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Abstract

In the sixties Ogievetskii and Polubarinov proposed the concept of a notoph, whose
helicity properties are complementary to those of a photon. Later, Kalb and Ramond (and
others) developed this theoretical concept. And, at the present times it is widely accepted.
We analyze the quantum theory of antisymmetric tensor fields with taking into account
mass dimensions of notoph and photon. It appears to be possible to describe both photon
and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism
for the symmetric second-rank spinor.

Next, we proceed to derive equations for the symmetric tensor of the second rank on
the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric
multispinor of the fourth rank is used. It is constructed out of the Dirac 4-spinors. Due
to serious problems with the interpretation of the results obtained on using the standard
procedure we generalize it and obtain the spin-2 relativistic equations, which are consistent
with the general relativity. The importance of the 4-vector field (and its gauge part) is
pointed out.

Thus, we present the full theory which contains photon, notoph (the Kalb-Ramond
field) and the graviton. The relations of this theory with the higher spin theories are
established. In fact, we deduced the gravitational field equations from relativistic quantum
mechanics. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-
notoph.

PACS number: 03.65.Pm , 04.50.-h , 11.30.Cp
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1 Introduction.

In the series of the papers [1, 2, 3, 4, 5], cf. with Refs. [6, 7, 8], we tried to
find connection between the theory of the quantized antisymmetric tensor (AST)
field of the second rank (and that of the corresponding 4-vector field) with the
2(2s+ 1) Weinberg-Tucker-Hammer formalism [9, 10].

Several previously published works [11, 12, 13, 14, 15, 16], introduced the
concept of the notoph (the Kalb-Ramond field) which is constructed on the ba-
sis of the antisymmetric tensor “potentials”. It represents itself the non-trivial
spin-0 field. The well-known textbooks [17, 18, 19, 20] did not discuss the prob-
lems, whether the massless quantized AST field and the quantized 4-vector field
are transverse or longitudinal fields (in the sense if the helicity h = ±1 or
h = 0)? can the electromagnetic potential be a 4-vector in a quantized the-
ory (cf. Ref. [9b,p.251])? how should the massless limit be taken? and many
other fundamental problems of the physics of bosons. In my opinion, the most
rigorous works are refs. [22, 9, 23, 21], but it is not easy to extract corresponding
answers even from them.

First of all, we note that 1) “...In natural units (c = h̄ = 1) ... a lagrangian
density, since the action is dimensionless, has dimension of [energy]4”; 2) One
can always renormalize the lagrangian density and “one can obtain the same
equations of motion... by substituting L → (1/MN)L, where M is an arbitrary
energy scale”, cf. [2]; 3) the right physical dimension of the field strength tensor
F µν is [energy]2; “the transformation F µν → (1/2m)F µν [which was regarded in
Ref. [5]] ... requires a more detailed study ... [because] the transformation above
changes its physical dimension: it is not a simple normalization transformation”.
Furthermore, in the first papers on the notoph [12, 13, 14]1 the authors used the
normalization of the 4-vector F µ field2 to [energy]2 and, hence, the antisymmetric
tensor “potentials” Aµν , to [energy]1. We try to discuss these problems on the
basis of the generalized Bargmann-Wigner formalism [22]. Thus, the Proca and
Maxwell formalisms are generalized too, see, e. g., Ref. [24].

In the Sections 3 and 4 we consider the spin-2 equations. The general scheme
for derivation of higher-spin equations has been given in [22]. A field of the rest
mass m and the spin s ≥ 1

2
is represented by a completely symmetric multispinor

of rank 2s. The particular cases s = 1 and s = 3
2

have been considered in the
textbooks, e. g., ref. [17]. The spin-2 case can also be of some interest because
we can believe that the essential features of the gravitational field are obtained
from transverse components of the (2, 0) ⊕ (0, 2) representation of the Lorentz

1It is also known as a longitudinal Kalb-Ramond field, but the consideration of Ogievetskii and Polubarinov
permits to study the m→ 0 procedure.

2It is well known that it is related to a third-rank antisymmetric field tensor.
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group. Nevertheless, questions of the redundant components of the higher-spin
relativistic equations are not yet understood in detail [25].

In the last Sections we discuss the questions of quantization and interactions.

2 Photon-Notoph Equations.

For spin 1 we start from3

[γαβpαpβ + Apαpα +Bm2]Ψ = 0 , (1)

where pµ = −i∂µ and γαβ are the Barut-Muzinich-Williams covariantly defined
6 × 6 matrices,

∑
µ γµµ = 0. The determinant of [γαβpαpβ + Apαpα + Bm2] is of

the 12th order in pµ. Solutions with E2 − p2 = m2, c = h̄ = 1 can be obtained if
and only if

B

A+ 1
= 1 ,

B

A− 1
= 1 . (2)

The particular cases are:

• A = 0, B = 1 ⇔ we have Weinberg’s equation for s = 1 with 3 solutions E =
+
√

p2 +m2, 3 solutions E = −
√

p2 +m2, 3 solutions E = +
√

p2 −m2 and
3 solutions E = −

√
p2 −m2. Tachyonic solutions have been reformulated in

various ways, for instance, as the ones leading to the spontaneous symmetry
breaking, and non-zero quantum vacuum.

