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Abstract

The original motivation of this work was related to Platonic solids. The playing with Einstein’s
equations and the attempts to interpret them physically forced the return to an old interpretational
problem of TGD. TGD allows enormous vacuum degeneracy for Kähler action but the vacuum
extremals are not gravitational vacua. Could this mean that TGD forces to modify Einstein’s
equations? Could space-time surfaces carrying energy and momentum in GRT framework be
vacua in TGD context? Of course, also in GRT context cosmological constant means just this
and an experimental fact, is that cosmological constant is non-vanishing albeit extremely small.

Trying to understand what is involved led to the realization that the hypothesis that preferred
extremals correspond to the solutions of Einstein-Maxwell equations with cosmological constant
is too restricted in the case of vacuum extremals and also in the case of standard cosmologies
imbedded as vacuum extremals. What one must achieve is the vanishing of the divergence of
energy momentum tensor of Kähler action expressing the local conservation of energy momentum
currents. The most general analog of Einstein’s equations and Equivalence Principle would be
just this condition giving in GRT framework rise to the Einstein-Maxwell equations with cosmo-
logical constant. The vanishing or llight-likeness of Kähler current guarantees the vanishing of
the divergence for the known extremals.

One can however wonder whether it could be possible to find some general ansätze allow-
ing to satisfy this condition. This kind of ansätze can be indeed found and can be written as
kG +

∑
ΛiPi = T , where Λi are cosmological ”constants” and Pi are mutually orthogonal pro-

jectors such that each projector contribution has a vanishing divergence. One can interpret the
projector contribution in terms of topologically condensed matter, whose energy momentum ten-
sor the projectors code in the representation kG = −

∑
ΛiPi + T . Therefore Einstein’s equations

with cosmological constant are generalized. This generalization is not possible in General Rela-
tivity, where Einstein’s equations follow from a variational principle. This kind of ansätze can
be indeed found and involve the analogs of cosmological constant, which are however not genuine
constants anymore. Therefore Einstein’s equations with cosmological constant are generalized.
This generalization is not possible in General Relativity, where Einstein’s equations follow from
a variational principle.

The suggested quaternionic preferred extremals and preferred extremals involving Hamilton-
Jacobi structure could be identified as different families characterized by the little group of par-
ticles involved and assignable to time-like/light-like local direction. One should prove that this
ansatz works also for all vacuum extremals. This progress - if it really is progress - provides a more
refined view about how TGD Universe differs from the Universe according to General Relativity
and leads also to a model for how the cosmic honeycomb structure with basic unit cells having
size scale 108 ly could be modelled in TGD framework.
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1 Introduction

The original motivation of this work was related to Platonic solids. The playing with Einstein’s
equations and the attempts to interpret them physically forced the return to and old interpretational
problem of TGD. TGD allows enormous vacuum degeneracy for Kähler action but the vacuum ex-
tremals are not gravitational vacua. Could this mean that TGD forces to modify Einstein’s equations?
Could space-time surfaces which would carry energy and momentum in GRT frameword be vacua in
TGD context?

Trying to understand what is involved led to the realization that the hypothesis that preferred
extremals correspond to the solutions of Einstein-Maxwell equations with cosmological constant [K6,
K2, K5] is too restricted in the case of vacuum extremals and also in the case of standard cosmologies
imbedded as vacuum extremals. What one must achieve is the vanishing of the divergence of energy
momentum tensor of Kähler action expressing the local conservation of energy momentum currents.
The most general analog of Einstein’s equations and Equivalence Principle would be just this condition
giving in GRT framework rise to the Einstein-Maxwell equations with cosmological constant.

One can however wonder whether it could be possible to find some general ansätze allowing to
satisfy this condition. This kind of ansätze can be indeed found and can be written as kG+

∑
ΛiPi = T ,

where Λi are cosmological ”constants” and Pi are mutually orthogonal projectors such that each
projector contribution has a vanishing divergence. One can interpret the projector contribution in
terms of topologically condensed matter, whose energy momentum tensor the projectors code in the
representation kG = −

∑
ΛiPi + T . Therefore Einstein’s equations with cosmological constant are

generalized. This generalization is not possible in General Relativity, where Einstein’s equations
follow from a variational principle. This kind of ansätze can be indeed found and involve the analogs
of cosmological constant, which are however not genuine constants anymore. Therefore Einstein’s
equations with cosmological constant are generalized. This generalization is not possible in General
Relativity, where Einstein’s equations follow from a variational principl

The suggested quaternionic preferred extremals and preferred extremals involving Hamilton-Jacobi
structure could be identified as different families characterized by the little group of particles involved
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and assignable to time-like/light-like local direction. One should prove that this ansatz works also for
all vacuum extremals. This progress - if it really is progress - provides a more refined view about how
TGD Universe differs from the Universe according to General Relativity and leads also to a model for
how the cosmic honeycomb structure with basic unit cells having size scale 108 ly could be modelled
in TGD framework.

The original problem was however not this but the following one. One can decompose Euclidian
icosahedron to 20 irregular tetrahedrons emanating from the center of the icosahedron. The ratio of
the lengths of the surface edges (edges connecting points at the surface of the sphere) to the radial
edges is in good approximation k = 1 + ε, ε = .05. If one makes the edges of the tetrahedrons equal
by shortening of surface edges while preserving the lengths of the radial edges, one obviously obtains
a gap [D1].

Is there any manner to make the tedrahedrons regular without creating a gap?

1. At sphere S3 the counterpart of icosahedron consists of 20 counterparts of regular tetrahedrons.
One can say that the generation of positive curvature eliminates the gap formed and shortens
the surface edges. Deforming Euclidian space to hyperbolic space in turn adds volume. In 2-D
case these rules can be visualized. In fact, one can extend the icosahedron to 600-cell denoted
by (3,3,5) in Schönflies notation. What the recursive notation (3,3,5) states is that there are 5
tetrahedra (3,3) with common edge and tetrahedra in turn has 3 triangles with common vertex.
The 4-D 600-cell has as boundary 600 tetrahedra assignable to a surface of 3-sphere in a manner
completely analogous to the Platonic solids regarded as 2-D surfaces bounding 3-D cells.

2. One is however interested in possibly existing Euclidian variants of tetrahedral Penrose tiling
and QC, and perhaps also in tetrahedral dense packing (still poorly understood), which must
be however distinguished from tetrahedral QC which can quite well contain intersecting tetra-
hedrons. The problem is that it is difficult to imagine a unique Euclidianization by somehow
mapping S3 to E3. Here different topologies pose the basic problem: one cannot avoid local
deformations and the presence of singular 2-D surface. The best that one can hope of achieving
are clusters of 600 tetrahedra.

The TGD inspired idea to be discussed is that sub-manifold gravity could help to achieve a unique
map from S3 to E3 and also the counterparts the isosahedral Penrose tiling with icosahedrons con-
sisting of regular tetrahedrons.

1. This would be achieved by a local deformation of the E3 metric obtained by deforming canon-
ically imbedded E3 in CP2 directions to make the 20 tetrahedra in the decomposition of the
icosahedron regular and space-filling. This deformation would be just a piece of S3, say the
upper hemisphere. Entire S3 would require two-sheeted 3-surface and is also possible in TGD.
The Euler angles (α, θ, φ) for S3 would correspond to the spherical coordinates of (r, θ, φ) via
the formula: α = arcsin(r/R), where R is the radius of S3.

2. Although the S3 tetrahedra in the induced metric are regular, they do not look so in E3 metric,
and an interesting question is whether the irregularity of the tetrahedral structures seen in
3-space usually identified as E3 could correspond to regularity in S3. The correspondence
between coordinates allows to predict precisely the E3 coordinates of tetrahedral vertices in
the decomposition of S3 icosahedron so that the hypothesis is testable. The physics of water
provides an especially interesting test bench for the idea.

3. It is also possible to imagine a construction crystal and quasicrystal (QC) like structures con-
sisting of tetrahedrons by gluing together pieces of S3 realized as static surfaces in M4 × CP2

along their boundaries just as one glues together cubes along their faces to build cubic crystals.
Note that this proposal for tetrahedral QC differs from the earlier proposal for twisted QC [?] in
which each supercell (icosahedron for Penrose tiling, and icosahedron, dodecahedron, or icosido-
decahedron for icosahedral QC) contains single tetrahedron twisted so that it does not intersect
the tetrahedra of neighboring and possibly intersecting supercells.

Deformations of pieces of E3 to pieces of S3 is not the only possibility. Also deformations respecting
the topology of E3 are possible.

http://en.wikipedia.org/wiki/Schoenflies_notation
http://en.wikipedia.org/wiki/Geometrical_frustration#Dense_structures_and_tetrahedral_packings
http://tgdtheory.com/public_html/articles/QCTGD.pdf
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1. One can consider a more general deformation of the metric of E3 to ds2 = k2(r)2 + r2dΩ2. One
obtains an infinite family of functions k(r) satisfying the condition that an icosahedron with
center at North pole (r, θ, φ) = (0, 0, 0) of S3 consists of regular tetrahedrons since the only

condition is
∫ R

0
k(r)dr = s, where s is the length of the surface edge and integral defines the

length of the radial edge. k = 1 + δ = constant option however fails as shown in Appendix
C. In Appendix B it is shown that the 1+3 decomposition kG +

∑
i=1,2 ΛiPi allow to deduce

differential equation for k(r) but still one has a large number of solutions guaranteeing the
regularity of the icosahedral tetrahedra.

2. If one accepts also deformations with more general functions k(r) deduced in Appendix B, quite
large number of quasi-lattice like structures consisting of regular tetrahedra becomes possible.
One can ask whether these geometries could define possible tetrahedral quasi-lattice structures
for water clusters having interpretation as some kind of geometric coding of information so that
the apparent randomness would reflect hidden geometric order.

In GRT framework the deformation of E3 to S3 or a non-compact manifold for more general k(r)
and icosahedral Penrose tiling [A1] with icosahedrons consisting of 20 regular tetrahedrons are not
plausible in condensed matter length scales for the simple reason that the gravitational deformation
of the metric is so weak. If one accepts the cautious proposal for TGD variant of Equivalence Prin-
ciple, it might be possible to realize these tetrahedral dreams. The projector contributions −ΛiPi
would represent average density of topologically condensed whereas T would be vanishing for vacuum
extremals.

It becomes also possible to build a model for cosmic honeycombs and quasicrystal like structures
consisting of units with size of order 108 ly and having galaxies at the boundaries of otherwise almost
empty regions known as cosmic voids [E1]. The basic unit would be either a piece of hyperbolic space,
of Euclidian space, or of 3-sphere. In hyperbolic case there is infinite number of tesselations. In GRT
framework these pieces could carry a constant mass density (sub-critical, critical, or over-critical) but
in TGD framework they would be vacua and galactic mass would be associated with their boundaries
and idealizable as being due to the discontinuity of the normal component gnn of the induced metric
at the 3-D facets along which the super-cells are glued together. The time evolution of critical and
super-critical options is unique part from the duration of the nonsingular period, and leads to TGD
counterpart of blackhole having Euclidian induced metric. Note that cosmic honeycomb would provide
a rather concrete realization for the notion of space-time foam usually assigned with Planck length
scale.

