Polytope 335 and the
Qi Men Dun Jia Model

By John Frederick Sweeney
Abstract

Polytope (3,3,5) plays an extremely crucial role in the transformation of visible
matter, as well as in the structure of Time. Polytope (3,3,5) helps to determine
whether matter follows the 8 x 8 Satva path or the 9 x 9 Raja path of
development. Polytope (3,3,5) on a micro scale determines the development
path of matter, while Polytope (3,3,5) on a macro scale determines the
geography of Time, given its relationship to Base 60 math and to the
icosahedron. Yet the Hopf Fibration is needed to form Poytope (3,3,5). This
paper outlines the series of interchanges between root lattices and the three
types of Hopf Fibrations in the formation of quasi — crystals.
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Introduction

This paper introduces the formation of Polytope (3,3,5) and the role of the
Real Hopf Fibration, the Complex and the Quarternion Hopf Fibration in the
formation of visible matter. The author has found that even degrees or
dimensions host root lattices and stable forms, while odd dimensions host
Hopf Fibrations. The Hopf Fibration is a necessary structure in the formation
of Polytope (3,3,5), and so it appears that the three types of Hopf Fibrations
mentioned above form an intrinsic aspect of the formation of matter via root
lattices.

This paper follows the work of R.B King, as well as Lord and Jaganathan, to
illustrate the formation and features of Polytope (3,3,5), which plays a crucial
role in higher forms of matter. At the same time, Quarternions play a key role
in the formation of Polytope (3,3,5), especially along its vertices and
symmetry group.

The third section of this paper discusses the isometric relations of H3 and H4
with a section from King, as well as a piece by John Baez. The isometric
relations described here play an important role in determining whether matter
takes the stable 8 x 8 Satva course, or the more dynamic 9 x 9 Raja course.

Finally, this paper attempts to account for the process of the formation of
matter in each dimension, with a chart that shows the key features of each
dimension.



3 The polytope {3, 3,5}

Perfectly regular tetrahedra can be packed together in a
spherical space S3. On a hypersphere embedded in Eu-
clidean space E4 the vertices are those of the regular
polytope {3, 3,5}. It follows that various of the clusters
discussed above, built from slightly irregular tetrahedra,
exist in this polytope without any irregularity.

The polytope {3, 3,5} has 120 vertices, 720 edges, 1200
equilateral triangular faces and 600 regular tetrahedral
cells [22]. There are 5 tetrahedra around every edge and
twelve around every vertex (forming a regular icosahe-
dron). From these facts, the information contained in the
incidence matrix below is easily deduced. The off-diagonal
element ij gives the number of (j—1)-dimensional “facets”
contained in or containing each (i — 1)-dimensional facet:

120 12 30 12

2 720 D D
3 3 1200 2
4 6 4 600

A standard set of coordinates for the vertices is given by
all the even permutations of

% (:I:Q 00 0)
(:I:l +1 +1 :Izl)

% (:I:T +1 40 0) (3.1)

1
2

where 7 is the golden number, 7 = (1 +/5)/2 and o =
—7=1 = (1—+/5)/2 (i.e., T and o are the roots of A2 — \ —
1 = 0). The radius of this {3,3,5} is 1 and its edge length
is 1/7.

The vertices, of course, all lie on the hypersphere (Ss)

2+ttt =1. (3.2)



Table 1. Radii of successive shells around a vertex of {3, 3, 5}.

25 0N el COS (¥

2 1 “centre” 0 1

7 12  icosahedron 1/ T

1 20 dodecahedron 1 1/2
—ag 12  icosahedron (3—7) 1/27

0 30 icosidodecahedron \/5 0

g 12 icosahedron T —1/7
—1 20 dodecahedron ﬁ —1/2
—7 12 icosahedron (2471) —1/2
-2 1 antipodal vertex 2 —1

Table 2. Coordinates of the vertices of the icosidodecahedral
shell indicated in Figure 12.

1 2 34567
—a 1 72006
T —ao 1020
1 7 —-c 00 21

10 11 12 13 14 15

T 0 -1 1T o -1

-1 7 -0 -1 1 ©

54 Q9 |
9 = 49 |w

—g -1 T o -1 T

The Hopf Fibration

In the next section, it becomes readily apparent, although understated, that
the Hopf Fibration plays a key role in the development of Polytope (3,3,5).
Given their similarities in structure, it may prove the case that the Bloch
Sphere plays an analogous role in nuclear physics, yet on a different scale.
The Hopf Fibration is also known as the Hopf Map and the Hopf Fibre Bundle
or the Hopf Bundle — the various aliases the structure takes on across
mathematical physics, including S3, here.

