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Abstract

Recently, [3], it was shown that in certain composite quantum sys-
tems with time independent potentials, the extent of the entangle-
ment in an initial state is conserved during the time evolution under
the Schrödinger equation, and thus in the absence of any measure-
ment. Here the extent of entanglement is meant in the sense of the
grading function introduced and studied in [1,2]. Based on the cele-
brated Stone theorem on one parameter groups of unitary operators
on Hilbert spaces, the question is raised whether the mentioned con-
servation of the extent entanglement may hold for composite quantum
systems with arbitrary potential.

1. Preliminaries

Recently, [1, 2], a non-negative integer valued grading function was
considered on tensor products in order to distinguish between non-
entangled and entangled elements. The essential property of this grad-
ing function is that it gives the minimally entangled expression for all
entangled elements in a tensor product. A main interest in such a min-
imal entanglement is in the study of the variation of that minimum
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when the respective elements are time dependent, like for instance,
when we have a composite quantum system and its state evolves ac-
cording to a corresponding Schrödinger equation, and does so in the
absence of any measurement.
The general case, obviously, is that of the study of entanglement dy-
namics in arbitrary dynamical systems which evolve in a tensor prod-
uct. It appears that such a case has not been considered so far, not
even in the particular situation of composite quantum systems.

In [2], a brief mention of such a dynamics of entanglement was made,
based on earlier unpublished work of the present author. Here, some
of the related details are now presented.

For convenience, first we recall here briefly the way this grading func-
tion classifies entangled elements. Namely, the larger the grade of
such an element, the higher the extent to which it is entangled, and of
course, the other way round. In essence, this is done as follows. Let
X and Y be two vector spaces over a field K, then we define

(1.1) gr : X
⊗

Y −→ N

where for u ∈ X
⊗

Y , we have

(1.2) gr(u) = min{n | u =
∑n

i=1 xi ⊗ yi, xi ∈ X, yi ∈ Y }

with the convention that gr(0⊗ 0) = 0.

One of the relevant results is that, given u =
∑n

i=1 xi ⊗ yi ∈ X
⊗

Y ,
then

(1.3) gr(u) = min{ k, h }

where k and h are, respectively, the dimensions of the linear span of
{x1, . . . , xn} in X, and of {y1, . . . , yn} in Y .

In particular, u ∈ X
⊗

Y is not entangled, if and only if gr(u) ≤ 1.

Clearly, gr(u) can be computed by well known methods in linear al-
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gebra, for instance, methods which give the rank of a matrix.

Also, if X and Y are finite dimensional, then for u ∈ X
⊗

Y , we have

(1.4) gr(u) ≤ min{dimX, dimY }

A specific feature of the grading function (1.1) - (1.3) is that it is
defined exclusively in terms of the respective tensor product X

⊗
Y ,

and in view of (1.3), in fact, in terms of X and Y alone.

As for obtaining for a given

u =
∑n

i=1 xi ⊗ yi ∈ X
⊗

Y

a corresponding minimum representation

u =
∑m

j=1 uj ⊗ vj ∈ X
⊗

Y

where m = gr(u) ≤ n, we have the following result, see [1].

Proposition 1.1.

Let X and Y be two vector spaces over a field K, and let u =∑n
i=1 xi ⊗ yi ∈ X

⊗
Y . If

(1.5) gr(u) = m < n,

(1.6) the dimension of the linear span of {x1, . . . , xn} is m, and
it is less or equal with the dimension of the linear span
of {y1, . . . , yn},

(1.7) {x1, . . . , xm} are linearly independent

then

(1.8) u =
∑m

i=1 xi ⊗ vi
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where

(1.9) {v1, . . . , vm} is linearly independent, and it is contained
in the linear span of {y1, . . . , yn}

Furthermore, as seen next in the Proof, one can obtain an explicit
expression for the linearly independent vectors {v1, . . . , vm}, as seen
in (1.10) below.

Proof.

In view of (1.6), (1.7), we have

xj =
∑m

i=1 µj, i xi, m < j ≤ n

where µj, i ∈ K. Hence

u =
∑m

i=1 xi ⊗ yi +
∑n

j=m+1

∑m
i=1 µj, i xi ⊗ yj =

=
∑m

i=1 xi ⊗ yi +
∑m

i=1

∑n
j=m+1 µj, i xi ⊗ yj =

=
∑m

i=1 xi ⊗ (yi +
∑n

j=m+1 µj, i yj)

Consequently

(1.10) vi = yi +
∑n

j=m+1 µj, i yj, 1 ≤ i ≤ m

and {v1, . . . , vm} must be linearly independent in view of (1.8), (1.5).

