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Abstract 

Polytope (3,3,5) plays an extremely crucial role in the transformation of visible 
matter, as well as in the structure of Time. Polytope (3,3,5) helps to determine 
whether  matter  follows  the  8  x  8  Satva  path  or  the  9  x  9  Raja  path  of 
development. Polytope (3,3,5) on a micro scale determines the development 
path  of  matter,  while  Polytope  (3,3,5)  on  a  macro  scale  determines  the 
geography  of  Time,  given  its  relationship  to  Base  60  math  and  to  the 
icosahedron. Yet the Hopf Fibration is needed to form Poytope (3,3,5). This 
paper outlines the series of interchanges between root lattices and the three 
types of Hopf Fibrations in the formation of quasi – crystals. 
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Introduction 

This paper introduces the formation of Polytope (3,3,5) and the role of the 
Real Hopf Fibration, the Complex and the Quarternion Hopf Fibration in the 
formation  of  visible  matter.  The  author  has  found  that  even  degrees  or 
dimensions host root lattices and stable forms, while odd dimensions host 
Hopf Fibrations. The Hopf Fibration is a necessary structure in the formation 
of Polytope (3,3,5), and so it appears that the three types of Hopf Fibrations 
mentioned above form an intrinsic aspect of the formation of matter via root 
lattices. 

This paper follows the work of R.B King, as well as Lord and Jaganathan, to 
illustrate the formation and features of Polytope (3,3,5), which plays a crucial 
role in higher forms of matter. At the same time, Quarternions play a key role  
in  the  formation  of   Polytope  (3,3,5),  especially  along  its  vertices  and 
symmetry group. 

The third section of this paper discusses the isometric relations of H3 and H4 
with a section from King, as well  as a piece by John Baez. The isometric 
relations described here play an important role in determining whether matter  
takes the stable 8 x 8 Satva course, or the more dynamic 9 x 9 Raja course. 

Finally,  this  paper  attempts to  account  for  the process of  the formation of 
matter in each dimension, with a chart that shows the key features of each 
dimension. 
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The Hopf Fibration 

In the next section, it becomes readily apparent, although understated, that 
the Hopf Fibration plays a key role in the development of Polytope (3,3,5). 
Given  their  similarities  in  structure,  it  may prove  the  case  that  the  Bloch 
Sphere plays an analogous role in nuclear physics, yet on a different scale.  
The Hopf Fibration is also known as the Hopf Map and the Hopf Fibre Bundle 
or  the  Hopf  Bundle  –  the  various  aliases  the  structure  takes  on  across 
mathematical physics, including S3, here. 

As this version includes the Quarternions, we may probably assume that the 
version described here is the Quarternionic Hopf Fibration. Quarternions play 
a crucial role in the formation of Polytope (3,3,5). 
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Left and Right Clifford Translations 
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R.B. King 
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R. B King on Root Lattices and Quasi – Crystals 

R. B. King explains directly the process of how quasi-crystals develop from 
root  lattices  in  even dimensions,  and his  method of  explanation  does not 
require  the  Lie  Algebras  or  the  Exceptional  Lie  Algebras.  Instead,  King 
chooses  the  less  –  traveled  path,  describing  the  formation  of  three  – 
dimensional  icosahedral  quasi  –  crystals.  King’s  method  reflects  the  path 
taken in this series of papers published exclusively on Vixra, which trace the 
path of the development of visible matter along the lines of Platonic Solids. 

Here  King  explains  his  reasoning  for  choosing  reflection  groups  over  Lie 
Groups, and then introduces the H3, of order 120, which is isomorphic to the 
icosahedral point group Ih. In fact, we shall see that the reflection groups H2,  
H3 and H4 hold  isomorphic  relations  with  other  key groups in  the  critical 
region where matter transforms either into stable 8 x 8 Satva forms or into 
dynamic 9 x 9 Raja forms. 

Next, King goes on to explain the concept of tessellation and its importance to 
the formation of quasi-crystals. From the point of view of the Qi Men Dun Jia  
Model,  King’s  discussion  of  tessellation  helps  to  explain  why the  Platonic 
Solids play a key role in the formation, while at  the same time helping to 
explain the omni – presence of the Golden Ratio throughout the process of 
the formation of matter – no mere coincidence, but a necessary element in the 
process. 
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H3 & H4 Reflection Groups 

In this section we include King’s discussion of these two important reflection 
groups as well as John Baez’s take on the same. Their isomorphic relations 
play a key role in the process of the development of visible matter, before the 
shift to 8 x 8 or 9 x 9 types of matter. 
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John Baez on H3 and H4

7) Andreas Fring and Christian Korff, Non-crystallographic reduction
of Calogero-Moser models, Jour. Phys. A 39 (2006), 1115-1131. Also
available as hep-th/0509152.

