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Abstract: It is demonstrated how useful it is to utilize general

logic-systems to investigate finite consequence operators (operations).

Among many other examples relative to a lattice of finite consequence

operators, a general logic-system characterization for the lattice-

theoretic supremum of a nonempty collection of finite consequence

operators is given. Further, it is shown that for any denumerable

language L there is a rather simple collection of finite consequence op-

erators and, for a propositional language, three simple modifications

to the finitary rules of inference that demonstrate that the lattice of

finite consequence operators is not meet-complete. This also demon-

strates that simple properties for such operators can be language spe-

cific. Using general logic-systems, it is further shown that the set of all

finite consequence operators defined on L has the power of the contin-

uum and each finite consequence operator is generated by denumerably

many general logic-systems. Examples are given that define operators

in terms of general logic-systems so that the physical entities produced

require that the basic logic-system algorithm be applied.
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1. Introduction.

In order to avoid an ambiguous definition for the “finite consequence operator,”

it is assumed that a language L is a nonempty set within informal set-theory (ZF).

In the ordinary sense, a set A ⊂ L is finite if and only if A = ∅ or there exists a

bijection f : A → [1, n] = {x | (1 ≤ x ≤ n) and (n ∈ IN)}, where IN is the set of all

natural numbers including zero. It is always assumed that A is finite if and only if A is

Dedekind-finite. Finite always implies, in ZF, Dedekind-finite. There is a model η for

ZF that contains a set that is infinite and Dedekind-finite (Jech, 1971, pp. 116-118).

On the other hand, for ZF, if A is well-ordered or denumerable, then each B ⊂ A is
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finite if and only if B is Dedekind-finite. In all cases, if the Axiom of Choice is adjoined

to the ZF axioms, finite is equivalent to Dedekind-finite. The definition of the general

and finite consequence operator is well know but can be found in Herrmann (2006,

2004, 2001, 1987).

The subset map being consider has been termed as a (unary) “operation.” It has

also termed either as a consequence or a closure operator by Wójcicki (1981). Due to

its changed properties when embedded into a nonstandard structure, where for infinite

L the nonstandard extension of such a map is not a map on a power set to a power set

but remains, at least, a closure operator, these two names were later combined to form

the term consequence operator (Herrmann (1987)). In order to differentiate between

two types, either the word general or finite (or finitary) is often adjoined to this term

(Herrmann (2004)). Although finite consequence operators are closure operators with

a finite character, they have additional properties, due to their set-theoretic definition,

not shared, in general, by closure operators. Indeed, they have properties apparently

dependent upon the construction of the language elements (Tarski, 1956, p. 71).

Since Tarski’s introduction of consequence operator (Tarski, 1956, p. 60), although

he mentions that it is not required for his investigations, a language L upon which such

operators are defined has been assumed to have, at the least, a certain amount of

structure. For example, without further consideration, it has been assumed that L

can, at least, be considered as a semigroup or, often, a free algebra. Indeed, such struc-

tures have become “self-evident” hypotheses. In order to emphasize that such special

structures should not be assumed, the term “non-organized” is introduced (Herrmann

(2006)). Although independent structural properties may exist, they are not considered

in any manner as part of the hypotheses.

Formally, a non-organized L is a language where only “specifically stated” prop-

erties P1, P2, . . . are assumed and where either informal set theory or, if necessary,

informal set theory with the Axiom of Choice is used to establish theorems informally.

Hence, all other independent properties L might possess are ignored. Indeed, the only

property L is assumed to possess is the method of “word” formation from a non-empty

alphabet of symbols, images and other symbolized sensory information. When ap-

propriate, the term “non-specialized” is only used as a means to stress this standard

methodology.

2. General Logic-Systems.

In Herrmann (2006), the notion of a “logic-system” is discussed and an algorithm

is described not in complete detail. The algorithm is presented here, in detail, since

it is applied to most of the examples. In what follows, the algorithm, with associated

objects, defines a general logic-system that when applied to a specific case yields general
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logic-system deduction. The process is exactly the same as used in formal logic except

for the use of the RI(L) as defined below. Informally, the pre-axioms is a nonempty

A ⊂ L. (The term “per-axioms” is used so as not to confuse these objects with the

notion of the “consequence operator axioms” C(∅).) The set of pre-axioms may contain

any logical axiom and, in order not to include them with every set of hypotheses, A can

contain other objects N ⊂ L that are consider as “Theory Axioms” such as natural laws

as used for physical theories. There have been some rather nonspecific definitions for

the rules of inference and how they are applied. It is shown in Herrmann (2006) that,

for finite consequence operators, more specific definitions are required. A finitary rules

of inference is a fixed finite set RI(L) = {R1, . . . , Rp} of n-ary relations (0 < n ∈ IN)

on L. Note: it can happen that RI(L) = {∅}. (This corrects a misstatement made

in Herrmann (2006, p. 202.) The pre-axioms are considered as a unary relation in

RI(L). An infinite rules of inference is a fixed infinite set RI(L) of such n-ary relations

on L. A general rules of inference is either a fixed finitary or infinite set of rules of

inference. It is shown in Herrmann (2006), that there are finite consequence operators

that require an infinite RI(L), while others only require finite RI(L). The term “fixed”

means that no member of RI(L) is altered by any set X ⊂ L of hypotheses that are

used as discussed below. All RI(L), in this paper, are fixed. For the algorithm, it is

always assumed that an activity called deduction from a set of hypotheses X ⊂ L can

be represented by a finite (partial) sequence of numbered (in order) steps {b1, . . . , bm}

with the final step bm a consequence (result) of the deduction. Also, bm is said to be

“deduced” from X. All of these steps are considered as represented by objects in the

language L. Each such deduction is composed either of the zero step, indicating that

there are no steps in the sequence, or one or more steps with the last numbered step

being some m > 0. In this inductive step-by-step construction, a basic rule used to

construct a deduction is the insertion rule. If the construction is at the step number

m ≥ 0, then the insertion rule, I, can be applied. This rule states: Insertion of any

hypothesis (premise) from X ⊂ L, or insertion of a member from the set A, or the

insertion of any member of any other unary relation can be made and this insertion

is denoted by the next step number. Having more than one unary relation is often

very convenient in locating particular types of insertions. The pre-axioms are often

partitioned into, at the least, two unary relations. If the construction is at the step

number m > 0, then RI(L) allows for an additional insertion of a member from L

as a step number m + 1, in the following manner. For each (j + 1)-ary Ri, j ≥ 1, if

f ∈ Ri and f(k) ∈ {b1, . . . , bm}, k = 1, . . . , j, then f(j + 1) can be inserted as a step

number m + 1. In terms of the notation `, where for A ⊂ L, X ` A signifies that

each x ∈ A is obtained from some finite F ⊂ X by means of a deduction, it follows

from the above defined process that if X ` b, then there is either (1) a nonempty finite
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F = {b1, . . . , bk} ⊂ X such that F ` b and each member of F is utilized in RI(L) to

deduce b, or (2) b is obtained by insertion of any member from any unary relation, or

(3) b is obtained using (2) by finitely many insertions and finitely many applications of

the other n-ary (n > 1) rules of inference. Hence, it follows that this algorithm yields

the same “deduction from hypotheses” transitive property, as does formal logic, in that

X ` Y ⊂ L and Y ` Z ⊂ L imply that X ` Z.

