Dedicated to Prof.Feng Tian on
Occasion of his 70th Birthday

COMBINATORIAL WORLD

----Applications of Voltage Assignament
to Principal Fiber Bundles

Linfan Mao

(Chinese Academy of Mathematics and System Science, Beijing 100080)
maolinfan@163.com

Nanjing Normal University

October 3, 2009



Contents

. Why Is It Combinatorial?
. What is a Combinatorial Manifold?
. What is a Differentiable Combinatorial Manifold?
. What is a Principal Fiber Bundle?
. A Question
. Voltage Graph with Its Lifting
. Combinatorial Fiber Bundle
. Principal Fiber Bundle(PFB)
. Connection on PFB
10. Applications to Gauge Field

© 00 N O 01 & W DN B



= L =Tt -
1 LB & T R

1. Why Is It Combinatorial?

® Ames Room—It isn’t all right of our visual sense
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2. What i1s a Combinatorial Manifold?

Loosely speaking, a combinatorial manifold is a combinatiol
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2.1 Eu

clidean Fan-Space

A combinatorial fan-space R{ny,---,n,;,) is the combinatorial Euclidean space
Exc, (N1, -, Ny) of R™,R™ ... R™ such that for any integers 1, j,
= J < m,

/

1 <1

|

Nm) We can present it by an m x n,, coordinate matrix [T]
following with z; = %& forl<i<m,1<1< .

For ‘ﬁ’peﬁ(nl,---,

Ty o Tm T+ 0 g

[_]: a1 -+ Tam  T2aiim+1) - Tang




Definition 2.1 For a given integer sequence ny,mn2, -+, M, m > 1 with 0 < ny <

ng < --- < Ny, a combinatorial manifold M is a Hausdorff space such that for any

point p & ﬁz there is a local chart (U, ;) of p, i.e., an open neighborhood U, of p in
M and a homoeomorphism wp: Uy — R(ni(p). ng (p),---.nsp(p)), acombinatorial
fan-space with

{n1(p), na(p), - - s sy (P) } € {n1,m9,- -+, },

U {ﬂ1(p),ﬂg(p), g ‘:HS{p)@)} = {‘1’11.,’.’12, L ':nm}:v

.t

peM
and A = {(Up, ¢p)lp € M(n1,n3,---,nm))}
an atlas on M (ny,m9,++,mn,,). The maximum value of s(p) and the dimension

s(p)
 5(p) = dim( ) R™®) are called the dimension and the intersectional dimension of
—1

T

M (r1,m9, -+ ,ny, ) at the point p and is finite if it is combined by finite manifolds

with an underlving combinatorial structure ¢ without one manifold contained in

the union of others.
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2.3 Vertex-Edge Labeled Graphs

A verter-edge labeled graph G([1,k|,[1,1]) is a connected graph G = (V. E)

two mappings

T1:V—>{1,2,*~,k}, TQ:E%{]_.,Q:I"‘]J}

for integers k and [. For example, two vertex-edge labeled graphs with an underlying

oraph K4 are shown 1n the next figure,




all finitely combinatorial manifolds Min,. na,- - ny, )

'H{ﬂlsﬂh e '.vﬂ‘“mj

g[[]:ﬂm]

(1) Each indneed subgraph by vertices labeled with 1in G is a union of complete

all vertex-edge labeled graphs G{[0,ny), [0, 12| ) with

oraphs and vertices labeled with 0 can onlv be adjacent to vertices labeled with 1.
(2) For each edge e = (u,v) € E(G), mle) < min{m(u), 7(v)}.

Theorem 2.1 Let | < ny < na < -+ < g, m = 1 be a quoen integer sequence. Then

every finitely combimatorial manifold M e Hing,ng, - . ny) defines a verter-edge
labeled graph G(|0, ny|, [0, ny|) € G
graph G([0,ny|, (0,1} € G0, 0] defines a finitely combinatorial manifold M <
Hing.ng, - ng) with a 1 — 1 mapping 8+ G([0, ), [0, 1] ) — M such that B
15 @ Blu)-manifold m M. nlu) = dimf{u) and miv,w) = dim(@v) (0 (w)) for
Fu € V(G(|0,1m), [0,1m] ) and F(v,w) € E(G([0, 1w, |0, nim])).

