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Abstract: The General Grand Unification Model (GGU-model) solves a prob-

lem personally presented to this author, in 1979, by John A. Wheeler. It an-

swers the question “Is physics legislated by a cosmogony?” It is a cosmogony

that yields “A Theory of Everything” for any descriptive cosmology. Further,

it satisfies certain basic requirements. It shows that “the basic structure is

something deeper than geometry, something that underlies both geometry and

particles (‘pregeometry’).” It should answer “the greatest questions on the

books of physics: How did our universe come into being? And of what is it

made?” That is, “what is the substance out of which the universe is made?”

“But is it really imaginable that the deeper structure of physics should govern

how the universe is made? Is it not more reasonable to believe the converse,

that the requirement that the universe should come into being governs the

structure of physics?” Thus, how the universe comes into being should be

distinct from the physical laws that the process yields. It should also satisfy

the “observer-participator” principle. That is, we not only observe but change

the behavior of our universe through our physical activities. The GGU-model

solution to the General Grand Unification Problem has two rather obvious

philosophic interpretations. It is due to this fact that this solution is not com-

mon knowledge. Although these interpretations need not be applied, many

individuals have worked to suppress this solution so as to prevent these inter-

pretations from being made. In this article, a new and more refined approach

is presented. It is shown how a predicted ultra-logic-system is directly related

to the generation of a developmental and hyper-developmental paradigm. This

developmental paradigm portion of the GGU-model corresponds directly to the

instruction information form found in Herrmann (2013).

1. Introduction.

[[Certain notational conventions have been employed throughout all of my recent

presentations in nonstandard analysis. You have certain notation that indicates objects
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within the standard superstructure and the same notion appears relative to the super-

structure as it is embedded into the nonstandard model. The content indicates that

the result symbolically expressed is a member of one or the other superstructure. My

notation is NOT consistent with that used by other authors. Due to the construction of

the model used, the embedded standard objects correspond to the equivalence classes

that contain the constant sequences.

For example, let A be a standard member. Some authors denote σA as the set

of all such equivalence classes determined by members of A. However, in my writings
σA = { ∗a | a ∈ A}. Prior to introducing the ultrapower style construction, some

authors for certain sets A, notationally identify such classes with the same symbol

as A. I have taken the same approach but it is relative to the equivalence classes of

constant sequences. That is, in my writings you will find statements such as D ⊂ ∗D.

The complete notation indicates that this is a statement about the ”nonstandard”

superstructure. This D is the set of all constant sequence equivalence classes determined

by each standard d ∈ D. I could, but have not, employed a specific notation, such as
oA, to indicate this.

Thus, in general, one sees statements such as D ⊂ ∗D and σD ⊂ ∗D. These,

generally state different properties about different subsets of ∗D. Further, for certain

finite sets, B, if follows that under this symbolic identification that ∗B = B.]]

Whenever the EGS is employed, the coding i as originally defined might need to

be extended, due to the possible increase in cardinality of the W ′. It may need to be a

bijection onto various if not all of the real numbers as indicated in Herrmann (1978-93,

p. 88). However, incorporating an entire real number alphabet is obviously not neces-

sary since we are using, at least, a two language approach. The actual language being

investigated can vary greatly. On the other hand, the modified Robinson approach can

now be applied. This simply amounts to removing the i notation. This was done in

various cases, where it was suppressed. Various theorems that are extended to the EGS

case may need to be so modified. Some, such as the following Theorem 9.3.1, may need

to be reestablished.

The requirements for satisfactory cosmogony are found in Patten and Wheeler

(1975). For this approach, as a universe develops over observer-time, there is a one-

to-one correspondence between members of a standard developmental paradigm for a

descriptive cosmology and real physical events. A descriptive cosmology is any cosmol-

ogy that can be represented via a comprehensible language, diagrams, images, or any

digitized virtual reality sensory impressions. Physical science is presented in a standard

language. Specific rational arguments are applied to this language and, where used, cor-
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responding mathematical statements. As physically presented, the patterns displayed

by such arguments should follow classical logic. The described entities and behavior

can be observed or theoretically assumed. It is from these descriptions that predic-

tions are made and verified. The descriptions and the logical patterns they present

are the actual fundamental requirements of physical science. It is a description that

corresponds to an observable or assumed physical event. Hence, descriptions form a

model, a representation, for real or assumed physical behavior.

The rationality displayed by developing physical events is mimicked by

the rational patterns linguistically displayed by a developmental paradigm

as it depicts the conjoining of entities and physical-systems. Constructing

developmental paradigms for a cosmogony, where each is independent from perceived

physical laws, and investigating their rational behavior is consistent with the philosophy

of science since developmental paragims correspondence to various physical realities.