It deserves to be mentioned that cosmic honeycombs and their possible counterparts for water
clusters modeled as consisting of icosahedral pieces of S3 bring in mind foams. Soap film foam is
perhaps the most familiar example about foam. Plateau’s laws govern the structure of many foams.
Mean curvature is constant for each film and physically derives from area minimization assuming
constant pressure difference over the film. 3 films meet at angle of 120 degrees along a line known as
Plateau border and 4 Plateau borders meet at each vertex at tetrahedral angle of arcos(−1/3) ' 109.47
degrees (tetrahedral angle is defined as the angle between radii drawn from the center of tetrahedron to
its vertices). This suggests spherical tetrahedron as a basic building brick in a model as a honeycomb
built from pieces of S3. Plateau’s laws can be derived mathematically for foams, for which films are
minimal surfaces (pressure difference vanishes).

2 Does the SO(3) symmetry preserving deformation of the
metric of E3 regularize the icosahedral tetrahedra?

In GRT framework quantum gravitational effects are extremely small in everyday length scales - say
in condensed matter physics. In TGD the situation can be different due to sub-manifold gravity
predicting new physical effects. Sub-manifold gravity and the notion of many-sheeted space-time
indeed challenges the flatness of 3-space as approximation broken only by very weak gravitational
effects. The field equations demand that Kähler energy momentum tensor has vanishing divergence.
This can be guaranteed if Einstein-Maxwell equations with cosmological term are satisfied: both are
in principle predictions of the theory and depend on the preferred extremal [K6].

http://en.wikipedia.org/wiki/Cosmic_void
http://en.wikipedia.org/wiki/Foam
http://en.wikipedia.org/wiki/Plateau's_laws
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This is however not the most general option if one is ready to accept TGD and allow the decom-
position of the cosmological constant term to a sum of terms proportional to projectors to orthogonal
subspaces multiplied with cosmological ”constants”, which are not constant anymore. The interpre-
tation of the sum of these terms in kG = −

∑
i ΛiPi +T is in terms of topologically condensed matter

representing topological inhomogenuities smaller than the length scale resolution used (for a more
detailed discussion see Appendix A). Therefore it might be also physically possible to modify the
3-metric without giving up SO(3) symmetry and the topology of E3, and there would be no need to
map S3 to E3 in the hope of obtaining what might be called tetrahedral Penrose tiling. In fact, also
a deformation of a piece of E3 to that of S3 exists and defines this kind of map uniquely.

An obvious deformation of Euclidian metric is obtained by the scaling of the radial component of
the E3 metric

ds2 = dr2 + r2dΩ2 → k2(r)dr2 + r2dΩ2 , k = 1 + δ . (2.1)

k(r) could be fixed by the condition that the radial edges of the 20 icosahedral tetrahedra have the
same length as the surface edges defined as geodesic lines in the deformed metric. This poses a
condition on k(r) but it is not at all obvious whether any solutions to the condition exist.

1. SO(3) symmetry alone allows k(r) to be an arbitrary function of the radial coordinate. The
original guess was k = 1+δ(r) with δ(r) ≥ 0 non-vanishing only near the center of the icosahedron
so that in the region containing surface edges the metric would be strictly Euclidian. The
deviation from E3 metric near the center of the icosahedron could be due to the presence
of a particle. δ = constant option is excluded as shown in Appendix C but in Appendix B
good arguments supporting δ(r) → 0 option are developed. The regularity of the tetrahedral
decomposition of the icosahedron with center at (r, θ, φ) = (0, 0, 0) follows from the assumption
that radial and surface edges have same length:

∫ R

0

k(r)dr = s , (2.2)

where s is the length of the surface edge of the icosahedron identified as geodesic line.

2. The local deformation of E3 metric to S3 metric obtained by allowing CP2 coordinates to depend
on r having k(r) = 1/(1− (r/R)2) certainly gives rise to a decomposition of S3 icosahedron to
20 regular S3 tetrahedrons realized as as a piece of S3 - say around North pole so that one has
radial and surface edges of equal length in S3 metric but not so in E3 metric. Entire S3 requires
two-sheeted surface and is also possible to realize in TGD context. This would allow to realize
the 600-cell consisting of 600 tetrahedrons.

These conjecture might be testable. A successful test would also provide support for sub-manifold
gravity.

1. The correspondence (α, θ, φ) = (arcsin(r/R), θ, φ) between Euler angles of S3 and spherical
coordinates of E3 allows a precise identification of E3 coordinates of tetrahedra and thus precisely
quantifies the deviation of regular S3 tetrahedra from regular E3 tetrahedra.

2. In E3 metric the tetrahedrons do not look regular, and an interesting possibility is that the
icosahedral structures encountered in water clusters could be interpreted in terms of regular S3

tetrahedrons, when the 3-space is not identified as E3 but consists of icosahedral pieces of S3

glued together along S3 faces.

3. For a more general family of functions k(r) similar conditions hold true and would allow quite a
large number of quasi-lattice like structures consisting of icosahedra decomposing to 20 regular
tetrahedrons. For a given k(r) satisfying the differential equation deduced in Appendix A and
the regularity condition s =

∫
kdr, one can predict the precise positions for the vertices of

icosahedral tetrahedrons in the spherical coordinates for E3. The functions k(r) could make
possible to code information to the deformations of E3 tetrahedrons from regularity. Again
water provides the test bench.
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Single isosahedron consisting of regular tetrahedrons or even 600-cell or half of it is not enough.
One would like to have also Penrose tiling having icosahedrons as supercells. Since the proposed
deformation of the metric is not translationally invariant but has the center of the icosahedron as
a center of symmetry, the only possibility is to glue together their E3 (realized as t = constant
hyper-plane of M4) translates of the basic icosahedron along common faces. One must allow also
intersections of icosahedrons and therefore also of tetrahedrons as already for the triangles of the
ordinary Penrose tiling obtained by replacing 20 tetrahedrons with 10 triangles and icosahedron with
10-gon. Clearly, tetrahedral Penrose tiling must be distinguished from tetrahedral dense packing.
Physically this means that tetrahedral supercells can have common atoms.

The following arguments try to demonstrate that in TGD framework there are good hopes for
tetrahedral Penrose tiling having by definition regular S3 tetrahedrons as possibly overlapping super-
cells and induced from icosahedral Penrose tiling. Whether the icosahedral QC containing icosahedra,
dodecahedra, and icosidodecahedra as super-cells allows a decomposition to regular tetrahedra for all
3 super-cells, is probably easy to answer. The argument is of course purely mathematical, and the
question whether the construction is also physically realizable remains open.

2.1 Strong gravitation is possible in TGD framework

The basic motivation for the speculations to follow is that many-sheeted space-time makes possible
large deviations from gravitation predicted by GRT, which in TGD framework can be seen as a
description of gravitation at the long length scale limit. A fundamental distinction between GRT and
TGD is indeed that in TGD framework gravitational constant and cosmological constant - actually
space-time dependent cosmological ”constants” emerge as predictions of the theory rather than as
fundamental constants of Nature.

For almost two decades ago I deduced by purely dimensional considerations a formula for gravita-
tional constant G in terms of p-adic length scale and exponent of Kähler action for CP2 type vacuum
extremal defining the line of generalized Feynman diagram representing graviton [K3]. The predic-
tion was that G should have an entire spectrum of values and approach p-adic length scale squared
L2
p = pR2

CP2
when the action of the deformed CP2 type vacuum extremal becomes small: this happens

at short length scale limit. In particular, hadronic strings would correspond to strong gravitation limit,
and TGD predicts fractally scaled up variants of ordinary hadron physics so that a rich spectrum of
strong gravities follows as a prediction. This means that in TGD Universe the the gravitational effects
on space-time geometry can be rather dramatic even in condensed matter length scales whereas in
GRT the effects are extremely small. With this background philosophy I have discussed the possible
differences between General Relativity and TGD-based view about gravitation in [K7]. This chapter
should help also to understand the discussion of this section.

The starting point for the following considerations was the question whether the flat geometry
for a piece of E3 could be modified by gravitational effects so that it becomes a piece of S3 allowing
the decomposition of icosahedron to 20 regular tetrahedra (in E3 geometry the tetrahedra cannot be
regular). This kind of decomposition is actually possible for much more general deformations of E3

geometry and one ends up with the vision about quasi-lattice like structures having piece of S3 or
hyperbolic space H3 as a basic building brick. This notion makes sense in condensed matter length
scales only if gravitational constant can be of order G ∼ L2

p since Schwartschild radius rS = 2GM is
the natural scale for the radius of S3.

The cosmic honeycomb having voids with size of order 108 ly as basic building bricks is one
possible quasi-lattice like structure suggested by these considerations. In condensed matter length
scales strong gravitation could allow similar quasi-lattice like structures and icosahedral water clusters
having tetrahedrons as building bricks could be examples of structures of this kind.

Cosmic honeycombs and their possible counterparts for water clusters modeled as consisting of
icosahedral pieces of S3 bring in mind foams. Soap film foam is perhaps the most familiar example
about foam. Plateau’s laws govern the structure of many foams. Mean curvature is constant for each
film and physically derives from area minimization assuming constant pressure difference over the film.
3 films meet at angle of 120 degrees along a line known as Plateau border and 4 Plateau borders meet
at each vertex at tetrahedral angle of arcos(−1/3) ' 109.47 degrees (tetrahedral angle is defined as
the angle between radii drawn from the center of tetrahedron to its vertices). This suggests spherical
tetrahedron as a basic building brick in a model as a honeycomb built from pieces of S3. Plateau’s
laws can be derived mathematically for foams, for which films are minimal surfaces (pressure difference

http://en.wikipedia.org/wiki/Foam
http://en.wikipedia.org/wiki/Plateau's_laws
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vanishes).

2.2 Construction of deformed metrics in zero energy ontology

In TGD framework the view about 3-space generalizes considerably. One assigns to physical systems
space-time sheets and space-time sheets can deviate metrically from flat space much more than in
general relativity. The can have even Euclidian signature of metric: this signature is assigned to the
4-D lines of generalized Feynman diagrams. which can have macroscopis scale and can be tentatively
identified as the space-time regions characterizing physical objects as we ”see” them.

Vacuum extremals [K2] provide some illustrative examples. Consider a geodesic circle of CP2

with angle coordinate Φ and the 4-surface Φ = ωt, where t is M4 time coordinate. The induced
metric is (1− R2ω2,−1,−1,−1) and obviously flat. There is no gravitational field present but there
is anomalous time dilation, which can be detected if it is possible to use M4 coordinates of the M4

factor of M4 × CP2 as preferred coordinates - as the fact that Poincare symmetries are associated
with imbedding space rather than space-time surface suggests.

