2
can not be used to label the vertex or an edge in (5. Therefore, for each three consecutive
mtegers we should leave at least one mteger to label 5. Hence the span of any Smarandachely
2-constrained labeling of Cy should be at least 8. So #5(C'3) > 2. Now from the Figure 3 it 1s
clear that t5(C3) <2 . Thus t5(C5) = 2. [
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(3) to(K,) = 0if n > 4.
(4) to(Wy,,) = 0 if n > 3.

2 if n=1 and m =1,
(6) to(K )= 1 if n=1 and m > 2,
0 else.



Case 3. k>3

k=5, if n=3, y
(1) tr(Ky )= if k.on > 3.
n(k —2). otherwise.

Proof For any Smarandachely k-constramed labeling f of a star K ., the span of f, after
labeling an edge by the least positive integer a 1s at least a +nk. Further, the span 1s minimum
only if @ = 1. Thus, as there are only n 4+ 1 vertices and n edges, for any mmimum total
labeling we require at least 1 +nk — (2n 4+ 1) = n(k — 2) 1solated vertices if n > 4 and at least
L +nk—2n=n(k-2)+1ifn=3. In fact, for the case n = 3, as the central vertex is incident
with each edge and edges are mutunally adjacent, by a mmimum k-constramed total labeling,
the edges as well the central vertex can be labeled only by the set {1.14 k14 2k, 1+ 3k}.
Suppose the label 1 1s assigned for the central vertex, then to label the end vertex adjacent to
edge labeled 1+ 2k 1s at least (1 4+ 3k) + 1 (since it 1s adjacent to 1, it can not be less than
1+ k). Thus at most two vertices can only be labeled by the mtegers between 1 and 14 3£.

Similar argument holds for the other cases also.



Therefore, t(K1,) = n(k — 2) forn > 4 and t{ Ky ,,) = nlk —2) +1 for n = 3.
To prove the reverse inequality, we define a k-constrained total labeling for all k = 3, as

follows:

(1) When n = 3, the labeling is shown in the Fig.10 below

Fig.12



(2) When n > 4, define a total labelng f as f(vgv;) =14 (j - 1)k forall j,1 < j <.
flog) =14nk, floy) =24 (n=2)k, f(vy) =3+ (n—2)kand for 3 <i < (n-1),

| flo)+2, if f(v;)=0(mod k),

fvig1)= |
flu))+1, otherwise.

\

and the rest all unassigned integers hetween 1 and 1+ nk to the n(k — 2) 1solated vertices,
where v 15 the central vertex and v1.v9, v3. ..., v,, are the end vertices.

The function so defined 1s a Smarandachely k-constramed labeling of K1, U ﬁ'n(k_g)? for

all n > 4. []



(2) Let P, be a path on n vertices and kyp = LE”BTIJ. Then

-

0O if k< ko.
te(Pr)=9 2(k—ko)—1 if k>ko and 2n = 0(mod 3),
L 2(k = ko) if k> kg and 2n =1 or 2(mod 3).

(3) Let '), be a cycle on n vertices and kg = [2”3_1J. Then

(0 if K<k
te(Cn) =9 2(k—ko) if k>ko and 2n =0 (mod 3).
| 3(k— ko) if k>ky and 2n =1 or 2(mod 3).




2.3 Smarandachely Super m-Mean Graph

1] R. Vasuki and A. Nagarajan, Some Results on Super Mean Graphs, International J. Math.
Combin. Vol.3 (2009), 82-96.

Definition 2.7 Let G be a graph and f: V(G) — {1.2,3,--- |V |+ |E(G)
For each edge € = wv and an integer m > 2, the induced Smarandachely edge m-labeling f§ is

defined by

} be an injection.

f5(6) { ) + f(ﬂ |

m

Then f is called a Smarandachely super m-mean labeling if f(V(G))U{f*(e): e € E(G)} =
{123, |V 4 |E(G)

called Smarandachely super m-mean graph.

b, A graph that admits a Smarandachely super mean m-labeling is



Particularly, if m = 2, we know that

f:juj:;rf{u) if f(u)+ f(v) is even;

f{u}+§{v)+1 if f(u)+ f(v)is odd.

file) =

Example: A Smarandache super 2-mean graph P¢

1 6 10 12
1 2 3 i) 7 8 9 11 13 14 15

Fig.13



Problem 2.2 Find integers m and graphs G such that G is a Smarandachely super m-mean

graph.