Note the possible existence of special binary styled relations J′ that can be mem-

bers of various RI(L). These relations are identity styled relations in that the first and

second coordinates are identical except that the second coordinate can carry one ad-

ditional symbol that is fixed for the language used. In scientific theory building, these

are used to indicate that a particular set of natural laws or processes does not alter

a particular premise that describes a natural-system characteristic. The characteristic

represented by this premise carries the special symbol and remains part of the final

conclusion. Scientifically, this can be a significant fact. The addition of this one special

symbol eliminates the need for the extended realism relation (Herrmann (2001)). Other

deductions deemed as extraneous are removed by restricting the language. The deduc-

tion is constructed only from either the rule of insertion or the rules of inference via

AG (notation for the entire algorithm as described in this and the previous paragraph.)

This concludes the definition of the logic-system. If RI(L) is known to be either finitary

or infinite, then the term “general” is often replaced by the corresponding term finite

or infinite, respectively.

For L, X ⊂ L, general rules of inference RI(L), and applications of AG, the

notation RI(L) ⇒ C means that the map C :P(L) → P(L) (P(L) = the power set of

L) is defined by letting C(X) = {x | (X ` x) and (x ∈ L)}. The following result is

established here not because its “proof” is complex, but, rather, due to its significance.

Moreover, in Herrmann (2001), it is established in a slightly different manner and

the result as stated there is not raised to the level of a numbered theorem. Similar

theorems relative to general consequence operators viewed as closure operators have

been established in different ways using a vague notion of deduction. What follows is

a basic proof for the finite consequence operator using the required detailed definition

for a general logic-system deduction.

Theorem 2.1 Given non-specialized L, a general rules of inference RI(L) and

that the general logic-system algorithm AG is applied. If RI(L) ⇒ C, then C is a finite

consequence operator.

Proof. Let C :P(L) → P(L) be defined by application of the general logic-system

algorithm AG to each X ⊂ L using the general rules of inference RI(L). Let x ∈ X.

By insertion, {x} ` x. Hence, X ⊂ C(X). If X ⊂ Y ⊂ L and x ∈ C(X), then there
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is an F ∈ F(X) (= the set of all finite subsets of X) (= the set of all finite subsets

of X)such that F ` x and F ⊂ Y. Hence, x ∈ C(Y ). Consequently, C(X) ⊂ C(Y ).

Let y ∈ C(C(X)). From the definition of C , (1) X ` y if and only if y ∈ C(X).

By the transitive property for `, C(X) ` C(C(X)) implies that X ` C(C(X)), and

(1) still holds. Hence, if y ∈ C(C(X)), then X ` y implies that y ∈ C(X). Thus,

C(C(X)) ⊂ C(X). Therefore, C(X) = C(C(X)) and C is a general consequence

operator. Let x ∈ C(X). Then, as before, there is an FF(X) such that F ` x.

Consequently, C(X) ⊂
⋃
{C(F ) | F ∈ F(X)} ⊂ C(X) and C is a finite consequence

operator.

Let Cf (L) be the set of all finite consequence operators defined on P(L). Each C ∈

Cf (L) defines a specific general rules of inference RI∗(C) such that RI∗(C) ⇒ C∗ = C

(Herrmann (2006)). However, in general, RI(L) 6= RI∗(C).

Let C(L) be the set of all general consequence operators defined on P(L). Define

on C(L) a partial order ≤ as follows: for C1, C2 ∈ C(L), C1 ≤ C2 if and only if, for each

X ⊂ L, C1(X) ⊂ C2(X). The structure 〈C(L),≤〉 is a complete lattice. The meet, ∧, is

defined as follows: C1∧C2 = C3, where for each X ⊂ L, C3(X) = C1(X)∩C2(X). For

each nonempty H ⊂ C(L),
∧

H means that, for each X ⊂ L, (
∧

H)(X) =
⋂
{C(X) |

C ∈ H} and, further,
∧
H = inf H.

As is customary, in all of the following examples, explicit n-ary relations are rep-

resented in n-tuple form. Relative to the operator ∪, in the same manner as done in

Herrmann (2006), if {a, b, c, d} ⊂ L, {{(a, b), (c, d)}} ⇒ B, and {{(a, c)}} ⇒ R, then

defining B ∨ R as (B ∨ R)(X) = B(X) ∪ R(X) = K(X) yields that K /∈ C(L). Thus,

C(L) is not closed under the ∨ operator as defined in this manner. Hence, if “combined”

deduction is defined by this particular ∨, then, in general, the combination does not

follow the usual deductive procedures used through out mathematics and the physical

sciences.

Lemma 2.7 in Herrmann (2004) can be improved by simply assuming that

B ⊂ P(L), L ∈ B. The same proof as lemma 2.7 yields that the map defined by

C(X) =
⋂
{Y | (X ⊂ Y ) and (Y ∈ B)} ∈ C(L). For a given C ∈ C(L), Y ⊂ L is

a C-system (closed system) if and only if Y = C(Y ) (a closure operator fixed point).

For each C ∈ C(L), let S(C) be the set of all C-systems. The equationally defined

S(C) = {C(X) | X ⊂ L} and L ∈ S(C). (If B is a closure system (i.e. closed

under arbitrary intersection Wójcicki (1981) and B defines C , then B = S(C).) For

nonempty H ⊂ Cf (L), let nonempty S ′ =
⋂
{S(C) | C ∈ H}. Using B = S ′, if,

for each X ⊂ L, (
∨

w H)(X) =
⋂
{Y | (Y ⊂ L) and (X ⊂ Y ) and (Y ∈ S ′)},

then, for 〈C(L),≤〉,
∨

w H = sup H. The set of all consequence operators defined

on P(L) forms a complete lattice 〈C(L),∧,∨w , I, U〉 with lower unit I, the identity
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map, and upper unit U, where for each X ⊂ L, U(X) = L. If Cf (L) is restricted to

〈C(L),∧,∨w , I, U〉, then 〈Cf (L),∧,∨w , I, U〉 is a sublattice. It is shown in Herrmann

(2004), that 〈Cf (L),∧,∨w , I, U〉 is a join-complete sublattice. (Note: Corollary 2.11 in

the published version of Herrmann (2004) should read ∅ 6= A ⊂ Cf .) Using finitary rules

of inference, the fact that ∪ is not, in general, a satisfactory join operator for 〈S(C),⊂〉

is easily established. Consider non-specialized L such that {a, b, c, d} ⊂ L. Define

RI(L) = {{(a, c)}, {(a, b, c, d)}} ⇒ B. Then B({b}) ∪ B({a}) = {a, b, c}. But, {a, b, c}

is not a C-system for B since B({a, b, c}) = {a, b, c, d}. Defining for each C ∈ C(L) and

each X,Y ∈ S(C), X ] Y = C(X ∪ Y ), then the structure 〈S(C),⊂〉 is a complete

lattice with the join ] and meet X ∧ Y = X ∩ Y.