�

In this paper the above grading function will be applied to the study
of the dynamics of composite quantum systems. Namely, let X, Y be
complex Hilbert spaces and let S be a quantum system with the state
space X

⊗
Y . Then its evolution is given by a one parameter family

of unitary operators U(t), with t ∈ [0,∞), where

(1.11) X
⊗

Y 3 |ψ > 7−→ U(t)( |ψ > ) ∈ X
⊗

Y
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Namely, given any preparation |ψ0 > of the system S at time t = 0,
then the state of the system at a time moment t ≥ 0 will be

(1.12) |ψt > = U(t)( |ψ0 > )

The problem under study in this paper is as follows. We obviously have

(1.13) |ψ0 > =
∑n(0)

i=1 xi(0)⊗ yi(0) ∈ X
⊗

Y

while, for t ≥ 0, we shall have

(1.14) |ψt > = U(t)( |ψ0 > ) =
∑n(t)

i=1 ui(t)⊗ vi(t) ∈ X
⊗

Y

where both n(0) and n(t) are supposed to be minimal, namely, we
assume that

(1.15) gr(|ψ0 >) = n(0)

(1.16) gr(|ψt >) = n(t)

and note that n(t) may in general be a variable non-negative interger,
depending on the time t.

Thus in general

• the state |ψt > of the composite system S at any moment of time
t ≥ 0 may be entangled, namely, whenever gr(|ψt >) = n(t) ≥
2,

• the extent gr(|ψt >) = n(t) of that entanglement may vary
from one moment of time to another.

We therefore intend to study this variation of the extent of entangle-
ment, which in terms of the above notation, is given by the mapping

(1.17) [0,∞} 3 t −→ gr(|ψt >) ∈ N
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that is, do so with the help of the grading function gr.

Here one can note from the beginning that, since the grading function
gr only takes non-negative integer values, the mapping (1.15) will in
general have discontinuities. And the closer study of these disconti-
nuities can have mathematical, as well as quantum physical interest.

Let us therefore give a seemingly general definition, as follows :

Definition 1.1.

We call entanglement dynamics the situation when given a regular
enough, for instance, continuous mapping

(1.18) R 3 t 7−→ F (t) ∈ X ⊗ Y

with

(1.19) F (t) = x1(t)⊗ y1(t) + . . .+ xn(t)(t)⊗ yn(t)(t)

where

(1.20) gr(F (t)) = n(t), t ∈ R

there may occur a variation in n(t), as t ranges over R.

Remark 1.1.

It is important to clarify the necessary minimal complexity of the no-
tation in (2.4) in the sequel, used for the general form of the solution
F (t) of an evolution equation (2.1) - (2.3) in a tensor product. Namely,
given two moments of time 0 ≤ t1 < t2, we obviously have in general

(1.21) F (t1) = a1⊗b1+ · · ·+an⊗bn, F (t2) = c1⊗d1+ · · ·+cm⊗dm

where ai, cj ∈ X, bi, dj ∈ Y . Now obviously, ai, bi and n may depend
on t1, while cj, dj and m may depend on t2.
It follows therefore that the notation in (2.4) for the general form of
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the solution F (t) is minimal in its complexity, although is may be
replaced, in case it would be convenient, with the equally minimally
complex notation

(1.22) F (t) = xt, 1 ⊗ yt, 1 + . . .+ xt, n(t) ⊗ yt, n(t)

It should be noted that it is the novelty of dynamical systems in tensor
products which leads to the usefulness of such a clarification. Dynam-
ical systems in Cartesian products, thus corresponding to classical -
and not quantum - composite systems, have a well established and
considerably simpler notation for the evolution of their states.

2. A Simple Instance of Possible Entanglement Dynamics

We recall that the evolution of quantum systems which are not subject
to measurement is supposed to take place according to the Schrödinger
equation. In other words, the state |ψ > of a quantum system - a
state which is a vector in a suitable Hilbert space H, and which is
a square integrable function on a corresponding configuration space
given by a finite dimensional Euclidian space E - satisfies a linear par-
tial differential equation, namely the Schrödinger equation, in which
the independent variables are the time t ∈ R, as well as the coordi-
nates x ∈ E of the respective configuration space.

Our interest here being in entanglement dynamics, see its definition at
the end of this section, we focus on composite quantum systems which,
therefore, have their state space given by suitable tensor products.

