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Abstract

I found from web an article by Tim Adamo titled ”Twistor actions for gauge theory and
gravity” [B1]. The work considers the formulation of N = 4 SUSY gauge theory directly in
twistor space instead of Minkowski space. The author is able to deduce MHV formalism, tree
level amplitudes, and planar loop amplitudes from action in twistor space. Also local operators
and null polygonal Wilson loops can be expressed twistorially. This approach is applied also to
general relativity: one of the challenges is to deduce MHV amplitudes for Einstein gravity. The
reading of the article inspired a fresh look on twistors and a possible answer to several questions
(I have written two chapters about twistors and TGD [K5, K6] giving a view about development
of ideas).

Both M4 and CP2 are highly unique in that they allow twistor structure and in TGD one can
overcome the fundamental ”googly” problem of the standard twistor program preventing twisto-
rialization in general space-time metric by lifting twistorialization to the level of the imbedding
space containg M4 as a Cartesian factor. Also CP2 allows twistor space identifiable as flag man-
ifold SU(3)/U(1) × U(1) as the self-duality of Weyl tensor indeed suggests. This provides an
additional ”must” in favor of sub-manifold gravity in M4 × CP2. Both octonionic interpretation
of M8 and triality possible in dimension 8 play a crucial role in the proposed twistorialization of
H = M4 × CP2. It also turns out that M4 × CP2 allows a natural twistorialization respecting
Cartesian product: this is far from obvious since it means that one considers space-like geodesics of
H with light-like M4 projection as basic objects. p-Adic mass calculations however require tachy-
onic ground states and in generalized Feynman diagrams fermions propagate as massless particles
in M4 sense. Furthermore, light-like H-geodesics lead to non-compact candidates for the twistor
space of H. Hence the twistor space would be 12-dimensional manifold CP3×SU(3)/U(1)×U(1).

Generalisation of 2-D conformal invariance extending to infinite-D variant of Yangian symme-
try; light-like 3-surfaces as basic objects of TGD Universe and as generalised light-like geodesics;
light-likeness condition for momentum generalized to the infinite-dimensional context via super-
conformal algebras. These are the facts inspiring the question whether also the ”world of classical
worlds” (WCW) could allow twistorialization. It turns out that center of mass degrees of freedom
(imbedding space) allow natural twistorialization: twistor space for M4 × CP2 serves as moduli
space for choice of quantization axes in Super Virasoro conditions. Contrary to the original op-
timistic expectations it turns out that although the analog of incidence relations holds true for
Kac-Moody algebra, twistorialization in vibrational degrees of freedom does not look like a good
idea since incidence relations force an effective reduction of vibrational degrees of freedom to four.
The Grassmannian formalism for scattering amplitudes generalizes practically as such for gener-
alized Feynman diagrams. The Grassmannian formalism for scattering amplitudes generalizes for
generalized Feynman diagrams: the basic modification is due to the presence of CP2 twistorializa-
tion required by color invariance and the fact that 4-fermion vertex -rather than 3-boson vertex-
and its super counterparts define now the fundamental vertices.
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1 Introduction

I found from web a thesis by Tim Adamo titled ”Twistor actions for gauge theory and gravity” [B1].
The work considers formulation of N = 4 SUSY gauge theory directly in twistor space instead of
Minkowski space. The author is able to deduce MHV formalism, tree level amplitudes, and planar
loop amplitudes from action in twistor space. Also local operators and null polygonal Wilson loops
can be expressed twistorially. This approach is applied also to general relativity: one of the challenges
is to deduce MHV amplitudes for Einstein gravity. The reading of the article inspired a fresh look on
twistors and a possible answer to several questions (I have written two chapters about twistors and
TGD [K5, K6] giving a view about development of ideas).

Both M4 and CP2 are highly unique in that they allow twistor structure and in TGD one can over-
come the fundamental ”googly” problem of the standard twistor program preventing twistorialization
in general space-time metric by lifting twistorialization to the level of the imbedding space containg M4

as a Cartesian factor. Also CP2 allows twistor space identifiable as flag manifold SU(3)/U(1)×U(1)
as the self-duality of Weyl tensor indeed suggests. This provides an additional ”must” in favor of
sub-manifold gravity in M4 × CP2. Both octonionic interpretation of M8 and triality possible in
dimension 8 play a crucial role in the proposed twistorialization of H = M4 × CP2. It also turns
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out that M4 × CP2 allows a natural twistorialization respecting Cartesian product: this is far from
obvious since it means that one considers space-like geodesics of H with light-like M4 projection as
basic objects. p-Adic mass calculations however require tachyonic ground states and in generalized
Feynman diagrams fermions propagate as massless particles in M4 sense. Furthmore, light-like H-
geodesics lead to non-compact candidates for the twistor space of H. Hence the twistor space would
be 12-dimensional manifold CP3 × SU(3)/U(1)× U(1).

Generalisation of 2-D conformal invariance extending to infinite-D variant of Yangian symmetry;
light-like 3-surfaces as basic objects of TGD Universe and as generalised light-like geodesics; light-
likeness condition for momentum generalized to the infinite-dimensional context via super-conformal
algebras. These are the facts inspiring the question whether also the ”world of classical worlds”
(WCW) could allow twistorialization. It turns out that center of mass degrees of freedom (imbedding
space) allow natural twistorialization: twistor space for M4 × CP2 serves as moduli space for choice
of quantization axes in Super Virasoro conditions. Contrary to the original optimistic expectations it
turns out that although the analog of incidence relations holds true for Kac-Moody algebra, twisto-
rialization in vibrational degrees of freedom does not look like a good idea since incidence relations
force an effective reduction of vibrational degrees of freedom to four. The Grassmannian formalism
for scattering amplitudes generalizes practically as such for generalized Feynman diagrams.

2 Basic results and problems of twistor approach

The author describes both the basic ideas and results of twistor approach as well as the problems.

2.1 Basic results

There are three deep results of twistor approach besides the impressive results which have emerged
after the twistor resolution.

1. Massless fields of arbitrary helicity in 4-D Minkowski space are in 1-1 correspondence with el-
ements of Dolbeault cohomology in the twistor space CP3. This was already the discovery of
Penrose..The connection comes from Penrose transform. The light-like geodesics of M4 corre-
spond to points of 5-D submanifold of CP3 analogous to light-cone boundary. The points of
M4 correspond to complex lines (Riemann spheres) of the twistor space CP3: one can imagine
that the point of M4 corresponds to all light-like geodesics emanating from it and thus to a 2-D
surface (sphere) of CP3. Twistor transform represents the value of a massless field at point of
M4 as a weighted average of its values at sphere of CP3. This correspondence is formulated
between open sets of M4 and of CP3. This fits very nicely with the needs of TGD since causal
diamonds which can be regarded as open sets of M4 are the basic objects in zero energy ontology
(ZEO).

2. Self-dual instantons of non-Abelian gauge theories for SU(n) gauge group are in one-one corre-
spondence with holomorphic rank-N vector bundles in twistor space satisfying some additional
conditions. This generalizes the correspondence of Penrose to the non-Abelian case. Instan-
tons are also usually formulated using classical field theory at four-sphere S4 having Euclidian
signature.

3. Non-linear gravitons having self-dual geometry are in one-one correspondence with spaces ob-
tained as complex deformations of twistor space satisfying certain additional conditions. This
is a generalization of Penrose’s discovery to the gravitational sector.

Complexification of M4 emerges unavoidably in twistorial approach and Minkowski space identified
as a particular real slice of complexified M4 corresponds to the 5-D subspace of twistor space in which
the quadratic form defined by the SU(2,2) invariant metric of the 8-dimensional space giving twistor
space as its projectivization vanishes. The quadratic form has also positive and negative values with
its sign defining a projective invariant, and this correspond to complex continuations of M4 in which
positive/negative energy parts of fields approach to zero for large values of imaginary part of M4 time
coordinate.

Interestgingly, this complexification of M4 is also unavoidable in the number theoretic approach
to TGD: what one must do is to replace 4-D Minkowski space with a 4-D slice of 8-D complexified
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quaternions. What is interesting is that real M4 appears as a projective invariant consisting of light-
like projective vectors of C4 with metric signature (4,4). Equivalently, the points of M4 represented
as linear combinations of sigma matrices define hermitian matrices.

2.2 Basic problems of twistor approach

The best manner to learn something essential about a new idea is to learn about its problems. Dif-
ficulties are often put under the rug but the thesis is however an exception in this respect. It starts
directly from the problems of twistor approach. There are two basic challenges.

1. Twistor approach works as such only in the case of Minkowski space. The basic condition for
its applicability is that the Weyl tensor is self-dual. For Minkowskian signature this leaves only
Minkowski space under consideration. For Euclidian signature the conditions are not quite so
restrictive. This looks a fatal restriction if one wants to generalize the result of Penrose to a
general space-time geometry. This difficlty is known as ”googly” problem.

According to the thesis MHV construction of tree amplitudes ofN = 4 SYM based on topological
twistor strings in CP3 meant a breakthrough and one can indeed understand also have analogs
of non-self-dual amplitudes. The problem is however that the gravitational theory assignable
to topological twistor strings is conformal gravity, which is generally regarded as non-physical.
There have been several attempts to construct the on-shell scattering amplitudes of Einstein’s
gravity theory as subset of amplitudes of conformal gravity and also thesis considers this problem.

2. The construction of quantum theory based on twistor approach represents second challenge. In
this respect the development of twistor approach to N = 4 SYM meant a revolution and one
can indeed construct twistorial scattering amplitudes in M4.

3 TGD inspired solution of the problems of the twistor ap-
proach

TGD suggests an alternative solution to the problems of twistor approach. Space-times are 4-D
surfaces of M4 ×CP2 so that one obtains automatically twistor structure at the level of M4 - that is
imbedding space.

It seems natural to interpret twistor structure from the point of view of Zero Energy Ontology
(ZEO). The two tips of CD are accompanied by light-cone boundaries and define a pair of 2-spheres
in CP3 since the light-like rays associated with the tips are mapped to points of twistor space. M4

coordinates for the tips serve as moduli for the space of CDs and can be mapped to pairs of twistor
spheres. The points of partonic 2-surfaces at the boundaries of CD reside at light-like geodesics and
the conformal invariance with respect to radial coordinate emanating from the tip of CD suggests that
the position at light-like geodesic does not matter. Therefore the points of partonic 2-surfaces can be
mapped to union of spheres of twistor space.

3.1 Twistor structure for space-time surfaces?

Induction procedure is the core element of sub-manifold gravity. Could one induce the the twistor
structure of M4 to the space-time surface? Would it have any useful function? This idea does not
look attractive.

1. Twistor structure assigns to a given point of M4 a sphere of CP3 having interpretation as a
sphere parametrizing the light-like geodesics emanating from the point. The X4 counterpart of
this assignment would be obtained simply by mapping the M4 projection of space-time point
to a sphere of twistor space in standard manner. This could make sense if the M4 projection of
space-time surface 4-dimensional but not necessary when the M4 projection is lower-dimensional
- say for cosmic strings.