0, ). Conversely. every verter-edge labeled




2.4 Fundamental d-Group

Definition 2.2 For two points p.q in a finitely combinatorial manifold M (11,9,
coo Ny), if there is a sequence By, By, -+, By of d-dimensional open balls with two

conditions following hold.

—

(1)B; € M(ny,ng,---,ny) for any integeri,1 <i < s and p € By, q € By;
(2) The dimensional number dim(B; () Bis1) = d for Vi, 1 <i<s—1.

—

. Then points p,q are called d-dimensional connected in M(ny,ny, - -, n,,) and the se-
quence By, By, - -+, B. a d-dimensional path connecting p and q, denoted by P%(p,q).
If each pair p, q of points in the finitely combinatorial manifold ﬂ?{nh Mo, Ny)

| 18 d-dimensional connected, then M (ny,ng, ++,Ny) 1s called d-pathwise connected

and say its connectivity> d.
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Choose a graph with vertex set being manifolds labeled bi't'fsa_-.

dimension and two manifold adjacent with a label of the dimeng_i_oh ¥
of the intersection if there is a d-path in this combinatorial manifold.

Such graph is denoted by GU. d=1 in (a) and (b), d=2 in (c ¢
In the next figure.




Definition 23  Let H(ﬂl,ﬂg._, o+ Ny ) be a finitely combinatorial manifold of d- -

arcwise connectedness for an integer d,1 < d < nq and Vg € H{nl,ng, C i), @
fundamental d-group at the point xq, denoted by ﬂdfﬁ[m?ng, co o Tyn ), To) s defined

to be a group generated by all homotopic classes of closed d-pathes based at xy.

A combinatorial Enclidean space &(d.d, -+ d) of R? underlying a combina-
m

torial structure @, |G| = m is called a d-dimensional graph, denoted by M4[G] if
(1) M 1G]\ V{H (3]) is a disjoint union of a finite number of open subsets
€1.€0, ., £m, each of which is homeomorphic to an open ball B?;
(2) the boundary & — e; of e; consists of one or two vertices BY, and each pair

B 541

(%, £;) 15 homeomorphic to the pair (

Theorem 2.2 ﬂd{ﬂd[G],:ru) > m (G, xp), 19 € G.




—

Theorem 2.3 Let M(ny, ng, -+, ny) be a d-connected finitely combinatorial man- | :
ifold for an integer d, 1 < d < nq. If¥(M{, M) € E(GL[H(HLHQ,'“.ﬂm]]), '
Mi N My is simply connected, then

(1) for¥zo € G, M € V(G* [ﬁ(mmg; c+ ym)]) and zop € M,

79 (M(ng,ng, -+ 1), 20) 2 ( @ (M, zp0)) @W{Gdaﬂm),
MeV(G4)
where G = Gd[ﬁ(nl,ng; <+ um)| in which each edge (My, M) passing through a
given point Tpra, € My N My, 7%(M, zppq), 7(G9, xq) denote the fundamental d-
groups of a manifold M and the graph G®, respectively and
(2) forV¥r,ye H{nl R

?rd(ﬂ(nll 4y e ?ﬂm}'.-I] = Wd(ﬁinh N, - 1'n'm:]1 y]
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2.5 Homology Group

For a subspace A of a topological space S and an inclusion mapping i : A — S,
it is readily verified that the induced homomorphism @ : Cp(A) — Cp(S) is a
monomorphism. Let C,(S, A) denote the quotient group C,(S)/C,(A).

Zp(S,A) =Kerd, ={ ue Cy(S|A) | Ip(u) =0 },
The pth relative homology group H,(S, A) is defined to be

Hy(S,A) = Zy(S. A)/By(S, A).