At the same time, however, the core of the develepment to follow can
easily be extended to general dynamical systems in tensor product
spaces.

In view of the above, however, it will help first to have a look at the fol-
lowing more general mathematical formulations of the entanglement
dynamics. Indeed, the Schrödinger equation is, in the language of
partial differential equations, an evolution equation, and then, it can
be written as a first order differential equation in the time t, which
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describes a dynamics taking place in a suitable space of functions in
the coordinates x ∈ E of the corresponding configuration space E of
the quantum system considered. And this space of functions is in fact
the Hilbert space L2(E) .

Here however, it will be convenient to star by considering the evolution
equations in the more general Banach spaces, and at the convenient
stages, to return to the particular case of Hilbert spaces.
Let therefore (X, || ||), (Y, || ||) be two Banach spaces over a field K. In
particular, they can be finite dimensional Euclidean spaces. We first
consider autonomous first order ODEs in the tensor product space
X
⊗

Y , namely of the form

(2.1) dF (t)/dt = A(F (t)), t ∈ [0,∞)

where

(2.2) [0,∞) 3 t 7−→ F (t) ∈ X
⊗

Y

while

(2.3) A : X
⊗

Y −→ X
⊗

Y

The problem is that, in terms of X and Y , the solution of (2.1) - (2.3)
will in general be of the form

(2.4) F (t) = x1(t)⊗ y1(t) + . . .+ xn(t)(t)⊗ yn(t)(t)

And it is quite likely that xi(t) ∈ X, yi(t) ∈ Y , as well as n(t) ∈ N, do
indeed all of them depend on t. Thus the situation is of considerable
difficulty, since (2.4) means that the ODE in (2.1) - (2.3), when con-
sidered in terms of X and Y , will have a variable number of unknowns
and equations. Furthermore, the representation of the solution F (t)
in (2.4) is not unique.

Of course, when instead of (2.1) - (2.4), we have the classical, and not
quantum, case of the composition of two systems with the respective
state spaces X and Y , namely
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(2.5) [0,∞) 3 t 7−→ F (t) ∈ X × Y

then instead of (2.4) we have the much simpler form of solution, given
by

(2.6) F (t) = (x(t), y(t)) ∈ X × Y

and thus we simply have a usual system of two ODEs in X×Y , which
avoids the possibility of a variable number of unknown functions - and
thus, equations - as it may in general happen in (2.4).

3. Conservation of the Extent of Entanglement in the Case
of a Simple Composite Quantum System

Let us consider two one dimensional quantum systems S and T , with
the respective state spaces X = Y = L2(R). Then their compos-
ite quantum system Q will have the state space Z = X

⊗
Y =

L2(R)
⊗
L2(R). Correspondingly, the evolution of the composite quan-

tum system Q is given by the Schrödinger equation

(3.1) i~ ∂
∂t
ψ(x, y, t) = −

[ ~2
2m( ∂

2

∂x2
+ ∂2

∂y2
) + V (x, y, t)

]
ψ(x, y, t)

with x, y ∈ R, t ∈ [0,∞), where at any moment of time t, the
state of the composite system is given by |ψt >∈ Z = X

⊗
Y =

L2(R)
⊗
L2(R).

Clearly, (3.1) is of the form (2.1) - (2.3), where A(|ψt >) is the right-
hand term in (3.1), divided by the constant i~.

Now a general initial condition for (2.1) - (2.3) is of the form

(3.2)
ψ(x, y, 0) = a(x, y) =

=
∑

1≤j≤n bj(x)⊗ cj(y) ∈ Z = X
⊗

Y = L2(R)
⊗
L2(R)

where bj(x) ∈ X, cj(y) ∈ Y . And in view of (1.4), n in (3.2) can be
arbitrary large, since X and Y are infinite dimensional vector spaces.
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Clearly, the evolution of the composite quantum system Q will exhibit
entanglement dynamics, if and only if we shall have

(3.3) gr(a(x, y)) 6= gr(|ψt >)

for some t ∈ (0,∞).