Causal diamonds (CDs) define an essential element of zero energy ontology (ZEO). CD is a double
pyramid (with spherical cross section) defined by the intersection of future and past directed light-
cones of M4 and has two light-like boundaries. CD × CP2 defines what might be called a spot light
of consciousness in TGD inspired theory of consciousness. Zero energy states correspond to pairs of
positive and negative energy states having opposite total quantum numbers, and assignable to the
opposite light-like boundaries δM4

± ×CP2. Zero energy states correspond to quantum superpositions
of pairs of 3-surfaces at the boundaries of δ±CD × CP2: by holography they can be also regarded as
superpositions of preferred extremals. Strong form of holography allows to express physical states in
terms of information associated with partonic 2-surfaces and their 4-D tangent space data.

2.2.1 Deformation of E3 metric to guarantee the regularity of icosahedral tetrahedrons

Usually one thinks that in every-day length scales 3-space is flat E3 apart from very small gravitational
effects. In cosmological scales 3-space is known to be flat in good approximation on basic of CMB
data. In short scales mass densities can be however much higher than in cosmic scales (one proton per
cubic meter roughly) so that a local compactification to overcritical cosmology consisting of a piece
of S3 could take place. The compactification could be interpreted as being due to the presence of
topologically condensed matter. These pieces could in turn be glued together along their boundaries
to obtain lattices and quasi-lattice like structures. As shown in Appendix A, this kind of local S3

compactifications can be both static and expanding. In the latter case, the cosmic time evolution is
essentially unique and leads to a singularity, for which the induced metric has Euclidian signature and
has interpretation as a TGD counterpart of a blackhole.

Remark: The discussion of Appendix A shows that also static deformations of E3 to hyperbolic
space H3 are possible, and in this case one would obtain an infinite number of tesselations defined by
discrete subgroups of SO(1, 3) including 8 honeycomb structures. Icosahedral quasi-lattice structures
encountered in the physics of water provide again a test bench. Now the correspondence (η, θ, φ) =
(arsinh(r/R), θ, φ) between hyperbolic ”Euler angles” and spherical coordinates of E3 would allow
to deduce how the H3 icosahedra (say) and the honeycombs made of them differ from their E3

counterparts.
Before continuing, some background in TGD is needed. In TGD framework macroscopic objects

correspond to 4-surfaces with effective boundaries defined by light-like 3-surfaces at which the signature
of the induced metric changes from Minkowskian to Euclidian. The above observations suggest the
possibility of large physical effects on metric in the absence of effects on curvature. But even large
effects on curvature cannot be excluded.

One can indeed consider more general metrics for which grr = k2(r) holds true. By previous
argument, these metrics are just what one wants if one is interested in icosahedral Penrose tiling with
icosahedrons decomposed to regular tetrahedra. Note that the metrics in question are highly analogous
to those for Robertson-Walker cosmologies with over-critical mass density: the only difference is that
time coordinate is replaced with radial coordinate r and S3 with S2.

For the case k = k(r) case the expressions of Ricci and Einstein tensor are given by the expressions
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(Rrr, Rθθ, Rφφ) = (X,Y, sin2(θ)Y ), ,

(Grr, Gθθ, Gφφ) = (X − k2

r2 Y,−
1
2
r2

k2X,−
1
2
r2sin2(θ)

k2 X) .

X = −4dlog(k)
dlog(r)X , Y = k−2 − 1− 1

2
dk−2

dlog(r)) .

(2.3)

For k = constant the Ricci tensor and Einstein tensor have components

(Rrr, Rθθ, Rφφ) = (0, r2, r2sin2(θ))× (k−2−1)
r2 ,

(Grr, Gθθ, Gφφ) = ((1− k2)/r2, 0, 0) .

(2.4)

The vanishing of Gθθ and Gφφ can be understood in terms of symmetries. For 4-D solution obtained
by adding M4 time coordinate as fourth coordinate this would mean that energy density T tt is non-
vanishing and proportional to (k−2 − 1))/r2.

2.2.2 The modification of Einstein’s equations suggested by TGD

The deformation of E3 can be generalized in trivial manner to 4-D situation giving Gtt = k−2Grr
is in general not consistent with the assumption that preferred extremals (4-surfaces) at the limit of
vacuum satisfy Einstein-Maxwell equations with cosmological term satisfying T = κG + Λg, whereT
is the energy momentum tensor associated with Kähler action satisfying Tαα = 0 since Maxwell action
is invariant under conformal scalings (in TGD this symmetry is actually broken since Maxwell field is
not primary field).

This form of the conditions is however un-necessarily strong. The only condition on preferred
extremals is that T has vanishing divergence:

DβT
αβ = 0 . (2.5)

One can however go further and ask whether there might be general ansätze allowing to satisfy this
condition.

The first thing to observe that the condition reduces to

jαJαβ = 0 . (2.6)

One can of course ask whether this condition satisfied also by the extremals of the ordinary Maxwell
action is the most general condition that one can deduce from the local conservation of energy mo-
mentum. The condition states that the Lorentz force on and the work done by Kähler current in the
induced Kähler field vanish. For Maxwell’s equations the condition jα = 0 guarantee the condition.
In TGD framework light-likeness of Kähler current holding for massless extremals is a more general
manner to satisfy the condition. An open question is whether more general solutions to the condition
exist.

One however ask whether some condition on metric could be assigned with the condition on Kähler
current. The vanishing of the divergence can be indeed satisfied by assuming only

Tαβ = κGαβ +
∑
i

ΛiP
αβ
i ,

κ =
1

8πG
. (2.7)

Here Pi are projectors to mutually orthogonal sub-spaces of the tangent space of the space-time
surface. The distributions of the sub-spaces must be integrable to slicings of the space-time surface by
sub-manifolds and define di-dimensional sub-manifolds of the space-time surface (

∑
i di = d). Energy

momentum tensor of Kähler action has vanishing divergence if one has
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Dβ(ΛiP
αβ
i ) = 0 . (2.8)

Λi need not be constant functions anymore so that cosmological constant is replaced by two - presum-
ably slowly varying - cosmological ”constants”. For Λi = Λ one obtains just the ordinary cosmological
constant, which must be a genuine constant.

The condition Tαα = 0 gives

κR =
∑
i

Λidi . (2.9)

Here R denotes curvature scalar and di denotes the dimension of sub-space to which Pi projects. For
Λi = Λ one obtains κR = Λ so that curvature scalar would be constant, which looks too strong a
condition.

In TGD framework the most natural identification of the term
∑

ΛiPi would be in terms of
topologically condensed matter consisting of topological in-homogenities smaller than the scales of
length and time resolution. In zero energy ontology the interpretation would be in terms of zero
energy states in scales below the measurement resolution and interpreted as quantum fluctuations in
QFT context.

In Appendix A the situation is considered in more detail.

1. It is shown that for Robertson-Walker cosmologies 1+3 decomposition is natural.

2. For preferred extremals with what I have called Hamilton-Jacobi structure [K6] in Minkowskian
regions one would have 2+2 decomposition. Maybe the 1+3 decomposition corresponds to the
quaternionic solution ansatz. The motivation for this belief is that SO(3) has a natural action
on quaternions as their automorphism group. For Hamilton-Jacobi structure SO(3) is replaced
with the little group of Poincare group assignable to massless particles so that these two kinds of
extremals might basically correspond to massive and massless representations of Poincare group.

3. For vacuum extremals the inverse images of points of at most 2-D CP2 projection define 2+2
slicing of the space-time surface, and one can hope that this slicing could give rise to the
decomposition

∑
i=1,2 ΛiPi. It is of course quite possible that not all vacuum extremals can be

regarded as limits of preferred extremals with this decomposition.

In the recent case one is interested on having such k(r) that one has vacuum extremal with 1+1+2
decomposition satisfying

κGαβ +
∑

i=1,2,3

ΛiP
αβ
i = 0 ,

DβΛiP
αβ
i = 0 . (2.10)

1 + 1 + 2 decomposition corresponds to coordinate lines for t and r and to spheres (θ, φ). In Appendix
B the differential equations for k(r) guaranteeing that ΛiP

i have vanishing divergence are deduced.
These equations can be integrated and give rise to a family of metrics characterized by k(r). Near

the center of icosahedron the deformation corresponds to S3 in a good approximation. S3 and H3 are
obtained as particular solutions. For S3 the decomposition of icosahedron to regular tetrahedrons is
possible as already shown. The important and definitely new point of view is that these metrics are
vacuum extremals for both Kähler action and in gravitational sense. Einstein’s equations are replaced
by a more general and weaker condition that the energy momentum tensor of Kähler action has a
vanishing divergence.

2.3 Various realizations of E3 and its deformations in TGD framework

TGD allows several realizations of E3 and its deformations as a surface in M4 × CP2.



2.3 Various realizations of E3 and its deformations in TGD framework 10

2.3.1 Deformation of the imbedding of E3 to δM4
± × CP2

Flat 3-metric is obviously something very fundamental, and one can ask whether one could realize
flat 3-surfaces as surfaces in δ±CD × CP2. The metric at δ±CD is metrically 2-D since the radial
direction is light-like, and one can write the metric as

ds2 = −r2dΩ2 .

For a given value of the radial coordinate r the metric of 2-sphere of radius r is in question.
One can have 3-surfaces in δ±CD × CP2 with non-degenerate 3-metric by assuming that CP2

coordinates depend on the coordinates of δ±CD - that is light-cone boundary. If CP2 coordinates
depend on r only, the induced metric is still rotationally symmetric, and the induced metric reads as

ds2 = grrdr
2 − r2dΩ2 , grr = skl

dsk

dr

dsl

dr
.

For grr = −1 one obtains flat metric of E3. This condition has a huge number of solutions since three
CP2 coordinates can be chosen to be almost arbitrary functions of r and the fourth one can be solved
from the condition for the metric. The restrictions come only from the condition grr = −1 combined
with the Euclidian character of CP2 metric. The simplest solution is obtained by taking the CP2

projection to be a geodesic circle so that one obtains r = Φ/R indeed giving grr = −1.
One can obtain also a deformation allowing decomposition of the icosahedron to regular tetrahe-

drons by modifying the basic condition to grr = −k2, k = 1+δ. It is however not obvious whether this
deformation can be continued to a 4-surface with vanishing Einstein tensor. A natural continuation
of the 3-surface at light-cone boundary to a 4-D space-time surface is obtained by using a slicing of
the future light-cone by parallel light-cones along time-like line and having identical 3-metric. Since
the coordinate r corresponds to a light-like coordinate v in the pair of (u = t − r, v = t + r) of the
standard light-like coordinates of M4, the line element would be

ds2 = 2dudv − k2dv2 − r2dΩ2 ,

and Einstein tensor vanishes for a constant value of the parameter k also now.