Theorem 24  Let MY(G) be a d-dimensional graph with E(M?(G)) = {ey, €2, -, em}.
Then the inclusion (e;, ;) — (M(G), V(MY(Q))) induces a monomorphism Hy(e;, é;) —
H,(MY(G), V(MYG))) for I = 1,2---.m and H,(M*G),V(MYG))) is a direct

| sum of the image subgroups, which follows that

. . Lt 4, ifp=d,
H,(MYG), V(MY (@) =< — m
0, if p+#d.
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3. What is a Differentiable Combinatorial |
3.1 Definition

Definition 3.1  For a given integer sequence 1 < ny < ngp < --+ < n,,, a com-

binatorial C"-differential manifold (ﬁ(nhng,- oy, )i A) is a finitely combinato-

rial manifold ﬁ(nl, N9, M), ﬂ(nl, ng, -+, nm) = |J Ui, endowed with a atlas
icl

A = {(Uy; pa)|la € I} on ﬁ(ni,ng, -+, Ny) for an integer h, h > 1 with conditions
following hold.

(1) {Ua;a € I} is an open covering of ﬁ(ﬂ;,ﬂg, S, Thin ).

(2) For Va,3 € I, local charts (Uya;pa) and (Ug;pg) are equivalent, i.e.,
Us(\Usg =0 or U,(\Up # O but the overlap maps

@a%ﬂﬁl : {I‘Jﬁ(Uct m Uﬁ) — {I":Jﬁ(US) and (ioﬁif?n::l : Efga(Ua ﬂ US) = I:IDCE(UCE)

are C"-mappings.

(3) A is mazimal, i.e., if (U; ) is a local chart of ﬁ(ﬂl,ng, Cee Ny, ) equivalent
with one of local charts in A, then (U; ) € A.




Explains for condition (2)
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_ Extence Theorem Leif j:f(nl,ng, co M) be a finitely combinatorial manifold and
. d.1<d<n, an integer. IfVYM € V(G M(ny.ny,---,ny)]) is Ct-differential and
(M, Ms) € E(G? [Ef?(nl, Mo, -+, My )] ) there exist atlas

A = {(Vaspa) |V € My} As = {(Wy1y)|Vy € Mo}

such that v.|v, aw, = Yylv.qw, for Vo € My, y € M,, then there is a differential

structures

A= {(Uy; [wp)) VP € M(ny, na, - nm) }

such that (ﬁ:f(nl, N, My )i .,3:) is a combinatorial C"-differential manifold.




. 7 w . = = -._...- a — s s “ ..-f
B | . : o ARREE L - N B ' [ |

—y — - | — e sl

3.2 Local Properties of Combinatorial Manifolds

Denote by 2, all these C™-functions at a point p € M (1,12, - - -, 1%m ).
Definition 3.2 Let (Ef{nl,ng, v Pl )3 .;f} be a smoothly combinatorial manifold
and p & ﬂﬁf(nh na,---,Mm). A tangent vector v at p is a mapping v : 2, — R with
conditions following hold.

(1) Vg,h € Z,, VA € R, ©(h + Ah) =9(g) + Av(h);
(2) Vg,h € 25,,7(gh) =7(9)h(p) + 9(p)T(h).

Theorem 3.2 For any point p © ﬁ(nl, Mg, - - -, My) with a local chart (Uy; [wp]),
the dimension of Tpﬂ?{nl, Fhoyy ==+ 3 W) BS
e s(p)
dimT, M (n1,n2, -+, nm) = 5(p) + 2{'-% —5(p))

o

with a basis matriz [—x]s{p}xna(p} =

3 & . A& e & 2] o 0 ]
s(p) a1 s{p) azlt=tr) Jrli=ip+1) Sxr1my
TR N S 8 — - 0
s(p) 8x21 s(p) 8x2=(r) Sr2isip)+1) AzxInz
£ = . 1 Le) 9 . e R 9 9
| S(p) Bz=i1 s(p) Bz=PE(E)  BzaE EEIFD) 52" P (ha(p) =D preinag) |

where ' = = for 1 < 4,5 < s5(p),1 < I < 3(p)




-

3.3 Tensor Field

Definition 3.3 Let M (n1,n2,++ -, nm) be a smoothly combinatorial manifold and
pE ;’E[nhng,- -+ My ). A tensor of type (r,s) at the point p on H{nl,nm ce Ty )
s an (r 4+ s)-multilinear function T,

T:T;I‘Ex---KT;ﬂprﬁ?x---prﬁf—vR.
N— —— —

r s

where Tp:.';f = Tpﬁ{nl, Mg, My ) and T;H = T;E(rzl, Ny, * vy y).

