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§1. Introduction

Consider two systems of linear equations following:

(LESY) |

(LESY) is non-solvable

T+ Yy
T+
xr—y

r —1y

(LESY)

(

\

rT=Yy
r+y=2
r=1
y=1

(LESY) is solvable

What is the geometrical essence of a non-solvable or

solvable system of linear equations?
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Fig.1



(LESY) is non-solvable but (LESf) solvable in sense because of

L;?H—y:l m L;t—l—y:—l m L;:u:—y:l m L‘;‘g-y:—]_ — Lﬂ

and

Lr:y m Ly—1 m Ly:1 mﬂ'r—ky:'ﬁ — {[1 ]-)}



Generally,

filxy, 29 rn) =0
(ES,) < falxy, 29 rn) =0
\ fm(r1, 22 rp) =10

m

(E'Sy,) is solvable or not dependent on [ Sy, =0 or # 0.

Proposition 1.1 Any system (ESy,) of algebraic equations with each equation solvable posses

a geometrical figure in R™, no matter it is solvable or not.



Conversely, for a geometrical figure &4 in R".n = 2,

how can we get an algebraic representation for geometrical figure 47

As a special case, let GG be a graph embedded in Euclidean space

R"™ and 4
filxy, xg rn) =0
Sy, a ) =0
(ES.) ¢ Jo (@1, 22 n)
| faoi (@ ry) =0

be a system of equations for determining an edge ¢ € F(G) in R".



Then the system

~ b

Jiley, a2 rn) =0

S, r.) =10

B n) Ve e B(G)
‘;I—l(ll Loy ry) =0 )

is a non-solvable system of equations.



For example, let GG be a planar graph. shown in Fig.2.
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Proposition 1.2 Any geometrical figure 4 consisting of m parts, each of which is determined
by a system of algebraic equations in R™, n > 2 posses an algebraic representation by system of

equations, solvable or not in R™.



§2. Smarandache Systems with Labeled Topological Graphs

Definition 2.1([5-7]) A rule R in a mathematical system (X;R) is said to be Smarandachely
denied if it behaves in at least two different ways within the same set X, i.e., validated and
invalided, or only invalided but in multiple distinct ways.

A Smarandache system (X;R) is a mathematical system which has at least one Smaran-
dachely denied rule R.

Definition 2.2([5-7],[11]) Let (X1;Ry), (X2;R2), -+, (X ’ij be m > 2 mathe mahm[ spaces,
different two by two. A Smarandache multi-space Y is a union U S, with rules R = U R; on

= =

Z, denoted by (Z;R).



Such a typical example is the proverb of blind men with an elephant.




Definition 2.3(([5-7])) Let (Z:_R) be a Smarandache multi-space with ¥ = |J X, and R =

i=1

L — —
| Ri. Then a inherited graph G [Z. R} of (Z; 7?,) s a labeled topological graph defined by

i=1

v (G {EED — (2., )

E (G [i. ED = (2.5 [ SN £ 01 <i.j<m)
with an edge labeling

= (zg.zj)eE(G{s_RD B3R X)) ( ﬂz)

where @ is a characteristic on X; (X5 such that X3 (X5 s isomorphic to X5 (X if and only
if w(X:NE5) =@ (X Z1) for integers 1 <4, j. k.l <m.



For example, let Sy = {a,b.c}, Sy ={ec.d e}, S3={a.c,e} and Sy = {d.e, f}. Then the

4
multi-space S U = {a,b.c.d, e, f} with its labeled topological graph G[b] is shown in

Fig.4.
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The labeled topological graph ¢ [Z. R} reflects the notion that there exists linkage between
things in philosophy. In fact, each edge (3;.%;) € E (G [i Iﬁ?}) is such a linkage with coupling
w(X;(X;). For example, let a = {tusk}, b = {nose}, ¢1,c2 = {ear}, d = {head}. e = {neck},
f = {bellv}. g1, 92.93.94 = {leg}. h = {tail} for an elephant ¥. Then its labeled topological

raph is shown in Fige. 5.
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which implies that one can characterizes the geometrical behavior of an elephant combinatori-

allv.