2.3.2 The deformations of standard imbeddings of E3 and M4

One can also consider the deformation of the standard imbedding of E3 as t = constant hyper-surface
of M4) obtained by decomposing E3 to icosahedra consisting of 20 irregular tetrahedra. Also now
one can deform the imbedding near he center of each icosahedron so that the radial edges have same
length as the surface edges. One starts from the metric of E3

ds2 = −dr2 − r2dΩ2 ,

and deforms it to

ds2 = −k2(r)dr2 − r2dΩ2 . (2.11)

For small deformations one has k = +ε(r). The deformation is of the same form as before and satisfies
the conditions:

sk = sk(r) , skl
dsk

dr

dsl

dr
= 1− k2(r) = −2δ(r)− δ2(r) ,

∫
δ(r)dr = ε ' .05 . (2.12)

In this case the icosahedral Penrose tiling is essentially identical with the standard one except for
the modification of the metric near the center of the icosahedron. Besides this kmust satisfy also the
differential equation deduced in Appendix B.

This metric can be generalized to a deformation of M4 metric by adding the time coordinate so
that one has

ds2 = dt2 − k2(r)dr2 − r2dΩ2 . (2.13)
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2.3.3 Deformation of E3 to hyperbolic space H3

One can also consider a deformation of M4 replacing E3 hyperbolic 3-space H3.

1. In this case the imbedding, induced metric, and conditions on it are given by the following
equations:

m0 = Λt+ h(u) , Φ = f(u) + ωt , u = r
R ,

gtt = Λ2 −R2ω2 = 1 , grr = −1− ( dfdu )2 + (dhdu )2 = − 1
1+r2 , gtr = −Rω1

df
du + Λdh

du = 0 .
(2.14)

2. The solution to the conditions reads as

Λ2 = 1−R2ω2 , h = Rω1

Λ f(u) , f(u) = f0 + 1
2 (1− (ω1R/Λ)2)−1/2log( 1+r2

1+r20
) . (2.15)

The deformation is well-defined everywhere. There exists actually infinite number of deforma-
tions of this kind since the geodesic circle can be replaced with an almost arbitrary curve of
CP2.

2.3.4 What about corrections to gtt component of the stationary metric?

What about gtt component of the metric? Should it be given in the Newtonian approximation
gtt = 1 − 2φgr. This looks reasonable. The correction has several consequences. The 1+1+2 de-
composition would be replaced with 2 + 2 decomposition, the gtt metric would be slightly modified,
and he imbedding to CP2 must be replaced with 2-D vacuum extremal. Homologically trivial geodesic
sphere S2 ⊂ CP2 would provide the simplest imbedding as a vacuum extremal, and the imbedding is
of the same form as that for H3 metric already discussed

m0 = Λt+ h(u) , Θ = Θ(u) , Φ = f(u) + ωt , u = r
R , (2.16)

giving

gtt = Λ2 −R2ω2sin2(Θ)ω2 = 1 + 2Φgr , grr = −1− sin2(Θ)( dfdu )2 + (dhdu )2 − (dΘ
du )2 = − 1

1−(r/R)2 ,

gtr = −RΛωsin(Θ) dfdu + Λdh
du = 0 , Φgr = K(u2 − u2

0) < 0 ,

K = nGR2ρ .

(2.17)

n is a numerical constant. Note that the sign of Φgr should be negative as a sum of negative Coulomb
contributions and the additive constant u2

0 > 1 not affecting Newton’s equations guarantees this for
S3. The deviation of gtt from flat metric is however very small in general.

The condition on gtt gives

sin2(Θ) =
Λ2 − 1 + 2K(u2 − u2

0)

R2ω2

so that the imbedding fails at certain radii r corresponding to sin2(Θ) = 0 and sin2(Θ) = 1. u = 1
could correspond to r = R and to sin2(Θ) = 1 and u = 0 to sin2(Θ) = 1.

In the hyperbolic case the sign of T tt is negative which suggests that the sign of K in Φgr is also
opposite so that gravitational attraction would transform to repulsion. This can make sense only if
the topologically condensed matter corresponds to the negative energy part of zero energy state with
non-standard arrow of geometric time. Also now the imbedding fails above some critical value of u2.

What is remarkable that the deviation of the 3- metric from that of E3 can be large although
the effect on geodesic lines with small average radius r is very small since the non-constancy of grr
becomes visible only when the radial velocity dr/dt is non-vanishing. For instance, the deviation of grr
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from its expression in flat or Schwartschild metric does not effect at all circular geodesic lines which
are determined by gtt. Hence one can imagine the possibility of having large gravitational effects on
3-metric not visible as large gravitational binding energies.

The cold shower is encountered when one assumes Einstein’s equation for the mass density respon-
sible for

ρ = T tt '
R3

16πG
=

3

8πGR2
=

3M

2πR3
. (2.18)

This gives R = 4GM = 2rS , rS the Schwartshild radius, which is extremely small distance unless the
density of the topologically condensed matter is huge.

In TGD framework one way out of the problem could be based on the fact that both G and Λi are
predictions rather than fundamental constants in TGD framework. If one accepts this, one an consider
the possibility that G ∼ R/M holds true. In fact, I have proposed for a long time ago [K5, K3] a
formula for G in terms of p-adic length scale Lp and exponential of Kähler action for CP2 type vacuum
extremals as

G =
L2
p

~
exp(−SK(CP2)) =

1

~
pR2

CP2
exp(−SK(CP2)) . (2.19)

Here RCP2
denotes the length of CP2 geodesic circle. For p = M127 = 2127 − 1 - the Mersenne prime

characterizing electron and the largest Mersenne prime, which does not correspond to a completely
super-astrophysical length scale - one obtains the Newtonian value of G [K5, K3].

The Kähler action assignable to the deformation of CP2 type vacuum extremal corresponds to the
generalized line of Feynman diagram assignable to graviton. SK can vary due to the finite length of the
line so that a full vacuum extremal is not in question as well as due to the deformation of the extremal.
The exponential dependence on SK can give rise to a huge variation range of G, and in the extreme
situation one G and be near to the the upper bound Gmax = L2

p/~. G = Gmax/2n M ' n~/Lp
would give R = Lp = ~/M . This would make sense in hadronic, nuclear and condensed matter length
scales. I have indeed proposed that hadronic string tension has interpretation in terms of G ∼ L2

p:
the interpretation would be in terms of strong gravitation made possible by spin 2 meson exchanges.
I have also proposed that fractally scaled up variants of QCD like theory of strong interactions appear
in biological length scales [K1] so that also strong gravity would appear in these length scales.

The above approximate construction has certain ad hoc character. The dependence of gtt on r
can be however constrained by requiring 1+1+2 of Einstein tensor such form Gαβi having the form

Λig
αβ
i , = 1, 2 and has a vanishing divergence. As a result one obtains a differential equation for the

gravitational potential Φgr.
The differential equation for Gtt = Λ1g

tt is trivially satisfied due to time translational invariance.
The integration of the differential equation for Grr gives at the first step

Grr =
C

ggrrgtt
≡ − C

AB
,

gtt = B , grr = −A . (2.20)

The expressions for Grr and other components of Einstein tensor [K5] are

Grr =
1

A2
(−∂rB

Br
+

(A− 1)

r2
) ,

Gθθ =
1

r2
[− ∂

2
rB

2BA
+

1

2Ar
(
∂rA

A
− ∂rB

B
)

+
∂rB

4AB
(
∂rA

A
+
∂rB

B
] ,

Gtt =
1

AB
(−∂rA

Ar
+

(1−A)

r2
) . (2.21)

The above equation for Grr gives the differential equation

http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#phblocks
http://tgdtheory.com/public_html/bioware/bioware.html#newphys
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2
dB

du
+
CA

B
=

(A− 1)

u
, u = r2 . (2.22)

If gravitational potential 2Φgr = B − 1 is given one can solve A − 1 from this equation purely
algebraically and obtains spherically symmetric metric.

For the S3 (k = 1) and H3 (k = −1) metric one has

A− 1 =
1

1− kv
− 1 =

kv

1− kv
, v =

u

R2
.

One obtains

dB

dv
+
CR2

2B
(1 + kv) =

k

1− kv
. (2.23)

Near originkvu ' 0 holds true in the first approximation. This gives the approximate expression

B = 1 +B1log(
B +B1

1 +B1
) +

r2

R2
, B1 =

CR2k

2
. (2.24)

Apart from the slowly varying logarithmic term gtt = B is of the same form as Newtonian approx-
imation would predict. Note that the result is same for both k = 1 and k = −1. Near r = R the
right-hand side diverges for k = 1 and implies logarithmic behavior

B ' B0 −
k

2
log(

1− kv
1− kv0

) . (2.25)

For S3 the metric therefore develops Euclidian signature. For k = −1 the gtt becomes very large for
large values of r so that the imbeddability to M4 × CP2 eventually fails. The results suggests that
for both S3 and H3 metric expansion is necessary.

2.3.5 Constant deformation does cannot give a decomposition of icosahedron to 20
regular tetrahedrons

At the first glimpse the most attractive option from TGD point of view is k = 1 + δ, where δ is
constant in the entire region but one must demonstrate that for a suitable choice of the value of δ
the lengths of radial and surface geodesics are identical. As shown in Appendix C, it is possible to
express the condition fixing the angular distance ∆φ between neighboring vertices of icosahedron and
the equality s = k of the radial and surface edge lengths in terms of elementary functions. It however
turns out that the only solution to the conditions is k = ∞. The interpretation is following. As k
giving the length of the radial edge increases, also the length of the surface edge increases and does it
so fast that infinite value of k is required to obtain equality.

One however obtains an infinite faily of deformations for which k(r) is not constant. In TGD
framework k satisfies the differential equations deduced in Appendix B. As a special case one obtains
deformations transforming piece of E3 to a piece of S3.

2.4 Cosmic honeycombs?

The deformed metric still possesses the crucial SO(3) symmetry. Translational symmetry is lost but
the loss can be located near the center of inside each icosahedron. Icosahedral Penrose tiling must be
constructed by gluing together disjoint 3-surfaces along the faces of the icosahedra. Also intersections
of icosahedra and therefore also tetrahedrons must be allowed. Since the correction to the radial
distances comes from the region near the center of the icosahedron, the construction of icosahedral
Penrose tiling for E3 option proceeds just as it does usually.

For light-cone boundary option the basic icosahedron is replaced by the 2-D outer boundary of
solid icosahedron expanding with light velocity in M4. In 2-D case a simple analogy would be the
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replacement of triangle with the boundary of expanding triangle: on just draws the center point
of triangle so that one obtains cone with triangular cross section. The expanding icosahedra start
expansion simultaneously in t = 0 hyperplane. At t = t0 some of them meet along common face and
some of them start to intersect already earlier. After this the resulting state would be a fusion of the
icosahedra to 3-D Penrose tiling which do not expand anymore.