- Theorem 3.3 Let ﬁ{nl,ng,- + ny) be a smoothly combinatorial manifold and
pE ;ﬁ(nl,ng,- N ). Then

TIpM)=T,M@--@T,M@TyM®---@T;M,
e . N — —

r @

where T,M = T,M (ny, na, -, np) and ToM = T M(ny, na, -+ -, np), particularly,
s(p)

dimT7 (p, M) = (S(p) + Y _ (n: — 3(p)))"™**.

i=1




3.4 Curvature Tensor

Definition 3.4 Let M be a smoothly combinatorial manifold. A connection on | %
tensors of M is a mapping D : 525'(?) X Tjﬂ—} T;’H with Dx1 = D(X,T) such
that for VX, Y € M, ,m € T;(H),A ceRand f € CM(H),

(1) ﬁx_l_fy?' — Dx7+ fDy1; and ﬁx(*r + A1) = D7+ XDy
(2) ﬁx('r R M) = DxT &7+ 0 ® Dy
(3) for any contraction C' on H(f}, ﬁx(C(T)) = C(ﬁx'r).

A combinatorial connection space 1s a 2-tuple (Eﬁf ] 5) consisting of a smoothly

combinatorial manifold ﬂ? with a connection D on its tensors.

——

For VXY € 2 (M), a combinatorial curvature operator

i e R

R(X,)Y): (M) — Z (M)
is defined by

R(X,Y)Z = DxDyZ — DyDxZ — DixxZ
for¥Z € 2 (M).




Definition 3.5 Let M be a smoothly combinatorial manifold and g € Ag(ﬂ? i =

U T2(p, ﬁ) If g is symmetrical and positive, then M is called a combinatorial
peM

Riemannian manifold, denoted by (ﬁ? q). In this case, if there is a connection D

on (Efi g) with equality following hold

Z(9(X,Y)) = 9(Dz,Y) + g(X, DzY)
then M is called a combinatorial Riemannian geometry, denoted by (H,g: EJ')

In this case, R = ﬁ{aq}(ﬂgmm{m}dﬂc ® dz™ @ dz'™ ® dr™ with

2 o
_ 1(32 Jp)os) . PInme P9y O IN)(5) )

R{ os)(nd)(pr)(KA) 5 ﬁmml E}I?}E Oty Gpos a:ﬂr@i@Iaq Ort O né

e £o fo
+ F{;jv}{{fg}r{ﬂh}{rjﬂjg{fﬂ}{ﬂ"*] ir P{;mj[n&}F(ﬁr’h)(ﬂﬁ)‘“giéﬂ}(ﬂt}ﬂ

where guv)(sn) = Q(am%l %r)-
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4. What is a Principal Fiber Bundle?

4.1 Covering Space

A covering space S’ of S consisting of
a space S’ with a continuous mapping
p:S — S suchthateachpoint x€S
has an arcwise connected neighborhood
x and each arcwise connected component
‘ of p‘ﬂ(Ux) IS mapped topologically onto Ux \p
by p. An opened neighborhoods Ux that

K\ the condition just stated is called
n e %entary nelghborhood and p Is often

' _JL.___;_:L_JL_.JL‘_J_,L_____L.____L___J
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4.2 Principal Fiber Bundle

A principal fiber bundle (PFB) consists of a manifold P, a projection
am: P — M. a base manifold M, and a Lie group . which is a manifold
with group operation G = G — given by (g.h) — g o h being O™ map  denoied
by (P, M, 7 | G) such that (1), (2) and (2) following hold.

(1) There is a right freely action of G en P . t.e., for Vg € G, there is a
diffeomnorphism Ry, : P — P with Ry(p ) = pg for¥p € P such that
plgige) = (po1lge for Wp e P, %Yoi.90 € & and pe = p
Jor some pe P, e € & if and only if e is the identity element of .




