## Non-Solvable Equation Systems with Graphs Embedded in $\mathbb{R}^n$

## Linfan Mao

(Beijing University of Civil Engineering and Architecture, Beijing 100045)

Beijing, P.R.China June 28, 2013

## §1. Introduction

Consider two systems of linear equations following:

$$(LES_4^N) \begin{cases} x + y & = & 1 \\ x + y & = & -1 \\ x - y & = & -1 \\ x - y & = & 1 \end{cases} \qquad (LES_4^S) \begin{cases} x = y \\ x + y = 2 \\ x = 1 \\ y = 1 \end{cases}$$

$$(LES_4^N)$$
 is non-solvable  $(LES_4^S)$  is solvable

What is the geometrical essence of a non-solvable or solvable system of linear equations?





Fig.1

 $(LES_4^n)$  is non-solvable but  $(LES_4^S)$  solvable in sense because of

$$L_{x+y=1} \bigcap L_{x+y=-1} \bigcap L_{x-y=1} \bigcap L_{x-y=-1} = \emptyset$$

and

$$L_{x=y} \bigcap L_{x=1} \bigcap L_{y=1} \bigcap L_{x+y=2} = \{(1,1)\}\$$

Generally,

(ES<sub>m</sub>) 
$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ f_2(x_1, x_2, \dots, x_n) = 0 \\ \dots \\ f_m(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

 $(ES_m)$  is solvable or not dependent on  $\bigcap_{i=1}^m S_{f_i} = \emptyset$  or  $\neq \emptyset$ .

**Proposition** 1.1 Any system  $(ES_m)$  of algebraic equations with each equation solvable posses a geometrical figure in  $\mathbb{R}^n$ , no matter it is solvable or not.

Conversely, for a geometrical figure  $\mathscr{G}$  in  $\mathbb{R}^n$ ,  $n \geq 2$ ,

how can we get an algebraic representation for geometrical figure  $\mathcal{G}$ ?

As a special case, let G be a graph embedded in Euclidean space

$$\mathbb{R}^{n} \text{ and} \qquad \left\{ \begin{array}{l} f_{1}^{e}(x_{1}, x_{2}, \cdots, x_{n}) = 0 \\ \\ f_{2}^{e}(x_{1}, x_{2}, \cdots, x_{n}) = 0 \\ \\ \vdots \\ f_{n-1}^{e}(x_{1}, x_{2}, \cdots, x_{n}) = 0 \end{array} \right.$$

be a system of equations for determining an edge  $e \in E(G)$  in  $\mathbb{R}^n$ .

Then the system

$$\begin{cases}
f_1^e(x_1, x_2, \dots, x_n) = 0 \\
f_2^e(x_1, x_2, \dots, x_n) = 0 \\
\dots \\
f_{n-1}^e(x_1, x_2, \dots, x_n) = 0
\end{cases}
\forall e \in E(G)$$

is a non-solvable system of equations.

For example, let G be a planar graph, shown in Fig.2.



**Proposition** 1.2 Any geometrical figure  $\mathscr{G}$  consisting of m parts, each of which is determined by a system of algebraic equations in  $\mathbb{R}^n$ ,  $n \geq 2$  posses an algebraic representation by system of equations, solvable or not in  $\mathbb{R}^n$ .

## §2. Smarandache Systems with Labeled Topological Graphs

**Definition** 2.1([5-7]) A rule  $\mathcal{R}$  in a mathematical system  $(\Sigma; \mathcal{R})$  is said to be Smarandachely denied if it behaves in at least two different ways within the same set  $\Sigma$ , i.e., validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache system  $(\Sigma; \mathcal{R})$  is a mathematical system which has at least one Smarandachely denied rule  $\mathcal{R}$ .

**Definition** 2.2([5-7],[11]) Let  $(\Sigma_1; \mathcal{R}_1)$ ,  $(\Sigma_2; \mathcal{R}_2)$ ,  $\cdots$ ,  $(\Sigma_m; \mathcal{R}_m)$  be  $m \geq 2$  mathematical spaces, different two by two. A Smarandache multi-space  $\widetilde{\Sigma}$  is a union  $\bigcup_{i=1}^{m} \Sigma_i$  with rules  $\widetilde{\mathcal{R}} = \bigcup_{i=1}^{m} \mathcal{R}_i$  on  $\widetilde{\Sigma}$ , denoted by  $(\widetilde{\Sigma}; \widetilde{\mathcal{R}})$ .