As this version includes the Quarternions, we may probably assume that the
version described here is the Quarternionic Hopf Fibration. Quarternions play
a crucial role in the formation of Polytope (3,3,5).



In the spherical representation of the polytope the edges,
faces and cells are projected onto this S3. The edges are
then represented by arcs of great circles. A way of visual-
ising the polytope is as follows [22]. Take a single vertex —
for convenience, (1 0 0 0) — as a “centre” and consider the
successive “shells” of vertices that surround it. The first
shell is an icosahedron, then 12 vertices lying over the
faces of the first shell form a regular dodecahedron. The
third shell is another, larger icosahedron. So far, the se-
quence is the same as the sequence of shells of atoms in the
Bergman cluster [25]. The vertices of the next shell all lie
on a great sphere of the Sg (in the lower dimensional anal-
ogy, the “centre” would be, say, the north pole. We have
arrived at the equator). This great sphere contains 30 ver-
tices, forming an icosidodecahedron (i.e. the Archimedean
polyvhedron whose vertices are all the midpoints of edges
of an icosahedron. Its triangular and pentagonal faces are
arranged in the pattern (3.5.3.5) around the vertices). The
sequence of shells thereafter goes in reverse order, till we
reach (—1 00 0) (the “south pole”). Table 1 gives, for each
shell, the xy coordinate of its vertices, its distance d from
the (1 0 0 0) measured in E,, and its distance o measured
in Ss.

In the following section it will be convenient to have
names (labels) for the vertices of the equatorial icosidodec-
ahedron. Our labelling system is given by Table 2, which
lists, for each vertex, the coordinates 2z, 2xs, 223 (as a
column).

The vertices diametrically opposite those listed may
be denoted by attaching minus signs to the labels. The la-
belling of the icosidodecahedron is illustrated in Figure 12.

Observe that the edges and vertices of an icosidodec-
ahedron lie on siz planar decagons. In the spherical rep-
resentation, these decagons are great circles. The {3,3,5}
contains 72 of them - corresponding to 72 great circles
in Sg. It is not difficult to deduce that the vertices, great



circles and great spheres in the spherical representation
of {3,3,5} constitute a configuration described by the fol-
lowing incidence matrix:

120 6 15
10 72 5
30 6 60

Fig. 12. The labeling of an equatorial icosidodecahedron
of {3,3,5}. (a) View along 5-old axis. (b) View along 3-fold
axis.



4 Rotations and double rotations in E,

Euclidean transformations in E4; about a fixed origin
(equivalently, rotations of S3) are most simply and ele-
cantly expressed in terms of guaternions. “Real” quater-
nions are essentially sets of four real numbers ¢ =
(g0 ¢1 ¢2 q3) = (qo,q), with the multiplication law

pg = (pogo — P-4, P X4+ pod+ Pqo). (4.1)



The conjugate of a quaternion g is § = (qo, —q), its norm
is q7 = Gq = g2 + ¢¢ + g5 + ¢2, and its modulus |g| is the
square root of the norm. The unit quaternion is (1 00 0)
and every non-zero quaternion has an inverse ¢~! = q/|q|.
Writing the coordinates of points in E4 as quaternions
x = (xg 1 22 x3) = (x0,X), the Euclidean transforma-
tions, keeping the origin fixed are the double rotations

T — pIq. (4.2)

where p and ¢ are quaternions of unit norm. The corre-
sponding orthogonal 4 x 4 matrix is

R = PqQ. (4.3)
where
Po —pP1 —pP2 —p3 o —q1 — 42 — (3
n1 P Na —P g1 0o —0a ¢
pP = P1 Po Pa P2 : Q: {1 qo ({3 2
P2 —pP3 Po M g2 g3 4o —q1
Ps P2 —M Po s —42 1 do

The quaternions p and ¢ can be written as

p = (cosf, nsinf) q = (cosp, msinyp) (4.4)

¥ ¥

thus defining a useful set of parameters for the four-
dimensional orthogonal group: two angles # and ¢ and
two unit 3-vectors n and m.