2. Twistor structure assigns to a light-like geodesic of M4 a point of CP3. Should one try to gen-
eralize this correspondence to the light-like geodesics of space-time surface? Light-like geodesic
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corresponds to its light-like tangent vectors at x whose direction as imbedding space vector de-
pends now on the point x of the geodesic. The M4 projection for the tangent vector of light-like
geodesics of space-time surface in general time-like vector of M4 so that one should map time-like
M4 ray to CP3. Twistor spheres associated with the two points of this geodesic do not intersect
so that one cannot define the image point in CP3 as an intersection of twistor spheres. One
could consider the lifts of the light-like geodesics of M4 to X4 and map their M4 projections to
the points of CP3? This looks however somewhat trivial and physically uninteresting.

3.2 Could one assign twistor space to CP2?

Can one assign a twistor space to CP2? Could this property of CP2 make it physically special? The
necessary condition is satisfied: the Weyl tensor of CP2 is self-dual.

3.2.1 CP2 twistor space as flag manifold

CP2 indeed allows a twistor structure as one learns from rather technical article about twistor struc-
tures (http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.
pdf). The twistor space associated with CP2 is six-dimensional flag manifold (http://en.wikipedia.
org/wiki/Flag_manifold) [A1] F (1, 2, 3) = U(3)/× U(1)× U(1)× U(1) = SU(3)/U(1)× U(1) [A2]
(http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.
pdf).

This flag manifold has interpretation as the space of all possible choices of quantization axes for
color hyper charge and isospin. Note that the earlier proposal [K6] that the analog of twistor space
for CP2 is CP3 is wrong.

The twistor space assignable to M4 can be interpreted as a flag manifold consisting of 2-planes
associated with 8-D complexified Minkowski space as is clear from interpretation as projection space
CP3. It might also have an interpretation as the space of the choices of quantization axes. For M4

light-like vector defines a unique time-like 2-plane M2 and the direction of the associated 3-vector
defines quantization axes of spin whereas the sum of the light-like vector and its dual has only time
component and defines preferred time coordinate and thus quantization axes for energy. In fact, the
choice of M1 ⊂ M2 ⊂ M4 defining flag is in crucial role in the number theoretic vision and also in
the proposed construction of preferred extremals: the local choice of M2 would define the plane of
unphysical polarizations and as its orthogonal complement the plane of physical polarizations.

Amusingly, the flag manifold SU(3)/U(1)×U(1) associated with SU(3) made its first appearance
in TGD long time ago and in rather unexpected context. The mathematician Barbara Shipman
discovered that the the dance of honeybees can be described in terms of this flag manifold [A4] and
made the crazy proposal that quark level physics is somehow related to the honeybee dance. TGD
indeed predicts scaled variants of also quarks and QCD like physics and in biology the presence of 4
Gaussian Mersenne primes in the length scale range 10 nm- 2.5 µm [K1] suggests that these QCDs
might be realized in the new physics of living cell [K2].

In TGD inspired theory of consciousness the choice of quantization axis represents a higher level
state function reduction and contributes to conscious experience - one can indeed speak about flag
manifold qualia. It will be found that the choice of quantization axis is also unavoidable in the
conditions stating the light-likeness of 3-surfaces and leading to a generalization of Super Virasoro
algebra so that the twistor space of H emerges naturally from basic TGD.

3.2.2 What is the interpretation of the momentum like color quantum numbers?

There is a rather obvious objection against the notion of momentum like quantum numbers in CP2

degrees of freedom. If the propagator is proportional to 1/(p2−Y 2−I23 ), where Y and I3 are assigned
to quark, a strong breaking of color symmetry results. The following argument demonstrates that this
is not the case and also gives an interpretation for the notion of anomalous hyper-charge assignable
to CP2 spinors.

1. Induced spinors do not form color triplets: this is the property of only physical states involving
several wormhole throats and the action of super generators and spinor harmonics in cm mass
degrees of freedom to which one can assign imbedding space spinor harmonics to be distinguished
from second quantizee induced spinors appearing in propagator lines. Color is analogous to rigid

http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.pdf
http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.pdf
 http://en.wikipedia.org/wiki/Flag_manifold
 http://en.wikipedia.org/wiki/Flag_manifold
http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.pdf
http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.pdf
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body angular momentum and one can speak of color partial waves. The total color quantum
numbers are dictated by the cm color quantum numbers plus those associated with the Super
Virasoro generators used to create the state [K3] and which also help to correct the wrong
correlation between color and electroweak quantum numbers between spinor harmonics.

2. Since CP2 is projective space the standard complex coordinates are ratios of complex coordinates
of C3: {ξi = zi/zk , i 6= k}, where k corresponds to one of the complex coordinates zi for given
coordinate patch (there are three coordinate patches). For instance, for k = 3 the coordinates
are (ξ1, ξ2)z1/z3, z2/z3). The coordinates zi triplet representation of SU(3) so that {ξi, i 6= k}
carries anomalous color quantum numbers given by the negatives of the zk.

3. Also the spinors carry anomalous Y and I3, which are negative to anomalous color quantum
numbers of CP2 coordinates from the fact that spinors and zi/zk form color triplet. These
quantum numbers are same for all spinor components inside given CP2 coordinate patch so that
no breaking of color symmetry results in a given patch. The color momentum would appear
in the Dirac operator assignable to super Virasoro generators and define most naturally the
contribution to region momentum. The ”8-momenta” of external lines would be differences
of region momenta and their color part would vanish for single fermion states associated with
wormhole throat orbits.

3.3 Could one assign twistor space to M4 × CP2?

The twistorialization of TGD could be carried by identifying the twistor counterpart of the imbedding
space H = M4×CP2. The first guess that comes in mind is that the twistor space is just the product
of twistor spaces for M4 and CP2. The next thought is that one could identify the counterpart of
twistor space in 8-D context as the space of light-like geodesics of H. Since light-like geodesics in
CP2 couple M4 and CP2 degrees of freedom and since the M4 projection of the light-like geodesic is
in general time-like, this would allow the treatment of also massive states if the 8-D mass defined as
eigenvalue of d’Alembertian vanishes. It however turns that the first thought is consistent with the
general TGD based view and that second option yields twistor spaces which are non-compact.

In the following two attempts to identify the twistor space as light-like geodesics is made. I
apologize my rudimentary knowledge about the matters involved.

1. If the dimension of the twistor space is same as that for the projective complexifications of M8

one would dhave D = 14. This is also the dimension of projective complexification of octonsions
whose importance is suggested by number theoretical considerations. If the twistorialization
respects cartesian products then the dimension would be D = 12.

2. For M8 at least the twistor space should have local structure given by X8 × S6, where S6

parametrizes direction vectors in 8-D lightcone. The conformal boundary of the space of light-
like geodesics correspond to light-like geodesics of M4 and this suggests that the conformal
boundary of twistor space is CP3 × CP2 with dimension D = 10.

One can consider several approaches to the identification of the twistor space. One could start
from the condition that twistor space describes projective complexification of M4 × CP2, from the
direct study of light-like geodesics in H, from the definition as flag manifold characterizing the choices
of quantization axes for the isometry group of H.

1. The first guess of a category theorist would be that twistorialization commutes with Cartesian
products if isometry group decomposes into factors leaving the factors invariant. The naive iden-
tification would be as the twelve-dimensional space CP3×F (1, 2, 3), F (1, 2, 3) = SU(3)/U(1)×
U(1). The points of H would in turn be mapped to products S2×S3 ⊂ CP3×SU(3)/U(1)×U(1),
which are 5-dimensional objects.

One can criticize this proposal. The points of this space could be interpreted as 2-dimensional
objects defined as products of light-like geodesics and geodesic circles of CP2. They could be also
interpreted as space-like geodesics with light-like M4 projection. Why should space-likegeodesics
replace light-like geodesics of H with light-like projection?

The experience with TGD however suggests that this could be the physical option. p-Adic
mass calculations require tachyonic ground states and the action of conformal algebras gives
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vanishing conformal weight for the physical states. Also massless extremals are characterized by
longitudinal space M2 in which momentum projection is light-like whereas the entire momentum
for Fourier components in the expansion of imbedding space coordinates are space-like. This
has led to the proposal that it is light-like M2 projection of momentum that matters. Also
the recent vision about generalized Feynman diagrams is that fermions propagate as massless
particles in M4 sense and that massive particles are bound states of massless particles: many-
sheeted space-time makes possible to realize this picture. Also the construction of the analog of
Super Virasoro algebra for light-like 3-surface leads naturally to the product of twistor spaces
as moduli space.

2. The second approach is purely group theoretical and would identify twistor space as the space for
the choices of quantization axes for the isometries which form now a product of Poincare group
and color group. In the case of Poincare group energy and spin are the observabels and in the
case of color group one has isospin and color hypercharge. The twistor space in the case of time-
like M4 projections of 8-momentum is obtained as coset space P/SO(2)×SU(3)/U(1)×U(1) =
M4×SO(3, 1)/M1×SO(2)×SU(3)/U(1)×U(1) = E3×SO(3, 1)/SO(2)×SU(3)/U(1)×U(1).
The dimension is the expected D = 14. In Euclidian sector one would have E4×SO(4)/SO(2)×
SO(2) × SU(3)/U(1) × U(1) having also dimension D = 14. The twistor space would not be
compact and this is very undesired feature.

Ordinary twistors define flag manifold for projectively complexified M4. If this is the case
also now one obtains just the naively expected 12-dimensional CP3 × SU(3)/U(1)× U(1) with
two spheres replaced with S2 × S3. This option corresponds to the ”tachyonic” dentification
of geodesics of H defining the twistor space as geodesics having light-like M4 projection and
space-like CP2 projection.

3. One can consider also the space of light-like H-geodesics. Locally the light-like geodesics for
which M4 projection is not space like geodesic can be parametrized by their position defined
as intersection with arbitrary time-like hyper-plane E3 ⊂M4. Tangent vector characterizes the
geodesic completely since CP2 geodesics can be characterized by their tangent vector. Hence the
situation reduces locally to that in M8 and light-likeness and projective invariance mean that
the sphere S6 parametrizes the moduli for light-like geodesics at given point of E3. Hence the
parameter space would be at least locally E3×S6. S6 would be the counterpart of S2 for ordinary
twistors. An important special case are light-like geodesics reducing to light-like geodesics of
M4. These are parametzized by X5 × CP2, where X5 is the space of light-like geodesics in M4

and defines the analog of light-cone in twistor space CP3. Therefore the dimension of twistor
space must be higher than 10. For M4 the twistor space has same dimension as projective
complexification of M4.

One can study the light-like geodesics of H directly. The equation of light-like geodesic of H
in terms of curve parameter s can be written as mk = vks, φ = ωs, vkv

k = 1 for time-like
M4 projection and vkvk = 0 for light-like M4 projection. For time-like M4 projection light-
likeness gives 1−R2ω2 = 0 fixing the value of ω to ω = 1/R; therefore CP2 part of the geodesic is
characterized by giving unit vector characterizing its direction at arbitrarily chosen point of CP2

and the modyli sopace space is 3-dimensional S3. For light-like M4 projection one obtains ω = 0
so that the CP2 projection contracts to a point. The hyperbolic space H3 or Lobatchevski space
(mass shell) parametrizing the space of unit four-velocities and S3 gives the possible directions
of velocity at given point of CP2.