Based upon observed behavior, GGU-model processes are mathematically pre-

dicted. These processes yield a depicted developmental paradigm representation. These

predicted processes are fully presented and analyzed in Herrmann (2013). Depending

upon GGU-model applications, there are 5, 3 or 2 such processes. Adjoined to these

is an additional process that satisfies the Pattern and Wheeler (1975) participator

requirements.

Physically each member of a developmental paradigm dq, as here defined, yields a

“universe-wide frozen-frame.” It is a philosophic stance whether aspects of a descriptive

cosmology yield real physically observable behavior or these aspects are but models for

behavior that we do not otherwise comprehend. As is customary, the nonstandard

model used in all of the articles on the GGU-model is a saturated enlargement. In this

paper, q = 1, 2, 3, 4. These numbers denote the four primitive-time intervals (Herrmann

2006) employed for the GGU-model. The ultimate ultraword approach to generate a

universe is replaced with an ultra-logic-system. This is a hyperfinite logic-system where,

after application of the extended logic-system algorithm, generates each member of the

hyperfinite development paradigm dq
x in the proper ≤d

q
x

order such that the embedded

developmental paradigm dq ⊂ dq
x ⊂ ∗dq, where x = λ, νλ, µλ, νγλ, respectively.

[Note: By slightly altering the notation presented in this article and changing terms

associated with such an alteration, a highly refined developmental paradigm is obtained

from the material in Herrmann (2013). This refined developmental paradigm yields not

only each universe-wide frozen-frame but yields the development and conjoining of each

entity and physical-system contained in each universe-wide frozen-frame.]

Relative to the GGU-model generation of a universe and “instructions” (Herrmann
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(2013)), an hyperfinite collection of *instruction-sets ∗Iq(i, j) yields a universe-wide

frozen-frame. Each instruction x ∈ ∗Iq(i, j), yields a physical or physical-like system.

These physical-systems are disjoint.

2. Logic-System Generation for the Type-1 Interval.

[For all GGU-model applications as originally presented in Herrmann (1979 - 1994),

the developmental paradigm determining functions f and t, as discussed below, are

defined on Z × IN and then the q notion, where q = 1, 2, 3 indicates a restriction of

these functions to Zq×IN. For q = 4, the indicated functions are the original unrestricted

ones. For the t function, the image is R ⊂ Q. Then tq is the appropriate restriction.

Hence, the F domain is R and maps R into the informally denoted language L.]

The notation in all that follows is from Herrmann (2013). In this article, the set

W′ is the informal “words” (the language) and ∆′ represents the corresponding formal

words. One developmental paradigm corresponds to one universe and there can be

a vast collection of developmental paradigms. Notice that there are two different t

sequence notations. One t is in the informal world, while another t is in the formal

standard superstructure. These two sequences are, of course, considered as equivalent

since the set of objects that informally yield the informal t are also formally present

within the standard superstructure. The informal composition fq = F1 ◦ tq when

embedded relative to the set of equivalence classes W ′ is denoted by f q = Fq ◦ tq

since the tq is not embedded relative to W ′ and it merely generates a rational number

sequence for the embedded informal paradigm. These different notations are eliminated

and only the math-italics font is employed. This is the customary practice throughout

Herrmann (1979 - 1993). Notation for informal natural, rational and real numbers, if

applicable, is usually the same for the formal superstructure objects. Each tq(i, j) is a

rational number. (Note: Appropriate results relative to W ′ can be restated in terms of

the original equivalence class representation E.)

Each member of informal developmental paradigm dq is now considered as deter-

mined by a function defined on a set Rq of rational numbers, Q. The members of Rq

carry the restricted rational number simple order and the order ≤dq for the members of

dq (the lexicographic order) is order isomorphic to Rq in the obvious way. Each inter-

val partition is of the form [ci, ci+1) (with a closed interval in two cases), where i ∈ Z

and Z is the set of integers, and tq(i, 0) = i, tq(i + 1, 0) = i + 1. Then each member

of (ci, ci+1) is a defined rational number tq(i, j), where i < j < i + 1. For example,

consider [c2, c3). Then tq(2, 1) = 3−1/2, tq(2, 2) = 3−1/4, tq(2, 3) = 3−1/8, then, in

general, tq(2, j) = 3 − 1/2j . Hence, fq(2, 0) <dq fq(2, 1) <dq fq(2, 2) <dq · · · <dq f(3, 0).
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Let d1 be an informal developmental paradigm. The first illustrated case is for a

developing universe starting with a frozen segment (frame) represented by f1(0, 0). For

the other three GGU-model cases, this sequence is appropriately modified. In all cases,

the (fq(i, j), fq(p, k)) is equivalent to “If fq(i, j), then fq(p, k)). This notation will be

simplified later.