Such a typical example is the proverb of blind men with an elephant.



**Definition** 2.3(([5-7])) Let  $(\widetilde{\Sigma}; \widetilde{\mathcal{R}})$  be a Smarandache multi-space with  $\widetilde{\Sigma} = \bigcup_{i=1}^{m} \Sigma_i$  and  $\widetilde{\mathcal{R}} = \bigcup_{i=1}^{m} \mathcal{R}_i$ . Then a inherited graph  $G[\widetilde{\Sigma}, \widetilde{R}]$  of  $(\widetilde{\Sigma}; \widetilde{\mathcal{R}})$  is a labeled topological graph defined by

$$V\left(G\left[\widetilde{\Sigma},\widetilde{R}\right]\right) = \{\Sigma_1, \Sigma_2, \cdots, \Sigma_m\},$$

$$E\left(G\left[\widetilde{\Sigma},\widetilde{R}\right]\right) = \{\left(\Sigma_i, \Sigma_j\right) \mid \Sigma_i \cap \Sigma_j \neq \emptyset, 1 \leq i, j \leq m\}$$

with an edge labeling

$$l^{E}: (\Sigma_{i}, \Sigma_{j}) \in E\left(G\left[\widetilde{S}, \widetilde{R}\right]\right) \to l^{E}(\Sigma_{i}, \Sigma_{j}) = \varpi\left(\Sigma_{i} \cap \Sigma_{j}\right),$$

where  $\varpi$  is a characteristic on  $\Sigma_i \cap \Sigma_j$  such that  $\Sigma_i \cap \Sigma_j$  is isomorphic to  $\Sigma_k \cap \Sigma_l$  if and only if  $\varpi(\Sigma_i \cap \Sigma_j) = \varpi(\Sigma_k \cap \Sigma_l)$  for integers  $1 \leq i, j, k, l \leq m$ .

For example, let  $S_1=\{a,b,c\},\ S_2=\{c,d,e\},\ S_3=\{a,c,e\}$  and  $S_4=\{d,e,f\}.$  Then the multi-space  $\widetilde{S}=\bigcup_{i=1}^4 S_i=\{a,b,c,d,e,f\}$  with its labeled topological graph  $G[\widetilde{S}]$  is shown in Fig.4.



Fig.4

The labeled topological graph  $G\left[\widetilde{\Sigma},\widetilde{R}\right]$  reflects the notion that there exists linkage between things in philosophy. In fact, each edge  $(\Sigma_i,\Sigma_j)\in E\left(G\left[\widetilde{\Sigma},\widetilde{R}\right]\right)$  is such a linkage with coupling  $\varpi(\Sigma_i\cap\Sigma_j)$ . For example, let  $a=\{\text{tusk}\},\ b=\{\text{nose}\},\ c_1,c_2=\{\text{ear}\},\ d=\{\text{head}\},\ e=\{\text{neck}\},\ f=\{\text{belly}\},\ g_1,g_2,g_3,g_4=\{\text{leg}\},\ h=\{\text{tail}\}\ \text{for an elephant $\mathscr{C}$.}$  Then its labeled topological graph is shown in Fig.5,



Fig.5

which implies that one can characterize the geometrical behavior of an elephant combinatorially.

#### §3. Non-Solvable Systems of Ordinary Differential Equations

#### 3.1 Linear Ordinary Differential Equations

For integers  $m, n \geq 1$ , let

$$\dot{X} = F_1(X), \ \dot{X} = F_2(X), \dots, \dot{X} = F_m(X)$$
 (DES<sub>m</sub>)

be a differential equation system with continuous  $F_i: \mathbf{R}^n \to \mathbf{R}^n$  such that  $F_i(\overline{0}) = \overline{0}$ , particularly, let

$$\dot{X} = A_1 X, \dots, \dot{X} = A_k X, \dots, \dot{X} = A_m X \tag{LDES}_m^1$$

be a linear ordinary differential equation system of first order with

$$A_{k} = \begin{bmatrix} a_{11}^{[k]} & a_{12}^{[k]} & \cdots & a_{1n}^{[k]} \\ a_{21}^{[k]} & a_{22}^{[k]} & \cdots & a_{2n}^{[k]} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}^{[k]} & a_{n2}^{[k]} & \cdots & a_{nn}^{[k]} \end{bmatrix} \quad \text{and} \quad X = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}$$

where each  $a_{ij}^{[k]}$  is a real number for integers  $0 \le k \le m, \ 1 \le i, j \le n$ .