The space of light-like geodesics in H could be therefore regarded as a singular bundle like
structure. The interior of the bundle has the space X6 = E3 × H3 of time-like geodesics of
M4 as base and S3 perhaps identifiable as subspace of flag-manifold SU(3)/U(1)×U(1) of CP2

defining CP2 twistors as fiber. This space couldbe 9-dimensional subspace of D = 14 twistor
space and consistency with D = 14 obtained from previous argument. Boundary consists of
light-like geodesics of M4 - that is 5-D subspace of twistor space CP3 and fiber reduces to CP2.
The bundle structure seems trivial apart the singular boundary. Again there are good reasons
to believe that the twistor space is non-compact which is a highly undesirable feature.

The cautious conclusion is that category theorist is right, and that one must take seriously p-adic
mass calculations and generalized Feynman diagrams: the twistor space in question corresponds to
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space-like geodesics of H with light-like M4 projection and reduces to the product of twistor spaces
of M4 and CP2.

I have earlier speculated about twistorial formulation of TGD assuming that the analog of twistor
space for M4×CP2 is CP3×CP3 and also noticed the analogy with F-theory [K6]. In the same chapter
I have also considered an explicit proposal for the realization of the 10-D counterparts of space-time
surfaces as 6-dimensional holomorphic surfaces in CP3×CP3 speculated to be Calabi-Yau manifolds.
These speculations can be repeated for CP3 × F (1, 2, 6) but with space-time surfaces mapped to 9-D
surfaces having interpretation as S2 × S3 bundles with space-time surface as a base space. Light-
like 3-surfaces would be mapped to 8-D surfaces. Whether they could allow the identification as
4-complex-dimensional Calabi-Yau manifolds with structure group SU(4) as a structure group and
Kähler metric with global holonomy contained in SU(4) is a question that mathematician might be
able to answer immediately.

3.4 Three approaches to incidence relations

The algebraic realization of incidence relations involves spinors. The 2-dimensional character of the
spinors and the possibility to interpret 2 × 2 Pauli sigma matrices as matrix representation of units
of complexified quaternions with additional imaginary unit commuting with quaternionic imaginary
units seem to be essential. How could one generalize the incidence relations to 8-D context?

One can consider three approaches to the generalization of the incidence relations defining alge-
braically the correspondence between bi-spinors and light-like vectors.

1. The simplest approach assumes that twistor space is Cartesian product of those associated with
M4 and CP2 separately so that nothing new should emerge besides the quantization of Y3 and
I3. The incidence relations for Minkowskian and Euclidian situation are discussed in detail later
in the section. It might well be that this is all that is needed.

2. Second approach is based on triality for the representations of SO(1, 7) realized for 8-D spaces.

3. Third approach relies on octonionic representations of sigma matrices and replaces SO(1, 7) with
the octonionic automorphism group G2.

The first approach will be discussed in detail at the end of the section.

3.4.1 The approach to incidence relations based on triality

Second approach to incidence relations is based on the notion of triality serving as a special signature
of 8-D imbedding space.

1. The triality symmetry making 8-D spaces unique states there are 3 8-D representations of SO(8)
or SO(1,7) related by triality. They correspond complexified vector representation and spinor
representations together with its conjugate. Could ordinary 8-D gamma matrices define sigma
matrices obtained simply by multiplying them by γ0 so that one obtains unit matric and analogs
of 3-D sigma matrices. Sigma matrices defined in this manner span an algebra which has
dimension d1 = 2D−1 corresponding to the even part of 8-D Clifford algebra.

This dimension should be equal to the real dimension of the complex D × D matrix algebra
given by d2 = 2×D×D. For D = 8 one one indeed has d1 = 128 = d2! Hence triality symmetry
seems to allow the realization of the incidence relations for 8-vectors and 8-spinors and their
conjugates! Could this realize the often conjectured role of triality symmetry as the holy trinity
of physics? Note that for the Pauli sigma matrices the situation is different. They correspond
to complexified quaternions defining 8-D algebra with dimension d1 = 8, which is same as the
dimension d2 for D = 2 assignable to the two 2-spinors.

2. There is however a potential problem. For D = 4 the representations of points of complexified
M4 span the entire sigma matrix algebra (complexified quaternions). For D = 8 complexified
points define 16-D algebra to be contrasted with 128 dimensional algebra spanned by sigma
matrices. Can this lead to difficulties?
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3. Vector xkσk would have geometric interpretation as the tangent vector of the light-like geodesic
at some reference point - most naturally defined by the intersection with X3 × CP2, where X3

is 3-D subspace of M4. X3 could correspond to time=constant slice E3. Zero energy ontology
would suggests either of the 3-D light-like boundaries of CD: this would give only subspace of
full twistor space.

Geometrically the incidence relation would in the 8-D case state that two 6-spheres of 12-D twistor
space define as their intersection light-like line of M8. Here one encounters an unsolved mathematical
problem. Generalizing from the ordinary twistors, one might guess that complex structure of 6-sphere
could be be crucial for defining complex structure of twistor space. 6-sphere allows almost complex
structures induced by octonion structure. These structures are not integrable (do not emerge as a side
product of complex manifold structure) and an open problem is whether S6 admits complex structure
(http://www.math.bme.hu/~etesi/s6-spontan.pdf) [A3]. From the reference one however learns
that S6 allows twistor structure presumably identified in terms of the space of geodesics.

3.4.2 The approach to incidence relations based on octonionic variant of Clifford algebra

Third approach is purely number theoretical being based on octonions. Only sigma matrices are needed
in the definition of twistors and incidence relations. In the case of sigma matrices the replacement of
the ordinary sigma matrices with abstract quaternion units makes sense. One could replace bi-spinors
with complexified quaternions and identify the two spinors in their matrix representation as the two
columns or rows of the matrix.

The octonionic generalization would replace sigma matrices with octonionic units. The non-
associativity of octonions however implies that matrix representation does not exist anymore. Only
quaternionic subspaces of octonions allow matrix representation and the basic dynamical principle
of number theoretic vision is that space-time surfaces are associative in the sense that the tangent
space is quaternionic and contains preferred complex subspace. In the purely octonionic context there
seems to be no manner to distinguish between vector x and spinor and its conjugate. The distinction
becomes possible only in quaternionic subspaces in which 8-D spinors reduces to 4-D spinors and one
can use matrix representation to identify vector and and spinor and its conjugate.

In [K5] I have considered also the proposal for the construction of the octonionic gamma matrices
(they are not necessary in the twistorial construction). Now octonions alone are not enough since
unit matrix does not allow identification as gamma matrix. The proposal constructs gamma matrices
as tensor products of σ3 and octonion units defining octonionic counterpart of the Clifford algebra
realized usually in terms of gamma matrices.

Light-likeness condition corresponds to the vanishing of the determinant for the matrix defined by
the components of light-like vector. Can one generalize this condition to the octonionic representation?
The problem is that matrix representation is lacking and therefore also the notion of determinant is
problematic. The vanishing of determinant is equivalent with the existence of vectors annihilated by
the matrix. This condition makes sense also now and would say that x as octonion with complexified
components produces zero in multiplication with some complexified octonion. This is certainly true
for some complexified octonions which are not number field since there exist complexified octonions
having no inverse. It is of course easy to construct such octonions and they correspond to light-like
8-vectors having no inverse.

The multiplication of octonionic spinors by octonionic units would appear in the generalization of
the incidence relation µA′ = xAA

′
λA by replacing spinors and 8-coordinate with complex octonions.

This would allow to assign to the tangent vector of light-like geodesic at given point of X4 a generalized
twistor defined by a pair of complexified 8-component octonionic spinors. It is however impossible to
make distinction between these three objects unless one restricts to quaternionic spinors and vectors
and uses matrix representation for quaternions.

3.5 Are four-fermion vertices of TGD more natural than 3-vertices of
SYM?

There are some basic differences between TGD and super Yang-Mills theory (SYM) and it is interesting
to compare the two situations from the perspective of both momentum space and twistor space. Here
the miminal approach to incidence relations assuming cartesian product CP3×SU(3)/U(1)×U(1) is
starting point but the dimension of spinor space is allowed to be free.

http://www.math.bme.hu/~etesi/s6-spontan.pdf
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1. In SYM the basic vertex is 3-vertex. Momentum conservation for three massless real momenta
requires that the momenta are parallel. This implies that for on mass shell states the vertex
is highly singular and this in turn is source of IR divergences. The three twistor pairs would
be for real on mass shell states proportional to each other. In twistor formulation one however
allows complex light-like momenta and this requires that either λi are or λ̂i are collinear. The
condition λi = ±( ˆlambdai)

∗ implies that twistors are collinear.

2. In TGD framework physical states correspond to collections of wormhole contacts carrying
fermion and antifermions at the throats. The simplest states are fermions having fermion number
at either throat. For bosons one has fermion and antifermion at opposite throats. External
particles are bound states of massless particles. 4-fermion vertex is fundamental one and replaces
BFF vertex.

The basic 4-vertex represents a situation in which there are incoming wormhole contacts which in
vertex emit a wormhole contact. For boson exchange incoming fermion and antifermion combine
to form the exchanged boson consisting from the fermion and antifermion at opposite throats
of the wormhole contact. All fermions are massless in real sense also inside internal lines and
only the sum of the massless four-momenta is off mass shell. The momentum of exchanged
wormhole contact can be also space-like if energies of fermion and antifermion have opposite
signs. The real on mass shell property reduces the number of allow diagrams dramatically and
strongly suggests the absence of both UV and IR divergences. Without further conditions ladder
diagrams involving arbitrary number of loops representing massess exchanges are possible but
simple power counting argument demonstrates that no divergences are generated from these
loops.

3. N = 4 SUSY as such is not present so that super-twistors might not needed. SUSY is at WCW
level replaced with conformal supersymmetry. Right-handed neutrino represents the least broken
SUSY and the considerations related to the realization of super-conformal algebra and WCW
gamma matrices as fermion number carrying objects suggest that the analogy of N = 4 SUSY
with conserved fermion number based on covariantly constant right-handed neutrino spinors
emerges from TGD.

Consider now the basic formula for the 3-vertex appearing in gauge theories forgetting the com-
plications due to SUSY.

1. The vertex contains determinants of 2 × 2 matrices defined by pairs (λi, λj) and (λ̂i, λ̂j),

i = 1, 2, 3. λ̂′ = −(λα)∗ holds true in Minkowskian signature. These determinants define anti-
symmetric Lorentz invariant ”inner products” based on the 2-dimensional permutation symbol
εαα′ defining the Lorentz invariant bilinear for spinors. This form should generalize to the analog
of Kähler form.