63. Non-Solvable Systems of Ordinary Differential Equations

3.1 Linear Ordinary Differential Equations

For integers m, n = 1, let
X=F(X), X=F(X), -, X=F,(X) (DESY)

be a differential equation system with continuous F : R — R such that F;(0) = 0. particu-
larly. let
X=A4X, X=4X, - X=4,X (LDESY)

be a linear ordinary differential equation system of first order with

L k A - -
(L[ll] ﬂ':[l?] P “‘[171 ;3_’1 (f‘)
(k] [K] K] .
(1: (LA P (s T f‘
Ap = v 2" and X = 2(t)
- (LH (L'Lg “‘L-'?]l- 1 I (1) i

k. . .
where each GE j] is a real number for integers 0 <k <m. 1 <1,j <n.



Definition 3.1 An ordinary differential equation system (DES},) or (LDES},) are called non-
solvable if there are no function X (1) hold with (DESL) or (LDES}) unless the constants.

As we known, the general solution of the ith differential equation in (LDES} ) is a linear

space spanned by the elements in the solution basis
_ i 7a Lt . ,
By ={ 5 (t)e* " |1 <k<n}

for integers 1 < ¢ < m, where

s

A, dif 1 <0 < Ry

¥; = 4

oooooooooooooooooo

Ae, if ky+Fky+- +ke 1 +1<7<n,

\
A; 18 the k;-fold zero of the characteristic equation
det(A — AMyxn) = |A = Alxn| =0

with &y + ko 4+ -+« + kg = n and 3,() is an n-dimensional vector consisting of polynomials in ¢

with degree< k; — 1.



In this case, we can simplity the labeled topological graph G {i R replaced each ) . by
the solution basis %; and ) (), by Zi[1%; it Zi(1%; # 0 for integers 1 < i,j <

m.

denoted by G[LDES} ].

For example, let m = 4 and

Ugﬂ _ {(.,,}tj_t ,}tzt A.a.t} {r,}tat {, atl {3}\5'5} @D {(..?}ult. ':?}uat‘ (._:,}t5t}

B = {eMt et Moty where N, 1 <0 < 6 are real numbers different two by two.

Then G[LDES} ] is shown in Fig.6.
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Theorem 3.2([10]) Ewvery linear homogeneous differential equation system (LDES}

determines a basis graph G[LDE S}n] inherited in (LDESL ). Conversely, every basis graph G

m

uniquely determines a homogeneous differential equation system (LDES! ) such that G[LDE S} ]
=~ G

) uniquely

Such a basis graph G[LDES! ] is called the G-solution of (LDES] ).

e mn

Theorem 3.3([10]) Every linear homogeneous differential equation system (LDES!) has a

unique (G-solution, and for every basis graph H, there is a unique linear homogeneous differential
equation system (LDES! ) with G-solution H.



Example 3.4

Let (LDET ) be the following linear homogeneous differential equation system

{€t1€2t} {Eﬁt} {ezzf‘ESt}

[ G- 3:+2=0 1) ‘ ‘
fe) g0
T —hr+ 6r=>0 (2)
) . {eet, et {e?'*? e4f}
T—Tr+ 122 =10 (3)
¢ {E{St eéf}

T—9c4+20x=0 (4)
T— 11z 4+30x =10 (D)

{E,Et:eﬂt} {Eaf} {enif:eat}

| Z-Tz+6z=0 (6) Fig.7 A basis graph



3.2 Combinatorial Characteristics of Linear Differential Equations

Definition 3.5 Let (LDES!), (LDES}) be two linear homogeneous differential equation
systems with G-solutions H, H'. They are called combinatorially equivalent if there is an
isomorphism ¢ : H — H', thus there is an isomorphism ¢ : H — H' of graph and labelings

6, 7 on H and H' respectively such that ¢8(x) = 1o(z) for Vo < V(H)|JE(H), denoted by
(LDESY )~ (LDES!Y.

e T

Definition 3.6 Let G be a simple graph. A vertex-edge labeled graph 8 : G — ZT is called
integral if #(uv) < min{f(u),8(v)} for Yuv € E(G), denoted by Gle.
Let G{E and G’é’r be two integral labeled graphs. They are called identical if G £ (o and