A possible cosmological application would be an explanation for the honeycomb structure in scales
of 108 light years. Galaxies seem to be concentrated on approximately spherical surfaces of about
this radius known as cosmic voids [E1]. One can imagine three options depending on whether one
assigns to the local cosmology sub-critical, critical, or over-critical mass density in these scales (this is
of course the GRT based interpretation). If one accepts the TGD based interpretation based on the
modification of Einstein equations discussed in Appendix A, the cosmic voids would be genuine vacua
in good approximation.

TGD allows also the option for which these voids carry Kähler energy having interpretation as
dark energy. I have indeed proposed that the magnetic energy of Kähler magnetic flux tubes could
be identified as dark energy. What makes the situation difficult is that both vacuum and non-vacuum
options can give rise to accelerated cosmic expansion so that for vacuum option no dark energy would
be needed. Note also that for critical and sub-critical vacuum option non-trivial long range gauge
fields - in particular electromagnetic fields - are present in the vacuum. This is somewhat frustrating:
I had already thought that the issue of dark energy is finally resolved in TGD framework!

All these honeycomb like structures could be realized in TGD by gluing together pieces of H3, E3

or S3.

1. For TGD inspired interpretation these cosmologies are vacua and therefore also the voids iden-
tifiable as pieces of these cosmologies. The discontinuities of the normal component of metric
gnn at 3-D gluing regions would give rise to surface mass densities providing idealization for the
mass carried by galaxies (Einstein tensor involves derivatives of metric).

2. For the standard interpretation these cosmologies carry a mass density perhaps identifiable as
dark energy density besides the mass densities related to the discontinuities of gnn at the facets
at which gluing takes place.

3. The earlier TGD based interpretation would be that the small deformations of the cosmology
manifested as particles would give rise to average energy momentum tensor satisfying Einstein’s
equations.

In TGD framework these options differ from each other only in that a = constant hyperboloid is
deformed in different manner in CP2 directions.

1. There are infinite number of hyperbolic tesselations. If one requires interpretation in terms of
Platonic solids there are only a finite number of tesselations (honeycoms) given in Schöndflies
notation by (6, 3, 3), (5, 3, 4), (6, 3, 4), (4, 4, 3), (4, 3, 5), (3, 5, 3), (5, 3, 5), (6, 3, 5). Also icosa-
hedral and dodecahedral honeycombs ( (3, 5, 3), (5, 3, 3) and (5, 3, 4)) are present. Hyperbolic
cosmologies are sub-critical and cosmic time evolution is not constrained by the imbedding since
CP2 projection is 1-dimensional.

2. 3-D icosahdedral Penrose tiling or icosahedral QCin flat E3 (by CMB data cosmology is flat in
good approximation in large enough scales but is 108 light years large enough scale?). CP2 pro-
jection is 2-D and time evolution which completely fixed apart from a parameter characterizing
its finite duration before singularity, which in TGD framework as interpretation as a blackhole
like space-time region having Euclidian signature of the induced metric.

3. Over-critical local cosmology and gluing together in similar manner hemi-3-spheres along their
2-D equators giving rise to 600-cells consisting of tetrahedrons. Maybe tetrahedron is too simple
an object to serve as as the basic unit of the cosmic honeycomb. Or perhaps a counterpart of
icosahedral Penrose tiling could be obtained . Also now time duration fixed completely about
from its finite duration before singularity.

It is somewhat frustrating to find, that it is difficult to distinguish experimentally between GRT
in which Einstein’s equations with cosmological constant characterizing genuine density of matter
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assignable to the vacuum expectation values of inflaton type fields on one hand, and Einstein equations
introducing cosmological constant as purely gravitational parameter. In TGD framework even more
general modifications are possible and treat cosmological ”constants” as parameters characterizing
vacua.

2.5 Does the replacement E3 → S3 make sense quantum mechanically?

A possible quantum mechanical sensibility test for the S3 deformation is based on the quantum
motion of a test particle in S3 metric replacing free motion in E3 metric when one has two-sheeted
representation of S3. If only a piece of S3 is considered, the situation is more complex since the
solutions must be restricted to a piece of S3.

The first thing to notice is that S3 geometry requires mass density which is constant being pro-
portional to the curvature scalar R3. The energy density is given by T tt = κGtt = −κgttR3/2. R3 is
negative since the sign of 3-metric is negative so that positive energy density is obtained. For hyper-
bolic stationary case the energy density would be negative, and this might exclude this option unless
one can assign this energy density with negative energy parts of zero energy states. Note that in
cosmology the situation changes since Rtt is non-vanishing. This kind of distinction between positive
and negative energy states at space-time level would be rather dramatic.

One could assign constant mass energy density to large enough atomic nuclei, to condensed matter
systems involving many enough atoms such as the water molecule clusters to be discussed later, and
also to gases, liquids, and solids. This is natural if the length scale resolution of the description does
not allow to distinguish the basic building blocks. These criteria are not satisfied for systems such as
single atom.

1. The situation is SO(4) = SO(3) × SO(3) symmetric and the configuration space is isomorphic
with the configuration space SO(3) of a rigid body. One can also consider the possibility of rigid
body with half-odd integer angular momentum made possible if one replaces SO(3) with its
covering group in both factors of SO(4). For SO(3) only integer values J = 0, 1, 2, ... are allowed
whereas SU(2) allows half integer values J = 0, 1/2, 1, .... An interesting question is whether one
should allow purely geometric half-odd integer spin which does not reduce to ordinary half-odd
integer spin. The so called orientation entanglement relation allows to visualize geometrically
the fact that 2π rotation is not homotopically trivial whereas 4π rotation is. This might justify
the allowance of also half integer values of J .

2. The transition from free linear motion to free rotational motion means that momentum eigen-
states with 3-momentum pi are replaced with angular momentum eigenstates with angular mo-
mentum J and two spin components K,L corresponding to angular momentum projections
for the two commuting factors of SO(4), which both vary in the range −J,−J + 1, ..., J , and
therefore have 2J + 1 values. The Laplace operator replacing momentum square is just angular
momentum squared and has eigenvalues J(J + 1) with degeneracy (2J + 1)2.

3. The states correspond to unitary irreducible representations of SO(4) = SO(3) × SO(3) or
its covering group Spin(4) = SU(2) × SU(2) in the group algebra of SO(3) or of its covering
SU(2). By general theorems the group algebra of any compact group decomposes to a direct
sum of unitary irreducible representations contains all representations such that n-dimensional
representation occurs n times. This can be understood as decomposition of the representation
of group element g to a direct sum of n×n matrices belonging to various irreducible representa-
tions. For SU(2)× SU(2) one obtains all angular momenta J = 0, 1/2, 1, ... with (2J + 1)2-fold
degeneracy. If both both half-odd integer and integer values of J are allowed, the degenerates
are given by n2 = (2J + 1)2 = 1, 22, 32, 42 and same as for hydrogen atom.

4. In non-relativistic approximation for energy as E −m ≡ p2/2m, with E → i∂t and pi → iDi

and pip
i → gijDiDj one obtains Schrdinger equation for a test particle as

i
∂Psi

∂t
= EΨ =

1

2mR2
∇2
S3Ψ , ∇2

S3 = DiDi (2.26)

http://en.wikipedia.org/wiki/Orientation_entanglement


2.5 Does the replacement E3 → S3 make sense quantum mechanically? 16

The energies are given by EJ = J(J + 1)/I, I = 2mR2, and identical to those of a spherically
symmetric rigid body with moment of inertia I = mR2. The scale of energy is given by the
radius of S3. In atomic length scale the estimate for the radius would be size of the atom. This
would give energy, which is of the same order of magnitude as zero point kinetic energy of free
particle in same volume so that there are no obvious contradictions with existing physics.

5. Could S3 geometry for free nucleons serve as an alternative for nuclear shell model based on
harmonic oscillator Hamiltonian? In shell model single particle energies are En = nE0 and such
that even/odd integer valued angular momenta J ≤ n correspond to given n (SU(3) dynam-
ical symmetry). The harmonic oscillator model predicts correctly the nuclear magic numbers
as 2, 8, 20, 28, 50, 82, 126, 184. For S3 option the energies would be concentrated on shells with
EJ = J(J + 1)E0. Now magic numbers would correspond to full shells with (2J + 1)2 = n2

states on each just as in the case of atoms in the first approximation. The magic numbers
would be 2, 10, 28, 60, 92, .. and not consistent with the experimental ones. Harmonic oscilla-
tor Hamiltonian in S3 geometry however makes sense and predicts splittings of the harmonic
multiplets.

6. What happens for free motion if only a finite piece of S3 is allowed? The simplest situation
corresponds to r = sin(α) = R1 < R. The normal derivatives of wave functions should vanish
at r = R1 in order to have conservation of probability. The wave functions are matrix elements
DJ,K,L(α, θ, φ) and can be expressed as products of wave functions assignable to the Euler angles
α, θ, φ. For α the wave function RJ,K,L(α) is the S3 analog of Legendre polynomial Pl,m(θ).
The simplest manner to satisfy the boundary conditions is to assume that only those partial
waves in S3 satisfying dRJ,K,L(α)/dα = 0 for α = arcsin(R1/R) are allowed. This leads to a
quantization of R1/R and selection of only some values of (J,K,L).

If both both half-odd integer and integer values of J are allowed the degenerates are given by
n = (2J + 1) = 1, 22, 32, ... and are same as for hydrogen atom. For spherically symmetric harmonic
oscillator appearing in the model of atomic nucleus only even or odd angular momenta are allowed:
in this case SU(3) is the dynamical symmetry which happens to be isometry group of CP2.

1. The exceptionally large degeneracy of energy eigenstates in Coulomb and harmonic oscillator
potentials is due to a dynamical symmetry. Besides angular momentum also so called Runge-
Lenz vector is conserved in Coulomb potential (so called generalized conserved Runge-Lenz
vector can be defined for all central forces). In fact, the motion in Coulomb potential is group
theoretically equivalent to the free motion of a particle in S3! The conserved Runge-Lenz vector
is given by A = p × L + mke, where e is radial unit vector at the orbit orthogonal to angular
momentum L and p is 3-momentum. Note that A · L = 0 holds true. By dividing this with
conserved quantity 1/

√
2mE one obtains an operator D with dimensions of angular momentum.

The ordinary angular momentum L and D generate SO(4) Lie algebra and the first Casimir
operator C1 = L2 + D2 for this algebra equals to mk2/|E|. E ∝ 1/n2 implies that eigenvalues
of S3 Laplacian are proportional to C1 − Id and thus proportional to n2 − 1 = (2J + 1)2 − 1.
The eigenvalues of C2 are given by n2 with n = 2J + 1, J = 0, 1/2, 1, .... As already noticed,
second Casimir operator C1 = L ·D vanishes for the orbits in Coulomb potential.

2. Could the reduction of the motion Coulomb potential to free particle motion in S3 be more
than a mere mathematical curiocity? The relationship C1 = −mk2/HCoul between C1 and
Hamiltonian HCoul = ~2∇2/2m+ V (r) transforms to

HS3 =
~2J(J + 1)

2mR2
=

~2

2mR2
(n2 − 1) =

~2

2mR2
(− mk2

HCoul
− 1) . (2.27)

The relationship looks rather artificial and one can argue that the connection is purely group
theoretical and cannot have a genuine geometric meaning.