For the type-1 case [0, b], b > 0, as indicated above, a denumerable developmental

paradigm displays a refined form. For 1 < m ∈ IN, d1 = {f1(i, j) | (0 ≤ i ≤ m) ∧ (i ∈

Z) ∧ (j ∈ IN).

Due to the simplicity and special nature of the logic-systems used, a simplified algo-

rithm is employed. The basic logic-system algorithm is re-defined for sets of two distinct

objects {A,B}. If a deduction yields C and C is a member of {A,B}, then the “other”

member is a deduction. Hence, if A is deduced, then from {A,B}, B is deduced. This

can be written as {A,B} − {A} is deduced. In general, this approach is only valid for

these special collections of two element sets. This process mimics the proposition-logic

modus ponens rule of inference {(X → Y,X,Y) | X, Y are propositions}. However, for

both logic-systems only one member of any two element set is deducible. (Mathemati-

cal logic can be made very formal in appearance but, to retain intuition, this is rarely

done. The symbolic form X → Y represents a binary operation τ . This can be written

as τ (X,Y), where the domain is composed of ordered pairs. Then this rule of inference

is representable as {(τ (X,Y),X,Y) | X, Y are propositions}. In this form, the rule of

deduction states that if given τ (X,Y) and X, then Y is a deductive conclusion.)

Using d1, consider the following logic-system.

Definition 2.1 Let i ∈ Z. For each n ∈ IN, let k1
i (n) = {{f1(i, j), f1(i, j + 1)} |

(0 ≤ j ≤ n − 1) ∧ (j ∈ IN)}, K1(n) =
⋃
{k1

i (n) | (0 ≤ i < m) ∧ (i ∈ Z)}. Finally, let

finite Λ1(n) = {f1(0, 0)} ∪K1(n)∪ {{f1(p− 1, n), f1(p, 0)} | (0 < p ≤ m)∧ (p ∈ Z)} and

L1 = {Λ1(x) | x ∈ IN}. The set {{f1(p−1, n), f1(p, 0)} | (0 < p ≤ m)∧(p ∈ Z)} is called

the “jump elements.” Also, each Λ1(n) is a finite set. (Although L1 is not considered

as a subset of the language W’.)

In general, members in Lq can be characterized by a first-order sentence. When

the deduction algorithm is applied to Λ1(n) the result is an ordered set of words from

W′ - the ordered developmental paradigm. In accordance with the juxtaposition or

join function (a binary operation) that yields words in W′, this ordered developmental

paradigm corresponds to a word in W′. It can be obtained using the spacing symbol

where each member of this paradigm is considered a sentence. For a multi-universe

cosmology, each such universe is but a portion of each universe-wide frozen-frame. (As
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shown in Herrmann 2013, in this model, the informal join process is mimicked by a

binary operation ◦ such that (W ′ ∪ {∅}, ◦) is a monoid.

In order to make the notation as simple as possible for the next construction, notice

that L1 is denumerable. Let IN − {0} = IN
′. Thus, there is a bijection D1: IN′ → L1.

We use the subscript notation for this bijection. Thus, consider L1 = {D1
i | i ∈ IN

′}.

For each n ∈ IN
′, define M1

n = {{D1
1, . . . ,D

1
n}}. Let M1 = {M1

n | n ∈ IN
′}.The set

M1
n = {{D1

1, . . . ,D
1
n}}, as before, can be considered as a single word from L formed by

replacing comma with an “and.”

(There are a few typographic errors in Herrmann (2006), which is previous version

of this paper. For example, in Theorem 4.1, m > 0 should read m > 1, and ∗D, should

read ∗D1.)

A finite consequence operator S is defined in Herrmann (1979 - 1993, p. 65).

(These operators (functions) are also termed as operations. However, the phrase “finite

consequence” carries the additional unary operation concept.) In what follows, a new

simplified logic-system Sq, q = 1, 2, 3, 4 is employed. When a logic-system is applied,

it generates a specific finite consequence operator. It is the logic-system algorithm that

does this. In this article, this algorithm is explicitly noted since only logic-systems are

used. In general, logic-systems are stated in terms of metamathematics n-tuples. If a

set {A,B,C, . . . ,D} is used as an hypothesis, then it is word-like since the objects the

logical deduction models via the algorithm yields words or word-like objects.

Define Mq, q = 2, 3, 4, in the same manner as M1, from members of Lq.

For each Gq ∈ Mq, there exists a unique n ∈ IN
′ such that Gq ∈ Mq

n. This

Gq = {Dq
1, . . . ,D

q
n}, Dq

i ∈ Lq , 1 ≤ i ≤ n.