• A = 1, B = 2 ⇔ we have the Tucker-Hammer equation for s = 1. The
solutions are only with E = ±

√
p2 +m2.

So, the addition of the Klein-Gordon equation may change the physical content
even on the free level.

What are the corresponding equations for the antisymmetric tensor field?
They can be the Proca equations in the massive case, and the Maxwell equations
in the massless case. We have shown [1, 2] that one can obtain four different
equations for antisymmetric tensor fields from the Weinberg 2(2S + 1) compo-
nent formalism. First of all, we note that Ψ is, in fact, bivector, Ei = −iF4i,
Bi = 1

2
εijkFjk,, or Ei = −1

2
εijkF̃jk, Bi = −iF̃4i, or their combination. One can

separate four cases:

• Ψ(I) =
(

E + iB
E− iB

)
, P = −1, where Ei and Bi are the components of the

tensor.
3In the classic works on this formalism the authors worked in the Euclidean metrics. However, there is no

any problem to write the equations and other formulas in the pseudo-Euclidean metrics accustomed today, just
change the sign of pµpµ, and other products.
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• Ψ(II) =
(

B− iE
B + iE

)
, P = +1, where Ei, Bi are the components of the tensor.

• Ψ(III) = Ψ(I), but (!) Ei and Bi are the corresponding vector and axial-
vector components of the dual tensor F̃µν .

• Ψ(IV ) = Ψ(II), where Ei and Bi are the components of the dual tensor F̃µν .

The mappings of the WTH equations are:

∂α∂µF
(I)
µβ − ∂β∂µF

(I)
µα +

A− 1

2
∂µ∂µF

(I)
αβ −

B

2
m2F

(I)
αβ = 0 , (3)

∂α∂µF
(II)
µβ − ∂β∂µF

(II)
µα − A+ 1

2
∂µ∂µF

(II)
αβ +

B

2
m2F

(II)
αβ = 0 , (4)

∂α∂µF̃
(III)
µβ − ∂β∂µF̃

(III)
µα − A+ 1

2
∂µ∂µF̃

(III)
αβ +

B

2
m2F̃

(III)
αβ = 0 ,

(5)

∂α∂µF̃
(IV )
µβ − ∂β∂µF̃

(IV )
µα +

A− 1

2
∂µ∂µF̃

(IV )
αβ − B

2
m2F̃

(IV )
αβ = 0 . (6)

In the Tucker-Hammer case (A = 1, B = 2) we can recover the Proca theory from
(3):

∂α∂µFµβ − ∂β∂µFµα = m2Fαβ , (7)

(Aν = 1
m2∂αFαν should be substituted in Fµν = ∂µAν − ∂νAµ, and multiplied by

m2).
We also noted that the massless limit of this theory does not coincide with

the Maxwell theory in some cases, while it contains the latter as a particular
case. In [3, 5, 30] we showed that it is possible to define various massless limits
for the Proca-Duffin-Kemmer theory. Another one is the Ogievetskĭı-Polubarinov
notoph (which is called the Kalb-Ramond field), Ref. [12] in the US literature. The
transverse components of the AST field can be removed from the corresponding
Lagrangian by means of the “new gauge transformation” Aµν → Aµν + ∂µΛν −
∂νΛµ, with the vector gauge function Λµ.

The second case is

∂α∂µFµβ − ∂β∂µFµα = [∂µ∂µ −m2]Fαβ . (8)

So, on the mass shell we have [∂µ∂µ −m2]Fαβ = 0, and, hence,

∂α∂µFµβ − ∂β∂µFµα = 0 , (9)

which rather corresponds to the Maxwell-like case. However, if we calculate dis-
persion relations for the second case (9) it appears that the equation has solutions
even if m 6= 0.
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Now we are interested in the parity-violating equations for antisymmetric ten-
sor fields. We also investigate the most general mapping of the Weinberg-Tucker-
Hammer formulation to the antisymetric tensor field formulation. Instead of
Ψ(I−IV ) we shall try to use now

Ψ(A) =
(

E + iB
B + iE

)
=

1 + γ5

2
Ψ(I) +

1− γ5

2
Ψ(II) . (10)

As a result, the equation for the AST fields is

∂α∂µFµβ − ∂β∂µFµα =
1

2
(∂µ∂µ)Fαβ + [−A

2
(∂µ∂µ) +

B

2
m2]F̃αβ . (11)

Of course, Ψ(A)′ =
(

B− iE
E− iB

)
= −iΨ(A), and the equation is unchanged. The

different choice is

Ψ(B) =
(

E + iB
−B− iE

)
=

1 + γ5

2
Ψ(I) − 1− γ5

2
Ψ(II) . (12)

Thus, one has

∂α∂µFµβ − ∂β∂µFµα =
1

2
(∂µ∂µ)Fαβ + [

A

2
(∂µ∂µ)−

B

2
m2]F̃αβ . (13)

Of course, one can also use the dual tensor (Ei = −1
2
εijkF̃jk and Bi = −iF̃4i) and

obtain analogous equations:

∂α∂µF̃µβ − ∂β∂µF̃µα =
1

2
(∂µ∂µ)F̃αβ + [−A

2
(∂µ∂µ) +

B

2
m2]Fαβ ,

(14)

∂α∂µF̃µβ − ∂β∂µF̃µα =
1

2
(∂µ∂µ)F̃αβ + [

A

2
(∂µ∂µ)−

B

2
m2]Fαβ .