(2) The mapwm: F — M is regular onto with =Y (w(p)) = {pglg € G} .

(3) For Y € M there is an open set U with € U and a diffecomorphism
Tuw: 7 YUY — U %x G of the form T,(p) = (7w(p), sa«(p)), where

sy i Y IM) — G has the property s.(pg) = sulp)g for Yge G.p c w17
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5. A Question

For a family of k principal fiber bundles
P1(M1,Gy), Po(M3,Gy),..., P (M, Gy)

over manifolds M1, M2, - - .. M!, how can we construct

al ifold consisting of MY, M2, - .. M underlying a

T
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6. Voltage Graph with Its Lifting

6.1 Voltage Assignment

Let G be a connected graph and (G, o) a group. For each
edge ecE(G), e = uv, an orientation on e IS an orientation on
e from u to v, denoted by e = (u, v) , called plus orientation
and its minus orientation, from v to u, denoted by e™' = (v, u).
For a given graph G with plus and minus orientation on its
.édggs, a voltage assignment on G is a mapping a from the

plus-edges of G into a group (g, o) satisfying a(e™) = a™(e),
*_(f(‘il‘hese elements a(e), eeE(G) are called voltages,
1d (G, a) a voltage graph over the group (g, o) .

G AR G BRGSO O TR SIS  WRSNSNN ; .
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6.2 Lifting of Voltage Graph
For a voltage graph (G, ), its lifting G = (V(G®), B(G*); I(G%)) is defined b
V(G*) = V(G) x T, (u,a) € V(G) x I abbreviated to ua:
E(GY) = {(ug, vans)|e™ = (u,v) € B(G), afet) = b}  and
1(G®) = {(ua; vach) |1 (€) = (Ua, vach) if € = (umvmﬁ} € E(G*)}.

For example, let G = Kq and ' = Zs.




Let GT be a connected vertex-edge labeled graph with ¢; : V(G) U E(G)

of a label set and I' a fimite group. A veltage labeled graph on a vertex-edge labeled
graph G* is a 2-tuple (GF; a) with a voltage assignments a : E(G*) — T such that

a(u,v) = o Ho,u), Y(u,v)e B(GY).

Similar to voltage graphs such as those shown in Example 3.1.3, the importance

of voltage labeled graphs lies in their labeled lifting Gt= defined by
V(GE=) = V(GE) x T, (u,g) € V(GE) x T abbreviated to ug;
E(GE) = { (ug,vp0n) | for ¥(u,v) € E(GY) with a(u,v) = h }
with labels Oy : Gt= — L following:

Or(ug) = 0r(u), and ©Op(ug,vgen) = Or{u,v)

for w,v € V(GY), (u,v) € E(G*) with a(u,v) = h and g, h €T,




Example:

Let oL — G&' and [' = Za.




6.4 Lifting of Automorphism of Graph

A mapping ¢ : G* — G* is acting on a labeled graph G' with a labeling
0 : G* — L if g0 (z) = 0g(x) for Vo € V(G¥) U E(GY), and a group T is acting
on a labeled graph G if each ¢ € T' is acting on G*.

Let A be a group of automorphisms of G*. A voltage labeled graph (G’L, ) is
called locally A-invariant at a vertex u € V(GE) if for Vf € A and W € 7 (G*, u),
we have

a(W) =identity = o f(W)) = identity

and locally f-invariant for an automorphism f € AutG* if it is locally invariant

with respect to the group (f) in AutGL.

Theorem 6.1 Let (G, &) be a voltage labeled graph with o : E(G*) — T and
f e AutGE. Then f lifts to an automorphism of G*= if and only if(GLﬂ) is locally

f-invariant.




7. Combinatorial Fiber Bundle

7.1 Definition

Definition 7.1 A combinatorial fiber bundle is a 4-tuple (H‘*, ﬂﬁf,p, G') consisting
of a covering combinatorial manifold ﬁ*} a group G, a combinatorial manifold M
and a projection mapping p : M* — M with properties following:

(1) G acts freely on M* to the right.