For each non-specialized language L and non-empty H ⊂ Cf (L), a natural inves-

tigation would be to determine whether there is a significant relation between
∨

w H

and any collection of general logic-systems that generates each member of H. For each

C ∈ H, let RIC(L) be any general rules of inference such that RIC(L) ⇒ C .

Theorem 2.2. If L is non-specialized, then for the structure 〈Cf (L),∧,∨w , I, U〉

and each nonempty H ⊂ Cf (L), it follows that
⋃
{RIC(L) | C ∈ H} ⇒

∨
w H.

Proof. For H, let
⋃
{RIx(L) | x ∈ H} ⇒ U , X ⊂ L, and C ∈ H. Since C ≤ U ,

then U(X) ⊂ C(U(X)) ⊂ U(U(X)) = U(X) implies that U(X) = C(U(X)). Thus, for

each C ∈ H, U(X) is a C-system and, hence, U(X) ∈ S ′ =
⋂
{S(C) | C ∈ H}.

Suppose that X ⊂ Y ∈ S ′. Then, for each C ∈ H, X ⊂ Y = C(Y ) implies that,

for each C ∈ H, X ⊂ U(X) ⊂ U(C(Y )). Consider b ∈ U(C(Y )). Take any finite

F ⊂ Y = C(Y ) such that F is used to obtain b by application of AG as the next step in

a deduction using
⋃
{RIx(L) | x ∈ H}. Then F is used along with finitely many (≥ 0)

RICi
(L) ⇒ Ci ∈ H to obtain {b1, . . . , bm}. Since for each i ∈ [1, k], bi ∈ C ′(Y ) = Y,

for some C ′ ∈ H, then {b1, . . . , bm} ⊂ Y. If b /∈ {b1, . . . , bn}, then there are finitely

many (≥ 0) RICj
(L) ⇒ Cj ∈ H and from F and {b1, . . . , bn} the set {c1, . . . , ck} is

deduced. But again {c1, . . . , ck} ⊂ Y. This process will continue no more than finitely

many times until b is obtain as a member of a finite set of deductions from members

of
⋃
{RIx(L) | x ∈ H} and b ∈ Y. Hence, U(C(Y )) ⊂ Y. But, C(Y ) = Y implies that

Y ⊂ U(C(Y )). Hence, Y = U(C(Y )) = U(Y ) and, since U(X) ⊂ U(Y ), then U(X) ⊂

Y = C(Y ) for each C ∈ H. Therefore, U(X) ⊂ Y ∈ S ′. Hence, U(X) = (
∨

w H)(X).

After showing that Cf (L) is closed under finite ∧, then Theorem 2.2 yields a general

logic-system proof that 〈Cf (L),∧,∨w , I, U〉 is a join-complete lattice. It is rather obvi-

ous that, in general, if RIC(L) ⇒ C and RID(L) ⇒ D, then RIC(L)∩RID(L) 6⇒ C∧D.

For example, let {a, b, c, d} ⊂ L and RIC(L) = {{(a, b)}}, RID(L) = {{(a, b), (b, c)}}.

Then C({a}) = {a, b}, D({a}) = {a, b, c} implies that (C ∧ D)({a}) = {a, b}.
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But, RIC(L) ∩ RID(L) = ∅ ⇒ I and I({a}) = {a}. Even if we took the intersec-

tion, ∩1, of the individual relations from each general rules of inference, then, for

RIE(L) = {{(a, b), (b, c)}} and RIF (L) = {{(a, b), (b, d), (d, c)}}, it would follow that

RIE(L)∩1 RIF (L) 6⇒ E∧F. However, it is obvious that, for each nonempty H ⊂ Cf (L),

if
⋂
{RIx(L) | x ∈ H} ⇒ G ∈ H, then G =

∧
H.

There is a constraint that can be placed on deduction from hypotheses using

algorithm AG. With one exception, there is a RI(L) that if the restricted RI(L) ⇒ D,

then D is not a general consequence operator.

Example 2.2. (Limiting the number of steps in an RI(L)-deduction need not yield

a consequence operator.) Suppose that AG has the added restriction that no deduction

from hypotheses be longer then n steps, where n > 1. For each L, such that |L| ≥ n+1,

let a 6= b, for i ∈ [1, n − 1], xi /∈ {a, b}, {xi, a, b} ⊂ L, and if i, j ∈ [1, n − 1], i 6= j,

then xi 6= xj . Consider RI(L) = {{(x1, . . . , xn−1, a)}, {(a, b)}}. Let `≤n indicate that

each deduction from premises, using RI(L), most have n or fewer steps. Then, using

this restriction, for X ⊂ L, let D(X) = {x | (X `≤n x) and (x ∈ L)}. Consider

X = {x1, . . . , xn−1}. Then D(X) = X∪{a}. But D(D(X)) = D(X∪{a}) = X∪{a, b}.

This follows since the definition requires that you calculate in no more than n steps

all of the consequences of {x1, . . . , xn−1, a} using any finite subset of {x1, . . . , xn−1, a}.

Thus, D2 6= D and D /∈ C(L). Let PR be a standard predicate language (Mendelson,

1987, pp. 55-56), where PR has more than one predicate with one or more arguments

and with the set of variables V . Let R1 be the set of all axioms, R2 = {(A, (∀xA)) |

(x ∈ V) and (A ∈ PR)} and R3 = {(A → B), A,B) | A,B ∈ PR}. If you restrict

predicate deduction to 3 steps or less, then restricted RI(PR) ⇒ CP and CP is not a

general consequence operator.