2. Second essential element is the expression for momentum conservation in terms of the spinors λ
and λ̂. The momentum conservation condition

∑
k pk = 0 combined with the basic identification

pαα
′

= λαλ̂α
′

(3.1)

equivalent with incidence relations gives

∑
k=1,...,n

λαk λ̂
α′

k = 0 . (3.2)

The key idea is to interpret λαk and λ̂α
′

k as vectors in n-dimensional space which is Grassmannian
G(2, n) since from a given solution to the conditions one obtains a new one by scaling the spinors

λi and λ̂j by scaling factors, which are inverses of each other. The conditions state that the

2-planes spanned by the λα and λ̂α
′

as complex 3-vectors are orthogonal. The conservation
conditions can be satisfied only for 3-vectors.
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Since the expression of momentum conservation as orthogonality conditions is a crucial element
in the construction of twistor amplitudes it is good to look in detail what the conditions mean. For
future purposes it is convenient to consider N -spinors instead of 2-spinors.

1. The number of these vectors is 2+2 for 2-spinors. For N-component spinors it is N +N = 2N .
The number of conditions to be satisfied is 2N ×N −Nrather than 2N2: the reduction comes
from the factor the condition λ̂α

′
= −(λα)∗ holding for real four-momenta in M4 case. For

complex light-like momenta the number of conditions is 2N2 = 8.

2. For N = 2 and n = 3 with real masses one obtains 6 conditions and 6 independent components
so that the conditions allow to solve the constraint uniquely (apart from complex scalings). All
momenta are light-like and parallel. For complex masses one has 8 conditions and 12 independent
spinor components and conditions imply that either λi or λ̂i are parallel so that one has 4
complex spinors . For n > 3 the number of conditions is smaller than the total number of
spinor components in accordance with the fact that momentum conservation conditions allow
continuum of solutions. 3-vertex is the generating vertex in twistor formulation of gauge theories.
For N > 2 the number conditions is larger than available spinor components and the situation
reduces to N = 2 for solutions.

3. Euclidian spinors appear in CP2 degrees of freedom. In N = 2 case spinors are complex,
”momentum” having anomalous isospin and hyper-charge of CP2 spinor as components is not
light-like, and massless Dirac equation is not satisfied. Hence number of orthogonality conditions
is 2×N2 = 8 whereas the total number of spinor components is 3×2+3×2 = 12 as for complex
massless momenta. Orthogonality conditions can be satisfied. For N > 2 the real dimension of
the sub-paces spanned by spinors is at most 3 and orthogonality condition can be satisfied if N
reduces effectively to N = 2.

Similar discussion applies for 4-fermion vertex in the case of TGD.

1. Consider first M4 case (N = 2) for n = 4-vertex. The momentum conservation conditions
imply that fourth momentum is the negative of the sum of the three other and massless. For
real momenta the number of conditions on spinors is also now 2 × N2 − N = 6 for N = 2.
The number of spinor components is now n × N = 4 × N = 8 so that 2 spinor components
characterizing the virtual on mass shell momentum of the second fermion composing the boson
remains free in the vertex.

2. In CP2 degrees of freedom and for n = 4, N = 2 the number of orthogonality conditions is
2N2 = 8 and the total number of spinor components is 2 × n × N = 16 so that 8 spinor
components remain free. The quantization of anomalous hyper-charge and isospin however
discretizes the situation as suggested by number theoretic arguments. Also in M4 degrees of
freedom discretisation of four-momenta is suggestive.

3. For N > 2 the situation reduces effectively to N = 2 for the solutions to the conditions for both
Minkowskian and Euclidian signature.

4 Emergence of M 4 × CP2 twistors at the level of WCW

One could imagine even more dramatic generalization of the notion of twistor, which conforms with
the general vision about TGD and twistors. The orbits of partonic 2-surfaces are light-like surfaces and
generalize the notion of light-like geodesics. In TGD framework the replacement of point like particle
with partonic 2-surface plus 4-D tangent space data suggests strongly that the Yangian algebra defined
by finite-dimensional conformal algebra of M4 generalizes to that defined by the infinite-dimensional
conformal algebra associated with all symmetries of WCW.

The twistorialization should give twistorialization of M4 × CP2 at point-like limit defined by
CP2 × SU(3)/U(1) × U(1). In the following it will be found that this is indeed the case and that
twistorialization can be seen as a representation for a choice of quantization axes characterized by
appropriate flag manifold.
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4.1 Concrete realization for light-like vector fields and generalized Vira-
soro conditions from light-likeness

The points of WCW correspond to partonic two-surfaces plus 4-D tangent space data. It is attractive
to identify the tangent space data in terms of light-like vector fields defined at the partonic 2-surfaces
at the ends of light-like 3-surface defining a like of generalized Feynman diagrams so that their would
define light-like vector field in the piece of WCW defined by single line of generalized Feynman
diagrams. It is also natural to continue these light-like vector fields to light-like vector fields defined
at entire light-like 3-surface - call it X3.

To get some grasp about the situation one can start from a simpler situation, CP2 type vacuum
extremals with 1-D light-like curve as M4 projection. The light-likeness condition reads as

mkl
dmk

ds

dml

ds
= 0 , (4.1)

One can use the expansion

mk = mk,0 + pk0s+
∑
n,i

an,i
εki√
n
sn ,

εi · εj = −P 2
ij . (4.2)

Here orthonormalized polarization vectors εi define 2-D transversal space orthogonal to the longitudi-
nal space M2 ⊂M4 and characterized by the projection operator P 2. M2 can be fixed by a light-like
vector and corresponds to the real section of the twistor space naturally. These conditions are familiar
from string (complex coordinate is replaced with s). Here εi are polarization vectors orthogonal to
each other. One obtains the Virasoro conditions

Ln = p · p+ 2
∑
m

an−mam
√
n− k

√
k = 0 (4.3)

expressing the invariance of light-likeness condition with respect to diffeomorphisms acting on coor-
dinate s. For n = 0 one obtains the Virasoro conditions. This can be regarded as restriction of
conformal invariance from string world sheets emerging from the modified Dirac equation at their
ends at light-like 3-surfaces.

The generalization of these conditions is rather obvious. Instead of functions mk
n = εkns

n one
considers functions

mk
n,α = m0 + pk0s+

∑
n,i

an,i,αε
k
i

sn√
n
fα(xT ) +

∑
n,i

bn,i,αc
k
i

sn√
n
gα(xT ) ,

skn,α = sk0 + Jk0 s+ cki s
ngα(xT ) ,

cki · ckj = −δij . (4.4)

where sk denotes CP2 coordinates. The tangent vecotor Jk characterizes a geodesic line in CP2 degrees
of freedom. There is no reason to restrict the polarization directions in CP2 degrees of freedom so
that the projection operator is flat Eucldian 4-D metric. {fα} is a complete basis of functions of
the transversal coordinates for the s = constant slice defined the partonic 2-surface at given position
of its orbit. One can assume that the modes are orthogonal in the inner product defined by the
imbedding space metric and the integral over partonic 2-surface in measure defined by the

√
g2 for

the 2-D induced metric at the partonic 2-surface

〈fα, fβ〉 = δαβ . (4.5)

.
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The space of functions fα is assumed to be closed under product so that they satisfy the multiplication
table

fαfβ = cγαβfγ . (4.6)

.
This representation allows to generalize the light-likeness conditions to 3-D form

Ln,α = pkp
k + JkJ

k +
∑
k,α,β

[2an−k,αak,α + 4bn−k,αbk,α]
√
n− k

√
k = 0 . (4.7)

These equations define a generalization of Virasoro conditions to 3-D light-like surfaces. The center
of mass part now corresponds to conserved color charge vector associated with CP2 geodesic. One
can also write variants of these conditions by performing complexification for functions fα.

4.2 Is it enough to use twistor space of M4 × CP2?

The following argument suggests that Virasoro conditions require naturally the integration over the
twistor space for M4×CP2 but that twistorialization in vibrational degrees of freedom is not needed.

The basic problem of Virasoro conditions is that four-momentum in cm degrees of freedom is
time-like in the general case. It is very difficult to accept the generalization of the twistor space to
E3 × SO(3, 1)/SO(2) × SO(1, 1) × SU(3)/U(1) × U(1) in cm degrees of freedom? The idea about
straightforward generalization twistor space to vibrational degrees of freedom seems to lead to grave
difficulties. It however seems that a loophole, in fact two of them, exist and is based on the notion of
momentum twistors.

1. The key observation is that the selection of M2 in the Virasoro conditions reduces to a fixing of
light-like vector in given M4 coordinates fixing M2 ⊂M4. This choices defines a twistor in the
real section of the twistor space. Could twistors emerge through this kind of condition? In the
quantization of the theory which must somehow appear also in TGD framework, the selection
of quantization axes must be made and means selection of point of a flag manifold defining the
twistor spaces associated with M4 and CP2. In quasiclassical picture only the components of
the tangent vector in CP2 degrees of freedom have well-defined isospin and hypercharge so that
Jk would be a linear combination of I3 and Y . Standard complex coordinates transforming
linearly at their origin under U(2) indeed have this property.

Could the integration over twistor space mean in WCW context an integration over the possible
choices of the quantization axes necessary in order to preserve isometries as symmetries? Four-
momenta of external lines itself could be assumed to be massless as conformal invariance strongly
suggests.

2. Consider now the problem. Virasoro conditions require that M4 momentum is massive. This
is not consistent with twistorialization. Momentum twistors for which external light-like mo-
menta characterizing external lines are differences pi = xi − xi−1 of the ”region momenta” xi
assigned with the twistor lines [B2] (http://arxiv.org/pdf/1008.3110v1.pdf) might solve
the problem. In the recent case region momenta xi would correspond to those appearing in Vi-
rasoro conditions and light-like momenta of outgoing lines would correspond to their differences.
Similar identification would apply to color iso-spin and hyper-charge. For SYM massless real
momenta in the condition pi = xi − xi−1 implies that all three momenta are parallel, which is
a catastrophic result. In the TGD based twistor approach region momenta can be however real
and massless : this would give rise to dual conformal invariance leading to Yangian symmetries.
In this picture Super Virasoro conditions would separate completely from twistorialization and
apply in overall cm degrees of freedos: this is indeed what has been assumed hitherto.

It is easy to see that that region momenta can be real and light-like in TGD framework. A
generalization of the condition pi = xi − xi−1 from 3-vertex to 4-fermion vertex is needed
(4-particle vertex requires super-symmetrization but this is not essential for the argument). 4-
fermion vertex involves interaction between 2-fermions via Euclidian wormhole contact (this

http://arxiv.org/pdf/1008.3110v1.pdf
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will be discussed later) inducing their scattering. For massless external fermion second internal
line is a wormhole contact carrying massless fermion and anti-fermion at its opposite throats.
The region momentum associated with this line can be defined as sum of the light-like region
momenta associated with the throats. If the external particle is boson like carrying - in general
non-parallel - light-like momenta at its throats, then pi is sum of their light-like momenta.

Concerning the identification of region momenta, one could consider also another option inspired
by the vision that also the fermions propagating in the internal lines are massless.

1. For this option also region momenta are light-like in accordance with the idea about twistor
diagrams as null polygons and the idea about light-light on mass shell propagation also on
internal lines. One can consider two options for the fermionic propagator.

(a) In twistor description the inverse of the full massless Dirac propagator would appear in the
line in twistor formalism and this would leave only non-physical helicities making the lines
virtual: the interpretation would be as a residue of 1/p2 pole.