**Definition** 3.1 An ordinary differential equation system  $(DES_m^1)$  or  $(LDES_m^1)$  are called non-solvable if there are no function X(t) hold with  $(DES_m^1)$  or  $(LDES_m^1)$  unless the constants.

As we known, the general solution of the *i*th differential equation in  $(LDES_m^1)$  is a linear space spanned by the elements in the solution basis

$$\mathscr{B}_i = \{ \overline{\beta}_k(t)e^{\alpha_k t} \mid 1 \le k \le n \}$$

for integers  $1 \leq i \leq m$ , where

$$\alpha_{i} = \begin{cases} \lambda_{1}, & if \ 1 \leq i \leq k_{1}; \\ \lambda_{2}, & if \ k_{1} + 1 \leq i \leq k_{2}; \\ \dots & \dots & \vdots \\ \lambda_{s}, & if \ k_{1} + k_{2} + \dots + k_{s-1} + 1 \leq i \leq n, \end{cases}$$

 $\lambda_i$  is the  $k_i$ -fold zero of the characteristic equation

$$\det(A - \lambda I_{n \times n}) = |A - \lambda I_{n \times n}| = 0$$

with  $k_1 + k_2 + \cdots + k_s = n$  and  $\overline{\beta}_i(t)$  is an *n*-dimensional vector consisting of polynomials in t with degree  $k_i - 1$ .

In this case, we can simplify the labeled topological graph  $G\left[\widetilde{\sum},\widetilde{R}\right]$  replaced each  $\sum_i$  by the solution basis  $\mathscr{B}_i$  and  $\sum_i \bigcap \sum_j$  by  $\mathscr{B}_i \bigcap \mathscr{B}_j$  if  $\mathscr{B}_i \bigcap \mathscr{B}_j \neq \emptyset$  for integers  $1 \leq i, j \leq m$ , denoted by  $G[LDES_m^1]$ .

For example, let m = 4 and

$$\mathscr{B}_{1}^{0} = \{e^{\lambda_{1}t}, e^{\lambda_{2}t}, e^{\lambda_{3}t}\}, \ \mathscr{B}_{2}^{0} = \{e^{\lambda_{3}t}, e^{\lambda_{4}t}, e^{\lambda_{5}t}\}, \ \mathscr{B}_{3}^{0} = \{e^{\lambda_{1}t}, e^{\lambda_{3}t}, e^{\lambda_{5}t}\}$$

 $\mathscr{B}_{4}^{0} = \{e^{\lambda_{4}t}, e^{\lambda_{5}t}, e^{\lambda_{6}t}\}, \text{ where } \lambda_{i}, 1 \leq i \leq 6 \text{ are real numbers different two by two.}$ Then  $G[LDES_{m}^{1}]$  is shown in Fig.6.



Theorem 3.2([10]) Every linear homogeneous differential equation system  $(LDES_m^1)$  uniquely determines a basis graph  $G[LDES_m^1]$  inherited in  $(LDES_m^1)$ . Conversely, every basis graph G uniquely determines a homogeneous differential equation system  $(LDES_m^1)$  such that  $G[LDES_m^1] \simeq G$ .

Such a basis graph  $G[LDES_m^1]$  is called the G-solution of  $(LDES_m^1)$ .

**Theorem** 3.3([10]) Every linear homogeneous differential equation system  $(LDES_m^1)$  has a unique G-solution, and for every basis graph H, there is a unique linear homogeneous differential equation system  $(LDES_m^1)$  with G-solution H.