3. Special Consequence Operators.

Throughout this section, unless other specific properties are stated, the language

L is non-specialized. In Herrmann (1987), two significant collections of consequence

operators are defined. Let X ∪ Y ⊂ L. (1) Define the map C(X,Y ):P(L) → P(L) as

follows: for A ∈ P(L) and A∩Y 6= ∅, C(X,Y )(A) = A∪X. If A∩Y = ∅, C(X,Y )(A) =

A. (2) Define the map C ′(X,Y ):P(L) → P(L) as follows: for A ∈ P(L) and Y ⊂

A, C ′(X,Y )(A) = A∪X. If Y 6⊂ A, C ′(X,Y )(A) = A. It is shown in Herrmann (1987)

via long set-theoretic arguments that each C(X,Y ) ∈ Cf (L), and C ′(X,Y ) ∈ C(L). If

Y ∈ F(L), then C ′(X,Y ) ∈ Cf (L). Now suppose that Y is infinite and Y ⊂ A. Then

for each F ∈ F(L), since Y 6⊂ F , then C ′(X,Y )(F ) = F. Hence,
⋃
{C ′(X,Y )(F ) | F ∈

F(A)} = A. But if X 6⊂ A, then C ′(X,Y )(A) = A∪X 6=
⋃
{C ′(X,Y )(F ) | F ∈ F(A)}.

Therefore, if infinite Y ⊂ A ⊂ L, and X 6⊂ A, then C ′(X,Y ) ∈ C(L) − Cf (L). Thus, in

general, for infinite L, C ′(X,Y ) need not be finite.
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In some cases, the use of logic-systems can lead to rather short proofs for conse-

quence operator properties, where other methods require substantial effort.

Example 3.1. (An obvious sufficient condition for
∧

H ∈ Cf (L), when nonempty

H ⊂ Cf (L)) For non-specialized L, let nonempty H ⊂ Cf (L). If
⋂
{RIx(L) | x ∈ H} ⇒

G ∈ H, then G =
∧

H.

Example 3.2. (Establishing that some significant general consequence operators

are finite.) We use logic-systems to show that C(X,Y ) ∈ Cf (L) and, if Y ∈ F(L), X ⊂

L, then C ′(X,Y ) is finite. For C(X,Y ) if Y or X = ∅, let RI(L) = ∅ ⇒ I. If Y and

X 6= ∅, let RI = {R2}, where R2 = {(y, x) | (y ∈ Y ) and (x ∈ X)}. Then it follows

easily that RI(L) ⇒ C(X,Y ). Thus, C(X,Y ) is finite. If X = ∅, then C ′(Y,X) = I

and RI ′(L) = ∅ ⇒ I. Now let Y ∈ F(L). If Y = ∅ and X 6= ∅, then let RI ′(L) = {R1},

where R1 = X. If X and Y 6= ∅, then there is an bijection f : [1, n] → Y . In this

case, let RI ′(L) = {{(f(1), . . . , f(n), x) | x ∈ X}}. Then RI ′(L) ⇒ C ′(X,Y ). Hence, if

Y ∈ F(L), then C ′(X,Y ) ∈ Cf (L).

Relative to a standard propositional language PD, after some extensive analysis

and using the  Loś and Suszko matrix theorem, Wójcicki (1973) defines a collection of

k-valued matrix generated finite consequence operators {C∗
k | k = 2, 3, 4, . . .} such that

the greatest lower bound for this set in the lattice 〈C(PD),≤〉 is not a finite consequence

operator. Are there simpler examples that lead to the same conclusion?

Example 3.3. (Showing that, in general, 〈Cf (L),∧,∨w , I, U〉 is not a meet-

complete lattice.) Let L be any denumerable language. Hence, there is a bijection

f : IN → L. Define Bn = f [[1, n]] for each n ∈ IN
>0, where IN>0 = {n | (n ∈ IN) and (n ≥

1)}. Then for each n ∈ IN
>0, f(0) 6∈ Bn. Let X = {f(0)} and Cn = C ′(X,Bn). We have

that inf{C ′(X,Bn) | (n ≥ 1) and (n ∈ IN)} = C ′(X, f [IN] − {f(0)}) ≤ C ′(X,Bn) for

each Bn. But, since f [IN]−{f(0)} is an infinite set and, for A = f [IN]−{f(0)},X 6⊂ A,

then C ′(X, f [IN]−{f(0)}) is not a finite consequence operator. The fact that this con-

sequence operator is not finite also holds for non-denumerable infinite L, where L either

has additional structure, or an additional set-theoretical axiom such as the Axiom of

Choice is utilized.

Of course, C ′(X,Y ) is not the usual type of consequence operator one would

associate with a propositional language. Are there simple finite consequence operators

associated with standard formal propositional deduction that are not meet-complete?

Using finite logic-systems, the following examples show how various weakenings

for deduction relative to, at least, a propositional language PD, generate collections
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of consequence operators that also establish that 〈Cf (PD),∧,∨w , I, U〉 is not a meet-

complete lattice.

The propositional language PD defined by denumerably many (distinct) propo-

sitional variables P = {Pn | n ∈ IN}, and is constructed in the usual manner from

the unary ¬ and binary → operations. For the standard propositional calculus and

deduction, one can use the following sets of axioms, with parenthesis suppression

applied. R1 = {X → (Y → X) | (X ∈ PD) and (Y ∈ PD)}, R2 = {(X →

(Y → Z)) → ((X → Y ) → (X → Z)) | (X ∈ PD) and (Y ∈ PD) and (Z ∈

PD)}, R3 = {(¬X → ¬Y ) → (Y → X) | (X ∈ PD) and (Y ∈ PD)}. The one

rule of inference MP = R3(PD) = {(X → Y,X, Y ) | (X ∈ PD) and (Y ∈ PD)}.

Let R1(PD) = R1 ∪ R2 ∪ R3. Standard proposition deduction PD uses the rules of

inference RI(PD) = {R1(PD), R3(PD)} ⇒ CPD. Let T be the set of all PD tautolo-

gies under the standard valuation. Then by the soundness and completeness theorems

T = CPD(∅). In all of the following examples, R1, R2, R3, R1(PD), R3(PD) are as

defined in this paragraph and RI(PD) is modified in various ways

Example 3.3.1. (Propositional deduction with a restricted Modus Ponens rule

yields {Cn} ⊂ Cf (L) such that
∧
{Cn} /∈ Cf (L).) Consider PD. Let J = {((Pi →

P0), Pi, P0) | i ∈ IN
>0}. Let H = R3(PD)−J . For each n ∈ IN

>0, let R3
n = H∪{((Pn →

P0), Pn, P0)}. Thus, the Modus Ponens rule of inference is restricted for each n ∈ IN
>0.

Let RIn(PD) = {R1(PD), R3
n} ⇒ Cn. Now let X = {(Pn → P0), Pn | n ∈ IN

>0}.

Then, for all n ∈ IN
>0, P0 ∈ Cn(X). Hence, P0 ∈ (

∧
{Cn})(X). Consider for any

n ∈ IN
>0, F ∈ F(X) such that P0 ∈ Cn(F ). Since P0 /∈ T , then P0 /∈ Cn(∅) implies

that F 6= ∅. Further, for some k ∈ IN
>0, {(Pk → P0), Pk} ⊂ F. For, assume not.