~J
+ T

B(x) = 7(p(x)) for any graph isomorphism ¢ and Vx € V(G1)|J E(G1). denoted by G‘{“‘ =Gy,



For example, these labeled graphs shown in Fig.8 are all integral on K4y —e, but G'*]TE = G’é" .
Gle £ Gl

3 2 4 4 2 3 3 1 3
1 2 2 1 1 2 2 2
4 2 3 3 2 4 4 1 4
Gle Gor Gl

Fig.8

Theorem 3.5([10]) Let (LDES! ), (LDES! ) be two linear homogeneous differential equation

systems with integral labeled graphs H, H'. Then (LDES.) ks (LDESL)Y if and only if
H=H'.



3.3 Non-Linear Ordinary Differential Equations

It scome functions F;(X ), 1 < i < m are non-linear in ( DE S,ln]? we can linearize these non-linear

equations X = F,(X) at the point 0, i.e., if

Fi(X)=F/(0)X 4+ Ri(X),

where F/(0) is an n x n matrix, we replace the ith equation X = F;(X) by a linear differential
equation

X = F/O)X

in (DESL).

e



§4. Cauchy Problem on Non-Solvable Partial Differential Equations

Let (PDES,,) be a system of partial differential equations with

’
Fl(IlwIQv"' sl Uy Uy Uy Uy ggs vu'.r-l.rﬂu"') =0
0

FQ(II?IQ?”' '.v"rﬂ?u'fu:{j?”' ?'ux'ﬂ?'ux'l.rgr"' ?u'.r-l.rﬂ'!"':l =

\ Fm(Il,IE,"' sl Uy Uy m U s Uy ggs 7'H-a~13;,,.33"':| =0

on a tunction u(xy,--- ,x,.t). Then its symbol iz determined by

-

Fj_l::;'(.'l,:rg,_."' s LU P1y s s P P1P2, ?plpﬂ1'”] =0
Folry,ro, - - Jxp.u,p1y -y PraP1DP2: 0 P10, - ) =0

i.e., substitute p*, p5*, - ,po into (PDES,,) for the term Up21,22 . zan where a; = 0 for

=

integers 1 < i < n.

Definition 4.1 A non-solvable (PDES,,) is algebraically contradictory if its symbol is non-

solvable. Otherwise, differentially contradictory.



Theorem 4.2([11]) A Cauchy problem on systems

s

FI(I].?IE‘J-.. s Ly Uy 11, P27 "pﬂ} =0
FQ(IIEIEF-.. s L, U P, P2, *pﬂ.} =0

Folry,x0, - ,xp,u,p1,P2,+ ,Pn) =0

.

of partial differential equations of first order is non-solvable with initial values

Ii|_rﬂ:_r?ﬂ_‘ - I?',D{S]-ESQ-.- Tt 55?1—1)
u|T“:TaD1 = U-Q(S]_,_,ng o 55?1—1)
pélTﬂ:T?Di - ?{51552?--- Esﬂ—l)? '-':=].-_.2-_~"'1ﬂ.

if and only if the system
Fk(l‘lji'Zj oy Uy Uy P Pay *pﬂ} = D'.- 1 E k E m

is algebraically contradictory, in this case, there must be an integer ko, 1 < ko < m such that

o 0 0 0 0o 0 0
FF:D{II':I:E':' a1 Ty U0 P P2y "pﬂ) ?é 0

or it is differentially contradictory itself, i.e., there is an integer jo, 1 < jo < n — 1 such that

n—1 -
3'?_.1',(] 0 a“:};?_fl-:l
asju Z b 353'::: ?é

=10



Corollary 4.3 Let
FI(I].'_‘:EE'_‘ U P, P2y "p?‘!) =0
FQ(Ilj;'ng Ly Uy PPy pﬂ) =0

be an algebraically contradictory system of partial differential equations of first order. Then

there are no values :CE', Up, p?, 1 <i<mn such that

0 0 0 0 0
s a1 Ty Uy Py P2y *pn)

0 ]

1 2

i 0 i il o0 [l
FQ(IIEIQE"' s L s LU P Pay e pﬂ_)

n—1 n?