#### Example 3.4

Let  $(LDE_m^n)$  be the following linear homogeneous differential equation system

$$\begin{cases} \ddot{x} - 3\dot{x} + 2x = 0 & (1) \\ \ddot{x} - 5\dot{x} + 6x = 0 & (2) \\ \ddot{x} - 7\dot{x} + 12x = 0 & (3) \\ \ddot{x} - 9\dot{x} + 20x = 0 & (4) \\ \ddot{x} - 11\dot{x} + 30x = 0 & (5) \\ \ddot{x} - 7\dot{x} + 6x = 0 & (6) \end{cases}$$

$$\begin{cases} e^{t} \\ e^{t} \\ e^{t} \\ e^{t} \end{cases} \qquad \begin{cases} e^{2t} \\ e^{2t} \\ e^{2t} \end{cases} \qquad \begin{cases} e^{2t} \\ e^{2t} \end{cases}$$

$$\begin{cases} e^{3t} \\ e^{3t} \end{cases}$$

$$\begin{cases} e^{3t} \\ e^{3t} \end{cases} \qquad \begin{cases} e^{3t} \\ e^{3t} \end{cases}$$

$$\begin{cases} e^{3t} \\ e^{3t} \end{cases} \qquad \begin{cases} e^{3t} \\ e^{3t} \end{cases} \qquad \begin{cases} e^{3t} \\ e^{3t} \end{cases} \qquad \begin{cases} e^{3t} \\ e^{3t} \end{cases}$$

#### 3.2 Combinatorial Characteristics of Linear Differential Equations

**Definition** 3.5 Let  $(LDES_m^1)$ ,  $(LDES_m^1)'$  be two linear homogeneous differential equation systems with G-solutions H, H'. They are called combinatorially equivalent if there is an isomorphism  $\varphi: H \to H'$ , thus there is an isomorphism  $\varphi: H \to H'$  of graph and labelings  $\theta$ ,  $\tau$  on H and H' respectively such that  $\varphi\theta(x) = \tau\varphi(x)$  for  $\forall x \in V(H) \bigcup E(H)$ , denoted by  $(LDES_m^1) \stackrel{\varphi}{\simeq} (LDES_m^1)'$ .

**Definition** 3.6 Let G be a simple graph. A vertex-edge labeled graph  $\theta: G \to \mathbb{Z}^+$  is called integral if  $\theta(uv) \leq \min\{\theta(u), \theta(v)\}\$  for  $\forall uv \in E(G)$ , denoted by  $G^{I_{\theta}}$ .

Let  $G_1^{I_{\theta}}$  and  $G_2^{I_{\tau}}$  be two integral labeled graphs. They are called identical if  $G_1 \stackrel{\varphi}{\simeq} G_2$  and  $\theta(x) = \tau(\varphi(x))$  for any graph isomorphism  $\varphi$  and  $\forall x \in V(G_1) \bigcup E(G_1)$ , denoted by  $G_1^{I_{\theta}} = G_2^{I_{\tau}}$ .

For example, these labeled graphs shown in Fig.8 are all integral on  $K_4 - e$ , but  $G_1^{I_{\theta}} = G_2^{I_{\tau}}$ ,  $G_1^{I_{\theta}} \neq G_3^{I_{\sigma}}$ .



Fig.8

Theorem 3.5([10]) Let  $(LDES_m^1)$ ,  $(LDES_m^1)'$  be two linear homogeneous differential equation systems with integral labeled graphs H, H'. Then  $(LDES_m^1) \stackrel{\varphi}{\simeq} (LDES_m^1)'$  if and only if H = H'.

#### 3.3 Non-Linear Ordinary Differential Equations

If some functions  $F_i(X)$ ,  $1 \le i \le m$  are non-linear in  $(DES_m^1)$ , we can linearize these non-linear equations  $\dot{X} = F_i(X)$  at the point  $\overline{0}$ , i.e., if

$$F_i(X) = F_i'(\overline{0})X + R_i(X),$$

where  $F'_i(\overline{0})$  is an  $n \times n$  matrix, we replace the *i*th equation  $\dot{X} = F_i(X)$  by a linear differential equation

$$\dot{X} = F_i'(\overline{0})X$$

in  $(DES_m^1)$ .