3. In the case of atom S3 geometry is not well-motivated. One can still look what happens if one
replaces E3 geometry with S3 geometry. Coulomb potential has a well-defined S3 counterpart.
The straightforward generalization of Coulomb potential energy to V (r) = −k/r, r = sin(α)) is

http://en.wikipedia.org/wiki/Laplace–Runge–Lenz_vector
http://en.wikipedia.org/wiki/Laplace–Runge–Lenz_vector
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well-defined. It however replaces the singularity at origin with singularities at North and South
poles of S3 unless one considers only a piece of S3. Physically one would have two-sheeted
structure with nucleus at both North and South poles. SO(4) symmetry is reduced to SO(3)
symmetry, and is expected to induce the splitting of the energies of states with different values
of J but same value of n. Near r = 0 the metric is in a good approximation flat so that for
states with small n one does not expect large deviations from E3 and perturbation theoretical
treatment using grr = 1/(1 − (r/R)2) ' 1 + r

R
2 should make sense. For states of atom with

rn = (a0/Z
2)n2 ≤≤ R, a0 = ~/αme ' .53 × 10−10 m, this approximation should be good. For

the values of n > Z2(R/a0) the deviations from E3 metric are certainly since the first node of
the E3 radial wave function would be at radius r > R.

In principle the effects on the energy eigenvalues of hydrogen atom could be used to derive a
lower bound on the value of R if hydrogen atom space-time sheet correspond locally to S3 (which
it very probably does not!). The splitting of states with same n but different values of j can
be compared to the splitting predicted by Dirac equation and given exactly by the Sommerfeld
formula. The approximate expression for the relativistic splitting reads as

∆En,j
En

' α2

n2
× n

j + 1
2 −

3
4

.

This splitting can be compared with the order of magnitude estimate for the correction coming
from S3 geometry in the lowest order approximation obtained as grr = 1 − (r/R)2 in the
Laplacian:

∆En,l
En

= −〈 r
R

)2 Tr
En
〉n,l ,

〈( r
R

)2Tr〉n,l = 〈~
2∂2
r

2me
〉n,l = −〈( r

R
)2

[
En −

~2l(l + 1)

2mer2
− V (r)

]
〉n,l

−〈
( rR )2Tr

En
〉n,l = −(

an
R

)2

[
〈ρ2
n〉n,l +

l(l + 1)

n2
+

2π

α2
〈ρn〉n,l

]
ρn =

r

an
, an = n2a0 , a0 =

α~
me

, En =
α

2an
. (2.28)

The expectation values of ρn and ρn are of order unity since ρn appears as a natural variable
in radial wave functions. The condition R > n3a0/α guarantees that the splittings are smaller
than given by the Sommerfeld formula. Already for n = 1 this would give R > 137a0, which is
of order .5 nm.

3 Appendix A: Does TGD force a modification of Einstein
equations?

The discovery of preferred extremals [K6, K2] meant a decisive breakthrough in TGD. One of the im-
plications was that Kähler energy momentum tensor must havea vanishing divergence for the preferred
extremals. Einstein-Maxwell equations with cosmological term given by

Tαβ = κGαβ + Λgαβ . (3.1)

guarantee this automatically. In TGD framework Tαα = 0 implies that curvature scalar is constant.
This implication seems to be too strong. One ends up with problems also with Robertson-Walker
cosmologies realized as vacuum extremals if one regards them as limiting cases of preferred extremals.
These observations suggest that the condition of Eq. 3.1 is un-necessarily strong This is indeed the
case, and a more general condition leads to appearance of several parameters analogous to cosmological
constant but not being genuine constants. Even this generalization might be un-necessarily strong
and minimalist could argue that just the vanishing of the divergence of Kähler energy momentum
tensor might serve as the TGD counterpart of Einstein’s equations and Equivalence Principle.

http://en.wikipedia.org/wiki/Hydrogen_atom
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3.1 Does TGD allow several cosmological ”constants”?

The introduction of cosmological constant need not be the only solution of the vanishing of the
covariant divergence of TK . If the preferred extremals have special symmetries, one can satisfy the
condition by replacing cosmological term Λgαβ with a more general term:

Tαβ = κGαβ +
∑
i

ΛiP
αβ
i . (3.2)

Here Pi are identified as projectors to orthogonal sub-spaces of the tangent space of the space-time
surface. The distributions of these sub-spaces are assumed to be integrable and define di-dimensional
sub-manifolds of space-time surface with

∑
di = 4. The maximally symmetric situation corresponds

to the canonical imbedding of M4 with di = 1.
The condition that energy momentum tensor is divergenceless is satisfied if one has

Dβ(ΛiP
αβ
i ) = 0 .

Λi need not be constant functions anymore so that cosmological constant is replaced by two or more
- presumably slowly varying - cosmological ”constants”. For Λi = Λ one obtains just ordinary cosmo-
logical constant which must be genuine constant.

Two remarks are in order.

1. This generalization of the notion of cosmological does not make sense in GRT framework, where
Einstein equations are deduced from a variational principle but do so in TGD framework were
they characterize preferred extremals and are deduced from the vanishing of covariant diver-
gences of Kähler-Maxwell energy momentum tensor. In TGD framework the acceptance of two
cosmological ”constants” is just acceptance of TGD and forcing only single one would be too
strong ad hoc assumption. In GRT situation would be completely opposite.

2. It should be also noticed that the proposed modification is not physically equivalent to the
assumption that cosmological constant characterizes the energy momentum tensor assignable
to vacuum expectation values of Higgs like fields (inflaton field). In this case one would have
ordinary Einstein equations without cosmological term but energy momentum tensor containing
the additional terms:

κGαβ = Tαβ −
∑
i

ΛiP
αβ
i . (3.3)

The physical interpretation of these two options is totally different.

3.2 Preferred extremals suggest a generalization of Einstein’s equations

There is actually support for the generalization of Einstein’s equations in TGD framework.

1. The preferred extremals possessing Hamilton Jacobi structure in Minkowskian regions indeed
have the needed 2+2-decomposition of the tangent space to 2 longitudinal and 2 transversal
degrees of freedom. The distributions of these tangent spaces are integrable. Physically longitu-
dinal and transversal degrees of freedom correspond to light-like momentum and and orthogonal
polarization for the preferred extremals. Also number theoretical vision leads to similar 2+2
decomposition of the quaternionic tangent space. Similar 2+2 decomposition occurs for string
like objects. In Euclidian regions Hamilton-Jacobi structure is replaced with complex structure
in 4-D and also in this case this kind of decomposition is possible but need not be so unique.
The standard Eguchi-Hanson complex coordinate for CP2 define this kind of decomposition.

Therefore it would be very natural to assume that the energy momentum tensor has the decom-
position given by Eq. 3.5. This would quite generally suggest 2+2 decomposition.
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3.3 Also vacuum extremals suggest a generalization of Einstein’s equa-
tions

The vacuum extremals of Kähler action are expected to be very important piece of TGD since
their small deformations are expected to give rise to physical non-vacuum extremals. These
extremals have vanishing induced Kähler field but they are not vacua in gravitational sense.
One can hope that at least some class of these vacuum extremals could allow a realization
as limits of non-vacuum preferred extremals and would therefore satisfy a generalization of
Einstein’s vacuum equations.

One cannot be make these solution gravitational vacua by introducing cosmological constant so
that one would have

κGαβ + Λgαβ = 0 . (3.4)

One can however consider more general equations

κGαβ = −
∑
i

ΛiP
αβ
i ,

Dβ(ΛiP
αβ
i ) = 0 . (3.5)

Especially interesting vacuum extremals are defined by the imbeddings of Robertson-Walker cos-
mology [K4].

1. Robertson-Walker cosmologies for sub-critical, critical, and over-critical mass density correspond
to 3-space, which is constant curvature space. For negative curvature one has hyperbolic space
H3, for vanishing curvature Euclidian 3-space E3, and for positive curvature 3-sphere S3. The
metric in these three cases is given by

ds2 = gaada
2 − a2(

dr2

1 + kr2
+ r2dΩ2) , (3.6)

where k = 1,−, 0, 1 corresponds to H3, E3, S3.

2. All these cosmologies are imbeddable to M4 × CP2.

(a) For H3 signature the imbedding is obtained by assuming almost arbitrary 1-D CP2 projec-
tion with CP2 coordinates arbitrary functions of cosmic time a defined by M4 light-cone
proper time: sk = fk(a). a = constant surfaces correspond to hyperboloids of future
light-cone M4

+ ⊂M4.

(b) For E3 and S3 one must assume that CP2 projection is 2-dimensional. The simplest option
corresponds to a CP2 projection which is homologically trivial geodesic sphere S2 ⊂ CP2

with vanishing induced Kähler form. Denoting by (Θ,Φ) the coordinates of S2 ⊂ CP2, the
imbedding must be of form

sin(Θ) =
a

τ
, Φ = f(r) . (3.7)

The dependence of Θ on cosmic time is dicrated by the condition that the contribution
of sin2(Θ)(∂rΦ)2) is proportional to a2. f(r) is fixed from the condition that one obtains
k = 0 or k = −1 meaning that hyperbolic metric of 3-space transforms to Eucldian or
spherical one by deformation in CP2 directions. The resulting cosmologies have only their
duration τ as a free parameter [K4].

Euclidian and spherical cosmologies end up with singularity as the induced metric trans-
forms to Euclidian signature. In TGD framework,where blackholes like objects corresponds
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to space-time regions with Euclidian signature, the interpretation would be in terms of
blackhole collapse. What is interesting is that the ”pressure” in Einstein tensor in negative
so that one obtains accelerated cosmic expansion for critical mass density.

3. For these cosmologies 1+3 decomposition of the tangent space looks more natural than 2+2
decomposition. 1+3 decomposition corresponds to the decomposition of Einstein’s tensor to
G = ρP1 − pP3, where P1 ↔ gaa projects to the direction of cosmic time a and P3 ↔ gij3
to 3-space a = constant. It is easy to see that pgij3 has vanishing divergence and Einstein’s
equations implies that also ρP1 does so. This does not conform with the idea that Hamilton-
Jacobi structure dictates the decomposition, which would therefore be 2+2. If this is really
true, then on expects a second family of solutions for which one has 1 + 3 decomposition of the
tangent space. Maybe the conjectured quaternionic space-time surfaces could correspond to this
family of preferred extremals. The earlier conjecture has been that preferred extremals with
Hamilton-Jacobi structure are equivalent with quaternionic ones.

Note that this kind of decomposition takes place for the deformation of E3 or equivalently M4

discussed above. One must deduce the conditions under which the divergence free decomposition
holds true. This must pose a differential equation on k(r).