(15)

They are connected with (11,13) by the dual transformations.
The states corresponding to the new functions Ψ(A), Ψ(B) etc are not the parity

eigenstates. So, it is not surprising that we have Fαβ and its dual F̃αβ in the same
equations. In total we have already eight equations.

One can also consider the most general case

Ψ(W ) =

(
aF4i + bF̃4i + cεijkFjk + dεijkF̃jk
eF4i + fF̃4i + gεijkFjk + hεijkF̃jk

)
. (16)

So, we shall have dynamical equations for Fαβ and F̃αβ with additional parameters
a, b, c, d, . . . ∈ C. We have a lot of antisymmetric tensor fields here. However,
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• the covariant form preserves if there are some restrictions on the parameters
only. Alternatively, we have some additional terms of ∂2

4 or ∇2;

• both Fµν and F̃µν are present in the equations;

• under the definite choice of a, b, c, d . . . the equations can be reduced to the
above equations for the tensor Hµν and its dual:

Hµν = c1Fµν + c2F̃µν +
c3

2
εµναβFαβ +

c4

2
εµναβF̃αβ ; (17)

• the parity properties of Ψ(W ) are very complicated.

Other way of construction of the equations of high-spin particles has been
given in [22, 17].4 However, Bargmann and Wigner claimed explicitly that they
constructed (2s+ 1) states (the Weinberg-Tucker-Hammer theory has essentially
2(2s + 1) components). Below we present the standard Bargmann-Wigner for-
malism for the spin s = 1, and turn to the pseudo-Euclidean metric:

[iγµ∂µ −m]αβ Ψβγ = 0 , (18)

[iγµ∂µ −m]γβ Ψαβ = 0 , (19)

If one has
Ψ{αβ} = (γµR)αβAµ + (σµνR)αβFµν , (20)

with

R = eıϕ
(

Θ 0
0 −Θ

)
Θ =

(
0 −1
1 0

)
(21)

in the spinorial representation of γ-matrices we obtain the Duffin-Proca-Kemmer
equations:

∂αFαµ =
m

2
Aµ , (22)

2mFµν = ∂µAν − ∂νAµ . (23)

(In order to obtain this set one should add the equations (18,19) and compare
functional coefficients before the corresponding commutators, see [17]). After the
corresponding re-normalization Aµ → 2mAµ (or F µν → (1/2m)F µν , we obtain
the standard textbook set:

∂αFαµ = m2Aµ , (24)

Fµν = ∂µAν − ∂νAµ . (25)

4On can also obtain s = 0 Kemmer equations on using the Bargmann-Wigner procedure. One should use
the antisymmetric second-rank multispinor in this case.
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It gives the equation (7) for the antisymmetric tensor field. Of course, one can
investigate other sets of equations with different normalization of the Fµν and
Aµ fields. Are all these sets of equations equivalent? As we see, to answer this
question is not trivial. It was argued that the physical normalization is such that
in the massless limit the zero-momentum field functions should vanish in the
momentum representation (there are no massless particles at rest). Moreover, we
advocate the following approach: the massless limit can and must be taken in
the end of all calculations only, i. e., for physical quantities.

How can one obtain other equations following the Weinberg-Tucker-Hammer
approach? The recipe for the third equation is simple: use, instead of (σµνR)Fµν ,
another symmetric matrix (γ5σµνR)Fµν .

After taking into account the above observations let us repeat the procedure
of derivation of the Proca equations from the Bargmann-Wigner equations for a
symmetric second-rank spinor. However, we now set

Ψ{αβ} = (γµR)αβ(camAµ + cfFµ) + (σµνR)αρ(cAm(γ5)ρβAµν + cF IρβFµν) , (26)

where (as above)

R =
(
iΘ 0
0 −iΘ

)
, Θ = −iσ2 =

(
0 −1
1 0

)
. (27)

Matrices γµ are chosen in the Weyl (spinorial) representation, i.e., γ5 is assumed
to be diagonal. Constants ci are some numerical dimensionless coefficients. The
reflection operator R has the properties

RT = −R , R† = R = R−1 , (28)

R−1γ5R = (γ5)T , (29)

R−1γµR = −(γµ)T , (30)

R−1σµνR = −(σµν)T . (31)

They are necessary for the expansion (26) to be possible in such a form, i.e., in
order to have the γµR, σµνR and γ5σµνR to be symmetrical matrices.