(b) The M2 projection of the light-like momentum associated with the corresponding internal
line would be time-like. In CP2 degrees of freedom Jk could be replaced by its projection
to the plane spanned by isospin and hypercharge. The values of the sum of transverse E2

momentum squared and in cm and vibrational degrees of freedom would be identical.

Indeed, one possible option considered already earlier is that M4 momentum is always
light-like and only its longitudinal M2 part is precisely defined for quantum states (as for
partons inside hadron). The original argument was that if only the M2 part of momen-
tum appears in the propagators, one can have on mass shell massless particles without
diverging propagators: in twistorial approach one gets rid of the ordinary propagators in
the case gauge fields. The integration over different choices of M2 associated with the
internal line and having interpretation as integration over light-like virtual momenta would
guarantee overall Lorentz invariance. This would allow also the use of the M2 part of four-
momentum - an option cautiously considered for generalized Feynman diagrams - without
losing isometries as symmetries.

2. The fermion propagator could also contain CP2 contribution. Since only Cartan algebra charges
can be measured simultaneously, Jk would correspond to a superposition of color hypercharge
and isospin generators. The flag manifold SU(3)/U(1)×U(1) would characterize possible choices
of quantization axes for CP2. Also in the case of CP2 only the ”polarization directions” orthog-
onal to the plane defined by I3 and Y could be allowed and it might be possible to speak about
CP2 polarization perhaps related to Higgs field. The dimension of M4 × CP2 in vibrational
degrees of freedom would effectively reduce to 4. Number theoretically this could correspond to
the choice of quaternionic subspace of the octonionic tangent space.

What can one conclude?

1. Since the choice of quantization axis is same for all modes and forces them to a space orthogonal
to that defined by quantization axes, one can say that all modes are characterized by the twistor
space for M4 × CP2 and there is no need to consider infinite-dimensional generalization of the
twistor space only M4 × CP2 twistors would be needed and would have interpretation as the
integration over the choices of quantization axes is natural part of quantum TGD.

2. The use of ordinary massless Dirac operator is very attractive option since it gives the inverse of
massless Dirac operator as effective propagator in twistor formalism and requires that only non-
physical helicities propagate. Massless on mass shell propagation is possible only for fermions
as fundamental particles. If one wants also CP2 contribution to the propagator then restriction
to I3 − Y plane might be necessary. This option does not look too promising.

3. From the TGD point of view twistor approach to gauge theory in M4 would not describe not
much more than the physics related to the choice of quantization axes in M4. The physics
described by gauge theories is indeed in good approximation to that assignable to cm degrees
of freedom. The remaining part of the physics in TGD Universe - maybe the most interesting
part of it involving WCW integration - would be described in terms of infinite-dimensional
super-conformal algebras.
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4.3 Super counterparts of Virasoro conditions

Although super-conformal algebras have been applied successfully in p-adic mass calculations, many
aspects related to super Virasoro conditions remain still unclear. p-Adic mass calculations require
only that there are 5 super-conformal tensor factors and leaves a lot of room for imagination.

1. There are two super conformal algebras. The first one is the super-symplectic algebra assignable
to the space-like 3-surface and acts at the level of imbedding spaceand is induced by Hamiltonians
of δM4

± × CP2. Second algebra is Super Kac-Moody algebra acting on light-like 3-surfaces as
deformations respecting their light-likeness and is also assignable to partonic 2-surfaces and their
4-D tangent space. Do these algebras combine to single algebra or do they define separate Super
Virasoro conditions? p-Adic mass calculations assume that the direct sum is in question and
can be localized to partonic 2-surfaces by strong form of holography. This makes the application
of p-adic thermodynamics [K3] sensical .

2. Do the Super Virasoro conditions apply only in over all cm degrees of freedom so that spinors
are imbedding space spinors. They would thus apply at the level of the entire 3-surfaces assigned
to external elementary particles and containing at least two wormhole contacts. In this case the
resulting massive states would be bound states of massless fermions with non-parallel light-like
momenta and the resulting massivation could be consistent with conformal invariance.

This is roughly the recent picture about the situation. One can however consider also alternatives.

1. Could the Super Virasoro conditions apply to invididual partonic 2-surfaces or even at the lines
of generalized Feynman diagrams but in this case involve only the longitudinal part of massless
M4 momentum?

2. Could Super-Virasoro conditions be satisfied at partonic 2-surfaces defining vertices in the sense
that the sum of incoming super Virasoro generators annihilate the vertex identified. In cm
degrees of freedom this condition would be satisfied in cm degrees of freedom momentum con-
servation holds true. In vibrational degrees of freedom the condition is non-trivial but in principle
can be satisfied. The fermionic oscillator operators at incoming legs are related linearly to each
other and the problem is to solve this relationship. In the case of N-S generators the same
applies. For Virasoro generators the conditions are satisfied if the Virasoro algebras of lines
annihilate the state associated with them separately.

These options do look too plausible and would make the situation un-necessarily complex.

4.3.1 How the cm parts of WCW gamma matrices could carry fermion number?

Super counterparts of Virasoro conditions must be satisfied for the entire 3-surface or less probably
for the light-like lines of generalized Feynman diagram. These conditions look problematic, and I
have considered earlier several solutions to the problem with a partial motivation coming from p-adic
thermodynamics.

The problem is following.

1. In Ramond representation super generators are labeled by integers and string models suggest
that super generator G0 and its hermitian conjugate have ordinary Dirac operator as its cm term
and vibrational part has fermion number ±1. This does not conform with the non-hermiticity
of G0 and looks non-sensical and it seems difficult to satisfy the super Virasoro conditions in
non-trivial manner.

2. There exist a mechanism providing the cm part of G0 with fermion number? Right-handed
neutrino is exceptional: it is de-localized into entire X4 as opposed to other spinor components
localized to string world sheets and has covariantly constant zero modes with vanishing momen-
tum. These modes seem to provide the only possible option that one can imagine. The fermion
number carrying gamma matrices in cm degrees of freedom of H would be defined as Γα = γαΨν

and Γα† = ΨνRγ
α, where ΨνR represents covariantly constant right-handed neutrino. The an-

ticommutator gives imbedding space metric as required. Right-handed neutrino would have a
key role in the mathematical structure of the theory.
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3. For Neveu-Scwartz representation WCW gamma matrices and super generators are labeled by
half odd integers and in this case all generators would have fermion number ±1. The squares
of super generators give rise to Virasoro generators Ln and L0 should be essentially the mass
squared operator as G1/2G−1/2 +hc.. This operator should give the d’Alembertian in M4×CP2

or its longitudinal part. This is quite possible but it seems that Ramond option is the physical
one.

The two spin states of covariantly constant right handed neutrino and its antiparticle could provide
a fermion number conserving TGD analog of N = 4 SUSY since the four oscillator operators for ΨνR

would define the analogs of the four theta parameters.
What is the nature of the possible space-time supersymmetry generated by the right-handed neu-

trino? Do different super-partners have different mass as seems clear if different super-partners can
be distinguished by their interactions. If they have different masses do they obey same mass formula
but with different p-adic prime defining the mass scale? This problem is discussed the article [?] and
in the chapter [K4].

4.3.2 About the SUSY generated by covariantly constant right-handed neutrinos

The interpretation of covariantly constant right-handed neutrinos (νR in what follows) in M4 × CP2

has been a continual head-ache. Should they be included to the spectrum or not. If not, then one has
no fear/hope about space-time SUSY of any kind and has only conformal SUSY. First some general
obsrevations.

1. In TGD framework right-handed neutrinos differ from other electroweak charge states of fermions
in that the solutions of the modified Dirac equation for them are delocalized at entire 4-D space-
time sheets whereas for other electroweak charge states the spinors are localized at string world
sheets [K7].

2. Since right-handed neutrinos are in question so that right-handed neutrino are in 1-1 corre-
spondence with complex 2-component Weyl spinors, which are eigenstates of γ5 with eigenvalue
say +1 (I never remember whether +1 corresponds to right or left handed spinors in standard
conventions).

3. The basic question is whether the fermion number associated with covariantly constant right-
handed neutrinos is conserved or conserved only modulo 2. The fact that the right-handed
neutrino spinors and their conjugates belong to unitarily equivalent pseudoreal representations of
SO(1,3) (by definition unitarily equivalent with its complex conjugate) suggests that generalized
Majorana property is true in the sense that the fermion number is conserved only modulo 2.
Since νR decouples from other fermion states, it seems that lepton number is conserved.

4. The conservation of the number of right-handed neutrinos in vertices could cause some rather
obvious mathematical troubles if the right-handed neutrino oscillator algebras assignable to
different incoming fermions are identified at the vertex. This is also suggested by the fact that
right-handed neutrinos are delocalized.

5. Since the νR:s are covariantly constant complex conjugation should not affect physics. Therefore
the corresponding oscillator operators would not be only hermitian conjugates but hermitian
apart from unitary transformation (pseudo-reality). This would imply generalized Majorana
property.

6. A further problem would be to understand how these SUSY candidates are broken. Different
p-adic mass scale for particles and super-partners is the obvious and rather elegant solution to
the problem but why the addition of right-handed neutrino should increase the p-adic mass scale
beyond TeV range?

If the νR:s are included, the pseudor3al analog of N = 1 SUSY assumed in the minimal extensions
of standard model or the analog of N = 2 or N = 4 SUSY N = 2 or even N = 4 SUSY is expected
so that SUSY type theory might describe the situation. The following is an attempt to understand
what might happen. The earlier attempt was made in [K4].
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1. Covariantly constant right-handed neutrinos as limiting cases of massless modes

For the first option covariantly constant right-handed neutrinos are obtained as limiting case for
the solutions of massless Dirac equation. One obtains 2 complex spinors satisfying Dirac equation
nkγkΨ = 0 for some momentum direction nk defining quantization axis for spin. Second helicity is
unphysical: one has therefore one helicity for neutrino and one for antineutrino.

1. If the oscillator operators for νR and its conjugate are hermitian conjugates, which anticommute
to zero (limit of anticommutations for massless modes) one obtains the analog of N = 2 SUSY.

2. If the oscillator operators are hermitian or pseudohermitian, one has pseudoreal analog of N = 1
SUSY. Since νR decouples from other fermion states, lepton number and baryon number are
conserved.

Note that in TGD based twistor approach four-fermion vertex is the fundamental vertex and
fermions propagate as massless fermions with non-physical helicity in internal lines. This would
suggest that if right-handed neutrinos are zero momentum limits, they propagate but give in the
residue integral over energy twistor line contribution proportional to pkγk, which is non-vanishing for
non-physical helicity in general but vanishes at the limit pk → 0. Covariantly constant right-handed
neutrinos would therefore decouple from the dynamics (natural in continuum approach since they
would represent just single point in momentum space). This option is not too attractive.

2. Covariantly constant right-handed neutrinos as limiting cases of massless modes

For the second option covariantly constant neutrinos have vanishing four-momentum and both
helicities are allowed so that the number of helicities is 2 for both neutrino and antineutrino.