We  apply  a  recently  introduced  reduction  procedure  based  on  the  embedding  of  non-
crystallographic  Coxeter  groups  into  crystallographic  ones  to  Calogero–Moser  systems.  For 
rational  potentials  the  familiar  generalized  Calogero  Hamiltonian  is  recovered.  For  the 
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Hamiltonians  of  trigonometric,  hyperbolic  and  elliptic  types,  we  obtain  novel  integrable 
dynamical  systems  with  a  second  potential  term  which  is  rescaled  by  the  golden  ratio.  We 
explicitly  show for the  simplest  of  these  non-crystallographic  models,  how the corresponding 
classical equations of motion can be derived from a Lie algebraic Lax pair based on the larger, 
crystallographic Coxeter group.

They set up a nice correspondence between some non-crystallographic
Coxeter groups and some crystallographic ones:

the H2 Coxeter group and the A4 Coxeter group,
the H3 Coxeter group and the D6 Coxeter group,
the H4 Coxeter group and the E8 Coxeter group.

A Coxeter group is a finite group of linear transformations of
R^n that's generated by reflections. We say such a group is
"non-crystallographic" if it's not the symmetries of any lattice.
The ones listed above are closely tied to the number 5:

H2 is the symmetry group of a regular pentagon.
H3 is the symmetry group of a regular dodecahedron.
H4 is the symmetry group of a regular 120-cell.

Note these live in 2d, 3d and 4d space. Only in these dimensions
are there regular polytopes with 5-fold rotational symmetry! Their
symmetry groups are non-crystallographic, because no lattice can
have 5-fold rotational symmetry.

A Coxeter group is "crystallographic", or a "Weyl group", if it
*is* symmetries of a lattice. In particular:

A4 is the symmetry group of a 4-dimensional lattice also called A4.
D6 is the symmetry group of a 6-dimensional lattice also called D6.
E8 is the symmetry group of an 8-dimensional lattice also called E8.

H3 is the group of symmetries of the dodecahedron or icosahedron. H4 is the 
group of symmetries of a regular solid in 4 dimensions which I talked about in 
"week20".  This  regular  solid  is  also called the "unit  icosians"  -  it  has 120 
vertices, and is a close relative of the icosahedron and dodecahedron. One 
amazing thing is that it itself  is a group in a very natural way. There are no 
"hypericosahedra"  or  "hyperdodecahedra"  in  dimensions  greater  than  4, 
which is related to the fact that the H series quits at this point.
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Conclusion 
R. B. King mentions a few more points in his key paper, which we shall raise  
here to emphasize their importance. In a previous paper in this series, the 
author published a chart which illustrated the facts that the Hopf Fibrations 
occur  only  in  odd  dimensions,  that  there  are  different  varieties  of  Hopf 
Fibrations, and that they appear in alternate dimensions from key lattices. The 
author shall again post this chart in this paper, but with a few of the holes filled 
in by topics raised by R. B. King. 

First, King notes on page 134 the two – dimensional quasilattices which have 
rotational  symmetries  of  orders  5,  8,  10  and  12.  The  presence  of  these 
quasilattices helps to explain some of the missing information in the following 
chart, at least in the previously - published version. By filling in the missing 
information,  we can begin to  see the patterns which emerge between the 
Real,  Complex,  Quarternionic  and  Octionic  Hopf  Fibrations,  and  the  root 
lattices and lattices associated with Exceptional Lie Algebras, especially in the 
region between the second Magic Square of G2, B4, F4 and E8, as was noted 
in an earlier paper in this series. 

Then, King notes at in the abstract and in the conclusion of his paper: 

This discussion helps to explain the gap found in the seventh dimension of 
this chart. Even so, Frank “Tony” Smith has shown how action in the seventh 
dimension, specifically S7 x S7 x G2 leads to G2 in the fourteenth dimension,  
as Smith has described on his website and as the author has noted in a paper 
earlier in this series. 

Finally,  with  regard  to  the  ninth  degree  or  dimension,  we  find  that  the 
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Pontryagin class disappears in this location. Wikipedia states:
In mathematics, the Pontryagin classes are certain characteristic classes. The Pontryagin class lies 
in cohomology groups with degree a multiple of four. It applies to real vector bundles.