The substitution of the above expansion into the Bargmann-Wigner set, Ref. [17],
gives us the new Proca-like equations:

cam(∂µAν − ∂νAµ) + cf (∂µFν − ∂νFµ) = icAm
2εαβµνA

αβ + 2mcFFµν

(32)

cam
2Aµ + cfmFµ = icAmεµναβ∂

νAαβ + 2cF∂
νFµν . (33)
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In the case ca = 1, cF = 1
2

and cf = cA = 0 they are reduced to the ordinary
Proca equations.5 In the general case we obtain dynamical equations which con-
nect the photon, the notoph and their potentials. The divergent (in m → 0)
parts of field functions and of dynamical variables should be removed by corre-
sponding gauge (or Kalb-Ramond gauge) transformations. It is well known that
the notoph massless field is considered to be the pure longitudinal field after one
takes into account ∂µA

µν = 0. Apart from these dynamical equations we can
obtain a number of constraints by means of the subtraction of the equations of
the Bargmann-Wigner system (instead of the addition as for (32,33)). They read

mca∂
µAµ + cf∂

µfµ = 0 , (34)

mcA∂
αAαµ +

i

2
cF εαβνµ∂

αF βν = 0, (35)

that suggests F̃ µν ∼ imAµν and fµ ∼ mAµ, as in [12].
Thus, after the suitable choice of the dimensionless coefficients ci the la-

grangian density for the photon-notoph field can be proposed:

L = LProca + LNotoph = −1

8
FµF

µ − 1

4
FµνF

µν +

+
m2

2
AµA

µ +
m2

4
AµνA

µν , (36)

The limit m→ 0 may be taken for dynamical variables, in the end of calculations
only.

Furthermore, it is logical to introduce the normalization scalar field ϕ(x) and
consider the expansion:

Ψ{αβ} = (γµR)αβ(ϕAµ) + (σµνR)αβFµν . (37)

Then, we arrive at the following set

2mFµν = ϕ(∂µAν − ∂νAµ) + (∂µϕ)Aν − (∂νϕ)Aµ , (38)

∂νFµν =
m

2
(ϕAµ) , (39)

which in the case of the constant scalar field ϕ = 2m also can be reduced to the
system of the Proca equations. The additional constraints are

(∂µϕ)Aµ + ϕ(∂µAµ) = 0 , (40)

∂µF̃
µν = 0 . (41)

5We still note that the division by m in the first equation is not a well-defined operation in the case if someone
is interested in the subsequent limiting procedure m → 0. Probably, in order to avoid this obscure point one
may wish to write the Dirac equations in the form [(iγµ∂µ)/m− I]ψ(x) = 0 which follows straightforwardly in
the derivation of the Dirac equation on the basis of the Ryder relation [7] and the Wigner rules for the boosts
of field function from the zero-momentum frame.
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At the moment it is not yet obvious, how can we account for other equa-
tions in the (1, 0) ⊕ (0, 1) representation, e.g. [7b], rigorously. One can wish to
seek the generalization of the Proca set on the basis of the introduction of two
mass parameters m1 and m2. But, when we apply the BW procedure to the
Dirac equation we cannot obtain new physical content. Another equation in the
(1/2, 0)⊕ (0, 1/2) representation was obtained in ref. [26]. It has the form:[

iγµ∂µ −m1 − γ5m2

]
Ψ(x) = 0 . (42)

The Bargmann-Wigner procedure for this system of equations (which include the
γ5 matrix in the mass term) yields:

. 2m1F
µν + 2im2F̃

µν = ϕ(∂µAν − ∂νAµ) + (∂µϕ)Aν − (∂νϕ)Aµ ,

(43)

∂νFµν =
m1

2
(ϕAµ), (44)

with the constraints

(∂µϕ)Aµ + ϕ(∂µAµ) = 0 , (45)

∂νF̃µν =
im2

2
(ϕAµ) . (46)

In general, we can now use the four different mass parameters in the analogous

equations to (18,19). However, the equality of mass factors6 (m
(1)
1 = m

(2)
1 and

m
(1)
2 = m

(2)
2 ) is obtained as necessary conditions the process of calculations in the

system of the Dirac equations.
In fact, the results of this paper develop the old results of Ref. [12]. According

to [12, Eqs.(9,10)] we proceed in the construction of the “potentials” for the
notoph as follows:,7

Aµν(p) = N
[
ε(1)
µ (p)ε(2)

ν (p)− ε(1)
ν (p)ε(2)

µ (p)
]
. (47)

We use explicit forms for the polarization vectors (e.g., refs. [21] and [5, formu-
las(15a,b)]) boosted to the momentum p:

εµ(0,+1) = − 1√
2


0
1
i
0

 , εµ(0, 0) =


0
0
0
1

 , εµ(0,−1) =
1√
2


0
1
−i
0

 , (48)

6Superscripts (1) and (2) refers to the first and the second equations, respectively, in the modified Bargmann-
Wigner system.

7The notation is that of Ref. [12] here.
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and (p̂i = pi/ | p |, γ = Ep/m), Ref. [21, p.68] or Ref. [19, p.108],

εµ(p, σ) = Lµ ν(p)εν(0, σ) , (49)

L0
0(p) = γ , Li 0(p) = L0

i(p) = p̂i
√
γ2 − 1 , (50)

Li k(p) = δik + (γ − 1)p̂ip̂k . (51)

N , the normalization factor, should be taken into account for possible analyses
of propagators and massless limit. After substitutions in the definition (47) one
obtains

Aµν(p) =
iN2

m


0 −p2 p1 0
p2 0 m+ prpl

p0+m
p2p3
p0+m

−p1 −m− prpl

p0+m
0 − p1p3

p0+m

0 − p2p3
p0+m

p1p3
p0+m

0

 , (52)

i.e., it coincides with the longitudinal components of the antisymmetric tensor
obtained in Refs. [7a,Eqs.(2.14,2.17)] and [5, Eqs.(17b,18b)] within the normal-
ization and different forms of the spin basis. The Aµν(p) potential reduces to
zero in the limiting case (m→ 0) under appropriate choice of the normalization
N = mα, α > 1/2. If N =

√
m this reduction of the non-transverse state occurs

if a s = 1 particle moves along with the third axis OZ.8 It is also useful to com-
pare Eq. (52) with the formula (B2) in Ref. [8] in order to think about correct
procedures for taking the massless limits.