1. The analog of N = 4 SUSY is obtained if oscillator operators are not hermitian apart from
unitary transformation (pseudo reality) since there are 2+2 oscillator operators.

2. If hermiticity is assumed as pseudoreality suggests, N = 2 SUSY with right-handed neutrino
conserved only modulo two in vertices obtained.

3. In this case covariantly constant right-handed neutrinos would not propagate and would natu-
rally generate SUSY multiplets.

3. Could twistor approach provide additional insights?

Concerning the quantization of νR:s, it seems that the situation reduces to the oscillator algebra
for complex M4 spinors since CP2 part of the H-spinor is spinor is fixed. Could twistor approach
provide additional insights?

As discussed, M4 and CP2 parts of H-twistors can be treated separately and only M4 part is now
interesting. Usually one assigns to massless four-momentum a twistor pair (λa, λ̂a

′
) such that one

has paa
′

= λaλ̂a
′
. Dirac equation gives λa = ±(λ̂a

′
)∗, where ± corresponds to positive and negative

frequency spinors.

1. The first - presumably non-physical - option would correspond to limiting case and the twistors λ
and λ̂ would both approach zero at the pk → 0 limit, which again would suggest that covariantly
constant right-handed neutrinos decouple completely from dynamics.

2. For the second option one could assume that either λ or λ̂ vanishes. In this manner one obtains
2 spinors λi, i = 1, 2 and their complex conjugates λ̂i as representatives for the super-generators
and could assign the oscillator algebra to these. Obviously twistors would give something gen-
uinely new in this case. The maximal option would give 2 anti-commuting creation operators
and their hermitian conjugates and the non-vanishing anti-commutators would be proportional
to δa,bλ

a
i (λb)∗j and δa,bλ̂

a′

i (λ̂b
′
)∗j . If the oscillator operators are hermitian conjugates of each

other and (pseudo-)hermitian, the anticommutators vanish.

An interesting challenge is to deduce the generalization of conformally invariant part of four-
fermion vertices in terms of twistors associated with the four-fermions and also the SUSY extension
of this vertex.
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4.3.3 Are fermionic propagators defined at the space-time level, imbedding space level,
or WCW level?

There are also questions related to the fermionic propagators. Does the propagation of fermions occur
at space-time level, imbedding space level, or WCW level?

1. Space-time level the propagator would defined by the modified Dirac operator. This description
seems to correspond to ultramicroscopic level integrated out in twistorial description.

2. At imbedding space level allowing twistorial description the lines of generalized Feynman dia-
gram would be massless in the usual sense and involve only the fermionic propagators defined
by the twistorial ”8-momenta” defining region momenta in twistor approach.This allows two
options.

(a) Only the projection to M2 and preferred I3−Y plane of the momenta would be contained
by the propagator. The integration over twistor space would be necessary to guarantee
Lorentz invariance.

(b) M4 helicity for internal lines would be ”wrong” so that M4 Dirac operator would not
annihilate it. For ordinary Feynman diagrams the propagator would be pkγk/p

2 and would
diverge but for twistor diagrams only its inverse pkγk would appear and would be well-
defined. This option looks attractive from twistor point of view.

3. If WCW level determines the sermonic propagator as in string models, bosonic propagator would
naturally correspond to 1/L0. The generalization of the fermionic propagator could be defined
as G/L0, where the super generator G contains the analog of ordinary Dirac operator as cm
part. The square of G would give L0 allowing to define the generalization of bosonic propagator.
The inverse of the fermionic propagator would carry fermion number.

This is good enough reason for excluding WCW level propagator and for assuming that the
fermion propagators defined at imbedding space level appear in the generalized Feynman dia-
grams and Super Virasoro algebra are applied only in particle states as done in p-adic mass
calculations.

The conclusion is that the original picture about fermion propagation is the only possible one.
If one requires that ordinary Feynman diagrams make sense then only the M2 part of 4-momentum
can appear in the propagator. If one assumes that only twistor formalism is needed then propagator
is replaced with its inverse in fermionic lines and if polarization is ”wrong” the outcome is non-
vanishing. This situation has interpretation in terms of homology theory. One could also the interpret
the situation in terms of residue calculus picking up pkγk as the residue of the pole of 1/(p2 + iε).

4.4 What could 4-fermion twistor amplitudes look like?

What can one conclude about 4-fermion twistor amplitudes on basis of N = 4 amplitudes? Instead
of 3-vertices as in SYM, one has 4-fermion vertices as fundamental vertices and the challenge is to
guess their general form. The basis idea is that N = 4 SYM amplitudes could give as special case the
n-fermion amplitudes and their supersymmetric generalizations.

4.4.1 A attempt to understand the physical picture

One must try to identify the physical picture first.

1. Elementary particles consist of pairs of wormhole contacts connecting two space-time sheets.
The throats are connected by magnetic fluxes running in opposite directions so that a closed
monopole flux loop is in question. One can assign to the ordinary fermions open string world
sheets whose boundary belong to the light-like 3-surfaces assignable to these two wormhole
contacts. The question is whether one can restrict the consideration to single wormhole contact
or should one describe the situation as dynamics of the open string world sheets so that basic unit
would involve two wormhole contacts possibly both carrying fermion number at their throats.

Elementary particles are bound states of massless fermions assignable to wormhole throats.
Virtual fermions are massless on mass shell particles with unphysical helicity. Propagator for
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wormhole contact as bound state - or rather entire elementary particle would be from p-adic
thermodynamics expressible in terms of Virasoro scaling generator as 1/L0 in the case of boson.
Super-symmetrization suggests that one should replace L0 by G0 in the wormhole contact but
this leads to problems if G0 carries fermion number. This might be a good enough motivation for
the twistorial description of the dynamics reducing it to fermion propagator along the light-like
orbit of wormhole throat. Super Virasoro algebra would emerged only for the bound states of
massless fermions.

2. Suppose that the construction of four-fermion vertices reduces to the level of single wormhole
contact. 4-fermion vertex involves wormhole contact giving rise to something analogous to a
boson exchange along wormhole contact. This kind of exchange might allow interpretation in
terms of Euclidian correlation function assigned to a deformation of CP2 type vacuum extremal
with Euclidian signature.

A good guess for the interaction terms between fermions at opposite wormhole contacts is as
current-current interaction jα(x)jα(y), where x and y parametrize points of opposite throats.
The current is defined in terms of induced gamma matrices as ΨΓαΨ and one functionally
integrates over the deformations of the wormhole contact assumed to correspond in vacuum
configuration to CP2 type vacuum extremal metrically equivalent with CP2 itself. One can
expand the induced gamma matrix as a sum of CP2 gamma matrix and contribution from
M4 deformation Γα = ΓCP2

α + ∂αm
kγk. The transversal part of M4 coordinates orthogonal to

M2 ⊂ M4 defines the dynamical part of mk so that one obtains strong analogy with string
models and gauge theories.

3. The deformation ∆mk can be expanded in terms of CP2 complex coordinates so that the modes
have well defined color hyper-charge and isospin. There are two options to be considered.

(a) One could use CP2 spherical harmonics defined as eigenstates of CP2 scalar Laplacian D2.
The scale of eigenvalues would be 1/R2, where R is CP2 radius of order 104 Planck lengths.
The spherical harmonics are in general not holomorphic in CP2 complex coordinates ξi,
i = 1, 2. The use of CP2 spherical harmonics is however not necessary since wormhole
throats mean that wormhole contact involves only a part of CP2 is involved.

(b) Conformal invariance suggests the use of holomorphic functions ξm1 ξ
n
2 as analogs of zn in the

expansion. This would also be the Euclidian analog for the appearance of massless spinors
in internal lines. Holomorphic functions are annihilated by the ordinary scalar Laplacian.
For conformal Laplacian they correspond to the same eigenvalue given by the constant
curvature scalar R of CP2. This might have interpretation as a spontaneous breaking of
conformal invariance.

The holomorphic basis zn reduces to phase factors exp(inφ) at unit circle and can be
orthogonalized. Holomorphic harmonics reduce to phase factors exp(imφ1)exp(inφ2) and
torus defined by putting the moduli of ξi constant and can thus be orthogonalized. Inner
product for the harmonics is however defined at partonic 2-surface. Since partonic 2-
surfaces represent Kähler magnetic monopoles they have 2-dimensional CP2 projection.
The phases exp(imφi) could be functionally independent and a reduction of inner product
to integral over circle and reduction of phase factors to powers exp(inφ) could take place
and give rise to the analog of ordinary conformal invariance at partonic 2-surface. This
does not mean that separate conservation of I3 and Y is broken for propagator.

(c) Holomorphic harmonics are very attractive but the problem is that it is annihilated by
the ordinary Laplacian. Besides ordinary Laplacian one can however consider conformal
Laplacian [?] (http://en.wikipedia.org/wiki/Laplace_operators_in_differential_
geometry#Conformal_Laplacian) defined as

D2
c = −6D2 +R , (4.8)

and relating the curvature scalars of two conformally scaled metrics. The overall scale
factor and also its sign is just a convention. This Laplacian has the same eigenvalue for
all conformal harmonics. The interpretation would be in terms of a breaking of conformal

http://en.wikipedia.org/wiki/Laplace_operators_in_differential_geometry#Conformal_Laplacian
http://en.wikipedia.org/wiki/Laplace_operators_in_differential_geometry#Conformal_Laplacian
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invariance due to CP2 geometry: this could also relate closely to the necessity to assume
tachyonic ground state in the p-adic mass calculations [K3].

The breaking of conformal invariance is necessary in order to avoid infrared divergences.
The replacement of M4 massless propagators with massive CP2 bosonic propagators in
4-fermion vertices brings in the needed breaking of conformal invariance. Conformal in-
variance is however retained at the level of M4 fermion propagators and external lines
identified as bound states of massless states.

4.4.2 How to identify the bosonic correlation function inside wormhole contacts?

The next challenge is to identify the correlation function for the deformation δmk inside wormhole
contacts.

Conformal invariance suggests the identification of the analog of propagator as a correlation func-
tion fixed by conformal invariance for a system defined by the wormhole contact. The correlation
function should depend on the differences ξi = ξi,1−ξi,2 of the complex CP2 coordinates at the points
ξi,1) and ξi,2 of the opposite throats and transforms in a simple manner under scalings of ξi. The

simplest expectation is that the correlation function is power r−n, where r =
√
|ξ1|2 + |ξ2|2 is U(2)

invariant coordinate distance. The correlation function can be expanded as products of conformal
harmonics or ordinary harmonics of CP2 assignable to ξi,1 and ξi,2 and one expects that the values of
Y and I3 vanish for the terms in the expansions: this just states that Y and I3 are conserved in the
propagation.

Second approach relies on the idea about propagator as the inverse of some kind of Laplacian.
The approach is not in conflict with the general conformal approach since the Laplacian could occur
in the action defining the conformal field theory. One should try to identify a Laplacian defining the
propagator for δmk inside Euclidian regions.

1. The propagator defined by the ordinary Laplacian D2 has infinite value for all conformal har-
monics appearing in the correlation function. This cannot be the case.