»Update Results for Problem 2.2:

Now all results 1s on the case of Smarandache super 2-mean graphs.

(1) A H-graph of a path P, is the graph obtained from two copies of P, with vertices
U1, U9.. .., U, and 1y, g, ... 1, by joning the vertices Ungt and Unt if n 15 odd and the

vertices vz 41 and up 1f 18 even. Then

A H-qraph G is a Smarandache super 2-mean graph.



2) The corona of a graph G on p vertices vy, vq,....v, 1s the graph obtained from G by
P

adding p new vertices uy, us..... 1, and the new edges u;v; for 1 <7 <p, denoted by G ¢ K.

If a H-graph G is a Smarandache super 2-mean graph, then G © Ky is a Smarandache

super 2-mean graph.

(3) For a graph G, the 2-corona of G is the graph obtained from G by identifying the center

vertex of the star Sy at each vertex of G, denoted by G () 5s.

If a H-graph G is a Smarandache super 2-mean graph, then G &S5 1s a Smarandache super

2-mean graph.
(4) Cycle Cyy, 15 a Smarandache super 2-mean graph for n > 3.

(5) Corona of a cycle C,, is a Smarandache super 2-mean graph for n > 3.



(6) A cyclic snake m(C,, is the graph obtained from m copies of C,, by identifying the vertex
jth in the (j + 1) copy if n = 2k 4+ 1 and identifying the

U(k+2), In the j™ copy at a vertex v
in the (j + 1) copy if n = 2k.

Lita
vertex v(j.41); In the j th copy at a vertex VL,
The graph mC\-snake, m = 1.n = 3 and n £ 4 has a Smarandache super 2-mean labeling.
(7) A P,(G) 1s a graph obtained from G by identifying an end vertex of P, at a vertex of
(_f
If G is a Smarandache super 2-mean graph then P,(G) is also a Smarandache super 2-mean

graph.

(8) Cy x Py for n > 1,m = 3.5 are Smarandache super 2-mean graphs.

Problem 2.3 For what values of m (except 3.5) the graph C\, x Py, is a Smarandache super
2-mean graph?



2.4 Smarandachely Uniform k-Graphs

[1] Bibin K. Jose, Open Distance-Pattern Uniform Graphs, International J.Math. Combin.
Vol.3 (2009), 103-115.

Definition 2.7 For an non-empty subset M of vertices in a graph G = (V. E), each vertez u
in G is associated with the set fy;(u) ={d(u,v) : v €M, u# v}, called its open M-distance-
pattern.

A graph G is called a Smarandachely uniform k-graph if there exist subsets My, My, -+, My
for an integer k > 1 such that fy, (u) = fﬁ,fj(u.) and [y, (u) = Efj(?.-‘) forl1 <i.j <k and
Yu,v € V(G). Such subsets My, My, My are called a k-family of open distance-pattern
uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is called

the Smarandachely odpu-number of G, denoted by od3 (G).

Usually, a Smarandachely uniform 1-graph G 1s called an open distance-pattern uniform

(odpu-) graph. In this case, its odpu-number od; (G) of G is abbreviated to od(G).



Problem 2.4 Determine which graph G is Smarandachely uniform k-graph for an integer
E>1.

»Update Results for Problem 2.4:

1) A connected graph G is an odpu-graph if and only if the center Z(G) of G is an odpu-set.

2) Every self-centered graph is an odpu-graph.

3) A tree T has an odpu-set M if and only if T is isomorphic to Ps.

4) If G is a unicyclic odpu-graph, then G is isomorphic to a cycle.

5) A block graph G is an odpu-graph if and only if G is complete.
)

6) A graph with radius 1 and diameter 2 is an odpu-graph if and only if there exists a
subset M C V(G) with |M| = 2 such that the induced subgraph (M) is complete, (V — M) is

not complete and any vertex in V' — M 1is adjacent to all the vertices of M.



Problem 2.5 Determine the Smarandachely odpu-number f}df(@) of G for an integer k > 1.

»Update Results for Problem 2.5:

1) For every positive integer k £ 1,3, there exists a graph G with odpu-number k.

(
(2) If a graph G has odpu-number 4, then r(G) = 2.

(3) The number 5 cannot be the odpu-number of a bipartite graph.