Define the logic-system Sq = {{x, y} | (∃n(n ∈ IN
′)) ∧ (x ∈ Mq

n) ∧ (y ∈ Lq) ∧ (y ∈

x)}. (This definition can be further described in order to characterize the doubleton set

notion and can include all necessary bounds for the quantifiers.) Each member of Mq

is directly related to a corresponding Sq. Further, under the simplification used here,

each member of Sq is a propositional tautology. Notice that Mq is a function with

values a singleton set containing an n-set (i.e. a set of “n” members).

Usually, such a logic-system would use ordered pairs to model the rules of inference.

Within these rules, finite conjunctions are displayed as first coordinates via n-sets.

Again the simplified doubleton-set approach is used here, where one of these sets is

{{D1},D1}.

Hypotheses can be are considered as members of a set, when part of a logic-system.

They are, usually, considered as a list of the members of this set. In general, a logic-
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system determines a consequence operator that is defined on subsets of the language

employed.

From the definitions employed for the logic-systems used here, the properties of

the logic-system algorithm A can be explicitly described in set-theoretic notation. For

these applications, A is a function defined on various defined logic-systems and a set

of hypotheses. For example, the entire set of deductions or the order in which the

deductions are made, among a few other characteristics. In our application to a logic-

system, the notation used signifies all of the “deduced” results the algorithm produces

when the logic-system is applied to a set of hypotheses. This yields the same results as

the corresponding finite consequence operator. What the notation indicates is that the

finite consequence operator is being displayed in a more refined and explicit manner.

Hence, the algorithm and its relation to the logic-system can be embedded into the

formal structure via formalizable characteristics.

When the application characteristics are *-transferred, then the notation ∗A is

employed. The process of applying the algorithm to the logic-system Sq, that is applied

it to a set of hypotheses Y, is denoted by A((Sq,Y)). Hence, A is defined upon a set

of ordered pairs. The result of A((Sq ,Y)) is a set. An additional step can be included

for this specific algorithm, where Y is removed. When this is done the algorithm is

denoted by A′. The necessary informally and, hence, formally described properties are

specifically displayed. In general, the q notion is not included as part of the A or A′

notation unless confusion would result.

For the denumerable set L1, notice that for any Λ1(k), k ∈ IN there exists an

k′ ∈ IN and X1
k′ ∈ M1

k′ , such that Λ1(k) ∈ A′((S1, {X1
k′})) and, in this case, finite

choice yields the Λ1(k) logic-system. Then the logic-system algorithm A is applied to

(Λ1(k), {f1(0, 0)}), where f1(0, 0) is the only hypothesis contained in the logic-system.

This yields f1(i, j) ∈ d1 as a deduction from f1(0, 0). Conversely, if f1(i, j) ∈ d1, then

there is an X1
k′ ∈ M1

k′ and a logic-system Λ(k) ∈ A′((S1, {X1
k′})) such that application

of the logic-system algorithm A to (Λ1(k), {f1(0, 0)}) yields f1(i, j) as a deduction from

f1(0, 0).

The informal algorithm A is defined on any logic-system that contains an hypothe-

sis and, in this paper, such a logic-system is Λq(x) and application is on (Λq(x),Y) where

Y is an hypothesis contained in the logic-system and containing but one member. Due

to the construction of the Λq(x), this yields a partial sequence of members of dq. This

sequence is denoted by A[(Λq,Y)]. This sequence represents the steps in the deduction

and satisfies the ≤d
q
x

order. Also, for this case, A((Λq(x),Y)) = dq
x ⊂ dq. Signifi-

cantly, for n, k ∈ IN, n ≤ k,A((Λ1(n),Y)) ⊂ A((Λ1(k),Y)) and A[(Λ1(k),Y)]|[1, n] =
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A[(Λ1(n),Y)].

In the usual way, all of the above informally defined objects are embedded relative

to W ′. When the informal set-theoretic expresses are considered as embedded into

the standard superstructure, all of the bold font conventions defined in Herrmann

(1979-1993) are observed. All other embedded symbols retain their math-italics form.

Where script notation is used, an underline is used in place of the bold face font. All

the following results are relative to our nonstandard model ∗M1 (Herrmann, (1979 -

1993)).

Theorem 2.1 Consider primitive time interval 1 = [0, b], b > 0. It can always

be assumed that interval 1 is partitioned into two or more intervals [c0, c1), . . .