First, consider, for n ∈ IN
>0, {(Pj → P0), Pk} ⊂ F, {k, j} ⊂ IN

>0, k 6= j and assume

that (Pj → P0), Pk `n P0. This implies that `n (Pj → P0) → (Pk → P0), where

the part of the Deduction Theorem being used here does not require any of the objects

removed from the original R3(PD). But, `n implies |=PD, using the standard valuation

which is not dependent upon our restriction. Hence. |=PD (Pj → P0) → (Pk → P0).

However, 6|=PD (Pj → P0) → (Pk → P0). The same would result, for k ∈ IN
>0, if

only the wwfs Pk, or only wwfs (Pk → P0) are members of F . Hence, there exists a

unique M = max{i | ((Pi → P0) ∈ F ) and (Pi ∈ F ) and (i ∈ IN
>0)}. But, then P0 /∈

CM+1(F ). Consequently, this implies that P0 /∈ (
∧
{Cn})(F ). Thus,

⋃
{(

∧
{Cn})(F ) |

F ∈ F(X)} 6= (
∧
{Cn})(X) yields that

∧
{Cn} ∈ C(PD) − Cf (PD).

For each R ⊂ R1(PD), always consider the standard elementary valuations for

propositional wwfs. Also, if R ⊂ R1(PD), X ⊂ PD, and one considers the rules of

inference RIR(PD) = {R,R3(PD)} ⇒ CR, then X `R A implies that X `PD A.

Hence, if X `R A, then, for each x ∈ A, there is some F ∈ F(X) such that F |=PD x.
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Although, T = CPD(∅), in general, T 6= CR(∅). However, we do have that T ⊃ CR(∅).

Example 3.3.2. (PD axioms with a missing atom P0 yields {C ′
m} ⊂ Cf (PD)

such that
∧
{C ′

m} /∈ Cf (PD).) Consider PD. Let L′ be the propositional language

defined by the set of propositional variables {Pi | i ∈ IN} − {P0}. For each m ∈ IN
>0,

let Jm = (¬P0 → ¬Pm) → (Pm → P0), and let R′
1, R′

2, R′
3 be defined for the language

L′, in the same manner as R1, R2, R3 are defined for L, and let R3(PD) be defined

for PD. Let R1 = R′
1 ∪R′

2 ∪R′
3, and, for each m ∈ IN

>0, R1
m = {R1 ∪ {Jm}}. For each

m ∈ IN
>0, the rules of inference is the set RI ′

m(PD) = {R1
m, R3(PD)} ⇒ C ′

m and, for

this rules of inference, the P0 only appears in Jm ∪ R3(PD). For any deduction, the

Modus Ponens (MP) rule is applied to previous steps. Thus, no deduction, from empty

hypotheses,using R1 can either lead to any wwf that includes P0 or utilize any wwf that

contains P0. The only member of the R1
m that is not a premise and can be used for a

deduction that contains P0 is Jm. Let X = {(¬P0 → ¬Pn), Pn | n ∈ IN
>0}. Obviously,

for each m ∈ IN
>0, P0 ∈ C ′

m(X) and, since Jm ∈ T and P0 /∈ T , then P0 /∈ C ′
m(∅).

Consider for each m ∈ IN
>0, nonempty A ∈ {Jn, (¬P0 → ¬Pn), Pn, P0 | (m 6= n ∈

IN
>0)}. Then 6`m A. For example, let A = Jn n 6= m. This would imply that `m Jn. But,

since Jm 6= Jn and there is no member of R1 to which MP applies, such a deduction is

not possible. The same holds for (¬P0 → ¬Pn), Pn, P0. Further, for A and for j 6= m or

k 6= m, (¬P0 → ¬Pj), ¬Pk 6`m P0 for the same reasons. Consider for each m ∈ IN
>0,

any nonempty F ∈ F(X) such that P0 ∈ C ′
m(F ). Then, from the above discussion,

(¬P0 → ¬Pm), Pm ∈ F. Let a = max{i | ((¬P0 → Pi) ∈ F ) and (i ∈ IN
>0)}, b =

max{i | (Pi ∈ F ) and (i ∈ IN
>0)}. Let M = max{a, b}. Then, again from the above

discussion, P0 /∈ C ′
M+1

(F ). Hence, P0 /∈
⋃
{(

∧
{C ′

m})(F ) | F ∈ F(X)} 6= (
∧
{C ′

m})(X)

and
∧
{C ′

m} ∈ C(PD) − Cf (PD).

Example 3.3.3. (Extended positive propositional deduction (PD axiom restric-

tions) yields {Cn} ⊂ Cf (L) such that
∧
{Cn} /∈ Cf (L).) Consider PD. As defined above

T is the set of all A ∈ PD such that A is a tautology. The h-rule is defined as follows:

for each A ∈ L, let h(A) denote the wwf that results from erasing each ¬ that appears

in A. Now let R′
3 = {X | (X ∈ R3) and (h(X) ∈ T )}. Then ∅ 6= R′

3 6= R3 since if

h(A) ∈ T , then h((¬A → ¬B) → (B → A)) = (h(A) → h(B)) → (h(B) → h(A)) ∈ T

and (¬P0 → ¬Pn) → (Pn → P0) /∈ R′
3, n 6= 0. Let R1 = R1 ∪R2 ∪R′

3 and RIh(PD) =

{R1, R3(PD)} ⇒ Ch. For each n ∈ IN
>0, let Jn = (¬P0 → ¬Pn) → (Pn → P0) and

the rules of inference be RIn(PD) = {R1 ∪ {Jn}, R3(PD)} ⇒ Cn. Each member of

R1 is a tautology. Further, if A ∈ R1, h(A) ∈ T and if A, A → B ∈ R1, then

h(A → B) = h(A) → h(B) implies that h(B) ∈ T . Thus, for each A ∈ R1, the h op-

erator coupled with any MP application using members of R1 yields a tautology. This

operator acts as a concrete model for deduction from empty hypotheses using members

10



of R1. But for certain members of R3, the h-rule does not generate a tautology and

these members of R3 are, therefore, not members of Ch(∅). That is, for R1 ∪ R2 ∪ R′
3

they are not RIh(PD) theorems. Each Jn is a wwf that cannot be established by

RIh(PD) deduction (i.e. Jn /∈ Ch(∅)). Consider for any n ∈ IN
>0, A `n B. This

can always be written as Jn, A `n B. Suppose that for each m,n, k ∈ IN
>0, k 6= n,

that Xm = (¬P0 → ¬Pm) and Xm, Pk `n P0. Since the derivation of the Deduction

Theorem does not utilize R3, then this implies that `n Jn → (Xm → (Pk → P0)).