(4) Let G be a bipartite odpu-graph. Then od(G) = 2 if and only if G is 1somorphic to Ps.
(5) od(Cog+1) = 2k.

(

)
)
)
)
)
6) od(K,) =2 for all n > 2.



2.5 Smarandachely Total Coloring of a graph

[1] Zhongfu Zhang et.al., On the AVSDT-Coloring of S,,,+W,,, International J.Math. Combin.
Vol.3 (2008), 105-110.

Definition 2.8 Let f be a total k—coloring on G. Its total-color neighbor of a vertez u of
G is denoted by Cy(x) = {f(2)|e € Ty(u)}. For any adjacent vertices x and y of V(G), if
Ci(x) # Cyly), say f a k AVSDT-coloring of G (the abbreviation of adjacent-vertex-strongly-
distinguishing total coloring of GG ).

The AVSDT-coloring number of G, denoted by yost(G) is the minimal number of colors
required for an AVSDT-coloring of G



Definition 2.9 A Smarandachely total k-coloring of a graph G is an AVSDT-coloring with
Cr(@)\Cr(y)| 2 k and |Cp(y)\Cy(z)| = F.

The minimum Smarandachely total k-coloring number of a graph G is denoted by \* ,(G).

Obviously, Yast(() = Ygu¢(C) and

k+1 AT k LR k—1 T - 1 1
e E X 5 (G) ™~ Xast((‘;) = Xast (G) == quf((—;)

ast

by definition.

Problem 2.6 Determine xist(G) for a graph G.

>Update Results for Problem 2.6:

Xisx(‘gm +W,)=m+n+3 if min{m,n} > 5.



§3. Covering and Decomposing of a Graph

Definition 3.1 Let 2 be a graphical property. A Smarandache graphoidal 2 (k. d )-cover of
a graph G is a partition of edges of G into subgraphs Gy, Gy, .Gy € @ such that E(G;) N
E(G;) <k and A(G;) <d for integers 1 <i.j <.

The manimum. cardinality of Smarandache graphoidal 2 (k. d)-cover of a graph G 1s de-

noted by Hg;’d)(@).

Problem 3.1 determine H;’d)(ﬁ?) for a qraph G.



3.1 Smarandache path k-cover of a graph

1] S. Arumugam and I. Sahul Hamid, Simple path covers in graphs, International J.Math.
Combin. Vol.3 (2008), 94-104.

Definition 3.2 A Smarandache path k-cover of a graph G 1is a Smarandache graphoidal 2
(k. A(G) )-cover of G with 2 =path for an integer k > 1.

A Smarandache path 1-cover of G such that its every edge is in exactly one path in it is
called a simple path cover.

The minimum cardinality of simple path covers of G is called the simple path covering
number of G and is denoted by H%‘MG}}(GJ,

If do not consider the condition E(G;)NE(G,) < 1, then a simple path cover is called path
cover of G, its minimum number of path cover is denoted by 7(G') in reference. For examples,

Ts(Ky) = [5] and 7 (T) = % where k£ 18 the number of odd degree in tree T'.

Problem 3.2 determine H;’d) (G) for a graph G.



sUpdate Results for Problem 3.2:

(1) H%‘MG”(T) =7m(T) = % where k is the number of vertices of odd

(2) Let GG be a unicyclic graph with cycle C'. Let m denote the number

greater than 2 on C'. Let I be the number of vertices of odd degree. Then

-

3 if m =10
% + 2 ifm =1

%—I—l if m =2

% if m = 3



(3) For a wheel W, = Ky + C,,_y. we have

6 fn=4
HE‘Z;!&(G))(H;H) = Ef ”

Proof Let V(W) = {vp. v1..... Un—1} and E(Wy) ={vgvi : 1 <i <n=1}U{vvip1 1 1 <
1 <n =2} U{vivn-1}.
It n =4, then W, = Iy and hence H%‘MG})(H-"'ﬂ)(l’[-"'n] = 0.