One can also ask what the situation is for Schwartschild metric and Reissner-Nodström metric. For
Schwartschild metric Einstein tensor vanishes so that Λi = 0 holds true trivially. A little calculation
shows that for Reissner-Nordström metric Einstein tensor has the decomposition E2g1−E2g2, where
g1 and g2 are the projectors to (t, r) plane and (θ, φ) sphere. E2 = Q2/r4 implies that the conditions

Dβ(ΛiP
αβ
i ) = 0 cannot be satisfied.

3.4 What could the modification of Einstein’s equations mean from the
point of view of dark energy?

The modification of Einstein’s equations has highly non-trivial implications concerning the notion
of dark energy. In GRT based interpretation cosmological constant does not correspond to energy
density whereas in the models assigning it to vacuum expectations of Higgs like inflaton fields a genuine
energy density is in question: this allows the variation of cosmological constant with time whereas in
Einstein’s theory Λ would be a constant of Nature subject only to coupling constant evolution. In
TGD framework G, Λ would depend on space-time sheet and the set of cosmological ”constants” Λi
would depend on position for a given space-time sheet.

One must of course remember that in TGD vacuum extremals can be only limiting situations.
The real space-time sheets are definitely not vacuum extremals. For instance, elementary particles
correspond to space-time regions with 4-D CP2 projection and Euclidian signature of the induced
metric so that their nearby Minkowskian environment has 3-D CP2 projection and is also non-vacuum
extremal. Same applies to cosmic strings, which in the ideal situation have 2-D CP2 projection which
corresponds to homologically non-trivial 2-surfaces in CP2.The evolution of cosmic strings would mean
gradual thickening of their originally infinitely thin E3 projection and the remnants of cosmic strings
would explain also the magnetic fields filling the Universe.

It is not easy to find any killer argument against the proposed modification of Einstein’s equations.

1. What happens to Equivalence Principle if the modification of Einstein’s equations is accepted?
The basic manifestation of Equivalence Principle is as the geodesic motion of test particles. In
Newtonian framework the analog of this is the cancellation of the dependence on the mass of the
particles due to the identical values of inertial and gravitational masses. In this respect nothing
changes since the motion is determined completely by the geometry. The independence of the
effects of geometry on test particle on what one assumes about the energetics is analogous to
the disappearance of inertial and rest masses from the equation of motion for Newtonian test
particle.

Also the effects caused by the background geometry on particles - say redshift or spectrum
of microwave temperature fluctuations of microwave background - are same irrespective of the
energetic interpretation.

2. Both vacuum and non-vacuum options can give rise to accelerated cosmic expansion so that for
vacuum option no dark energy would be needed. Does this mean that dark energy thought to
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be responsible for the accelerated cosmic expansion or it is pure vacuum fiction? And could one
explain the velocity spectrum of distant stars rotating around galactic nuclei by assuming that
galaxies are like pearls in necklace, which is vacuum flux tube instead of Kähler magnetically
charged flux tube carrying huge energy density characterized by string tension defined by CP2

scale? Note also that for critical and sub-critical vacuum option non-trivial long range gauge
fields - in particular electromagnetic fields - are present in the vacuum. The situation is ad-
mittedly somewhat frustrating: I had already thought that the issue of dark energy is finally
resolved in TGD framework!

Could one see vacuum extremals and non-vacuum extremals - not as options between which to
choose - but descriptions applying in different length scales. In zero energy ontology this might be
possible.

1. The original hypothesis was that the small deformations of vacuum extremals, which microscop-
ically correspond to the generation of particles, have average energy momentum tensor given by
the Einstein tensor. If this is the case, vacuum extremals would carry information about matter
topologically condensed at them coded to their own geometry. The energy momentum current
of the topologically condensed matter represents simplest information of this kind. Could the
energy momentum tensor defined by Einstein tensor of vacuum extremal be identified with the
energy momentum tensor of the topologically condensed matter? More generally, could the
sum of Kähler energy momentum tensor and of the terms corresponding to projection opera-
tors representing topologically condensed matter correspond to Einstein tensor in the case of
non-vacuum extremals? If so, the deviation from Einstein’s equations woul have quite gener-
ally interpretation in terms of topologically condensed matter. Topologically condensed matter
would replace the contribution of vacuum expectations of inflaton fields.

2. Could the vanishing of the actual energy momentum current for vacuum extremals be interpreted
as saying that the causal diamonds assignable to the zero energy states are small in the scale
of vacuum extremal so that the topologically condensed matter has interpretation as quantum
fluctuations? Vacuum extremal would however carry information about the topologically con-
densed matter (vacuum fluctuations) and make it manifest as effects like redshift, accelerated
expansion, and temperature fluctuations of CMB.

One must be however always ready to invent a counter argument.

1. The vacuum degeneracy of Kähler action is enormous. Any space-time surface with CP2 pro-
jection belonging to a Lagrangian sub-manifold of CP2 has vanishing induced Kähler form and
is therefore vacuum extremal. Symplectic transformations of CP2 give rise to new Lagrangian
manifolds and diffeomorphisms of M4 give rise to new vacuum extremals. Is it really possible
do identify a canonical decomposition of Einstein tensor for these vacuum extremals to at least
two non-vanishing pieces characterized by cosmological ”constants” Λi?

2. One could circumvent the objection by noticing that there is no need for every vacuume extremal
to define a limit of a preferred extremal.

3. The only possible hope about the decomposition is given by the two-dimensional character of
CP2 projection. The inverse image of a given point of CP2 belonging to the space-time surface
is in the generic case a 2-D sub-manifold of the space-time surface and as the point of CP2 varies
one obtains a slicing of the space-time surface by these 2-surfaces. Could the Einstein tensor
have a representation G = Λ1P1 + Λ2P2 as a sum of contributions associated with the tangent
space and space-time complement?

4 Appendix B: Conditions on function k(r) from the general-
ization of Einstein’s equations for vacuum extremals

In this Appendix the conditions on the function k(r) guaranteeing that the metric ds2 = dt2−k2dr2−
r2dΩ2 is imbeddable to M4 × CP2 as vacuum extremal obtained by deforming t = constant hyper-
surface E3 of M4 in CP2 direction are discussed. The vacuum extremal is taken to be the simplest
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possible one having CP2 projection to a geodesic circle S1 of CP2 having angular coordinate Φ as
coordinate so that one has Φ = f(r) and k2 = 1 +R2(df/dr)2.

4.1 Differential equation for k(r) from generalized Einstein equations

As shown, the Einstein tensor G of the solution of the metric ds2 = dt1 − k2dr2 − r2dΩ2 is in general
vanishing and this is not consistent with the vacuum extremal property of the imbedding meaning that
the induced Kähler field vanishes. These vacuum extremals are also in conflict with the assumption
that preferred extremals (4-surfaces) at the limit of vacuum satisfy Einstein-Maxwell equations with
cosmological term satisfying TK = κG + Λg. This condition is however un-necessarily strong and
not actually prediction of TGD. The only condition on preferred extremals in TGD is that TK has
vanishing divergence and this condition can be satisfied by assuming only

Tαβ = κGαβ +
∑
i

ΛiP
αβ
i ,

Dβ(ΛiP
αβ
i ) = 0 , κ =

1

8πG
. (4.1)

Λi need not to be constant functions anymore so that cosmological constant is replaced by several -
presumably slowly varying - cosmological ”constants”.

In the recent case one is interested on having such k(r) that one has vacuum extremal with 1+1+2
decomposition satisfying

κGαβ = −
∑

i=1,2,3

ΛiP
αβ
i . (4.2)

Now one would have three terms Pi in the decomposition which is 1+1+2. corresponding to coordinate
lines for t and r and spheres (θ, φ). In the following the differential equations for k(r) guaranteeing
that ΛiP

i has a vanishing divergence, are deduced. These equations can be integrated and give rise
to a family of metrics.

The first thing to notice is that if Λ1P1 and Λ2P2 have vanishing divergences then also Λ3P3

does so since G has vanishing divergences and TK = 0 holds true. There it is enough to show that
(Gtt, 0, 0, 0) = (−gttR3/2, 0, 0, 0) expressible as Λ1g

tt and (0, Grr, 0, 0) = (0, Rrr − grrR3/2, 0, 0 have
vanishing divergence.

For Gtt = −gttR/2 the divergence vanishes trivially since it involves only ordinary time derivative.
For Grr = Rrr − grrR/2 the condition is non-trivial and gives rise to a differential equation giving as
solutions a family of functions k(r). The vanishing of covariant divergence for Λ2P2 ↔ Grr gives rise
to the condition

∂rG
rr + 2{ r

r r
}Grr = 0 . (4.3)

This equation can be integrated

Grr =
K

k2(r)
= −Λ2

κ
grr , (4.4)

where Λ2 is 1-D cosmological ”constant ”with dimensions of length to fourth is k is taken to be
dimensionless so that r has dimension of length.

Writing the expression of Grr explicitly one can cast this equation to the differential equations

r2Grr =
1

k3

dk

dlog(r)
+
k2 − 1

k2
=

Λ

κ
r2 . (4.5)

This differential equation is non-linear and non-homogenous and can be written also in the form
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dk

dlog(r)
+ k(k2 − 1) =

Λ

κ
k3r2 . (4.6)

The first thing to notice is that the equation allows k = constant as a solution only if one has k = 1.
Hence k = 1 + ε solution is not allowed as a gravitational vacuum solution in TGD sense.

4.2 Spherical and hyperbolic metrics satisfy modified Einstein’s equations

For Λ2 = 0 it can be however integrated. In this case on obtains

∫ k

k0

1

k(k2 − 1)
dk =

∫ u

0

du = log(
r

R
) . (4.7)

This gives

k2 =
1

1− ( rR )2
. (4.8)

This is nothing but the metric of S3 with radius R. As a matter fact, one obtains only one half of the
sphere and by gluing the two halves along equator one would obtain two sheeted 4-surface defining
the entire 3-sphere.

Also hyperbolic metric with k = 1/(1 + (r/R)2) satisfies the generalized Einstein’s equations as is
easy to see by a direct calculation.

Could k(r) ansatz allow other than H3, E3, andS3 for Robertson-Walker cosmology? The deviation
of k(r) from the form

k2(r) =
1

(1 + ε(r/R)2
, ε = ±1, 0

means breaking of SO(3, 1), SO(4), or SO3×T 3 symmetry. Hence the 1+3 decomposition is replaced
with 1+1+2 decomposition so that one obtains two conditions for k(r) corresponding to Gaa and
Grr. Note that the condition sin(Θ) = a/τ must be satisfied unless the situation is hyperbolic. This
suggests that only these 3 solutions are possible.