The special transformations of the form

T — pT, and = — xq (4.5)

are called, respectively, left and right Clifford translations.
In their action on a hypersphere S;, centred at the origin
of Ey, they have no fired points (this phenomenon has
no analogue in Eg: every rotation of a sphere S has two
fixed points). This observation leads to the concept of a
Hopf fibration [16,26] of S3. For any given point = in Sj,
a transformation @ — px generates a great circle in Ss,
parametrised by the variable 6. For fixed n, we can gen-
erate a great circle through every point = of S3. This set
of circles constitute a left Hopf fibration. Obviously, no
two of the circles can intersect. In fact, every pair of cir-
cles is linked! The circles are the fibres of the fibration.
Similarly, right Hopf fibrations are defined in terms of the

'I"I"‘J.'I"IIJFf'l'l"'l"l"l‘).""if\'l"llﬂ M — T



5 Rotational symmetries of {3, 3,5}

The symmetries of {3,3,5} are transformations of the
form (4.3) for which the components of p and ¢ are permu-
tations of the coordinate sets (3.1). We get a group of or-
der 7200. (The full symmetry group including reflections
has order 14400). It is a strange property of the polytope
{3,3,5} that the quaternions representing its vertices are
the same quaternions that represent its symmetries. Even
more odd is that the rows and columns of the 7200 ma-
trices R are the same 120 4-vectors!

Left and Right Clifford Translations

Spherical space S3 can be parametrised by three angu-
lar variables (analogous to longitude and latitude, for S;):

Ty = sin@cos®, 11 =cosBcosV,
ro = cos@sin¥, x5 =sin@sind. (8.1)

Observe that @ — @ + « is a rotation in the (0 3)-plane
and ¥ — ¥ + 3 is a rotation in the (1 2)-plane. In terms
of quaternions, these transformations are respectively x —
pxp and x — pxp, with p = (cos(a/2), 0, 0, sin(a/2)). It

follows that, in terms of these polar coordinates,
PP+, VW —x (8.2)
is a left Clifford translation and
DD+, VU4 (8.3)
is a right Clifford translation. (In terms of quaternions,

xr — px and x — xq, respectively, with p or ¢ of the form
(cos~,0,0,sinv)).

10



The 120 vertices of {3,3,5} lie in tens on 12 great
circles, which are twelve circles of a Hopf fibration. In
fact, the vertices can be assigned in tens to twelve fibres,
in 24 different ways (corresponding to 12 left and 12 right
fibrations. Consider, for definiteness, the effect of the left
translation p — px with

1
p= 5(7‘ —a 1 0), (5.1)
(i.e., # =m/5 and n ~ [1 7 0]) on the vertices of the poly-

tope. In matrix formulation, we have the repeated action
of the corresponding orthogonal matrix

T o—-110
1| -7 0 -1
R=- 5.2
21107 —0 (52)
01 1
on the position vectors. Since p® = —1, R has order 10,

so it generates decagons. The repeated action of R on any
vertex of the polytope generates a decagon of vertices lying
on a fibre.

The twelve fibres can be visualised in terms of a stere-
ographic projection of S3 to E3. Since Ej3 is the space in
which we live, configurations in it are more easily imag-
ined. Moreover, circles in S3 are mapped to circles (or
straight lines) in E3 and spheres are mapped to spheres (or
planes). Let us project from (—1 0 0 0) to the hyperplane
(ES) Lo = D

Starting from vertex 6 (00 0 1) and applying the trans-
formation R repeatedly we get the sequence of ten vertices
around the perimeter of Figure 12b — lying on a great cir-
cle A. Starting from (1 0 0 0) we get a great circle B -
which in the stereogram is a line perpendicular to the page
passing through the middle of the figure, containing none
of the vertices of the icosidodecahedron. The remaining
10 fibres are obtained by repeated application of R to the
remaining ten vertices of the icosidodecahedron. They are
circles that pass through a pair of diametrically opposite
vertices of the icosidodecahedron.