This can be considered as a deduction that does not use Jn as a premise. Hence,

this implies that `h Jn → (Xm → (Pk → P0)). However, this contradicts the h-rule.

Also notice that Jm = (Xm → (Pm → P0)). Hence, for each m,n, k ∈ IN
>0, k 6= n;

Xm, Pk 6`n P0, implies that for any nonempty A ⊂ {Xm, Pk | m,k ∈ IN
>0) and (k 6= n)},

that P0 /∈ Cn(A). However, for each n ∈ IN
>0, P0 ∈ Cn({Xn, Pn}). This also shows

that for each m,n ∈ IN
>0, n 6= m, that Cn({Xm, Pm}) 6= Cm({Xm, Pm}), and that

Cn 6= Cm. Obviously, since P0 /∈ T implies that, for each n ∈ IN
>0, 6`n P0, then, for

each n ∈ IN
>0, P0 /∈ Cn(∅). Now let Y = {(¬P0 → ¬Pi), Pi | i ∈ IN

>0}. Then, for

each n ∈ IN
>0, P0 ∈ Cn(Y ). Thus P0 ∈ (

∧
{Cn | n ∈ IN

>0})(Y ). Consider for each

j ∈ IN
>0, any F ∈ F(Y ) such that P0 ∈ Cj(F ). Then F 6= ∅. If {i | ((¬P0 → ¬Pi) ∈

F ) and (i ∈ IN
>0)} 6= ∅, let a = max{i | ((¬P0 → ¬Pi) ∈ F ) and (i ∈ IN

>0)}. If

{i | (Pi ∈ F ) and (i ∈ IN
>0)} 6= ∅, let b = max{i | (Pi ∈ F ) and (i ∈ IN

>0)}. The

set {a, b} 6= ∅. Let M = max{a, b}. It has been shown that P0 /∈ CM+1(F ). Hence,

from this, it follows that P0 /∈
⋃
{(

∧
{Cn})(F ) | F ∈ F(Y )} 6= (

∧
{Cn})(Y ) and

∧
{Cn} ∈ C(PD) − Cf (PD).

For the two collections {Cn}, {Cm} ⊂ Cf (L) defined in the last two examples,

notice that
⋂

RI ′
m(PD) =

⋂
RIn(PD) = {R3(PD)} ⇒ G ∈ Cf (L), G(∅) = ∅, G <

∧
{Cn}. The rule of inference {R3I(PD)} yields axiomless propositional deduction.

Example 3.4. (For denumerable L, the set Cf (L) has the power of the continuum.)

For any set X, let |X| denote its cardinality (power). For the real numbers IR, |IR| is

often denoted by ℵ or c. For a denumerable language L, let a ∈ L and consider L−{a}.

Let I be the set of all infinite subsets of L − {a}. Then |I| = ℵ. For any X ∈ I, let

RX = {(a, x) | x ∈ X} and RIX(L) = {RX} ⇒ CX . Then CX({a}) = {a} ∪ X. Let

A,B ∈ I, A 6= B. Then CA({a}) = {a} ∪ A 6= {a} ∪ B = CB({a}). Thus |{CX | X ∈

I}| = ℵ. Hence |Cf (L)| ≥ ℵ.

On the other hand, each C ∈ Cf (L) corresponds to a general logic-system RI∗(C)

such that RI∗(C) ⇒ C (Herrmann (2006)). From the definition of a general rules

of inference, RI∗(C) corresponds to a finite or denumerable subset of
⋃

({Ln | n ∈

IN
>0}. But, P(

⋃
({Ln | n ∈ IN

>0}) = ℵ. Hence, |Cf (L)| ≤ ℵ. Consequently, |Cf (L)| = ℵ.

(Depending upon the definition of “infinite,” this result may require the Axiom of
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Choice.)

Example 3.5. (For denumerable L, there exists denumerably many general logic-

systems that generate a specific C ∈ Cf (L).) Let C ∈ Cf (L). Let RI∗(C) be the general

logic-system defined in Herrmann (2006), where RI∗(C) ⇒ C. Notice that when the

RI∗(C)-deduction algorithm is used, it can be considered as applied to
⋃

RL∗(C).

For ∅ 6= X ∈ F(L), where |X| = n ∈ IN and n ≥ 1, consider any finite sequence

{x1, . . . , xn} = X. Define RX = {(x1 , . . . , xn, x) | x ∈ X}. Let general logic-system

RI1(L) = {RX | X ∈ F(L)}. Then RI1(L) ⇒ C1 ∈ Cf (L). Let Y ∈ P(L). If

Y = ∅, then C1(∅) = ∅. For nonempty Y ∈ P(L), let y ∈ C1(Y ), then y is de-

duced via the general logic-system algorithm. Hence, there exists a nonempty finite

A = {y1, . . . , yn} = Y ⊂ L such that (y1, . . . , yn, y) ∈ RI1(L) and y ∈ Y. Hence,

C1(Y ) ⊂ Y implies that C1(Y ) = Y. Thus, C1 is the identity finite consequence opera-

tor.

Let RI+(L) = RI1(L) ∪ RI∗(C) and note that RI+(L) ⇒ C. For each n ∈ IN
>0,

there exists rn ∈
⋃

RI+(L), such that rn = (x1, . . . , xn, x), i = 1, . . . , n and x ∈

C({x1, . . . , xn}). Thus, there exists a unique nonempty R+
n ⊂

⋃
RI+(L) such that rn ∈

R+
n if and only if pi(rn) = xi ∈ L, 1, . . . n. The general logic-system RI∗∗(L) = {R1}∪

{R+

k | k ∈ IN
>0} ⇒ C, where R1 = C(∅). (Notice that if A ⊂ R1, then C(A) = R1.)

For each n ∈ IN, n ≥ 2, let (y1, . . . , yn) be a distinct permutation p of the coordinates

xi, i = 1, . . . , n, for a specific rn = (x1, . . . , xn, x) ∈ R+
n . Let rp

n = (y1, . . . , yn, x) and

R+
n,p = (R+

n − {rn}) ∪ {rp
n}. This yields RIp

n(L) = (RI∗∗(L) − {R+
n }) ∪ {R+

n,p} ⇒ C .

If {m,n} ⊂ IN, m, n ≥ 2, m 6= n, then RIp
n(L) 6= RIp

m(L). Further, if p, q are two

distinct permutations, then RIp
n(L) 6= RIq

n(L). Hence, for each n ∈ IN, n ≥ 2, there

exists n! distinct general logic-systems that generate the same C ∈ Cf (L). Whether,

for each n ∈ IN, n ≥ 2, only one distinct permutation or each of the n! permutations

are utilized to define distinct general logic-systems, this implies that there exists a

denumerable collection of general logic-systems each member of which generates C .