4.3 Approximate solutions for Λ1 6= 0

For non-vanishing values of Λ≡Λ one obtains candidates for solutions which one is searching provided
that k(r) approaches rapidly to k(r) = 1. Near the origin Eq. 4.6 reduces to that giving S3 so that
the solution looks near the center of the icosahedron. For large values of r it should give flat metric.
If k → 1 or k → 0 the equation reduces in good approximation to

1

k3

dk

dr
=

Λ

κ
r . (4.9)

This can be integrated to give

k2 =
k2

0[
1 + Λ

κ k
2
0(r2 − r2

0)
] . (4.10)

k approaches zero asymptotically so that the result is consistent with the assumption about the
asymptotic behavior. The solution becomes singular at

r2 = r2
0 −

κ

k2
0Λ

. (4.11)



4.3 Approximate solutions for Λ1 6= 0 24

One can get rid of the singularity if one assumes

r2
0 <

κ

k2
0Λ

. (4.12)

With this assumption one can write the solution as

k =

[
(
r

ra
)2 + 1

]−1/2

,

r2
a =

κ

Λ
, r2

1 = k−2
0 r2

a − r2
0 . (4.13)

The limiting case corresponds to r1 = 0 taking the singularity to origin. This is nothing but H3 metric
so that the solutions would look like S3 near origin and like H3 at larger distances. A local S3 like
bump would be in question.

Consider now that ratio of the distance s to the Euclidian distance R and assume that the metric
is non-singular also at origin so that it makes sense to use the approximation holding true at r →∞
limit. Assume that R is defined as the radius for which k(R) = 1 holds true. This condition gives

R

ra
=

√
1− (

r1

ra
)2 . (4.14)

The basic solution dependent parameters are k0 and r0 whereas ra would be analogous to a constant
of Nature in GRT context: in TGD framework also this parameter can be seen as a parameter
characterizing space-time sheet. In any case it is convenient to express everything in terms of k0 and
r0. A tedious exercise gives the following formulas for various length ratios:

R

r1
=

√
1− ( r1ra )2

r1
ra

=

√
k2

0

[
1 + (

r0

r1
)2

]
− 1 ≡ X ,

r1

ra
=

√
1− (k0r0ra

)2

k0
,
ra
R

=
k0

X
. (4.15)

The ratio increases exponentially with R/r1.
The goal of the calculation is to deduce the ratio s/R of the deformed distance to Euclidian

distance. One can estimate s(R) =
∫ R

0
k(r)dr by approximating the metric with its asymptotic form

for large values of r. This gives

s

R
=

ra
R
arsinh(

R

r1
) ' k0

X
arsinh(X) , X =

√
k2

0

[
1 + (

r0

r1
)2

]
− 1 . (4.16)

In the recent TGD-based cosmology one has the order of magnitude estimate Λ ∼ κ/a2, a cosmic
time defined by the light-cone proper time. In condensed matter length scale the value of a would
be much smaller than in cosmology. ra would be of order a and r1/ra ∼ 1/k0 would hold true. One
would have r0/r1 ' 0, and R/r1 ∼

√
k2

0 − 1 giving ra/R = (ra/r1)(r1/R) = k0/
√
k2

0 − 1 giving

s

R
=

ra
R
arsinh(

R

r1
) ' k0√

k2
0 − 1

arsinh(
√
k2

0 − 1) ≡ coth(U0)× U0 , k0 = cosh(U0) . (4.17)

Large enough value for k0 gives large ration s/R. Hence it seems possible to have rather large values
of s/R. This gives also excellent hopes about equal lengths for the edges of icosahedral tetrahedrons.
It should be relatively easy to estimate numerically the length of geodesic edges of the ”surface” edges
in the proposed metric. In the approximation k(r) = 1 in the region containing the edges, the lengths
of surfaces edges are just the Euclidian lengths.
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The conclusion is that if one accepts the TGD based vision implying a modification of Ein-
stein’s equations, one indeed can have a situation in which the the icosahedral tetrahedra are regular.
Whether this has any interesting physical meaning, remains of course open. Perhaps the only real
defense for this exercise in Riemannian geometry is that it forced to question the naive assumption
that all preferred extremals satisfy Einstein-Maxwell equations with cosmological term.

5 Appendix C: Explicit form for the regular tetrahedron prop-
erty for k = constant option

The generalization of Platonic solids to the deformation of E3 is obtained by replacing their edges by
geodesic lines in the deformed metric. For spherical tetrahedron at unit sphere the distances between
vertices are equal to

√
8/3 ' 1.633. For the irregular tetrahedrons assignable to an icosahedron the

surface edges are much shorter but still by a factor
√

23/(5 +
√

5) ' 1.0515 longer than the radial

edges.
In the following only the case k = 1+δ is considered so that radial edges have length k if unit sphere

in Minkowski metric is in question. In order to see whether the condition s = k for the length between
the vertices of icosahedron can be satisfied for a suitable choice of δ, one must calculate the geodesic
distance between the vertices. It turns out that k = ∞ is the only solution. The interpretation is
following. As k giving the length of the radial edge increases, also the length of the surface edge
increases so fast that the radial edge remains shorter than the surface edge for all finite values of k.
As already found, the condition that solution is vacuum extremal also in gravitational sense as it is
understood in TGD framework allows only k = 1 for constant value of k.

5.1 Equations of geodesic lines for deformed E3

The equations of geodesic line are in general form

d2xk

dt2
+ { k

l m
}dx

l

dt

dxm

dt
.

They can be solved by using angular momentum conservation and energy conservation.

1. Rotational symmetry allows to choose the coordinates so that the geodesic line is in z = 0 plane
so that one has θ = π/2. The equations reduce to

d2r
dt2 + { r

φ φ
}(dφdt )2 = 0 ,

d2φ
dt2 + 2{ φ

r φ
}dφdt

dφ
dt = 0 .

This gives

d2r
dt2 = r

k2 (dφdt )2 ,

d2φ

dt2
dφ
dt

= −2
dr
dt

r .

2. The latter equation can be integrated just as in E3 and gives

dφ
dt = ω0( r0r )2 .

r0 = 1 holds true for unit sphere. r0 = 1 is assumed in the following formulas. The interpretation
is in terms of angular momentum conservation.
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3. Substituting dφ/dt to the equation for r one obtains

d2r
dt2 =

ω2
0

k2r3 .

Energy conservation becomes explicit by multiplying with dr/dt and integrating to get

(drdt )
2 + K2

r2 = v2
0 +K2 ,

v0 = dr
dt (0) , K = ω0

k .

This gives

dr
dt = ±v0X ,

X =
√

1 + K2

v20
(1− u2) ,

u = 1
r .

The initial values v0 and ω0 - or rather their ratio- must be fixed from the condition that the
geodesic line connects the neighboring vertices of the icosahedron. This condition boils down to
the condition that the angular distance between the points is same as for ordinary icosahedron.

4. Also this equation can be integrated. It is convenient to take φ instead of t as the variable by
using dr/dφ = dr/dt× dt/dφ and the expression of dφ/dt in Eq. 2. This gives

∆φ = arccos( Φ
2+Φ ) = ω0

v0

∮ 1

1
1√
X
du ,

Φ = 1+
√

5
2 .∮ 1

1
tells that the integral is between points, which are at the surface of the sphere. The integral

is two times the integral between u = u0 = 1 and umax at which dr/dt = 0 holds true. By
taking u = 1/r as an integration variable one obtains

∆φ = 2k
√
A× I(A, umax) ,

I(A, umax) =
∫ umax

1
1√

1+A(1−u2)
du ,

A = K2

v20
.

∆φ is fixed as the angular distance between neighboring vertices of icosahedron. umax corre-
sponds to the vanishing of X, and is given by

umax =

√
A+ 1

A
=

√
1 +

k2v2
0

ω2
0

.

umax increases with k meaning that the geodesic line visits nearer to origin for larger values of k
unless the radial kinetic energy at the initial moment is reduced as compared to the rotational
one. From these condition one can solve that initial values v0 and ω0.

5. The variable change v =
√
A/(1 +A)u allows to express the integral I(A, umax) in terms of

elementary functions:

I(A, umax) =
√

1
1+A

∫ 1√
A/(1+A)

1√
1−v2 dv = 1√

A
(π/2− arcsin(

√
A/(1 +A))) .

This gives the condition
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∆φ = arccos(
Φ

2 + Φ
) = 2k(π/2− arcsin(

√
A/(1 +A))) (5.1)

A =
ω2

0

v2
0k

2
. (5.2)

This condition relates the parameters ω0/v0 and k:

k =
arccos( Φ

2+Φ )

2(π/2− arcsin(
√
A/(1 +A))

. (5.3)

(5.4)

The above conditions only fix the geodesic line representing the edge of the icosahedron. Besides
the condition fixing ∆φ, one must apply the condition s = k, where s is the geodesic length of the
edge. Since the scaling up of grr increases also the distance between the vertices of the icosahedron,
it is not completely clear whether any solution exists unless one gives up that assumption that k(r)
is constant.

One can however argue that since the variation of r for the surface edge is much shorter than for
radial edge, the length of radial edge increases faster with k as that of the surface edge so that there
are hopes that the lengths of the edges can be equal.

5.2 Explicit form for the condition s = k

Also the integral involved with the condition s = k can be solved explicitly so that it is rather trivial
exercise in numerics to find whether the solution to the condition k = s exists.

1. The expression for the length of the surface edge is given by

s =
∫ √

k2 + (dφdr )2dr .

By substituting dφ/dr one obtains

s = 2k
√
AJ(A, umax) ,

J(A, umax) =
∫ umax

1
1√

1+A(1−u2)

du
u2 ,

A = K2

v20
, umax =

√
A+1
A =

√
1 +

k2v20
ω2

0
.

Edge length s is proportional to the radial edge length k and depends also on parameter A,
which in turn turn depends on k both explicitly and implicitly.

The first thing to notice is that if A or equivalently umax does not depend on k, both s and radial
edge length are proportional to k so that their ratio does not change. Hence A must depend
on k both explicitly and implicitly. The constraint of Eq. 4 for ∆φ and the non-trivial explicit
dependence of A = x2/k2 on k together imply that also the parameter x = ω0/v0 = k

√
A must

depend on k.

2. The integral J(A, umax) can be expressed in terms of elementary function by the same variable
change as performed for I(A, umax. One obtains

J(A, umax) =
√
A

(1+A)

∫ 1√
A/(1+A)

1√
1−v2

dv
v2

= −
√
A

(1+A)cot(arcsin(
√
A/(1 +A))) = 1

1+A .
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This transforms the condition s/k = 1 to the form

s
k = 2

√
A

(1+A) = 1 ,

A = K2

v20
=

ω2
0

k2v20
.

(5.5)

The condition s/k = 1 gives

A = 1 . (5.6)

Combibing this with Eq. 5 for k, one obtains

A = 1 ,

k =
arccos( Φ

2+Φ )

2(π/2− arcsin(
√
A/(1 +A)))

=∞ ,

r =
ω0

v0
= k

√
A =∞ .

(5.7)

The conclusion is that for a finite value of k it is not possible to satisfy the condition s/k = 1. The
interpretation is that the length of radial edge does not increase fast enough to reach the length of
the surface edge since it becomes also longer.
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