Next, the Tam-Happer experiments [27] on two laser beams interaction did
not find satisfactory explanation in the framework of the ordinary QED (at least,
their explanation is complicated by huge technical calculations). On the other
hand, in Ref. [28] a very interesting model has been proposed. It is based on
gauging the Dirac field on using the coordinate-dependent parameters αµν(x) in

ψ(x) → ψ′(x′) = Ωψ(x) , Ω = exp
[
i

2
σµναµν(x)

]
, (53)

and, thus, the second “photon” was introduced. The compensating 24-component
(in general) field Bµ,νλ reduces to the 4-vector field as follows (the notation of [28]
is used here):

Bµ,νλ =
1

4
εµνλσaσ(x) . (54)

As readily seen after comparison of these formulas with those of Refs. [12, 13, 14],
the second photon is nothing more than the Ogievetskĭı-Polubarinov notoph

8But, even in this case we cannot have a good behaviour of the 4-vector fields/potentials in the massless limit
in the instant form of the relativistic dynamics, cf. [8].
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within the normalization. Parity properties are dependent not only on the ex-
plicite forms of the momentum-space field functions of the (1/2, 1/2) representa-
tion, but also on the properties of corresponding creation/annihilation operators.
Helicity properties depend on the normalization.

3 The Standard Bargmann-Wigner Formalism Applied for
Spin 2.

In this Section we use the commonly-accepted procedure for the derivation of
higher-spin equations [22]. We begin with the equations for the 4-rank symmetric
spinor:

[iγµ∂µ −m]αα′ Ψα′βγδ = 0 , (55)

[iγµ∂µ −m]ββ′ Ψαβ′γδ = 0 , (56)

[iγµ∂µ −m]γγ′ Ψαβγ′δ = 0 , (57)

[iγµ∂µ −m]δδ′ Ψαβγδ′ = 0 . (58)

The massless limit (if one needs) should be taken in the end of all calculations.
We proceed expanding the field function in the set of symmetric matrices (as

in the spin-1 case, cf. Ref. [5]). In the beginning let us use the first two indices:9

Ψ{αβ}γδ = (γµR)αβΨ
µ
γδ + (σµνR)αβΨ

µν
γδ . (59)

We would like to write the corresponding equations for functions Ψµ
γδ and Ψµν

γδ in
the form:

2

m
∂µΨ

µν
γδ = −Ψν

γδ , (60)

Ψµν
γδ =

1

2m

[
∂µΨν

γδ − ∂νΨµ
γδ

]
. (61)

Constraints (1/m)∂µΨ
µ
γδ = 0 and (1/m)εµν αβ ∂µΨ

αβ
γδ = 0 can be regarded as a

consequence of Eqs. (60,61).
Next, we present the vector-spinor and tensor-spinor functions as

Ψµ
{γδ} = (γκR)γδG

µ
κ + (σκτR)γδF

µ
κτ , (62)

Ψµν
{γδ} = (γκR)γδT

µν
κ + (σκτR)γδR

µν
κτ , (63)

9The matrix R can be related to the CP operation in the (1/2, 0) ⊕ (0, 1/2) representation.
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i. e., using the symmetric matrix coefficients in indices γ and δ. Hence, the total
function is

Ψ{αβ}{γδ} = (γµR)αβ(γ
κR)γδG

µ
κ + (γµR)αβ(σ

κτR)γδF
µ

κτ +

+ (σµνR)αβ(γ
κR)γδT

µν
κ + (σµνR)αβ(σ

κτR)γδR
µν

κτ , (64)

and the resulting tensor equations are:

2

m
∂µT

µν
κ = −G ν

κ , (65)

2

m
∂µR

µν
κτ = −F ν

κτ , (66)

T µν
κ =

1

2m
[∂µG ν

κ − ∂νG µ
κ ] , (67)

R µν
κτ =

1

2m
[∂µF ν

κτ − ∂νF µ
κτ ] . (68)

The constraints are re-written to

1

m
∂µG

µ
κ = 0 ,

1

m
∂µF

µ
κτ = 0 , (69)

1

m
εαβνµ∂

αT βν
κ = 0 ,

1

m
εαβνµ∂

αR βν
κτ = 0 . (70)

However, we need to make symmetrization over these two sets of indices {αβ}
and {γδ}. The total symmetry can be ensured if one contracts the function
Ψ{αβ}{γδ} with antisymmetric matrices R−1

βγ , (R−1γ5)βγ and (R−1γ5γλ)βγ and
equate all these contractions to zero (similar to the j = 3/2 case considered
in ref. [17, p. 44]. We obtain additional constraints on the tensor field functions:

G µ
µ = 0 , G[κµ] = 0 , Gκµ =

1

2
gκµG ν

ν , (71)

F µ
κµ = F µ

µκ = 0 , εκτµνFκτ,µ = 0 , (72)