For convenience, let us consider in (3.1) the usual case of the time
independent potential V , namely

(3.4) i~ ∂
∂t
ψ(x, y, t) = −

[ ~2
2m( ∂

2

∂x2
+ ∂2

∂y2
) + V (x, y)

]
ψ(x, y, t)

with x, y ∈ R, t ∈ [0,∞). In this case, as is well known, certain solu-
tions of (3.4) can be obtained by the method of separation of variables,
as follows. Let us look for a solution of the form

(3.5) ψ(x, y, t) = f(t) g(x, y), x, y ∈ R, t ∈ [0,∞)

then (3.4) gives[
i~df(t)

dt

]
g(x, y) = −f(t) {

[ ~2
2m( ∂

2

∂x2
+ ∂2

∂y2
)+V (x, y)

]
g(x, y) }

with x, y ∈ R, t ∈ [0,∞). Thus[
i~df(t)

dt

]
/f(t) = −{

[ ~2
2m( ∂

2

∂x2
+ ∂2

∂y2
)+V (x, y)

]
g(x, y) }/g(x, y)

for all x, y ∈ R, t ∈ [0,∞), for which ψ(x, y, t) = f(t) g(x, y) 6= 0.

However, the left hand term above does not depend on x or y, while
the right hand term does not depend on t. Hence, for certain E ∈ C,
we obtain

(3.6)
[
i~df(t)

dt

]
= Ef(t)

(3.7) −
[ ~2
2m( ∂

2

∂x2
+ ∂2

∂y2
) + V (x, y)

]
g(x, y) = Eg(x, y)
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whenever x, y ∈ R, t ∈ [0,∞), ψ(x, y, t) = f(t) g(x, y) 6= 0.

Now (3.6) gives

(3.8) f(t) = f(0) exp(− i~Et), t ∈ [0,∞)

while (3.7) yields certain solutions given by functions χ(x, y), with
x, y ∈ R.

It follows, that among the solutions of (3.1), (3.2) are those of the form

(3.9) ψ(x, y, t) = exp(− i~Et) a(x, y), x, y ∈ R, t ∈ [0,∞)

where E ∈ C. Needless to say, due to superposition, solutions of (3.1),
(3.2) will also be given by

(3.10) ψ(x, y, t) =
∑

1≤j≤n exp(− i~Ejt) [bj(x)⊗ cj(y)]

with x, y ∈ R, t ∈ [0,∞).

Since obviously exp(− i~Et) 6= 0, for t ∈ [0,∞), it follows that, for

solutions (3.9), we obtain

(3.11) gr(ψ(x, y, t)) = gr(
∑

1≤i≤n bi(x)⊗ ci(y)) = gr(a(x, y))

with t ∈ [0,∞), thus according to (3.3), in the case of a time indepen-
dent potential V , the composite quantum system Q does not exhibit
an entanglement dynamics, in certain cases.

4. The Stone Theorem

Let E be a Hilbert space and Ut, with t ∈ R, a strongly continuous
group of unitary operators on H. Then there exists a self-adjoint op-
erator H on E, such that

(4.1) Ut = exp(itH), t ∈ R

11



Conversely, given the Schödinger equation

(4.2) i~ ∂
∂t
ψt = Hψt, t ∈ R, ψt ∈ E

where H is a self-adjoint Hamiltonian, then the solution is given by
the strongly continuous group of unitary operators Ut on H , with
t ∈ R, in (4.1) according to

(4.3) ψt = Utψ0, t ∈ R

5. Is the Extent of Entaglement Conserved in Composite
Quantum Systems ?

The above, and in particular, the affirmative result in section 3, leads
to the

Question :

Given a composite Hilbert space E = F ⊗ G and a strongly continu-
ous group of unitary operators Ut on E, with t ∈ R. Further, given
ψ ∈ H. Is then the case that :

(5.1) gr(Utψ) = gr(ψ), t ∈ R ?

6. Many Paticle Quantum Systems : Special Solutions of the
Schrödinger Equation

Let be given a one dimensional quantum system of n particles with
the respective masses m1, . . . ,mn and coordinates x1, . . . , xn ∈ R. The
corresponding Schrödinger equation in the configuration space Rn is

(6.1) i~∂tψ(t, x) = −~2[∂2
x2
1
/(2m1) + ....+ ∂2x2

n
/(2mn)]ψ(t, x) +

+V (t, x)ψ(t, x), t ∈ [0,∞), x = (x1, ..., xn) ∈ Rn

Let us consider the case, which covers a large variety of instances of
interest, when the potential V is of the form
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(6.2) V (t, x) = V (x) = V1(x1)+ ...+Vn(xn), x = (x1, ..., xn) ∈ Rn

thus it does not depend on t ∈ [0,∞), and it is separable in x1, ..., xn.

We shall be looking for solutions of (6.1), (6.2) which are linear su-
perpositions of solutions with separable variables, that is, of the form

(6.3) ψ(t, x) = f(t)g1(x1)...gn(xn), t ∈ [0,∞), x = (x1, ..., xn) ∈ Rn

Then introducing ψ in the Schrödinger equation (6.1), we obtain

i~f ′(t)g1(x1)...g(xn) = −~2[f(t)(g1)
′′(x1)g2(x2)...gn(xn)/(2m1)+...