Now, suppose n = 5. Let r = B—“J

If n 15 odd, let

P; = (v v0.0p4), 1 =1.2,....7.
Pry1 = (v1,09,. .., Ur ),
Poyo=(vy,v09.,09-1,.... Uy40) and

Pf'—I—B — (?’1?'- g1, P?'—I—E\}*



If 12 18 even, let

P; = (v, vp,vp—144), i =12, ...,r — 1.
P = (vg. v2,-1),

Pry1 = (v1.09....,0.21),

Pryo = (vi.v2,—1.....0,41) and
P.. 1 — {?!-. L R I I 1

Then H%’&(GD(H’H) ={P}, Py,..., P43} is a simple path cover of IW,,. Hence 7,(1,,) <
r+3 = EJ +3. Further, for any simple path cover 1 of W), at least three vertices on
C' = (v1,v9,...,0,1) are terminal vertices of paths m ¢. Hence t < g - % — 3, so that

0 W) =g -t > 543 2] 43 Thus T (0,) = |2] 43, i



2| A. Nagarajan, V. Maheswari and S. Navaneethakrishnan, Path double covering number of

product graphs, International J.Math. Combin. Vol.2 (2009), 27-38.

Definition 3.3 A Smarandache path 1-cover of G such that its every edge 1s in exactly two

path in it is called a path double cover.

Define G+ H with vertex set V(G) x V(H) i which (¢1. hy) 1s joined to (g9, h2) whenever
0103 € E(G) or g1 = gp and hihy € E(H); Go H, the weak product of graphs &, H with vertex
set V(G) x V(H) in which two vertices (g, hy) and (gq. hy) are adjacent whenever ¢,¢; € E(G)
and hihy € E(H) and

12(G) = min { [

: ) 1s a path double cover of G }.



(4) Let m > 3.

3 1f m 1s odd;

.f'ZZ(C'Tm . I{E} — » )
6 1f m 1s even.
(5) Let m.n > 3. 49(C,, o C,) =5 if at least one of the numbers m and n is odd.

(6) Let m.n > 3.

4 if n =1 or 3(mod 4)

J-‘.f'ﬁ(Pm 0 Cn) —
§ i n =0 or 2(mod 4)



-~

) (Ch # Ky) =6 if m > 3 is odd.
) 2o P, Ky) =4 for m = 3.
9) v2( P * K2) =5 for m = 3.
Y2(Chr x P3) =5 1f m > 3 is odd.
(P o K2) =4 form = 2.

-

i2(Kp n) = max{m,n}.

[
e G R e
b

3 1if m=2 or n=2
ﬁf’?(ﬂn X lpn) —

4 otherwise,

if m.n = 2.
(14) v2(Chy x Cp) =5 1if m = 3, n = 3 and at least one of the numbers m and n is odd.

(15) 72(Cy % K3) =4 form > 3.



3.2 Smarandache graphoidal tree d-cover of a graph

1] S.Somasundaram, A.Nagarajan and G.Mahadevan, Decomposition of graphs into internally
disjoint trees, International J.Math. Combin. Vol.2 (2009), 90-102.
2] S.Somasundaram, A.Nagarajan and G.Mahadevan, Graphoidal Tree d - Cover, Interna-

tional J.Math. Combin. Vol.2 (2009), 66-78.

Definition 3.4 A Smarandache graphoidal tree d-cover of a graph G is a Smarandache graphoidal
2 (G
The minimum cardinality of Smarandache graphoidal tree d-cover of G is denoted by

’,;-;Ewd)(G) = Hf,_;!f"d}(@). If d = A(G), then “'}':E-d)(G) is abbreviated to 47 (G).

. )-cover of G with @ =tree for an integer d > 1.

Problem 3.3 determine v7(G) for a graph G, particularly, v7(G).



=Update Results for Problem 3.3:

Case 1: ~¢(G)

(1) v (K,) = [£]:
(2) vr(Kpn) = [2F2] ifm < n < 2m — 3.

(3) vr(Wpmn) =m if n > 2m — 3.

(4) ~p (P, x P,) = 2 for integers m.n = 2.

(B) (P, < Ch,) = 2 for integers m = 3, n = 2.
(6) vr(Chry x C) =3 if m.n = 3.



Case 2: f';r-j(.qd){G}

(1)
(@) 7 M) ifd < B
17 (Kp) = > ‘ .
(5] if d= 5.
if p = 4.

(2) ﬂ-(d) (Kpm)=p+q—pd=mn—(m+n)(d—-1) if n.m = 2d.
(3) 1 (Kza-1,24-1) = p+q—pd =2d - 1.

(4) v (d (Knn) = |_2”] for d > fz’”} and n > 3.

(5) W(Cpa x Cp) =3 for d >4 and 157 (Crp x Cp) = q — p.



Thanks!
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