T µ µκ = T µ κµ = 0 , εκτµνTκ,τµ = 0 , (73)

F κτ,µ = T µ,κτ , εκτµλ(Fκτ,µ + Tκ,τµ) = 0 , (74)

R µν
κν = R µν

νκ = R νµ
κν = R νµ

νκ = R µν
µν = 0 , (75)

εµναβ(gβκRµτ,να − gβτRνα,µκ) = 0 εκτµνRκτ,µν = 0 . (76)

Thus, we encountered with the well-known difficulty of the theory for spin-2
particles in the Minkowski space. We explicitly showed that all field functions
become to be equal to zero. Such a situation cannot be considered as a satisfactory

12



one (because it does not give us any physical information) and can be corrected
in several ways.10

4 The Generalized Bargmann-Wigner Formalism for Spin
2.

We shall modify the formalism in the spirit of ref. [30]. The field function (59) is
now presented as

Ψ{αβ}γδ = α1(γµR)αβΨ
µ
γδ + α2(σµνR)αβΨ

µν
γδ + α3(γ

5σµνR)αβΨ̃
µν
γδ , (77)

with

Ψµ
{γδ} = β1(γ

κR)γδG
µ

κ + β2(σ
κτR)γδF

µ
κτ + β3(γ

5σκτR)γδF̃
µ

κτ , (78)

Ψµν
{γδ} = β4(γ

κR)γδT
µν

κ + β5(σ
κτR)γδR

µν
κτ + β6(γ

5σκτR)γδR̃
µν

κτ , (79)

Ψ̃µν
{γδ} = β7(γ

κR)γδT̃
µν

κ + β8(σ
κτR)γδD̃

µν
κτ + β9(γ

5σκτR)γδD
µν

κτ . (80)

Hence, the function Ψ{αβ}{γδ} can be expressed as a sum of nine terms:

Ψ{αβ}{γδ} = α1β1(γµR)αβ(γ
κR)γδG

µ
κ + α1β2(γµR)αβ(σ

κτR)γδF
µ

κτ +

+ α1β3(γµR)αβ(γ
5σκτR)γδF̃

µ
κτ + +α2β4(σµνR)αβ(γ

κR)γδT
µν

κ +

+ α2β5(σµνR)αβ(σ
κτR)γδR

µν
κτ + α2β6(σµνR)αβ(γ

5σκτR)γδR̃
µν

κτ +

+ α3β7(γ
5σµνR)αβ(γ

κR)γδT̃
µν

κ + α3β8(γ
5σµνR)αβ(σ

κτR)γδD̃
µν

κτ +

+ α3β9(γ
5σµνR)αβ(γ

5σκτR)γδD
µν

κτ . (81)

The corresponding dynamical equations are given by the set11

2α2β4

m
∂νT

µν
κ +

iα3β7

m
εµναβ∂νT̃κ,αβ = α1β1G

µ
κ , (82)

2α2β5

m
∂νR

µν
κτ +

iα2β6

m
εαβκτ∂νR̃

αβ,µν +
iα3β8

m
εµναβ∂νD̃κτ,αβ −

− α3β9

2
εµναβελδκτD

λδ
αβ = α1β2F

µ
κτ +

iα1β3

2
εαβκτ F̃

αβ,µ , (83)

2α2β4T
µν

κ + iα3β7ε
αβµνT̃κ,αβ =

α1β1

m
(∂µG ν

κ − ∂νG µ
κ ) , (84)

10The reader can compare our results of this Section with those of Ref. [29]. I became aware about their
consideration from Dr. D. V. Ahluwalia (personal communications, May 5, 1998). I consider their discussion of
the standard formalism in the Sections I and II, as insufficient.

11All indices in this formula are already pure vectorial and have nothing to do with previous notation. The
coefficients αi and βi may, in general, carry some dimension.
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2α2β5R
µν

κτ + iα3β8ε
αβµνD̃κτ,αβ + iα2β6εαβκτ R̃

αβ,µν − α3β9

2
εαβµνελδκτD

λδ
αβ =

=
α1β2

m
(∂µF ν

κτ − ∂νF µ
κτ ) +

iα1β3

2m
εαβκτ (∂

µF̃αβ,ν − ∂νF̃αβ,µ) . (85)

The essential constraints are:

α1β1G
µ

µ = 0 , α1β1G[κµ] = 0 , (86)

2iα1β2F
µ

αµ + α1β3ε
κτµ

αF̃κτ,µ = 0 , (87)

2iα1β3F̃
µ

αµ + α1β2ε
κτµ

αFκτ,µ = 0 , (88)

2iα2β4T
µ
µα − α3β7ε

κτµ
αT̃κ,τµ = 0 , (89)

2iα3β7T̃
µ
µα − α2β4ε

κτµ
αTκ,τµ = 0 , (90)

iεµνκτ
[
α2β6R̃κτ,µν + α3β8D̃κτ,µν

]
+ 2α2β5R

µν
µν + 2α3β9D

µν
µν = 0 , (91)

iεµνκτ [α2β5Rκτ,µν + α3β9Dκτ,µν ] + 2α2β6R̃
µν

µν + 2α3β8D̃
µν

µν = 0 , (92)

2iα2β5R
µα

βµ + 2iα3β9D
µα

βµ + α2β6ε
να

λβR̃
λµ

µν + α3β8ε
να

λβD̃
λµ

µν = 0 , (93)