(ii) the mapping p : M* — M is onto, and for Vr € ﬂ?; p(p(z)) = fib, =
{z,|Vg € '} and l, : fib, — T is a bijection.

(ii1) for Yz € M with its a open neighborhood U,, there is an open set U,

| and a mapping T, : p~*(U,) — U, x T of the form T:(y) = (ply), sz(y)), where
sy : p 1 (Uz) — T has the property that s.(yg) = s:(y)g for¥g € G and y € p~1(U,).




7.2 Theorem

.

Theorem 7.1  Let M be a finite combinatorial manifold and (GL([Jva [),a) a volt-
age labeled graph with o : B(G*( [ﬁ]) — I'. Then (Evf * M,p", [') is a combinatorial
fiber bundle, where M* is the combinatorial manifold correspondent to the lifting
GL'“([ﬁ], p* . M* — M a natural projection determined by p* = h, o Sy P with
he : M — M a self-homeomorphism of M and Gy - — M a mapping defined by
spulz) =M forVee M.

duce differential structure on combinatorial
r bundles? The answer is YES!




8. Principal Fiber Bundle(PFB)
8.1 Lie Multi-Group

A Lie multi-group % 1s a smoothly combinatorial manifold M endowed with a

e —

multi-group (&7 ( %;); (L)), where .ﬁ” U H# ad  O(%) = U{a}
i=1

=1

such that

(i) (] 0;) is a group for each integer i, 1 < i < m;
(i) GE[M] =G,

< (i11) the mapping (a,b) — a o; b1 is C*-differentiable for any integer i, 1 <
i< m and Ya,b € .




8.2 Principal Fiber Bundle (PFB)

Let }5 M be a differentiably combinatorial manifolds and & a Lie multi-group

—t

(& (Ze); €(Zz)) with

UP U—UM (< Uﬁ‘;iﬁﬁg D{oi}.
i=1

i=1 i=1

A differentiable principal fiber bundle over M with group £ consists of a dif-
ferentiably combinatorial manifold 15 an action of %; on P satisfying following
conditions PFB1-PFB3:

P¥B1. For any integer i, 1 < i < m, J, acts differentiably on F; to the
right without fized point, i.e.,

(z,9) € P x 5, — ro;g € P;and x oy g = x implies that g = 1;




PFB2. For any integer i, 1 <1i < m, M,, is the quotient space of a covering
manifold P < TI"Y(M,,) by the equivalence relation R induced by €, :

Riz{{xay)epﬂixpﬂiﬁlg‘g%:}I'Dig:y}a

written by M, = F.,/7,, ie., an orbit space of P, under the action of J€, .
These is a canonical projection II : P — M such that TI; = Mlp, : P, — M,
is differentiable and each fiber ;7 (z) = {po; glg € 2, 1(p) = =} is a closed

PFB3. For any integer i, 1 < i < m, P € II"YM,,) is locally trivial over
M,,, i.e., anyx € M, has a neighborhood U, and a diffeomorphism T : TI7Y(U,) —
U, x %n with

Tl = I7 07U — Up x Hoys 2 — TP (2) = (IL(), ela)),

1'[;1 i T

called a local trivialization (abbreviated to LT) such that e(x o; g) = €(x) o; g for
Vg e A, elx) € .




8.3 Construction by Voltage Assignment

For a family of principal fiber bundles over manifolds My, M5, - --, M, such as those
shown n Fig. 8.1,

jf;i jﬁz oo I,
J,
HM,I Hm:i “ e lHM,,
Fig. s.1

where F€,, is a Lie group acting on Py, for 1 < @ < [ satisfying conditions PFBI1-
PFEB3, let M be a differentiably combinatorial mantfold consisting of M;, 1 <@ <1
and (GE[M], o) a voltage graph with a voltage assignment o : GE[M] — & over
a finite group O, which naturally induced a projection w . GL[ﬁ] — GL[:':f] For
VM € V(GL[E 1), if m(Pay) = M, place Py on each lifting vertex MY in the fiber
7Y (M) of GF=[M], such as those shown in Fig.8.2.