7

0
0.

Corollary 4.4 A Cauchy problem (LPDESS ) of quasilinear partial differential equations with
initial values U|T,3:Tg = ug is non-solvable if and only if the system (LPDES,,) of partial
differential equations is algebraically contradictory.



Denoted by @"[PDE S&) such a graph G[PDESS] eradicated all labels. Particularly, replac-
ing each label Sl by ST = (w1} and SN S6) by SISV for integers 1 < i, < m. we get a
new labeled topological graph, denoted by Go[PDESY]. Clearly, @[PDE SY) =~ @D[PDE,TC

m e mlr

Theorem 4.5([11]) For any system (PDESC ) of partial differential equations of first order,

o~

G[PDESS] is simple. Conversely, for any simple graph G, there is a system (PDESS) of

e e

partial differential equations of first order such that @[PDE Sc | = G.

Corollary 4.6 Let (LPDES,.) be a system of linear partial differential equations of first
order with mazimal contradictory classes €1,%5,--- ,%. on equations in (LPDES). Then
&[LPDESC] ~ K(%,%, - .%.), i.e., an s-partite complete graph.

e



Definition 4.7 Let (PDESC ) be the Cauchy problem of a partial differential equation system of
first order. Then the labeled topological graph G[PDES€] is called its topological graph solution,

T
abbreviated to (-solution.

Combining this definition with that of Theorems 4.5, the following conclusion is holden
immediately.

Theorem 4.8([11]) A Cauchy problem on system (PDES,,) of partial differential equations
0 AR
of first order with initial values ;ry‘ ],ug‘], p,[f ]? 1 < i< n for the kth equation in (PDES,, ),
1 < k < m such that .
311([:,;”'] [.i;':']-‘f};t.‘gk ] _0
E}Sj B . Dpi 355; B

1=

is uniquely G-solvable, i.e., GIPDESC)] is uniquely determined.

e



85. Global Stability of Non-Solvable Differential Equations

Definition 5.1 Let H be a spanning subgraph of G[LDES! | of systems (LDES! ) with initial
value X, (0). Then G[LDES} ] is called sum-stable or asymptotically sum-stable on H Effﬂ? all
solutions Y, (t), v € V(H) of the linear differential equations of (LDES} ) with |Y,(0)—X,(0)| <

TH
d, exists for all t = 0,

Z Y. (t Z X, ()| < =,

vel | vel |

or furthermore,

11111 Z Y. (t Z X, ()] =

vel| vel |



Similarly, a system (PDE SE; ) is sum-stable if for any number ¢ > 0 there exists 6, >
0, v e V(G[0]) such that each G(t)-solution with -u’([f] — -u.[[;'"]

t = 0 and with the inequality

Ea

< b,, 7o € V(G[0]) exists for all

Z u Z ul’ll < &

veVI(G[t]) veV (G[H])

holds, denoted by G[t] e [0]. Furthermore, if there exists a number 3, > 0, v & 1»"(@[0]) such
that every G'[t]-solution with ‘-u’!]ﬂ] - -u-[[f]‘ < Bo, %0 € V(G[0]) satisfies

D SRR SR B

veV (G[t]) veV (G[t])

then the G[t]-solution is called asymptotically stable, denoted by G[t] e [0].



Theorem 5.2([10]) A zero G-solution of linear homogenous differential equation systems

(LDES! ) is asymptotically sum-stable on a spanning subgraph H of GILDES! ] if and only if

s

Rea, < 0 for each 3, (t)e™t € B, in (LDESY) hold for Vv e V(H).