[cm−1, cm], cm = b, m > 1, m ∈ Z. Let d1 be a developmental paradigm order iso-

morphic to the rational numbers R1 ⊂ [0, b]. For any λ ∈ IN∞, there exists a unique

hyperfinite ∗Λ1(λ) ∈ ∗L1 and a λ′ ∈ ∗
IN such that the ultra-word-like X1

λ′ ∈ ∗M1
λ′ and

ultra-logic-system ∗Λ1(λ) ∈ ∗A′(( ∗S1, {X1
λ′})) and d1 ⊂ ∗A(( ∗Λ1(λ), { ∗ f1(0, 0)})) =

d1
λ ⊂ ∗d1. Also the ∗A[( ∗Λ1(λ), { ∗ f

1(0, 0)})] *steps satisfy the ≤d1

λ
order and

( ∗d1 − d1) ∩ ∗A(( ∗Λ1(λ), { ∗ f1(0, 0)})) = an infinite set.

Proof. This follows in the same manner as Theorem 4.1 in Herrmann (2006) by *-

transfer of the appropriate first-order statements that precede this theorem statement.

Also note that since for every n ∈ IN
′, the Λ(n) is finite, then, via the identification

process, σΛ(n) = Λ(n). It also follows that ∗Λ(n) = Λ(n). Since for any n, k ∈ IN
′, n ≤

k, A((Λ(n), {f1(0, 0)})) ⊂ A((Λ(k), {f1(0, 0)})), from the above and, via *-transfer,

it follows that d1 ⊂ ∗A(( ∗Λ1(λ), { ∗ f
1(0, 0)})) = d1

λ ⊂ ∗d1. From the definition of

Λ1(n), these steps numbers are order isomorphic the set of rational numbers R1. Hence,
∗A(( ∗Λ1(λ), { ∗ f1(0, 0)})) is *order isomorphic to a hyperfinite subset of ∗Q. Since

there are infinitely many i < λ and i ∈ IN∞, there are infinitely many ∗ f(i, j) ∈
∗A(( ∗Λ1(λ), { ∗ f

1(0, 0)})) ⊂ ∗d1, where ∗ f(i, j) ∈ ∗d1 − d1. These are interpreted as

ultranatural events but in some cases may differ from physical events only in their

primitive time identifications. This completes the proof.

By considering the definition of L1, it follows that the given 1 < m ∈ IN, ∗Λ1(λ)

is precisely { ∗f1(0, 0)} ∪ {
⋃
{ ∗k1

i (λ) | 0 ≤ i < m}} ∪ {{ ∗ f1(p − 1, λ), ∗f1(p, 0)} |

(0 < p ≤ m) ∧ (p ∈ ∗Z)}. Of significance is the fact that the steps in the *-deduction
∗A( ∗Λ1(λ)({ ∗ f1(0, 0)})) preserve the order ≤ ∗d1

. Notice that ∗Λ1(λ) is obtained by

hyperfinite choice. Further, any ∗f
1(i, j) ∈ { ∗f

1(x, y) | (0 ≤ x < m) ∧ (0 ≤ y ≤

λ) ∧ (x ∈ ∗Z) ∧ (y ∈ ∗
IN)} ∪ { ∗f1(m, 0)} is a hyperfinite *-deduction from ∗f1(0, 0).

And, it also follows that the set of all such *deductions yields a hyperfinite set d1
λ such
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that d1 ⊂ d1
λ ⊂ ∗d1.

3. Logic-System Generation for the Type-2 Interval

For the type-2 case [0,+∞), a denumerable developmental paradigm displays a

refined form. For this case, d2 = {f2(i, j) | (0 ≤ i) ∧ (i ∈ Z) ∧ (j ∈ IN). Using d2,

consider the following logic-system.

Definition 3.1 Let 0 ≤ i ∈ Z. For each n ∈ IN, let k2
i (n) = {{f2(i, j), f2(i, j +1)} |

(0 ≤ j ≤ n − 1) ∧ (j ∈ IN)}. For 0 < m ∈ Z, let K2(m,n) =
⋃
{k2

i (n) | (0 ≤ i <

m) ∧ (i ∈ Z)}. Finally, let Λ2(m,n) = {f2(0, 0)} ∪ K2(m,n) ∪ {{f2(p − 1, n), f2(p, 0)} |

(0 < p ≤ m) ∧ (p ∈ Z)} ∪ {{f2(m, j), f2(m, j + 1)} | (0 ≤ j < n) ∧ (j ∈ IN)}, and

L2 = {Λ2(x, y) | (0 ≤ x ∈ Z) ∧ (y ∈ IN)}. Notice that if 0 ≤ i < k, i, k ∈ Z,

then A((Λ2(i, j), {f2(0, 0)})) ⊂ A((Λ2(k, n), {f2(0, 0)})) for any j, n ∈ IN. Also, each

Λ2(m,n) is a finite set. (Notice that members in L2 can be characterized by a first-order

sentence.)