#### §4. Cauchy Problem on Non-Solvable Partial Differential Equations

Let  $(PDES_m)$  be a system of partial differential equations with

$$\begin{cases} F_1(x_1, x_2, \cdots, x_n, u, u_{x_1}, \cdots, u_{x_n}, u_{x_1x_2}, \cdots, u_{x_1x_n}, \cdots) = 0 \\ F_2(x_1, x_2, \cdots, x_n, u, u_{x_1}, \cdots, u_{x_n}, u_{x_1x_2}, \cdots, u_{x_1x_n}, \cdots) = 0 \\ \vdots \\ F_m(x_1, x_2, \cdots, x_n, u, u_{x_1}, \cdots, u_{x_n}, u_{x_1x_2}, \cdots, u_{x_1x_n}, \cdots) = 0 \end{cases}$$

on a function  $u(x_1, \dots, x_n, t)$ . Then its *symbol* is determined by

$$\begin{cases} F_1(x_1, x_2, \cdots, x_n, u, p_1, \cdots, p_n, p_1 p_2, \cdots, p_1 p_n, \cdots) = 0 \\ F_2(x_1, x_2, \cdots, x_n, u, p_1, \cdots, p_n, p_1 p_2, \cdots, p_1 p_n, \cdots) = 0 \\ \vdots \\ F_m(x_1, x_2, \cdots, x_n, u, p_1, \cdots, p_n, p_1 p_2, \cdots, p_1 p_n, \cdots) = 0, \end{cases}$$

i.e., substitute  $p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_n^{\alpha_n}$  into  $(PDES_m)$  for the term  $u_{x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}}$ , where  $\alpha_i \geq 0$  for integers  $1 \leq i \leq n$ .

**Definition** 4.1 A non-solvable  $(PDES_m)$  is algebraically contradictory if its symbol is non-solvable. Otherwise, differentially contradictory.

Theorem 4.2([11]) A Cauchy problem on systems

$$\begin{cases} F_1(x_1, x_2, \dots, x_n, u, p_1, p_2, \dots, p_n) = 0 \\ F_2(x_1, x_2, \dots, x_n, u, p_1, p_2, \dots, p_n) = 0 \\ \dots \\ F_m(x_1, x_2, \dots, x_n, u, p_1, p_2, \dots, p_n) = 0 \end{cases}$$

of partial differential equations of first order is non-solvable with initial values

$$\begin{cases} x_i|_{x_n=x_n^0} = x_i^0(s_1, s_2, \dots, s_{n-1}) \\ u|_{x_n=x_n^0} = u_0(s_1, s_2, \dots, s_{n-1}) \\ p_i|_{x_n=x_n^0} = p_i^0(s_1, s_2, \dots, s_{n-1}), \quad i = 1, 2, \dots, n \end{cases}$$

if and only if the system

$$F_k(x_1, x_2, \dots, x_n, u, p_1, p_2, \dots, p_n) = 0, \ 1 \le k \le m$$

is algebraically contradictory, in this case, there must be an integer  $k_0$ ,  $1 \le k_0 \le m$  such that

$$F_{k_0}(x_1^0, x_2^0, \cdots, x_{n-1}^0, x_n^0, u_0, p_1^0, p_2^0, \cdots, p_n^0) \neq 0$$

or it is differentially contradictory itself, i.e., there is an integer  $j_0, 1 \le j_0 \le n-1$  such that

$$\frac{\partial u_0}{\partial s_{j_0}} - \sum_{i=0}^{n-1} p_i^0 \frac{\partial x_i^0}{\partial s_{j_0}} \neq 0.$$

#### Corollary 4.3 Let

$$\begin{cases} F_1(x_1, x_2, \dots, x_n, u, p_1, p_2, \dots, p_n) = 0 \\ F_2(x_1, x_2, \dots, x_n, u, p_1, p_2, \dots, p_n) = 0 \end{cases}$$

be an algebraically contradictory system of partial differential equations of first order. Then there are no values  $x_i^0, u_0, p_i^0, 1 \le i \le n$  such that

$$\begin{cases}
F_1(x_1^0, x_2^0, \dots, x_{n-1}^0, x_n^0, u_0, p_1^0, p_2^0, \dots, p_n^0) = 0, \\
F_2(x_1^0, x_2^0, \dots, x_{n-1}^0, x_n^0, u_0, p_1^0, p_2^0, \dots, p_n^0) = 0.
\end{cases}$$

Corollary 4.4 A Cauchy problem ( $LPDES_m^C$ ) of quasilinear partial differential equations with initial values  $u|_{x_n=x_n^0} = u_0$  is non-solvable if and only if the system ( $LPDES_m$ ) of partial differential equations is algebraically contradictory.