Similarly, a fibration # — xq with ¢ = 7/3 (so that
¢® = —1) gives a transformation of order six that assigns
the 120 vertices of the polytope to 20 fibres with six ver-

tices on each. The hexagon edges, however, are not edges
Aftha 12 2 R1

11



6 The Boerdijk-Coxeter helices in {3,3,5}

Consider the effect of repeated action of
T — plrq (6.1)

with p =1/2(7t =6 10), ¢ =1/2(1 1 11); i.e., 8§ = 7 /5,
p=7n/3,n~[170], m~ [111]. Then

-1 —7 o 0
1 0 —og—17 -1
S 2
R 2 T —1 0 o (6.2)
—ag 0 =1 71

]

Fig. 13. Representation of the configuration of twelve fibres
of a Hopf libration.
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Since p° = ¢*> = —1. R has order 30. It will generate a
sequence of 30 vertices (an orbit of the transformation R),
starting from any vertex of {3, 3, 5}. For example, starting
from 6 (0 0 0 1) we get the the vertices given by the
columns of

0 01 00— 1 0 1= 0 1 0 0—-0 o
1fo-1¢ -1—7-1—-7 -7 -1=-7-1 -1 0 0
210 60-¢ 0 1 1= 7 1 1 7-0 1 1...

2 7 71 1—¢ 0 0 -1-1—-7—7—7

(... denotes a repetition of the fifteen given columns, with
opposite sign.) in this sequence, every set of four consecu-
tive vertices is the set of vertices of a regular tetrahedron
with edge length 1/7. That is, we have a Boerdijk-Cozxeter
heliz consisting of 30 tetrahedral cells of {3, 3, 5}.

The geometrical situation can be explored further. The
fibres of a Hopf fibration are parallel (i.e., any two main-
tain a constant Ss distance from each other). Each of the
twelve fibres associated with the decagons of {3, 3,5} has
five nearest neighbours. Figure 13 is a representation of
this nearest neighbour relationship. The twelve fibres are
represented as the twelve vertices of an icosahedron and
the icosahedron edges represent the nearest neighbour re-
lationship. (N.B.: this icosahedron has nothing to do with
the icosahedral shells of the polytope. In the mathematical
terminology it is the base space of the fibre bundle [26].)
For every triangular face of this icosahedron there is a
B-C helix whose type {3} helices are three decagons of
the polytope. Thus {3,3,5} consists of twenty toroidal B-
C helices packed together, wrapped around each other.

13



R.B. King

TABLE |I. Properties of the regular (Platonic) polyhedra

Polyhedron Face Vertex Number Number Number
type degrees of edges of faces of vertices

Tetrahedron Triangle 3 6 4 4
13.3]

Octahedron Triangle 4 12 8 6
1341

Cube {43} Square 3 12 6 8
Icosahedron Trangle 5 30 20 12
135}

Dodecahedron  Pentagon 3 30 12 20)

15,3}

14



To obtain a realistic model for the collagen structure
by projection from the corresponding structure in {3,3,5}
a mapping is required that maps great circles of a Hopf

fibration of S3 to helices in E5. In terms of the polar coor-
dinate system given by (8.1), a mapping with this property
exists that has a remarkably simple form. Let p, ¢, z be
the coordinates of a cylindrical coordinate system in Es.
Then the mapping from Ss to E3 given by

p=0, p=>& z=-V (8.4)

has the following properties. The fibres of the left trans-
lation (8.2) all lie on toruses @ = const. and are mapped
to helices that wind around the z-axis (which is itself the
image of the fibre @ = 0). Distances along the z-axis and
radial distances from the z-axis represent accurately the
corresponding distances in Ss. The projection is a gen-
eralisation to higher dimensions of Mercator’s projection
from So to Es, which represents distances along the equa-
tor and along lines of longitude accurately to scale, while
stretching out of lines of latitude increases in severity as
one moves away from the equator.

We now choose the position of a {3, 3, 5} in S3 so that
all the vertices of one of its B-C helices lie on a torus @ =
const. (and hence the projected vertices in E3 all lie on a
cylinder whose axis is the z-axis). The minus sign in (8.4)
ensures that the type {1} helix will be right-handed.