The vanishing of the Pontryagin classes and Stiefel-Whitney classes of a vector bundle does not 
guarantee that the vector bundle is trivial. For example, up to vector bundle isomorphism, there is 
a unique nontrivial rank 10 vector bundle  E10 over the  9-sphere. (The  clutching function for  E10 

arises from the  stable homotopy group π8(O(10)) =  Z/2Z.) The Pontryagin classes and Stiefel-
Whitney classes all vanish: the Pontryagin classes don't exist in degree 9, and the Stiefel-Whitney 
class w9 of E10 vanishes by the Wu formula w9 = w1w8 + Sq1(w8). Moreover, this vector bundle is 
stably nontrivial, i.e. the Whitney sum of E10 with any trivial bundle remains nontrivial. (Hatcher 
2009, p. 76)

Pontryagin classes of a manifold

The Pontryagin classes of a smooth manifold are defined to be the 

Pontryagin classes of its tangent bundle.

Novikov proved in 1966 that if manifolds are homeomorphic then their 

rational Pontryagin classes pk(M, Q) in H4k(M, Q) are the same.

If the dimension is at least five, there are at most finitely many 

different smooth manifolds with given homotopy type and Pontryagin 

classes.

Now, if Pontryagin Classes fail to exist in the ninth dimension or ninth degree, 
for  some  inexplicable  reason,  then  there  obviously  cannot  appear  their 
associated smooth manifolds, nor tangent bundles. This helps to explain why 
the ninth dimension in the chart below appears empty. 

In addition, apparently the binary icosahedral group itself lacks a form in the 
ninth dimension. 

Below the reader may find the chart in its entirety on the next page: 

This paper has shown the construction of Polytope (3,3,5) and its intimate 
relation to the three types of Hopf Fibrations, found in even dimensions while 
root  lattices are found in  even dimensions.  Similarly,  division algebras are 
found in even dimensions. This paper has tried to account for the anomalies 
found in various dimensions, including the 5th, 7th, 10th, 12th, 14th, and 15th, in 
order to account for every stage in the process of formation of visible matter, 
after its emergence from the substratum.
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Dim Number Lie 
Alge
bra

Hopf Fibration Lattice Division

Algebra

SPIN

1 Real S1 Div Alg
2 Z2 Square 

Lattice
Div Alg

3 Complex S3 Hopf
4 D4 Div Alg
5 2D

Quasi

lattices
6
7 S7 Hopf 
8 Quarternion 2D

Quasi

lattices

Root 
Lattice

Div Alg

9
10 2D

Quasi

lattices
11
12 2D
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lattices
13
14 G2 S7 x S7 x G2
15 S7 – S15 – S8
16 Sedenion Octionic 

Projective 
Plane

Laminat
ed 
Lattice 
L16

17
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Appendix 

Wikipedia 

The 600-cell partitions into 20 rings of 30 tetrahedra each in a very 

interesting, quasi-periodic chain called the Boerdijk–Coxeter helix. 

When superimposed onto the 3-sphere curvature it becomes periodic 

with a period of 10 vertices, encompassing all 30 cells. In addition, 

the 16-cell partitions into two 8-tetrahedron chains, four edges 

long, and the 5-cell partitions into a single degenerate 5-

tetrahedron chain.

The above fibrations all map to the following specific tilings of the 

2-sphere.[4]

In geometry, the 600-cell (or hexacosichoron) is the convex regular 

4-polytope, or polychoron, with Schläfli symbol {3,3,5}. Its boundary 

is composed of 600 tetrahedral cells with 20 meeting at each vertex. 

Together they form 1200 triangular faces, 720 edges, and 120 

vertices. The edges form 72 flat regular decagons. Each vertex of the 

600-cell is a vertex of six such decagons.

The mutual distances of the vertices, measured in degrees of arc on 

the circumscribed hypersphere, only have the values 36° = , 

60°= , 72° = , 90° = , 108° = , 120° = , 

144° = , and 180° = . Departing from an arbitrary vertex V 

one has at 36° and 144° the 12 vertices of an icosahedron, at 60° 

and 120° the 20 vertices of a dodecahedron, at 72° and 108° again 

the 12 vertices of an icosahedron, at 90° the 30 vertices of an 

icosadodecahedron, and finally at 180° the antipodal vertex of V. 

References: S.L. van Oss (1899); F. Buekenhout and M. Parker (1998).

The 600-cell is regarded as the 4-dimensional analog of the 

icosahedron, since it has five tetrahedra meeting at every edge, just 

as the icosahedron has five triangles meeting at every vertex. It is 

also called a tetraplex (abbreviated from "tetrahedral complex") and 

polytetrahedron, being bounded by tetrahedral cells.
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Its vertex figure is an icosahedron, and its dual polytope is the 

120-cell.