Consider any Λ2(q, k). Then there exists an q′k′ ∈ IN
′ (q′k′ is a natural number

in IN
′) and the q′k′-set X2

q′k′ ∈ M2
q′k′ , such that Λ2(q, k) ∈ S2({X2

q′k′}) and, in this

case, finite choice yields the Λ2(q, k) logic-system. Then the logic-system algorithm

A applied to (Λ2(q, k), {f2(0, 0)}) yields f2(q, k) as a deduction from f2(0, 0). Further,

f2(q, k) ∈ d2. Conversely, if f2(q, k) ∈ d2, then there exists an q′k′ ∈ IN
′ and an

X2
q′k′ ∈ M2

q′k′ and a logic-system Λ(q, k) ∈ A′((S2, {X2
q′k′})) such that application of

the logic-system algorithm A to (Λ2(q, k), {f2(0, 0)}) yields a deduction of f2(q, k) from

f2(0, 0).

Theorem 3.1 Consider primitive time interval 2 = [0,+∞). It can always be assumed

that interval 2 is partitioned into intervals [c0, c1), . . . [cm−1, cm), m > 1, m ∈ Z.

Let d2 be a developmental paradigm order isomorphic to the rational numbers R2 ⊂

[0,+∞). For any λ ∈ IN∞ and ν ∈ ∗Z − Z, ν > 0, there exists a unique hyperfinite
∗Λ2(ν, λ) ∈ ∗L2 and ν′, λ′ ∈ ∗

IN such that the ultra-word-like X2
ν′λ′ ∈ ∗M2

ν′λ′ and ultra-

logic-system ∗Λ2(ν, λ) ∈ ∗A′( ∗S2, {X2
ν′λ′})) and d2 ⊂ ∗A(( ∗Λ2(ν, λ), { ∗ f2(0, 0)})) =

d2
νλ ⊂ ∗d2. Also the ∗A[( ∗Λ2(ν, λ), { ∗ f2(0, 0)})] *steps satisfy the ≤d2

νλ
order and

( ∗d2 − d2) ∩ ∗A(( ∗Λ2(ν, λ), { ∗ f
2(0, 0)})) = an infinite set.

Proof. As in Theorem 2.1, the proof follows by *-transfer of the appropriate

formally presented material that appears above in this section 3.

By considering the definition of L2, it follows that the ∗Λ2(ν, λ) is precisely

{ ∗ f2(0, 0)} ∪ {
⋃
{ ∗k2

i (λ) | 0 ≤ i < ν}} ∪ {({ ∗ f2(p − 1, λ), ∗f2(p, 0)} | (0 < p ≤
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ν) ∧ (p ∈ ∗Z)} ∪ {{ ∗ f2(ν, j), ∗f2(ν, j + 1)} | (0 ≤ j < λ) ∧ (j ∈ ∗
IN)}. Of signifi-

cance is the fact that the steps in the *-deduction ∗A[( ∗Λ2(ν, λ), { ∗ f
2(0, 0)})] preserve

the order ≤ ∗d2
. Notice that ∗Λ2(ν, λ) is obtained by hyperfinite choice. Further, any

∗ f2(i, j) ∈ { ∗ f2(x, y) | (0 ≤ x ≤ ν) ∧ (0 ≤ y ≤ λ) ∧ (x ∈ ∗Z) ∧ (y ∈ ∗
IN)} is a hyperfi-

nite *-deduction from ∗f
2(0, 0). And, it also follows that the set of all such *deductions

yield a hyperfinite set d2
νλ such that d2 ⊂ d2

νλ ⊂ ∗d2.

4. Logic-System Generation for the Type-3 Interval

For the type-3 case (−∞, 0], a denumerable developmental paradigm displays a

refined form. For this case, d3 = {f3(i, j) | (i ≤ 0) ∧ (i ∈ Z) ∧ (j ∈ IN). Using d3,

consider the following logic-system.

Definition 4.1 Let i ∈ Z, i ≤ 0. For each n ∈ IN, let k3
i (n) = {{f2(i, j), f1(i, j +

1)} | (0 ≤ j ≤ n− 1)∧ (j ∈ IN)}. For m ∈ Zm < 0, let K3(m,n) =
⋃
{k3

i (n) | (m ≤ i <

0) ∧ (i ∈ Z)}. Finally, let Λ3(m,n) = {f3(m, 0)} ∪ K3(m,n) ∪ {{f3(p − 1, n), f3(p, 0)} |

(m < p ≤ 0) ∧ (p ∈ Z)}, and L3 = {Λ2(x, y) | (0 ≤ x ∈ Z) ∧ (y ∈ IN)}. Notice that

if i < k ≤ 0, i, k ∈ Z, then A((Λ3(i, j), {f3(m, 0))) ⊂ A((Λ3(k, n), {f3(m, 0)})) for

any j, n ∈ IN. Also, each Λ3(m,n) is a finite set. (Notice that members in L3 can be

characterized by a first-order sentence.)