We have seen that the 30 vertices of a type {1} helix
in S5 are generated by a transformation P2Q, where P is
a left translation with angular parameter 7/5 and @ is a
right translation with angular parameter =/3. 1t follows
from the prescriptions (8.2, 8.3), that such a transforma-
tion is given by

& — &+ 117/15, v — W — /15, (8.5)

15



The image of a point (0,¢,¥) = (61,0,0) is
(61, 117 /15, —x/15). If these are two vertices of an edge of
{3,3,5} their S3 distance must be cos™(7/2). This gives

/2 = sin® O cos(117/15) + cos® O, cos(w/15)

¥

and hence

1 72
cosG =, =1+ - (8.6)
2 3(2+7)

This enables the polar coordinates of all the vertices of a
B-C helix in {3,3,5} (and hence their images in E3) to
be computed. To identify the positions of other vertices of
this {3,3,5} we proceed as follows:

Let vy, vo, v3, vy be the E4 position vectors of the
vertices of any tetrahedral cell of our {3, 3,5} and let v5 be
the position vector of the remaining vertex of the adjoining
cell, sharing the face (vy, wve, v3). Then

.
¥

vs = (v +v2 +v3)/T — 4. (8.7)

(Observe, incidentally, that the corresponding formula for
a pair of tetrahedra lying in Ej is vs= %(1;1 +vs+v3) — 4.
To produce the polytope, contiguous tetrahedra are ro-
tated about their common face — just as, in making a
model of an icosahedron from a flat net, we have to rotate
neighbouring triangles about their common edge.)

16



In principle, the positions of all 120 vertices of a
{3,3,5} can be computed from this formula, if the po-
sitions of the three vertices of a single triangular face are
oiven.

The central type {1} helix obtained by the projection
of {3, 3,5} employing (8.4) is an almost exact Coxeter he-
lix: the number of edges per turn is 30/11 = 2.727, instead
of 2.731. The structure is periodic — the type {3} helix
has exactly 10 edges per turn. a slight “untwisting” of this
structure is still required if a realistic model of the collagen
model is to be obtained. We apply a further transforma-
tion of the form ¢ — ¢ + kz. the parameter k adjusts the
pitch of the type {3} helices of the central B-C structure,
and is chosen so that about ten glycines per turn occur
along each type {3} helix of the core, as in the actual
molecule. This untwisting transformation introduces very
slight additional deformation of the central B-C helix, but
lessens the inevitable distortion of the three outer B-C
helices.

17



R. B King on Root Lattices and Quasi — Crystals

R. B. King explains directly the process of how quasi-crystals develop from
root lattices in even dimensions, and his method of explanation does not
require the Lie Algebras or the Exceptional Lie Algebras. Instead, King
chooses the less — traveled path, describing the formation of three —
dimensional icosahedral quasi — crystals. King’s method reflects the path
taken in this series of papers published exclusively on Vixra, which trace the
path of the development of visible matter along the lines of Platonic Solids.

ROOT LATTICES FROM REFLECTION GROUPS

In order to provide a clearer geometric picture, this pa-
per derives root lattices from reflection groups!? rather
than from Lie groups.!'! In this connection consider a ka-
leidoscope whose three mirrors (or walls) cut the sphere
in a spherical triangle having angles n/2, /3, and /5
(Figure 4a). The reflections in these walls generate a
group of order 120 called the H; reflection group. The
whole surface of the sphere 1s divided into 120 triangles,
one for each group element. In this specific example the
Hy reflection group is isomorphic to the icosahedral
point group I,

Here King explains his reasoning for choosing reflection groups over Lie
Groups, and then introduces the H3, of order 120, which is isomorphic to the
icosahedral point group |h. In fact, we shall see that the reflection groups H2,
H3 and H4 hold isomorphic relations with other key groups in the critical
region where matter transforms either into stable 8 x 8 Satva forms or into
dynamic 9 x 9 Raja forms.

Next, King goes on to explain the concept of tessellation and its importance to
the formation of quasi-crystals. From the point of view of the Qi Men Dun Jia
Model, King’s discussion of tessellation helps to explain why the Platonic
Solids play a key role in the formation, while at the same time helping to
explain the omni — presence of the Golden Ratio throughout the process of
the formation of matter — no mere coincidence, but a necessary element in the
process.

18



The concept of a tessellation is useful for generating
regular polytopes of low dimension as well as related lat-
tices. In this connection, embedding a network of poly-
gons into a surface can be described as a tiling or tessella-
tion of the surface.” In a formal sense a tiling or tessella-
tion of a surface is a countable family of closed sets T =
{T\,T5...} which cover the surface without gaps or over-
laps. More explicitly, the union of the sets T,T5... (which
are known as the tiles of T) is the whole surface and the
interiors of the sets T; are pairwise disjoint. In the tessella-
tions of interest in this paper, the tiles are the polygons,
which, in the case of tessellations corresponding to poly-
hedra, are the faces of the polyhedra. Tessellations can be
described in terms of their flags, where a flag is a triple
(V, E, F) consisting of a vertex V, and edge E, and a face
F which are mutually incident. A tiling T 1s called regular
if its symmetry group G(T) is transitive on the flags of T.
A regular tessellation consisting of ¢ regular p-gons at
each vertex can be described by the so-called Schiifli no-
tation {p,q}. The Schiifli notation can be generalized to
higher dimensions in the obvious way.