Fig. s.2

Let TI = wllyn=t for VM € V(GE[M]). Then P = J Pyr is a smoothly
M eV (GL[M])
combinatorial manifold and £n = J Fr a Lie multi-group by definition.
M eV (GL[M])

Such a constructed combinatorial fiber bundle is denoted by ﬁf‘“(ﬁ:f, F)-

vo w1 Pr, () P,
iy <:> g P, P,
o b Py () P,

}i’” — | o




8.4 Results

Theorem 8.1 A combinatorial fiber bundle ﬁ“{ﬁ Ze) is a principal fiber bun-
dle if and only if for Y(M',M") € E(GY[M]) and (Pyy, Pyn) = (M, M")= €

E(GL[Jﬁ]) HM’|PMI"_‘PM” = H_LTL.«II:|_PMJ|“|PM”.

Theorem 8.2 Let ﬁﬂ{ﬂ %) be a principal fiber bundle. Then

AutP*(M, %;) = (L),

 where £ = { hw; | h: Py, — Py, is 1p,, determined by h((M;)y) = (M;)gomn for h
- B oand g; € Aut Py, (M;, 24,), 1 <i<1}.

A principal fiber bundle ﬁ(:ﬁ Z¢) is called to be normal if for Yu, v P, there

exists an w € AutP (ﬁ , %) such that w(u) = v. We get the necessary and sufficient
conditions of normally principal fiber bundles ﬁ‘-"(:ff %) following.

Theorem 8.3  P*(M, %) is normal if and only if Pa,(M;, 2,) is normal,
(FE,:0;) = (H:0) for 1 < i < | and GE=[M)] is transitive by diffeomorphic au-
tomorphisms in AutGr=[M].




9. Connection on PFB

A local connection on a principal fiber bundle ﬁ“(:{f Z) 15 a linear mapping
T, : To(M) — T,(P) for an integer i, 1 < i <[ and u € I Y(z) = 'F,, x € M;,
enjoys the following properties:

(i) (dIL)T, = identity mapping on T (M):

(i) iFiRg{,i_u =d '“:Rg o; 'T",, where '“:Rg denotes the right translation on Pyy,;

(iii) the mapping u — ‘T, is O™,

Similarly, a global connection on a principal fiber bundle ﬁ“(ﬂ Z¢) is a linear

.. mapping [, : TI(H) — Tu(P) for au € I Yz) = F,, = M with conditions

tollowing hold:

(i) (dI)T, = identity mapping on T,(M);

(ii) Tryou = dRy o T, for Vg € % and Vo € &(%;), where R, denotes the

right translation on ﬁ;

(#ii) the mapping u — [, is C.

Theorem 9.1 There are always exist global connections on a normally principal

fiber bundle P*(M, %).




Theorem 9.2 (E.Cartan) Let'w, 1 < i <[ and w be local or global connection
forms on a principal fiber bundle ﬁ“’(ﬁ, %4c). Then

(d'w)(X,Y) = [ 'w(X), w(Y)] + 'AX,Y)
and

dw(X,Y) = —[w(X),w(Y)] + QX,Y)

—

for vector fields X, Y € & (Py,) or Z (P).

Theorem 9.3 (Bianchi) Let 'w, 1 < i <1 and w be local or global connection
forms on a principal fiber bundle ﬁ“(ﬁ, “4¢). Then

(d*Qh =0, and (dQ)h = 0.
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under a group, a finite-dimensional Lie group in most cases action on its gauge
basis at an individual point in space and time, together with a set of techniques for
making phvsical predictions consistent with the symmetries of the model. which is a

generalization of Einstein’s principle of covariance to that of internal field.

Gauge Invariant Principle A gauge field equation, particularly, the Lagrange

density of a gauge field is invariant under gauge transformations on this field.

Combinatorial Gauge Field. A globally or locally combinatorial gauge field
is a combinatorial field M under a gauge transformation 7y7 : M — M independent
or dependent on the field variable 7.

If a combinatorial gauge field M is consisting of gauge tields M,. M,, - - -, M,,,
we can easily find that M is a globally combinatorial gauge field only if each

gauge field is global.
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