2iα1β2F
λµ
µ − 2iα2β4T

µλ
µ + α1β3ε

κτµλF̃κτ,µ + α3β7ε
κτµλT̃κ,τµ = 0 , (94)

2iα1β3F̃
λµ
µ − 2iα3β7T̃

µλ
µ + α1β2ε

κτµλFκτ,µ + α2β4ε
κτµλTκ,τµ = 0 , (95)

α1β1(2G
λ

α − gλ αG
µ

µ)− 2α2β5(2R
λµ

µα + 2R µλ
αµ + gλ αR

µν
µν) +

+ 2α3β9(2D
λµ

µα + 2D µλ
αµ + gλ αD

µν
µν) + 2iα3β8(ε

µν
κα D̃κλ

µν − εκτµλD̃κτ,µα)−
− 2iα2β6(ε

µν
κα R̃κλ

µν − εκτµλR̃κτ,µα) = 0 , (96)

2α3β8(2D̃
λµ

µα + 2D̃ µλ
αµ + gλ αD̃

µν
µν)− 2α2β6(2R̃

λµ
µα + 2R̃ µλ

αµ +

+ gλ αR̃
µν

µν) + +2iα3β9(ε
µν

κα Dκλ
µν − εκτµλDκτ,µα)−

− 2iα2β5(ε
µν

κα Rκλ
µν − εκτµλRκτ,µα) = 0 , (97)
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α1β2(F
αβ,λ − 2F βλ,α + F βµ

µ g
λα − Fαµ

µ g
λβ)−

− α2β4(T
λ,αβ − 2T β,λα + T µα

µ gλβ − T µβ
µ gλα) +

+
i

2
α1β3(ε

κταβF̃ λ
κτ + 2ελκαβF̃ µ

κµ + 2εµκαβF̃ λ
κ,µ)−

− i

2
α3β7(ε

µναβT̃ λ µν + 2ενλαβT̃ µ µν + 2εµκαβT̃ λ
κ,µ ) = 0 . (98)

They are the results of contractions of the field function (81) with six antisym-
metric matrices, as above. Furthermore, one should recover the relations (71-76)
in the particular case when α3 = β3 = β6 = β9 = 0 and α1 = α2 = β1 = β2 =
β4 = β5 = β7 = β8 = 1.

As a discussion we note that in such a framework we already have physical
content because only certain combinations of field functions could be equal to
zero. In general, the fields F µ

κτ , F̃ µ
κτ , T µν

κ , T̃ µν
κ , and R µν

κτ , R̃ µν
κτ , D µν

κτ ,

D̃ µν
κτ can correspond to different physical states and the equations above de-

scribe couplings one state with another.
Furthermore, from the set of equations (82-85) one obtains the second-order

equation for symmetric traceless tensor of the second rank (α1 6= 0, β1 6= 0):

1

m2
[∂ν∂

µG ν
κ − ∂ν∂

νG µ
κ ] = G µ

κ . (99)

After the contraction in indices κ and µ this equation is reduced to the set

∂µG
µ

κ = Fκ (100)

1

m2
∂κF

κ = 0 , (101)

i. e., to the equations connecting the analogue of the energy-momentum tensor
and the analogue of the 4-vector potential (the additional notoph field as opposed
to the Logunov theory?). As we showed in our recent work [30] the longitudinal
potential is perfectly suitable for construction of electromagnetism (see also the
works on the notoph and notivarg concept [31]). Moreover, according to the
Weinberg theorem [9] for massless particles it is the gauge part of the 4-vector
potential ∼ ∂µχ which is the physical field. The case, when the longitudinal
potential is equated to zero, can be considered as a particular case only. This
case may be relevant to some physical situation but hardly to be considered as a
basis for unification. Further investigations may provide additional foundations
to “surprising” similarities of gravitational and electromagnetic equations in the
low-velocity limit, Refs. [32, 33, 34, 36].
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5 Interactions with Fermions.

The possibility of terms as σ · [A ×A∗] appears to be related to the matters of
chiral interactions [38, 39]. As we are now convinced, the Dirac field operator can
be always presented as a superposition of the self- and anti-self charge conjugate
field operators (cf. Ref. [37]). The anti-self charge conjugate part can give the
self charge conjugate part after multiplying by the γ5 matrix, and vice versa. We
derived12

[iγµD∗
µ −m]ψs1 = 0 , (103)

or13

[iγµDµ −m]ψa2 = 0 . (105)

Both equations lead to the terms of interaction such as σ · [A×A∗] provided that
the 4-vector potential is considered as a complex function(al). In fact, from (103)
we have:

iσµ∇µχ1 −mφ1 = 0 , (106)

iσ̃µ∇∗
µφ1 −mχ1 = 0 . (107)

And, from (105) we have

iσµ∇∗
µχ2 −mφ2 = 0 , (108)

iσ̃µ∇µφ2 −mχ2 = 0 . (109)

The meanings of σµ and σ̃µ are obvious from the definition of γ matrices. ,
The derivatives are defined:

Dµ = ∂µ − ieγ5Cµ + eBµ , ∇µ = ∂µ − ieAµ , (110)

and Aµ = Cµ + iBµ. Thus, relations with the magnetic monopoles can also be
established.