4. GGU-model Operators.

Of significance to physical science is the use of logic-systems to generate the de-

velopment of a universe. For the General Grand Unification Model (GGU-model),

logic-system behavior implies that physical-systems are designed from rationally or-

dered combinations of constituents and each complete physical-system follows a ratio-

nal development over observer-time. Their application to the GGU-model appears in

Herrmann (2013a) and (2013b).

5. A Formal Measurement of Intelligence.

General logic-systems can yield a measure for intelligence via the seventh Thur-
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stone (1941) factor - “Reasoning” ability. Moreover, what follows is but one measure,

among others, for the ability to reason.

Definition 5.1 Intelligence is the ability to apply rules specified by an algorithm

and to obtain from a given logic-system distinct deductive conclusions or a specific

conclusion. This ability is measured over a specific time interval. The measure itself

is the number of reasoned distinct conclusions that can be obtained during that time

interval or whether the final conclusion is the one specified.

Intelligence, as measured by Definition 5.1, has significant meaning via comparison.

Consider the hyper-interval ∗ [ci, ci+1] and the hyperfinite logic-system Kq
1
(λ) restricted

to this hyper-interval. Consider the informal standard general logic-system Kq
1 obtained

from Kq
1 by restriction. Let agent A be a standard agent that can perform only finitely

many [i.e. n] deductions over a time internal of length ci+1 − ci. (The first step is

Fq(tq(i, 0)).) This is generalized to a set of “superagents” A where for each n ∈ IN, n >

0, there is a member of A that can deduce n distinct members of dq during this time

interval. Hence, for any n ∈ IN, n > 0, there is a superagent An that can obtain n

distinct deductions over time period ci+1 − ci.

Formally characterizing the “number” of distinct deductions that a superagent can

make, this number can be compared with hyperfinite set of deductions. Consider the

λ in Theorems 4.q (Herrmann (2006b)). There exists a superagent agent H that can

deduce λ+ 1 distinct members of dq
x. If one does not include the notion of superagents,

then assume that an agent H exists that can do hyper-deduction. In mathematical

logic, one can assign the superagent notion to such statements as “for the formal

predict logic and any n ∈ IN, n > 0, there are well-formed formulas (formal theorems)

that require n or more steps to deduce.” (There are multi-universe models that do

allow for superagents to exist in the sense that deductions can be continued via other

agents indefinitely. Thus, in this case, a superagent is a finite collection of agents or,

depending upon the cosmology, a single agent.) Definition 6.1 can be interpreted as

follows: For an agent H that can do hyper-deduction, agent H is, in general, infinitely

more intelligent than standard agent A ∈ A and, in general, can obtain conclusions

that A cannot. (In a few special cases, although it is not considered as deduction,

special analysis can determine all the values of { ∗Fq( ∗tq(i, j)) | 0 ≤ j ≤ λ}.)

6. Potentially-Infinite.

There is yet another form of “finite” that could affect the definition of the finite

consequence operator. Throughout the mathematical logic literature, different methods

are employed to generate the basic collection of symbols. At the most basic stage,

collections of symbols are in one-to-one correspondence with the set of natural numbers.
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In other cases, the symbols are in one-to-one correspondence with a potentially-infinite

set of natural numbers. Then we have the case where the author only uses the notation

. . . and what this means is left to the imagination. There are cases where a strong

informal set theory is used and the symbols are stated as being elements of an infinite

set of various cardinalities where “infinite” is that as defined by Dedekind. In this

regard, the notion of “finite” often appears to be presupposed. The following is often

expressed in a rather informal manner using classical logic and the stated portions of

informal set theory that are similar to portions of ZF (Zermelo-Fraenkel). However,

various aspects are stated in terms of informal C-set theory, where C-set theory is set

theory with the axiom of infinity removed. It would be similar to (ZF − INF) + there

exists a set A. Of course, no results requiring an axiom of infinity are considered for

C-set theory except for constructed induction. Of course, independent objects can be

adjoined. The Axiom of Choice can be added to this axioms as well.

If one is willing to accept the informal existence of the natural numbers, then

there is a model for these axioms composed only of ordinary finite sets (Stoll, 1963,

p. 298) However, all the objects discussed in C-set theory are sets. It is acknowledged

that concrete collections of strings of symbols can be used to demonstrate intuitive

knowledge about behavior and there is common acceptance that the behavior is being

displayed by such collections. Obviously, you can adjoin other sets to C-set theory that

may have properties independent from those of the axioms.

Using the above axioms and the existence of, at least, one set allows for a proof that

the empty set exists. The constructed natural numbers are generated from the empty

set, where due to the provable uniqueness of this set, it can be represented by writing a

constant symbol ∅. The important axiomatic fact about ∅ is that, in this C-set theory,

there is no set A such that A ∈ ∅. The empty set is defined as a constructed natural

number. Hence, in the usual manner, beginning with ∅, which can be symbolized

as 0, the set {∅} (symbolized as 1) is constructed. Under the informal C-set theory

definitions, {∅} = 1 = ∅ ∪ {∅}. Using the basic definition for the operators, if n is a

constructed natural number, then n ∪ {n} is a construed natural number (symbolized

by n + 1, where the + is not, as yet, to be construed as a binary operation.) We add

the axiom that if n is a constructed natural number and a = n, then a is a constructed

natural number that cannot be differentiated from n by C-set theory. There is also a

constructed induction rule for the constructed natural numbers. That is, you consider

the constructed natural numbers 1, n, n + 1. (You can also start at 0 or 2, etc.) If a

property P holds for 1 and assuming that P holds for n you establish that P holds for

n + 1, then this means the following: “Then given a natural number k, the Intuitionist

observes that in generating k by starting with 1 and passing over to k by the generation

process, the property P is preserved at each step and hence holds for k” (Wilder, 1967,
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p. 249). Of course, the Intuitionist does not assume classical logic.

In order for the statement a ∈ b to have meaning, a and b must be sets. Sets of

constructed natural numbers exist by application of the power set axiom. We show that

for a given constructed natural number n if a ∈ n, then a ⊂ n. Clearly, this statement

holds if n = ∅. Assume that it holds for a constructed n. Consider the constructed

n ∪ {n} and a ∈ (n ∪ {n}). Then, by definition, either a = n or a ∈ n. If a ∈ n, then

from the induction hypothesis a ⊂ n. If a = n, then a ⊂ n ∪ {n}. Hence, the property

that an element of a constructed natural number is also a subset of that constructed

natural number is preserved. We now show that, for each constructed natural number

n, if a ∈ n, then a is a constructed natural number. Clearly, the statement that “if

a ∈ ∅, then a is a natural number” holds for 0 since a ∈ ∅ is false. Suppose that for

constructed natural number n, the statement that “if a ∈ n, then a is a constructed

natural number” holds. Consider a ∈ n ∪ {n}. Then a = n or a ∈ n. If a = n, then

by definition a is a constructed natural number. On the other hand, if a ∈ n, then by

the induction hypothesis, a is a constructed natural number. Thus, for a constructed

natural number n if a ∈ n, then a is a constructed natural number.