Consider any Λ3(q, k). Then there exists an q′k′ ∈ IN and X3
q′k′ ∈ M3

q′k′ , such

that Λ3(q, k) ∈ A′((S3, {X3
q′k′})) and, in this case, finite choice yields the Λ3(q, k)

logic-system. Then the logic-system algorithm A applied to (Λ3(q, k), {f3(q, 0)}) yields

f3(q, k) as a deduction from f3(q, 0). Further, f3(q, k) ∈ d3. Conversely, if f3(q, k) ∈ d3,

then there is an X3
q′k′ ∈ M3

q′k′ and a logic-system Λ(q, k) ∈ S3({X3
q′k′}) such that

application of the logic-system algorithm A to (Λ3(q, k), { ∗ f
3(q, 0)}) yields f3(q, k) as

a deduction from f3(q, 0).

Theorem 4.1 Consider primitive time interval 3 = (−∞, 0]. It can always be assumed

that interval 3 is partitioned into intervals . . . , [c−2, c−1), [c−1, c0]. Let d3 be a devel-

opmental paradigm order isomorphic to the rational numbers R3 ⊂ (−∞, 0]. For any

λ ∈ IN∞, µ ∈ ∗Z − Z, µ < 0, there exists a unique hyperfinite ∗Λ3(µ, λ) ∈ ∗L3

and µ′, λ′ ∈ ∗
IN such that the ultra-word-like X3

µ′λ′ ∈ ∗M3
µ′λ′ and ultra-logic-system

∗Λ3(µ, λ) ∈ ∗A′(( ∗S3, {X3
µ′λ′})) and d3 ⊂ ∗A(( ∗Λ3(µ, λ), ∗ f3(µ, 0))) = d3

µλ ⊂ ∗d3.

Also the ∗A[( ∗Λ3(µ, λ), { ∗ f3(µ, 0)})] *steps satisfy the ≤d3

µλ
order and ( ∗d3 − d3) ∩

∗A(( ∗Λ3(µ, λ)), { ∗ f
3(µ, 0)})) = an infinite set.

Proof. As in Theorem 3.1, the proof follows by *-transfer of the appropriate

formally presented material that appears above in this section 3.
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By considering the definition of L3, it follows that the ∗Λ3(µ, λ) is precisely

{ ∗ f
3(µ, 0)} ∪ {

⋃
{ ∗k

3
i (λ) | µ ≤ i < 0}} ∪ {{ ∗ f

3(p − 1, λ), ∗f
3(p, 0)} | (µ < p ≤

0) ∧ (p ∈ ∗Z)}. Of significance is the fact that the steps in the *-deduction
∗A[( ∗Λ3(µ, λ), { ∗ f3(µ, 0)}] preserve the order ≤ ∗d3

. Notice that ∗Λ3(µ, λ) is obtained

by hyperfinite choice. Further, any ∗f
3(i, j) ∈ { ∗f

3(x, y) | (µ ≤ x < 0) ∧ (0 ≤ y ≤

λ)} ∪ { ∗f
3(0, 0} is a hyperfinite *-deduction from ∗f3(µ, 0). And, it also follows that

the set of all such *deductions is a hyperfinite set d3
νλ such that d3 ⊂ d3

νλ ⊂ ∗d3.

5. Logic-System Generation for the Type-4 Interval

Theorem 5.1 Consider primitive time interval 4 = (−∞,+∞). It can always be as-

sumed that interval 4 is partitioned into intervals . . . , [c−2, c−1), [c−1, c0), . . .. Let d4 be

a developmental paradigm order isomorphic to the rational numbers R4 ⊂ (−∞,+∞).

For any λ ∈ IN∞, ν, γ ∈ ∗Z− Z, such that ν ≤ 0, γ ≥ 0, there exists a unique hyper-

finite ∗Λ4(ν, γ, λ) ∈ ∗L4 and ν′, γ′, λ′ ∈ ∗
IN such that the ultra-word-like X4

ν′γ′λ′ ∈
∗M4

ν′γ′λ′ and ultra-logic-system ∗Λ4(ν, γ, λ) ∈ ∗A′(( ∗S4, {X4
ν′γ′λ′})) and d4 ⊂

∗A(( ∗Λ4(ν, γ, λ), { ∗ f4(ν, 0)})) = d4
νγλ ⊂ ∗d4. Also the ∗A[( ∗Λ4(ν, γ, λ), { ∗ f4(ν, 0)})]

*steps satisfy the ≤d4

νγλ
order and ( ∗d4 − d4) ∩ ∗A(( ∗Λ4(ν, γ, λ), { ∗ f4(ν, 0)})) = an

infinite set.