2. If the propagator is defined by the conformal Laplacian D2
c of CP2 multiplied by some numerical

factor it gives fro a given model besides color quantum numbers conserving delta function a
constant factor nR2 playing the same role as weak coupling strength in the four-fermion theory
of weak interactions. Propagator in CP2 degrees of freedom would give a constant contribution
if the total color quantum numbers for vanish for wormhole throat so that one would have
four-fermion vertex.

3. One can consider also a third - perhaps artificial option - motivated for Dirac spinors by the
need to generalize Dirac operator to contain only I3 and Y . Holomorphic partial waves are also
eigenstates of a modified Laplacian D2

C defined in terms of Cartan algebra as

D2
C ≡

aY 2 + bI23
R2

, (4.9)

where a and b suitable numerical constants and R denotes the CP2 radius defined in terms of the
length 2πR of CP2 geodesic circle. The value of a/b is fixed from the condition Tr(Y 2) = Tr(I23 )
and spectra of Y and I3 given by (2/3,−1/3,−1/3) and (0, 1/2,−1/2) for triplet representation.
This gives a/b = 9/20 so that one has

D2
C = (

9

20
Y 2 + I23 )× a

R2
. (4.10)

In the fermionic case this kind of representation is well motivated since fermionic Dirac operator
would be Y keAk γA + Ik3 e

A
k γA, where the vierbein projections Y keAk Y keAk and Ik3 e

A
k of Killing

vectors represent the conserved quantities along geodesic circles and by semiclassical quantization
argument should correspond to the quantized values of Y and I3 as vectors in Lie algebra of
SU(3) and thus tangent vectors in the tangent space of CP2 at the point of geodesic circle along
which these quantities are conserved. In the case of S2 one would have Killing vector field Lz
at equator.
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Two general remarks are in order.

1. That a theory containing only fermions as fundamental elementary particles would have four-
fermion vertex with dimensional coupling as a basic vertex at twistor level, would not be sur-
prising. As a matter of fact, Heisenberg suggested for long time ago a unified theory based on
use of only spinors and this kind of interaction vertex. A little book about this theory actually
inspired me to consider seriously the fascinating challenge of unification.

2. A common problem of all these options seems to be that the 4-fermion coupling strength is of
order R2 - about 108 times gravitational coupling strength and quite too weak if one wants to
understand gauge interactions. It turns out however that color partial waves for the deformations
of space-time surface propagating in loops can increase R2 to the square L2

p = pR2 of p-adic
length scale. For D2

C assumed to serve as a propagator of an effective action of a conformal field
theory one can argue that large renormalization effects from loops increase R2 to something of
order pR2.

4.4.3 Do color quantum numbers propagate and are they conserved in vertices?

The basic questions are whether one can speak about conservation of color quantum numbers in
vertices and their propagation along the internal lines and the closed magnetic flux loops assigned
with the elementary particles having size given by p-adic length scale and having wormhole contacts
at its ends. p-Adic mass calculations predict that in principle all color partial waves are possible in cm
degreees of freedom: this is a description at the level of imbedding space and its natural counterpart
at space-time level would be conformal harmonics for induced spinor fields and allowance of all of
them in generalized Feynman diagrams.

1. The analog of massless propagation in Euclidian degrees of freedom would correspond naturally
to the conservation of Y and I3 along propagator line and conservation of Y and I3 at vertices.
The sum of fermionic and bosonic color quantum numbers assignable to the color partial waves
woul be conserved. For external fermions the color quantum numbers are fixed but fermions in
internal lines could move also in color excited states.

2. One can argue that the correlation function for the M4 coordinates for points at the ends
of fermionic line do not correlate as functions of CP2 coordinates since the distance between
partonic 2-surface is much longer than CP2 scale but do so as functions of the string world
sheet coordinates as stringy description strongly suggests and that stringy correlation function
satisfying conformal invariance gives this correlation. One can however counter argue that for
hadrons the color correlations are different in hadronic length scale. This in turn suggests
that the correlations are non-trivial for both the wormhole magnetic flux tubes assignable to
elementary particles and perhaps also for the internal fermion lines.

3. I3 and Y assignable to the exchanged boson should have interpretation as an exchange of quan-
tum numbers between the fermions at upper and lower throat or change of color quantum num-
bers in the scattering of fermion. The problem is that induced spinors have constant anomalous
Y and I3 in given coordinate patch of CP2 so that the exchange of these quantum numbers
would vanish if upper and lower coordinate patches are identical. Should one expand also the
induced spinor fields in Euclidian regions using the harmonics or their holomorphic variants as
suggested by conformal invariance?

The color of the induced spinor fields as analog of orbital angular momentum would realized
as color of the holomorphic function basis in Euclidian regions. If the fermions in the internal
lines cannot carry anomalous color, the sum over exchanges trivializes to include only a constant
conformal harmonic. The allowance of color partial waves would conform with the idea that all
color partial waves are allowed for quarks and leptons at imbedding space level but define very
massive bound states of massless fermions.

4. The fermion vertex would be a sum over the exchanges defined by spherical harmonics or - more
probably - by their holomorphic analogs. For both the spherical and conformal harmonic option
the 4-fermion coupling strength would be of order R2, where R is CP2 length. The coupling
would be extremely weak - about 108 times the gravitational coupling strength G if the coupling
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is of order one. This is definitely a severe problem: one would want something like L2
p, where p

is p-adic prime assignable to the elementary particle involved.

This problem provides a motivation for why a non-trivial color should propagate in internal
lines. This could amplify the coupling strength of order R2 to something of order L2

p = pR2. In
terms of Feynman diagrams the simplest color loops are associated with the closed magnetic flux
tubes connecting two elementary wormhole contacts of elementary particle and having length
scale given by p-adic length scale Lp. Recall that νLνR pair or its conjugate neutralizes the weak
isospin of the elementary fermion. The loop diagrams representing exchange of neutrino and
the fermion associated with the two different wormhole contacts and thus consisting of fermion
lines assignable to ”long” strings and boson lines assignable to ”short strings” at wormhole
contacts represent first radiative correction to 4-fermion diagram. They would give sum over
color exchanges consistent with the conservation of color quantum numbers at vertices. This
sum, which in 4-D QFT gives rise to divergence, could increase the value of four-fermion coupling
to something of order L2

p = kpR2 and induce a large scaling factor of D2
C .

5. Why known elementary fermions correspond to color singlets and triplets? p-Adic mass calcu-
lations provide one explanation for this: colored excitations are simply too massive. There is
however evidence that leptons possess color octet excitations giving rise to light mesonlike states.
Could the explanation relate to the observation that color singlet and triplet partial waves are
special in the sense that they are apart from the factor 1/

√
1 + r2 , r2 =

∑
ξiξi for color triplet

holomorphic functions?

4.4.4 Why twistorialization in CP2 degrees of freedom?

A couple of comments about twistorialization in CP2 degrees of freedom are in order.

(a) Both M4 and CP2 twistors could be present for the holomorphic option. M4 twistors would
characterize fermionic momenta and CP2 twistors to the quantum numbers assignable to
deformations of CP2 type vacuum extremals. CP2 twistors would be discretized since I3
and Y have discrete spectrum and it is not at all clear whether twistorialization is useful
now. There is excellent motivation for the integration over the flag-manifold defining the
choices of color quantization axes. The point is that the choice of conformal basis with
well-defined Y and I3 breaks overall color symmetry SU(3) to U(2) and an integration over
all possible choices restores it.

(b) Four-fermion vertex has a singularity corresponding to the situation in which p1, p2 and
p1 + p2 assignable to emitted virtual wormhole throat are collinear and thus all light-like.
The amplitude must develop a pole as p3 +p3 = p1 +p2 becomes massless. These wormhole
contacts would behave like virtual boson consisting of almost collinear pair of fermion and
anti-fermion at wormhole throats.

4.4.5 Reduction of scattering amplitudes to subset of N = 4 scattering amplitudes

N = 4 SUSY provides quantitative guidelines concerning the actual construction of the scattering
amplitudes.

1. For single wormhole contact carrying one fermion, one obtains two N = 2 SUSY multiplets
from fermions by adding to ordinary one-fermion state right-handed neutrino, its conjugate
with opposite spin, or their pair. The net spin projections would be 0, 1/2, 1 with degeneracies
(1,2,1) for fermion helicity 1/2 and (0,−1/2,−1) with same degeneracies for fermion helicity
-1/2. These N = 2 multiplets can be imbedded to the N = 4 multiplet containing 24 states
with spins (1, 1/2, 0,−1/2,−1) and degeneracies given by (1, 4, 6, 4, 1). The amplitudes in N = 2
case could be special cases of N = 4 amplitudes in the same manner as they amplitudes of gauge
theories are special cases of those of super-gauge theories. The only difference would be that
propagator factors 1/p2 appearing in twistorial construction would be replaced by propagators
in CP2 degrees of freedom.
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2. In twistor Grassmannian approach to planar SYM one obtains general formulas for n-particle
scattering amplitudes with k positive (or negative helicities) in terms of residue integrals in
Grassmann manifold G(n, k). 4-particle scattering amplitudes of TGD, that is 4-fermion scat-
tering amplitudes and their super counterparts would be obtained by restricting to N = 2
sub-multiplets of full N = 4 SYM. The only non-vanishing amplitudes correspond for n = 4 to
k = 2 = n−2 so that they can be regarded as either holomorphic or anti-holomorphic in twistor
variables, an apparent paradox understandable in terms of additional symmetry as explained
and noticed by Witten. Four-particle scattering amplitude would be obtained by replacing in
Feynman graph description the four-momentum in propagator with CP2 momentum defined by
I3 and Y for the particle like entity exchanged between fermions at opposite wormhole throats.
Analogous replacement should work for twistorial diagrams.

3. In fact, single fermion per wormhole throat implying 4-fermion amplitudes as building blocks
of more general amplitudes is only a special case although it is expected to provide excellent
approximation in the case of ordinary elementary particles. Twistorial approach could allow
the treatment of also n > 4-fermion case using subset of twistorial n-particle amplitudes with
Euclidian propagator. One cannot assign right-handed neutrino to each fermion separately but
only to the elementary particle 3-surface so that the degeneration of states due to SUSY is
reduced dramatically. This means strong restrictions on allowed combinations of vertices.

Some words of critism is in order.

1. Should one use CP2 twistors everywhere in the 3-vertices so that only fermionic propagators
would remain as remnants of M4? This does not look plausible. Should one use include to
3-vertices both M4 and CP2 type twistorial terms? Do CP2 twistorial terms trivialize as a
consequence of quantization of Y and I3?

2. Nothing has been said about modified Dirac operator. The assumption has been that it disap-
pears in the functional integration and the outcome is twistor formalism. The above argument
however implies functional integration over the deformations of CP2 type vacuum extremals.

5 Could twistorialization make sense in vibrational degrees of
freedom of WCW?

An obvious question is whether the notion of twistor makes sense in vibrational degrees of freedom of
WCW?

1. Could one map light-like 3-surfaces to the points of an infinite-dimensional analog of twistor
space generalizing or perhaps even defining WCW and its analytic continuation analogous to
that of M4? Could one map partonic 2-surfaces to higher-dimensional spheres of this generalized
twistor-space. Note that 4-D tangent space data would distinguish between different light-like
3-surfaces associated with the same partonic 2-surfaces.