Denoted by  $\widehat{G}[PDES_m^C]$  such a graph  $G[PDES_m^C]$  eradicated all labels. Particularly, replacing each label  $S^{[i]}$  by  $S_0^{[i]} = \{u_0^{[i]}\}$  and  $S^{[i]} \cap S_0^{[j]}$  by  $S_0^{[i]} \cap S_0^{[j]}$  for integers  $1 \leq i, j \leq m$ , we get a new labeled topological graph, denoted by  $G_0[PDES_m^C]$ . Clearly,  $\widehat{G}[PDES_m^C] \simeq \widehat{G}_0[PDES_m^C]$ .

**Theorem** 4.5([11]) For any system  $(PDES_m^C)$  of partial differential equations of first order,  $\widehat{G}[PDES_m^C]$  is simple. Conversely, for any simple graph G, there is a system  $(PDES_m^C)$  of partial differential equations of first order such that  $\widehat{G}[PDES_m^C] \simeq G$ .

Corollary 4.6 Let  $(LPDES_m)$  be a system of linear partial differential equations of first order with maximal contradictory classes  $\mathscr{C}_1, \mathscr{C}_2, \cdots, \mathscr{C}_s$  on equations in (LPDES). Then  $\widehat{G}[LPDES_m^C] \simeq K(\mathscr{C}_1, \mathscr{C}_2, \cdots, \mathscr{C}_s)$ , i.e., an s-partite complete graph.

**Definition** 4.7 Let  $(PDES_m^C)$  be the Cauchy problem of a partial differential equation system of first order. Then the labeled topological graph  $G[PDES_m^C]$  is called its topological graph solution, abbreviated to G-solution.

Combining this definition with that of Theorems 4.5, the following conclusion is holden immediately.

**Theorem** 4.8([11]) A Cauchy problem on system  $(PDES_m)$  of partial differential equations of first order with initial values  $x_i^{[k^0]}, u_0^{[k]}, p_i^{[k^0]}, 1 \le i \le n$  for the kth equation in  $(PDES_m), 1 \le k \le m$  such that

$$\frac{\partial u_0^{[k]}}{\partial s_j} - \sum_{i=0}^n p_i^{[k^0]} \frac{\partial x_i^{[k^0]}}{\partial s_j} = 0$$

is uniquely G-solvable, i.e.,  $G[PDES_m^C]$  is uniquely determined.

#### §5. Global Stability of Non-Solvable Differential Equations

Definition 5.1 Let H be a spanning subgraph of  $G[LDES_m^1]$  of systems  $(LDES_m^1)$  with initial value  $X_v(0)$ . Then  $G[LDES_m^1]$  is called sum-stable or asymptotically sum-stable on H if for all solutions  $Y_v(t)$ ,  $v \in V(H)$  of the linear differential equations of  $(LDES_m^1)$  with  $|Y_v(0)-X_v(0)| < \delta_v$  exists for all  $t \geq 0$ ,

$$\left| \sum_{v \in V(H)} Y_v(t) - \sum_{v \in V(H)} X_v(t) \right| < \varepsilon,$$

or furthermore,

$$\lim_{t\to 0} \left| \sum_{v\in V(H)} Y_v(t) - \sum_{v\in V(H)} X_v(t) \right| = 0.$$

Similarly, a system  $(PDES_m^C)$  is sum-stable if for any number  $\varepsilon > 0$  there exists  $\delta_v > 0$ ,  $v \in V(\widehat{G}[0])$  such that each G(t)-solution with  $\left|u'_0^{[v]} - u_0^{[v]}\right| < \delta_v, \forall v \in V(\widehat{G}[0])$  exists for all  $t \geq 0$  and with the inequality

$$\left| \sum_{v \in V(\widehat{G}[t])} u'^{[v]} - \sum_{v \in V(\widehat{G}[t])} u^{[v]} \right| < \varepsilon$$

holds, denoted by  $G[t] \stackrel{\Sigma}{\sim} G[0]$ . Furthermore, if there exists a number  $\beta_v > 0$ ,  $v \in V(\widehat{G}[0])$  such that every G'[t]-solution with  $\left|u_0'^{[v]} - u_0^{[v]}\right| < \beta_v, \forall v \in V(\widehat{G}[0])$  satisfies

$$\lim_{t \to \infty} \left| \sum_{v \in V(\hat{G}[t])} u'^{[v]} - \sum_{v \in V(\hat{G}[t])} u^{[v]} \right| = 0,$$

then the G[t]-solution is called asymptotically stable, denoted by  $G[t] \xrightarrow{\Sigma} G[0]$ .