By considering the definition of L4, it follows that the ∗Λ4(ν, γ, λ) is precisely

{ ∗ f4(ν, 0)} ∪ {
⋃
{ ∗k4

i (λ) | (ν ≤ i < γ)∧ (i ∈ ∗Z)}} ∪ {{ ∗f4(p− 1, λ), ∗f4(p, 0)} | (ν <

p ≤ γ)∧(p ∈ ∗Z)}∪{{ ∗ f4(γ, j), ∗ f4(γ, j+1)} | (0 ≤ j < λ)∧(j ∈ ∗
IN)}. Of significance

is the fact that the steps in the *-deduction ∗A[( ∗Λ4(ν, γ, λ), { ∗ f
4(ν, 0)})] preserve the

order ≤ ∗d4
. Notice that ∗Λ4(ν, γ, λ) is obtained by hyperfinite choice. Further, any

∗ f4(i, j) ∈ { ∗ f4(x, y) | (ν ≤ x ≤ γ) ∧ (0 ≤ y ≤ λ)} is a hyperfinite *-deduction from
∗ f4(ν, 0). And, it also follows that the set of all such *deductions is a hyperfinite set

d4
νγλ such that d4 ⊂ d4

νγλ ⊂ ∗d4.

6. GGU-model Scheme for Developmental Paradigms

The following schemes are not expressed in complete composition form. In what

follows, for q = 1, 2, 3, 4, the a, b, c take the appropriate value for a specific q. The

relations (operators) such as ∗A and the others presented in the following left-to-right

sequential form, represent processes. There is also the process, here denoted by Ch,

that, depending upon an interpretation, represents a characterizable choice process.

For the multi-complexity cosmogony with processes Ch, ∗A′, and ∗A, the scheme

is

(M) ∗M
q
a′ ⇒ Ch( ∗M

q
a′)) = ( ∗Sq, {Xq

a′}) ⇒ Ch( ∗A′( ∗Sq, {Xq
a′})) =

11



( ∗Λq(a), { ∗ f q(b, c)}) ⇒ ∗A( ∗Λq(a), { ∗ f q(b, c)}) = dq
a.

The operators A and A′ have characterizing first-order statements. These state-

ments need not capture all of of the intuitive statements that describe the algorithms.

The results of application of A′ as formalized can show major aspects of the algorithm’s

selection process. For example, for a multi-complexity cosmogony

∀x∀y∀z∀w((w ∈ Mq) ∧ (y ∈ F(Lq)) ∧ (y ∈ w) ∧ (x ∈ A′((Sq, y)) →

∃p((p ∈ Sq) ∧ (y ∈ p) ∧ (x ∈ p) ∧ (y 6= x)).

The complexity is the value of the a chosen. For the single-complexity universe, a

specific λ = a is used in each of the four cases. In these cases, the scheme is considerably

simplified and becomes

(S) ( ∗Λq(a), { ∗ fq(b, c)}) ⇒ ∗A( ∗Λq(a), { ∗ f q(b, c)}) = dq
a.

The results in this section, as they refer to instruction-information, have been re-

fined to include the rational generation of each universe-wide frozen-frame. By a mere

substitution of notion, those portions of section 6 in Herrmann, (2013) that do not re-

fer to the gathering operator also yield the more refined *developmental paradigm that

corresponds to a complete *development. The results there represent an ordered ap-

plication of the GGU-model processes that correspond to the developmental paradigm

concept. However, only the *instruction-sets need to be are considered, for in general,

such a developmental paradigm approach need not be employed. Its use depends upon

a specific application of the GGU-model.

7. Other Results.

For the GGU-model, one of the most difficult requirements is to include the con-

cept of the “participator” universe. As stated at the May 1974 Oxford Symposium in

Quantum Gravity, Patton and Wheeler describe how existence of human beings alter

the universe to various degrees. “To that degree the future of the universe is changed.

We change it. We have to cross out that old term ‘observed’ and replace it with the

new term ‘participator.’ In some strange sense the quantum principle tells us that we

are dealing with a participator universe.” (Patton and Wheeler (1975, p. 562).) This

aspect of the GGU-model is only descriptively displayed in section 4.8 in Herrmann

(2002). It is now possible to obtain formally the collection of developmental paradigm

universes that satisfies this participator requirement.
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The complete Participator Universe Model appears in Herrmann (2013) and if

developmental paradigms are employed, the information there can be transferred to

the corresponding developmental paradigm requirements.

There is also a necessary refinement to the above that appears in Herrmann (2013).

This refinement can be restated for the developmental paradigm notation and yields a

development paradigm for each f q(i, j). There are also a few other GGU-model schemes

presented in Herrmann (2013).
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