+ f(t)g1(x1)...gn−1(xn−1)(gn)′′(xn)/(2mn)] +

+ V (x)f(t)g1(x1)...g(xn), t ∈ [0,∞), x = (x1, ..., xn) ∈ Rn

Assuming now that ψ(t, x) = f(t)g1(x1)...gn(xn) 6= 0, for t ∈ [0,∞), x =
(x1, ..., xn) ∈ Rn, and dividing by ψ(t, x), it follows that

(6.4) i~[f ′(t)/f(t)] =

= −~2{ {(g1)′′(x1)/[2m1g1(x1)]}+. . .+{(gn)′′(xn)/[2mngn(xn)]} }+

+ V (x), t ∈ [0,∞), x = (x1, ..., xn) ∈ Rn

and the left hand term does not depend on x, while the right hand
term does not depend on t, thus both terms are constant, say, E ∈ C,
which does not depend either on t, or on x.

Thus we obtain the linear first order ODE

(6.5) i~[f ′(t)/f(t)] = E, t ∈ R

as well as the PDE

(6.6) −~2{ {(g1)′′(x1)/[2m1g1(x1)]}+. . .+{(gn)′′(xn)/[2mngn(xn)]} }+
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+ V (x) = E, x = (x1, ..., xn) ∈ Rn

The ODE (6.6) has a well known solution

(6.7) f(t) = A exp {[(−iE)/~]}t

with A ∈ C being an arbitrary constant.

As for the PDE (6.6), we note that it can be written as

(6.8) −~2{(g1)′′(x1)/[2m1g1(x1)]}+ V1(x1) =

= ~2{(g2)′′(x2)/[2m2g2(x2)]+. . .+(gn)′′(xn)/[2mngn(xn)]}+

+[E−V2(x2)− . . .−Vn(xn)], x = (x1, ..., xn) ∈ Rn

thus the left hand term does not depend on x2, ..., xn, while the right
hand term does not depend on x1, therefore both terms are a constant,
say, E1. And then we obtain the linear second order ODE in g1, namely

(6.9) −~2{(g1)′′(x1)/[2m1g1(x1)]}+ V1(x1) = E1, x1 ∈ R

or in more customary form

(6.10) ~2[(g1)′′(x1)] + 2m1[V1(x1)− E1]g1(x1) = 0, x1 ∈ R

which has the well known solution

(6.11) g1(x1) = c1,1g1,1(x1) + c1,2g1,2(x1), x1 ∈ R

where c1,1, c1,2 ∈ C are arbitrary constants, while g1,1, g1,2 : R −→ C
are two linearly independent solutions of (6.9). Furthermore, due to
Abel’s Theorem, the Wronskian

(6.12) Wg1,1,g1,2(x1) =

∣∣∣∣ g1,1(x1) g1,2(x1)
g′1,1(x1) g′1,2(x1)

∣∣∣∣ = D1 ∈ C, x1 ∈ R

Obvoiously, in a similar manner, we can obtain g2, ..., gn, namely, for
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2 ≤ k ≤ n, we have

(6.13) gk(xk) = ck,1gk,1(xk) + ck,2gk,2(xk), xk ∈ R

where ck,1, ck,2 ∈ C are arbitrary constants, while gk,1, gk,2 : R −→ C
are two linearly independent solutions of

(6.14) ~2[(gk)′′(xk)] + 2mk[Vk(xk)− Ek]gk(xk) = 0, xk ∈ R

Furthermore, due to Abel’s Theorem, the Wronskian

(6.15) Wgk,1,gk,2(xk) =

∣∣∣∣ gk,1(xk) gk,2(xk)
g′k,1(xk) g′k,2(xk)

∣∣∣∣ = D1 ∈ C, xk ∈ R

Lastly, (6.6), (6.8), (6.9) yield

(6.16) E1 + E2 + . . .+ En = E

In conclusion, in view of (6.3), the genera wave functionl solution of
the Schrödinger equation (6.1), (6.2) is

(6.17) ψ(t, x) =

= A exp {[(−iE)/~]}t [c1,1g1,1(x1) + c1,2g1,2(x1)] . . .

. . . [cn,1gn,1(xn) + cn,2gn,2(xn)],

t ∈ [0,∞), x = (x1, ..., xn) ∈ Rn
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