Theorem 5.2([10]) A zero G-solution of linear homogenous differential equation systems  $(LDES_m^1)$  is asymptotically sum-stable on a spanning subgraph H of  $G[LDES_m^1]$  if and only if  $Re\alpha_v < 0$  for each  $\overline{\beta}_v(t)e^{\alpha_v t} \in \mathscr{B}_v$  in  $(LDES^1)$  hold for  $\forall v \in V(H)$ .

Example 5.3 Let a G-solution of  $(LDES_m^1)$  or  $(LDE_m^n)$  be the basis graph shown in Fig.4.1, where  $v_1 = \{e^{-2t}, e^{-3t}, e^{3t}\}, v_2 = \{e^{-3t}, e^{-4t}\}, v_3 = \{e^{-4t}, e^{-5t}, e^{3t}\}, v_4 = \{e^{-5t}, e^{-6t}, e^{-8t}\}, v_5 = \{e^{-t}, e^{-6t}\}, v_6 = \{e^{-t}, e^{-2t}, e^{-8t}\}.$  Then the zero G-solution is sum-stable on the triangle  $v_4v_5v_6$ , but it is not on the triangle  $v_1v_2v_3$ . In fact, it is prod-stable on the triangle  $v_1v_2v_3$ .



Fig.9

For partial differential equations, let the system  $(PDES_m^C)$  be

$$\frac{\partial u}{\partial t} = H_i(t, x_1, \dots, x_{n-1}, p_1, \dots, p_{n-1}) \\
u|_{t=t_0} = u_0^{[i]}(x_1, x_2, \dots, x_{n-1})$$

$$1 \le i \le m$$
(APDES<sub>m</sub><sup>C</sup>)

A point  $X_0^{[i]} = (t_0, x_{10}^{[i]}, \dots, x_{(n-1)0}^{[i]})$  with  $H_i(t_0, x_{10}^{[i]}, \dots, x_{(n-1)0}^{[i]}) = 0$  for  $1 \le i \le m$  is called an equilibrium point of the *i*th equation in  $(APDES_m)$ . Then we know that

Theorem 5.4([11]) Let  $X_0^{[i]}$  be an equilibrium point of the ith equation in  $(APDES_m)$  for each integer  $1 \leq i \leq m$ . If  $\sum_{i=1}^m H_i(X) > 0$  and  $\sum_{i=1}^m \frac{\partial H_i}{\partial t} \leq 0$  for  $X \neq \sum_{i=1}^m X_0^{[i]}$ , then the system  $(APDES_m)$  is sum-stability, i.e.,  $G[t] \stackrel{\Sigma}{\sim} G[0]$ . Furthermore, if  $\sum_{i=1}^m \frac{\partial H_i}{\partial t} < 0$  for  $X \neq \sum_{i=1}^m X_0^{[i]}$ , then  $G[t] \stackrel{\Sigma}{\rightarrow} G[0]$ .

#### §6. Applications

#### 6.1 Application to Geometry

Theorem 6.1([11]) Let the Cauchy problem be  $(PDES_m^C)$ . Then every connected component of  $\Gamma[PDES_m^C]$  is a differentiable n-manifold with atlas  $\mathscr{A} = \{(U_v, \phi_v) | v \in V(\widehat{G}[0])\}$  underlying graph  $\widehat{G}[0]$ , where  $U_v$  is the n-dimensional graph  $G[u^{[v]}] \simeq \mathbb{R}^n$  and  $\phi_v$  the projection  $\phi_v$ :  $((x_1, x_2, \dots, x_n), u(x_1, x_2, \dots, x_n))) \to (x_1, x_2, \dots, x_n)$  for  $\forall (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ .

**Theorem** 6.2([11]) For any integer  $m \ge 1$ , let  $U_i, 1 \le i \le m$  be open sets in  $\mathbb{R}^n$  underlying a connected graph defined by

$$V(G) = \{U_i | 1 \le i \le m\}, \quad E(G) = \{(U_i, U_j) | U_i \cap U_j \ne \emptyset, 1 \le i, j \le m\}.$$

If  $X_i$  is a vector field on  $U_i$  for integers  $1 \le i \le m$ , then there always exists a differentiable manifold  $M \subset \mathbb{R}^n$  with atlas  $\mathscr{A} = \{(U_i, \phi_i) | 1 \le i \le m\}$  underlying graph G and a function  $u_G \in \Omega^0(M)$  such that

$$X_i(u_G) = 0, \quad 1 \le i \le m.$$

#### 6.2 Global Control of Infectious Diseases

Consider two cases of virus for infectious diseases:

Case 1 There are m known virus  $\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_m$  with infected rate  $k_i$ , heal rate  $h_i$  for integers  $1 \leq i \leq m$  and an person infected a virus  $\mathcal{V}_i$  will never infects other viruses  $\mathcal{V}_j$  for  $j \neq i$ .

Case 2 There are m varying  $\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_m$  from a virus  $\mathcal{V}$  with infected rate  $k_i$ , heal rate  $h_i$  for integers  $1 \leq i \leq m$ .

We are easily to establish a non-solvable differential model for the spread of infectious viruses by applying the SIR model of one infectious disease following:

$$\begin{cases} \dot{S} = -k_1 SI \\ \dot{I} = k_1 SI - h_1 I \\ \dot{R} = h_1 I \end{cases} \begin{cases} \dot{S} = -k_2 SI \\ \dot{I} = k_2 SI - h_2 I \end{cases} \cdots \begin{cases} \dot{S} = -k_m SI \\ \dot{I} = k_m SI - h_m I \\ \dot{R} = h_m I \end{cases}$$
 (DES<sub>m</sub><sup>1</sup>)

Conclusion 6.3([10]) For m infectious viruses  $\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_m$  in an area with infected rate  $k_i$ , heal rate  $h_i$  for integers  $1 \leq i \leq m$ , then they decline to 0 finally if  $0 < S < \sum_{i=1}^m h_i / \sum_{i=1}^m k_i$ , i.e., these infectious viruses are globally controlled. Particularly, they are globally controlled if each of them is controlled in this area.

### 6.3 Flows in Network

 $How\ can\ we\ characterize\ the\ behavior\ of\ flow\ F?$ 



**Fig.**10

Denote the rate, density of flow  $f_i$  by  $\rho^{[i]}$  for integers  $1 \leq i \leq m$  and that of F by  $\rho^{[F]}$ 

$$\frac{\partial \rho^{[i]}}{\partial t} + \phi_i(\rho^{[i]}) \frac{\partial \rho^{[i]}}{\partial x} = 0, \ 1 \le i \le m.$$

Replacing each  $\rho^{[i]}$  by  $\rho$ ,  $1 \leq i \leq m$  enables one getting a non-solvable system

$$\frac{\partial \rho}{\partial t} + \phi_i(\rho) \frac{\partial \rho}{\partial x} = 0$$

$$\rho \mid_{t=t_0} = \rho^{[i]}(x, t_0)$$

$$1 \le i \le m.$$

Applying Theorem 5.4, if

$$\sum_{i=1}^{m} \phi_i(\rho) < 0 \text{ and } \sum_{i=1}^{m} \phi_i(\rho) \left[ \frac{\partial^2 \rho}{\partial t \partial x} - \phi'(\rho) \left( \frac{\partial \rho}{\partial x} \right)^2 \right] \ge 0$$

for  $X \neq \sum_{k=1}^{m} \rho_0^{[i]}$ , then we know that the flow F is stable and furthermore, if

$$\sum_{i=1}^{m} \phi(\rho) \left[ \frac{\partial^{2} \rho}{\partial t \partial x} - \phi'(\rho) \left( \frac{\partial \rho}{\partial x} \right)^{2} \right] < 0$$

for  $X \neq \sum_{i=0}^{m} \rho_0^{[i]}$ , then it is also asymptotically stable.

# Thanks for your Attention!