Each cell touches, in some manner, 56 other cells. One cell contacts 

each of the four faces; two cells contact each of the six edges, but 

not a face; and ten cells contact each of the four vertices, but not 

a face or edge.

In geometry, the 120-cell (or hecatonicosachoron) is the convex 

regular 4-polytope with Schläfli symbol {5,3,3}.

The boundary of the 120-cell is composed of 120 dodecahedral cells 

with 4 meeting at each vertex.

It can be thought of as the 4-dimensional analog of the dodecahedron 

and has been called a dodecaplex (short for "dodecahedral complex"), 

hyperdodecahedron, and polydodecahedron. Just as a dodecahedron can 

be built up as a model with 12 pentagons, 3 around each vertex, the 

dodecaplex can be built up from 120 dodecahedra, with 3 around each 

edge.

The Davis 120-cell, introduced by Davis (1985), is a compact 4-

dimensional hyperbolic manifold obtained by identifying opposite 

faces of the 120-cell, whose universal cover gives the regular 

honeycomb {5,3,3,5} of 4-dimensional hyperbolic space.

Binary Icosahedron

Relation to 4-dimensional symmetry groups

The 4-dimensional analog of the icosahedral symmetry group Ih is the 

symmetry group of the 600-cell (also that of its dual, the 120-cell). 

Just as the former is the Coxeter group of type H3, the latter is the 

Coxeter group of type H4, also denoted [3,3,5]. Its rotational 

subgroup, denoted [3,3,5]  +   is a group of order 7200 living in SO(4). 

SO(4) has a double cover called Spin(4) in much the same way that 

Spin(3) is the double cover of SO(3). Similar to the isomorphism 

Spin(3) = Sp(1), the group Spin(4) is isomorphic to Sp(1) × Sp(1).

The preimage of [3,3,5]+ in Spin(4) (a four-dimensional analogue of 

2I) is precisely the product group 2I × 2I of order 14400. The 

rotational symmetry group of the 600-cell is then
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[3,3,5]+ = ( 2I × 2I ) / { ±1 }.

Various other 4-dimensional symmetry groups can be constructed from 

2I. For details, see (Conway and Smith, 2003).

S3 S2 # of 
rings

# of cells 
per ring

Cell Stacking

600-cell 
{3,3,5}

Icosahedron 
{3,5}

20 30 Boerdijk–Coxeter 
helix

120-cell 
{5,3,3}

Dodecahedron 
{5,3}

12 10 face stacking

24-cell 
{3,4,3}

Tetrahedron 
{3,3}

4 6 face stacking

Cube {4,3} 6 4 vertex stacking

16-cell 
{3,3,4}

Dihedron {n,2} 2 8 Boerdijk–Coxeter 
helix

8-cell 
{4,3,3}

Dihedron {n,2} 2 4 face stacking

5-cell 
{3,3,3}

Whole 2-sphere 1 5 Boerdijk–Coxeter 
helix
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Properties

The following tables lists some properties of the six convex regular 

polychora. The symmetry groups of these polychora are all Coxeter 

groups and given in the notation described in that article. The 

number following the name of the group is the order of the group. 

Name Family Schlä
fli

symb
ol

Vertic
es

Edge
s

Faces Cells Vertex 
figures

Dual 
polytop

e

Symmet
ry group 

pentachor
on

simplex {3,3,3
}

5 10 10
triangles

5
tetrahedra

tetrahedr
a

(self-
dual)

A4 120

tesseract hypercube {4,3,3
}

16 32 24
squares

8
cubes

tetrahedr
a

16-cell B4 384

16-cell cross-
polytope

{3,3,4
}

8 24 32
triangles

16
tetrahedra

octahedr
a

tessera
ct

B4 384

24-cell {3,4,3
}

24 96 96
triangles

24
octahedra

cubes (self-
dual)

F4 1152

120-cell {5,3,3
}

600 1200 720
pentago

ns

120
dodecahe

dra

tetrahedr
a

600-cell H4 14400

600-cell {3,3,5
}

120 720 1200
triangles

600
tetrahedra

icosahed
ra

120-cell H4 1440

onvex regular 4-polytopes 

pentachoron tesseract 16-cell 24-cell 120-cell 600-cell

{3,3,3} {4,3,3} {3,3,4} {3,4,3} {5,3,3} {3,3,5
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Contact 

The author may be reached at 

Jaq 2013 at out look dot com all of this connected with no spaces 

“Some men see things and ask, why? I dream of things that never were and I 
ask, why not?”

Robert Francis Kennedy (RFK), after George Bernard Shaw
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