Example 5.3 Let a G-solution of (LDES! ) or (LDE?",) be the basis graph shown in Fig.4.1,
—Et?E,—Sf‘EE:t}? vy = {E_E*?e_“}, T {E_4f —5t _3t}1 vy = {E,—&f — 6t —St}

3 € ] € b e ] e
—t e %1, Then the zero G-solution is sum-stable on the triangle

where v; = {e :

vs = fe e O v = {e
V45U, but 1t 1s not on the triangle vyvovs. In fact, 1t 1s prod-stable on the triangle v vovg.

g fe 2] U1

U4 e} U3



For partial differential equations, let the system (PDESS) be

I
—H fl‘ '\Iﬂ— ] y DT s Mn—
n i(f, . 1, P1  Prn—1)

l<i<m (APDESS)
u‘|f:f|:| = ul:[:lz](;rlr;r21 e ri'n—l)
A point Js[] = (tg, I[Ié,, x 'Iﬁl—lj ) with H;(to. 1.'[] x ‘IEﬂ—IJD) =0for 1 < i < m is called

an equilibrium point of the ith equation in (APDES,,). Then we know that

Theorem 5.4([11]) Let Xéi] be an equilibrium point of the ith equation in (APDES,, ) for each

1 i ‘QH 1 i
integer 1 < i < m. If > Hi{(X) >0 and E -5 < 0 for X # E X[ ]= then the system
i=1
(APDES,, ) is sum-stability, i.e., G[t] = G[0]. Furthermore, if E £ < 0 for X # > X[]
: ot =1

then G|t] it G[0].



86. Applications
6.1 Application to Geometry

Theorem 6.1([11]) Let the Cauchy problem be (PDESC ). Then every connected component

e

of [[PDESY] is a differentiable n-manifold with atlas & = { (U, ¢n)|v € 1(@[0])} underlying
graph @[D], where U, is the n-dimensional graph G’[-u[”]] ~ R" and ¢, the projection ¢, :

((Ilnl‘ﬂn"' nIra)!u[IleEu"' '.-Iﬂ:l:)) — (;I.']_.;I.‘g,"' y L) fﬂ?‘ \ﬁa(;rlr-rﬁ‘a"' u-rﬂ) < R,

Theorem 6.2([11]) For any integer m = 1, let U;;1 < i < m be open sets in R™ underlying a

connected graph defined by

VG ={Ul<i<m), E(G) ={U.U)UNU;#£0,1<4i,j<m}

If X; is a vector field on U; for integers 1 < i < m, then there always erists a differentiable
manifold M < R"™ with atlas & = {(U;,¢;)|1 < i < m} underlying graph G and a function
we: < QUMY such that

Xilug)=0, 1<i<m.



6.2 Global Control of Infectious Diseases

Consider two cases of virns for infectious diseases:

Case 1 There are m known wvirus #1, %5, -- ¥, with infected rate k;, heal rate h; for integers

1 <i < m and an person infected a virus ¥; will never infects other viruses ¥; for j + i.

Case 2 There are m varying %1, %2, , ¥ from a virus ¥ with infected rate k;, heal rate h;

for integers 1 < i < m.

We are easily to establish a non-solvable differential model for the spread of infectious

viruses by applyving the SIR model of one infectious disease following:

S = kST S = —kySI S=_Fk, SI
[ = k(ST — hyl [ = kyST — hol k. ST — h,, I (DES})

I =
R=h R = hol R="h,1I



Conclusion 6.3([10]) For m infectious viruses ¥1, %2, -+, ¥m in an area with infected rate k;,

heal rate h; for integers 1 < i < m, then they decline to 0 finally if 0 < S < > h; [/ > ki,
1=1 1i=1
i.e., these infectious wviruses are globally controlled. Particularly, they are globally controlled if

each of them is controlled in this area.



6.3 Flows in Network

How can we characterize the behavior of flow F'7




Denote the rate, density of flow f; by plil for integers 1 < i < m and that of F by plf’]

apl i apl]
ar TP 5

=0, 1<1i<m.

Replacing each pll by P, 1 < i< m enables one getting a non-solvable system

dp dp
c}‘t+ Hdn: 1 <i<m.

2 |f‘:1"|:| - .IG[ ](I‘- t@)

Applying Theorem 5.4, if

m m _._. 2
Z ¢i(p) <0 and Z b p [L}fu‘r ¢ (p) (%) ] >0

i=1

L

for X £ > p|[:|]_ then we know that the flow F' is stable and furthermore, if
k=1

m dg j 3 2
>_op) lﬁt;r — o) (d_i) ] <0

=1

L

for X =+ E p . then it is also asymptotically stable.



Thanks for your Attention!
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