2. The geometric co-incidence relations for light-like geodesics of M4 as intersections of twistorial
spheres should generalize to the condition that two partonic 2-surfaces at the opposite ends of
CD are connected by a light-like 3-surface.

The conservative conclusion from previous considerations is that twistor description applies only
in cm degrees of freedom and has very natural interpretation as a manner to achieve Lorentz and
color invariance. Hence the twistorialization in vibrational degrees of freedom does not look like an
attractive idea. This idea however has however some very attractive features and therefore deserved
a more detailed debunking.

5.1 Algebraic incidence relations in the infinite-D context reduce to effec-
tively 4-D case

The generalization of algebraic incidence relations to infinite-dimensional context looks like a highly
non-trivial if not inpossible.

It is good to start with motivating observations.
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1. One could replace light-like vector of M4 or H with light-like tangent vector X at point of WCW.
Could one generalize the spinor pair (λ, µ) associated with a light-like M4 geodesic to a pair
of spinors of WCW identifiable as fermionic Fock states assignable to positive/negative energy
parts of zero energy states associated with the future and past boundaries of WCW or rather
with the ends of the light-like 3-surface at boundaries of CD? The formulas d1 = 2D−1 and
d2 = 2D×D are not encouraging and the only reasonable option seems to be that the spinorial
dimension must correspond to the dimension of the space generated by creation operator type
gamma matrices which is indeed as WCW dimension.

2. If the spinor pair represents positive and negative energy parts of a zero energy state, does the
co-incidence relation have interpretation as a quantum classical correspondence mapping zero
energy states consisting of fermions to light-like momenta in WCW and therefore (tangents of)
light-like geodesics of WCW? This kind of correspondence between space-time surfaces and quan-
tum states would be just what the physical interpretation of TGD requires. Infinite-D momenta
would correspond to pairs of initial and final states defining physical events in positive energy
ontology. A weaker correspondence is that single fermion states generated by WCW gamma
matrices are in 1-1 correspondence with the tangent space algebra represented as Kac-Moody
generators and in this case the situation seems much promising since bosonic representations
of Kac-Moody algebra can act in the same manner as a representation in terms of fermionic
bilinears. This would be the counterpart of incidence relation now.

3. What could be the interpretation of the infinite-D hermitian operator XAA′
σA, which should

relate positive and negative energy parts of the Fock state to each other? Could the algebra
of these vectors span the infinite-D algebra of WCW and could isometry generators and WCW
gamma matrices (or sigma matrices) span together a super-conformal algebra? This would be
analog for the finite-dimensional super-conformal algebra associated with ordinary twistors. X
defines a light-like tangent vector: could the interpretation be in terms of infinite-dimensional
momentum vector for which light-likeness condition generalizes ordinary light-likeness condition
allowing massivation in M4 just as p-adic mass calculations suggest?

5.2 In what sense the numbers of spinorial and bosonic degrees of freedom
could be same?

The detailed consideration of spinors reveals what looks like a grave difficulty: 2-dimensional con-
siderations suggests that the number of spinorial degrees of freedom of WCW should be same as
the dimension of WCW. N -dimensional spinor space has however dimension, which is exponentially
larger than the dimension WCW. Stating it in slightly different manner: the space of complexified
WCW gamma matrices expressible in terms of fermionic oscillator operators is exponentially smaller
than the space of fermionic Fock states generated by them. As such this need not spoil hope about
algebraic incidence relations but would spoil the nice super-symmetry between bosonic and fermionic
dimensions. Could the situation be saved by considering only single fermion states or by ZEO or could
a generalization of octonionic sigma matrices help?

The condition that single fermion states are on 1-1 correspondence with bosonic states, which
correspond to tangent vectors that is Kac-Moody type algebra, makes sense. The representation of
tangent space momentum vector identified as Kac-Moody generator as fermionic bilinear and the con-
dition that it annihilates physical state would be the counterpart for the representation of momentum
as bilinear in spinors appearing in twistor. The analog of incidence relation would express the action
of Kac-Moody generator on fermion state or its commutator action on super generator.

The attempt to generalize momentum conservation conditions essential for the twistor formalism
however fails. The generators of the Cartan algebra of Kac-Moody algebra commute but central
extension spoils the situation and one can talk only about the cm parts of Cartan algebra Kac-Moody
generators as conserved quantities.

5.3 Could twistor amplitudes allow a generalization in vibrational degrees
of freedom?

The original idea was that twistorialization could make sense in vibrational degrees of freedom. It
soon became clear that this is not needed since twistorialization in cm degrees of freedom is all the is



5.3 Could twistor amplitudes allow a generalization in vibrational degrees of freedom?25

needed. Therefore the answer to the question of the title is ”No”.

5.3.1 Twistorialization in minimal sense is possible

It has been already found that twistorialization in M4 × CP2 emerges naturally from the integration
over selections of quantization axes for Super Virasoro algebra. The amplitudes have the general
Grassmannian form and the additional structures comes from vertices determined by super conformal
invariance and from integration over WCW.

One can of course ask whether twistorialization could make sense in more general sense so that
the integration over WCW 4-D tangent space degrees of freedom could be carried out by introducing
twistor like entities in vibrational degrees of freedom: essentially this would mean representation of
bosonic Kac-Moody algebra in terms of fermionic bilinears and this kind of representations indeed
exist: the condition implying these representations would be that the sums of fermionic and bosonic
Kac-Moody generators annihilate the vertices. One might say that small deformation of partonic
2-surface corresponds to generation of fermion pairs and has therefore physically observable.

5.3.2 Twistorialization in strong sense in vibrational degrees of freedom fails

The obvious question is whether twistorial amplitudes could allow a generalization obtained by re-
placing 2-spinors with N -spinors with N even approaching infinity. Skeptic could argue that the
treatment of CP2 degrees of freedom in terms of momenta is wrong: for quantum states one must
use color quantum numbers: color isospin, hypercharge and the value of the Casimir operator. As a
matter fact, the number of these parameters is three and happens to be the same as the number of
components of unit vector characterizing the direction of CP2 geodesic for which all color generators
define conserved charges classically.

It its quite possible that the twistor approach does not make sense for color quantum numbers.
It could however make sense for WCW degrees of freedom and co-incidence relations would allow
to assign to tangent vector characterizing light-like 3-surfaces as orbit of parton in terms of positive
and negative energy states at its ends. Quantum classical correspondence would be realized and
even this would be a wonderful result concerning the interpretation of the theory, especially quantum
measurement theory.

Therefore it is interesting to find whether twistor amplitudes allow a formal generalization at least.
The essential elements is the reduction of the construction of amplitudes to that for on mass shell
vertices with on mass shell property generalized to allow complex light-like momenta. From vertices
one can build more general amplitudes by using simple basic operations and ends up with a recursion
formula for the n-particle loop amplitudes in terms of Grassmannian. The especially interesting feature
from TGD point of view is that the integrals are residue integrals and make sense also p-adically since
for algebraic extension of p-adic numbers 2π = N × sin(2π/N) gives the definition of p-adic 2π: here
N corresponds to the largest root of unity involved with the extension. Hence twistorial construction
could provide a universal solution to the p-adicization problem.

The algebraic incidence relations were already earlier discussed by allowing also the option N > 2
(N is power of two). It was found that the incidence relations can be satisfied but that the solutions
reduce essentially to those for N = 2. Since this point is important one can look in more detail what
happens for N > 2-spinors (N is power of 2 in finite-D case)?

1. For general amplitude the number of conditions to be satisfied - the dimension of the Grass-
mannian G(k, n) - depends only on the number n of the particles and the number k of positive
helicity external particles. For 3-vertex and k = 2 with complex light-like momenta at most
n = 3 spinors λα resp. λ̂α

′
are linearly independent so that their number reduces effectively to

neff ≤ 3. For N = 2 and neff = 3 both λα and λ̂α
′

span the entire 3-D complex space and no
solutions are obtained without posing additional conditions on the spinors. Already for N = 2
either λi or λ̂i are linearly independent. If this holds also now for - say - λi and λ̂α

′
span only

2-plane both, one obtains a solution. In other words, solutions given by 2-spinors give rise to
solutions given by N -spinors reducing to 2-spinors effectively. Very probably there are no other
solutions. Without these conditions one obtains 2×neff×3−3 = 15 conditions and the effective
number of spinor components is only 2× 3× 1 = 12 < 15.
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2. The reduction implies that in M4 vibrational degrees of freedom some 4-D sub-space of tangent
space of WCW is always selected and vibrational momenta in vertex belong to this plane.
Momentum conservation however allows different 4-D sub-spaces in different vertices: the 4-D
spaces at vertices connected by line must intersect along 1-D space at least. Hence the physics
in vibrational degrees of freedom would reduce to 4-D only at vertices. An interesting question
is whether this might be true for the dynamics of Kähler action at vertices or - if momentum
conservation indeed holds true - in the sense that the light-like 3-surface corresponds to a motion
of partonic 2-surface in 4-D subspace of single particle WCW. Same applies in CP2 vibrational
degrees of freedom.

3. Similar considerations apply in the case of 4-vertex since the number of conditions depends on
N2 and requires the effective reduction of N to N = 2.

These strange conditions on the dynamics reducing it to effectively four-dimensional one encourage
to conclude that twistorial approach in vibrational degrees of freedom produces only problems. In
M4 × CP2 degrees it should work with minor modifications.

6 Conclusions

The conclusions of these lengthy considerations are following.

1. Twistorialization takes place naturally at the level of imbedding space and twistor space is
Cartesian product of those associated with M4 and CP2. The twistor space has interpretation
as a flag manifold characterizing the choices of quantization axes for longitudinal momentum
components and spin and for isospin and hyper-charge. The integration over twistor space
guarantees Lorentz invariance and color invariance.

2. The Super Virasoro conditions apply only to the entire physical states associated with particle
like 3-surfaces containing in general several partonic 2-surfaces. These states can be regarded
as bound states of in general non-parallelly propagating massless fermions. Virtual fermions are
massless but possess wrong polarization and residue integral replaces fermion propagator with
its inverse making sense mathematically. The light-likeness conditions for light-like 3-surfaces
allow to deduce the general form of Virasoro conditions. Covariantly constant right-handed
neutrinos could define the fermion number conserving analog of N = 4 SUSY.

3. Apart from CP2 twistorialization the resulting formalism is essentially identical with Grassman-
nian twistor formalism with one important exception. The 3-vertex of gauge theories is replaced
with fermionic 4-vertex which is non-vanishing also for non-parallel on mass shell real momenta
and thus avoids the IR singularity of gauge theory vertex.

4. At the level of WCW incidence relations have an analogy following from expressibility of Kac-
Moody generators as sums of bosonic parts analogous to M4 coordinates and fermionic parts
bilinear in fermionic operators creating WCW spinors and thus analogous to spinors. The
attempt to generalize four-momentum conservation to quadratic conditions for WCW spinors
fails.

5. Twistor formalism allows to construct the analogs of Feynman rules for QFT limit of TGD.
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