From the above system we extract the terms as ±e2σiσjAiA
∗
j , which lead to

the discussed terms [38, 39].14

12The anti-self charge conjugate field function ψ2 can also be used. The equation has then the form:

[iγµD∗
µ +m]ψa

2 = 0 . (102)

13The self charge conjugate field function ψ1 also can be used. The equation has the form:

[iγµDµ +m]ψs
1 = 0 . (104)

As readily seen in the cases of alternative choices we have opposite charges in the terms of the type σ · [A×A∗]
and in the mass terms.

14I am grateful to S. Esposito for the e-mail communication on alternative proof of the considered interaction.
We would like to note that the terms of the type σ · [A×A∗] can be reduced to (σ · ∇)V , where V is the scalar
potential.
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Furthermore, one can come to the same conclusions not applying to the con-
straints on the creation/annihilation operators (which we have chosen previously
for clarity and simplicity in [39]). It is possible to work with self/anti-self charge
conjugate fields and Majorana anzatzen. Thus, in the considered cases it is the γ5

transformation which distinguishes various field configurations (helicity, self/anti-
self charge conjugate properties etc) in the coordinate representation.

6 Boson Interactions.

The most general relativistic-invariant Lagrangian for the symmetric 2nd-rank
tensor is

L = −α1(∂
αGαλ)(∂βG

βλ)− α2(∂αG
βλ)(∂αGβλ)−

− α3(∂
αGβλ)(∂βGαλ) +m2GαβG

αβ . (111)

It leads to the equation[
α2∂

2 +m2
]
G{µν} + (α1 + α3)∂

{µ| (∂αG
α|ν}) . (112)

In the case α2 = 1>0 and α1 + α3 = −1 it coincides with Eq. (99).
There is no any problem to obtain the dynamical invariants for the fields of

the spin 2 from the above Lagrangian. The mass dimension of Gµν is [energy]1.
We now present possible relativistic interactions of the symemtric 2nd-rank

tensor. They should be the following ones:

Lint = GµνF
µF ν , (113)

Lint = (∂µGµν)F
ν , (114)

Lint = Gµν(∂
µF ν) . (115)

The term (∂µG
α
α)F

µ vanishes die to the constraint of tracelessness. Obviously,
these interactions can be obtained from the free Lagrangian (111) just by the
covariantization of the derivative ∂µ → ∂µ + gFµ.

It is also interesting to note that thanks to the possible terms

V (F ) = β1(FµF
µ) + β2(FµF

µ)(FνF
ν) (116)

we can give the mass to the G00 component of the spin-2 field. This is due to the
possibility of the Higgs spontaneous symmetry breaking [40]

F µ(x) =


v + ∂0χ(x)

g1

g2

g3

 , (117)
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with v being the vacuum expectation value, v2 = (FµF
µ) = −β1/2β2>0. Other

degrees of freedom of the 4-vector field are removed since they are the Goldstone
bosons. It was stated that “for any continuous symmetry which does not preserve
the ground state, there is a massless degree of freedom which decouples at low
energies. This mode is called the Goldstone (or Nambu-Goldstone) particle for
the symmetry”. As usual, the Goldstone modes should be important in giving
masses to the three vector bosons.15 As one can easily seen, this expression does
not permit an arbitrary phase for F µ, which is only possible if the 4-vector would
be the complex one.

Next, since the interaction of fermions with notoph, for instance, are of the
order e2 since the beginning (as opposed to the interaction with the 4-vector
potential Aµ), it is more difficult to observe it. However, as far as I know the
theoretical precision calculus in QED (the Landé factor, the anomalous magnetic
moment, the hyperfine splittings in positronium and muonium, and the decay
rate of o-Ps and p-Ps) are near the order corresponding to the 4th-5th loops,
where the difference may appear with the experiments [41, 42].

7 Conclusions.

We considered the Bargmann-Wigner formalism to derive the equations for the
AST field and for the symmetric tensor of the 2nd rank. We introduced additional
normalization scalar field in the Bargmann-Wigner formalism in order to account
for possible physical significance of the Ogievetskii-Polubarinov–Kalb-Ramond
modes. We introduced the additional symmetric matrix in the Bargmann-Wigner
expansion (γ5σµνR) in order to account for the dual fields. The consideration was
similar to Ref. [43].

Furthermore, we discussed the interactions of notoph, photon and graviton
(and, probably, notivarg16). For instance, the interaction notoph-graviton may
give the mass to spin-2 particles in the way similar to the spontaneous-symmetry-
breaking Higgs formalism.

15It is interesting to note the following statement (given without references in wikipedia.org): “In general,
the phonon is effectively the NambuGoldstone boson for spontaneously broken Galilean/Lorentz symmetry.
However, in contrast to the case of internal symmetry breaking, when spacetime symmetries are broken, the
order parameter need not be a scalar field, but may be a tensor field, and the corresponding independent massless
modes may now be fewer than the number of spontaneously broken generators, because the Goldstone modes
may now be linearly dependent among themselves: e.g., the Goldstone modes for some generators might be
expressed as gradients of Goldstone modes for other broken generators.”

16In order to analize its dynamical invariants and interactions one should construct Lagrangian from the

analogs of the Riemann tensor D̃µν,αβ .
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