You also have such things as if n is a constructed natural number and a ∈ n, b ∈

a ⊂ n, then b ∈ n and b is a constructed natural number. In C-set theory, if a is a set,

then you cannot write a ∈ a. Since every subset of a constructed natural number is a

set of constructed natural numbers, then, for n 6= 0, let the “interval” [1, n] be the set

of all constructed natural numbers 0 6= a ∈ n ∪ {n} = n + 1. As an example, consider

3. Now suppose that a ∈ 2 ∪ {2}. Then a = 2 or a ∈ 2. Thus, 2 ∈ [1, 2]. If a ∈ 2, then

a 6= 2. Since 2 ⊂ 3 and 1 ∈ 2, then 1 ∈ 3. Hence, 1 ∈ [1, 2]. Notice that 0 ∈ 3, but 0

is excluded. Thus [1, 2] = {1, 2}. This reduction process terminates and is considered

as a valid “proof” in constructive mathematics according to Brower (Wilder, 1967, p.

250). Further, this model for [1, 2] is considered as a concrete symbolic model. Such

concrete models as well as diagrams are considered as acceptable in informal proofs.

We do not need to assume that the set of all such intervals exists as a set. For each

constructed natural number n 6= 0, there exists a unique [1, n]. There are models for

formal ZF, where although such correspondences exist between individual sets, there

does not exist in the model an actual one-to-one correspond whose restriction leads to

these individual correspondences. By direct translation of the formal theory of ZF, it

is contained in the informal set theory. Set theory includes such things as the general

induction principle and can be used as part of the metamathematical principles. What

aspects of set theory or C-set theory that are used to establish each result can be

discovered by examining specific proofs. The following is presented in a somewhat

more formal way than as first described in the introduction.
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Definition 6.1. (CPI) A nonempty set X is constructed potentially-infinite if for

any interval [1, n], there exists an injection f : [1, n] → X. The negation of this statement

is the definition for potentially-finite (CPF). One would consider such an object X as

an additional set for C-set theory. (Care must be taken relative to this definition

and formal logic. Since it is not assumed that there is an object in the domain of a

model that contains all of the constructed intervals or constructed natural numbers,

quantification must be constrained. In a formal logic such additional model domains

are not necessarily employed in the actual formal statements. When this definition is

considered for formal ZF, then potentially infinite (PI) is defined for each member of

the set {[1, n] | 0 6= n ∈ IN}, where IN is the set of natural numbers.)

(OF) A set X is ordinary-finite if it is either empty or there is an interval [1, n]

and a bijection f : [1, n] → X. (The negation of this statement is the definition for

ordinary-infinite (OI).

(DI) A nonempty set X is Dedekind-infinite if there is an injection f : X → X such

that f [X] 6= X. The negation of this statement is the definition for Dedekind-finite

(DF).

Theorem 6.2. (i) A set X is CPI if and only if is it OI. (ii) In the presence of

formal ZF, DI implies formal PI, but formal OI does not imply formal DI. (iii) In the

presence of formal ZF + Denumerable Axiom of Choice, formal OI implies formal PI.

Proof. (i) Suppose that nonempty X is CPI and not OI. Hence, there is an interval

[1, n] and a bijection f : [1, n] → X. Thus, f is an injection. Further, there is an injection

g: [1, n + 1] → X. Therefore, (f−1|g) is an injection from [1, n + 1] into [1, n]. By a

simple modification of Lemma and Theorem 5.2.1 in Wilder (1967, p. 69) using only

constructed induction and other constructive notions and allowed diagrams, it is shown

that no such injection can exist. Thus CPI implies OI.

Conversely, suppose that X is OI. Then X 6= ∅. Hence, let a ∈ X. Define f = (1, a).

Then injection f : [1, 1] → X. Assume that for constructed [1, n] there exists an injection

g: [1, n] → X. Since X is OI, then, g cannot be a bijection, thus X−g[[1, n]] 6= ∅. Hence,

there is some b ∈ X − g[[1, n]]. Define the injection h = g ∪ {(n + 1, b)}: [1, n + 1] → X.

Hence, by constructed induction, X is CPI.

Now we need an additional discussion at this point. Have I used the informal

Axiom of Choice to establish this converse? According to Wilder (1967, p. 72), in this

case due to the language used,“There seems to be no logical way of settling this matter”

(i.e. whether the Axiom of Choice has been used.) However, Wilder is considering an

“infinite” selection processed needed to generate a function defined on the completed

IN. Indeed, I have not mentioned the notion of “finite” in this proof only the notion of
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the injection or bijection is used and the fact that sets are nonempty. Each constructed

interval is an OF set.

From the viewpoint of constructivism, you can only consider an ordinary finite

collection of such intervals at some point and in any “proof.” It is well known that

even if a selection is implied by this method, then the Axiom of Choice is not needed

for any such ordinary finite collection of non-empty sets (Jech, 1973, p. 1). For this

result to hold, a constructed induction proof is all that is needed since in each case the

set under consideration is a constructed ordinary finite set of actual sets. I consider this

as a logical argument that the axiom has not been used. Note that an injection using

such expanding injections from the collection of all constructed intervals has not been

claimed for two reasons. First, this set is not assumed to exist within this C-set theory

but may need to be adjoined as an independent object. Second, even it did exist one

cannot take the union of these denumerable many functions and claim that you have a

denumerable function unless a stronger axiom is used such as the denumerable Axiom

of Choice. On the other hand, since what constitutes a “proof” sometimes depends

upon whether a method of proof is accepted, this proof may be judged by some as

inadequate.

(ii) A well known result from basic formal ZF set theory, and hence informal set

theory, is that a set X is Dedekind infinite if and only if it contains a denumerable

subset D. In formal ZF or informal set theory, objects are sets and the constructed

intervals are closed natural number intervals. Hence, for the set of natural numbers IN,

there is a bijection f : IN → D. Each closed interval is a subset of IN. Thus, for each

interval [1, n], f restricted to [1, n], satisfies the PI definition.

There is model of formal ZF that contains a set that is ordinary infinite and

Dedekind finite (Jech, 1971). Hence, OI does not imply DI using formal ZF.

(iii) In formal ZF + Denumerable Axiom of Choice, every ordinary infinite set

contains a denumerable subset (Jech, 1973, p. 20). Hence OI implies PI.

Of course, in the presence of formal ZF and the Axiom of choice, OI implies DI

via an argument that uses the equivalent statement that all nonempty sets can be

well-ordered.
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