The dual pairs for the Platonic polyhedra consist of the
cube/octahedron and dodecahedron/icosahedron (Figure 1).
The tetrahedron is self-dual, i.e., the dual of a tetrahedron
is another tetrahedron. Also the concept of duality can be
extended from standard polyhedra embedded in the surface
of a sphere to polygonal networks embedded in surfaces of
non-zero genus. In this connection the author has studied

19



dual

|
<

Tetrahedron {3,3} Tetrahedron {3,3}

dual

[
o

Octahedron {3,4} Cube {4,3}

dual

|
8

Icosahedron {3,5} Dodecahedron {5,3}

Figure 1. The five regular »Platonic« polyhedra showing their Schéfli
symbols and the dual pairs. Note that the tetrahedron is self-dual.

Croat. Chem. Acta 77 (1-2) 133140 (2004)
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REGULAR POLYTOPES, ROCT LATTICES, AND QUASICRYSTALS

{4,4} (“checkerboard plane”)

5= AT

{6,3} (“graphite structure”) {3,6} tessellation

Figure 2. The three regular tessellations of the plane, namely the
self-dual {4,4} checkerboard tessellation and the {6,3}<3{3,6}

dual pair

0 0——0 (b)
The Hj reflection group

Figure 4. (a) Generation of the Hy reflection group (=1}, point group);
(b) The Coxeter-Dynkin diagram for the Hj reflecion group.
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/’ﬁﬁ\
N\\NEwz/4

.
{3,3,5}

o

{5,3,3}

Figure 3. Projections of the six regular four-dimensional polytopes
and their Schéfli symbols. For clarity only the »front« portions of
the large {3,3,5} and {5,3,3} polytopes are shown.
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H3 & H4 Reflection Groups

In this section we include King’s discussion of these two important reflection
groups as well as John Baez’s take on the same. Their isomorphic relations
play a key role in the process of the development of visible matter, before the
shift to 8 x 8 or 9 x 9 types of matter.

The group H; 1s an example of a finite or spherical
reflection group. Such groups are called irreducible 1f
they cannot be generated by direct products of smaller
irreducible groups. In general, such irreducible reflec-
tion groups are generated by reflections in the walls of a
spherical simplex, all of whose dihedral angles are sub-
multiples of 7. The infinite cone bounded by the reflect-
ing walls or hyperplanes (i.e., the kaleidoscope) is a fun-
damental region of the reflection group. If R; 1s the re-
flection in the ith wall of the fundamental region, a set
of generating relations for the corresponding reflection
group can be generated by the following set of defining
relations:

flz - (RF RJ')P# =1 (I-:f - 11---1”) (1)

23



In Eq. (1) nt/p; is the angle between the ith and jth
walls. Coxeter has proven that every finite group with a
set of defining relations of this form is a reflection
group. Such reflection groups can be described by a
Coxeter-Dynkin diagram, which has one vertex for each
wall with two vertices being joined by a line labeled
with the exponents p in the defining relations (Eq. 1).
Certain abbreviations are customarily used for lines la-
belled with small values of p, as shown in Figure 5a.
The Coxeter-Dynkin diagram for the reflection group H;
1s given in Figure 4b.

R. B. KING

(a)

0 0—>—0 (b)
The H, reflection group

Figure 4. (o) Generation of the Hy reflection group (=1}, point group);
(b) The Coxeter-Dynkin diagram for the H3 reflection group.
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Of particular interest in connection with the theory
of 1cosahedral quasicrystals to be discussed in this paper
1s the fact that the regular icosahedron has a four-dimen-
sional analogue, namely the {3.,3,5} polytope, but no
regular polytope analogues beyond four dimensions.

The group H; as noted above (Figure 4) corresponds to
the symmetry point group [, of the regular icosahedron
13,5} or its dual, namely the regular dodecahedron {5,3}
(Figure 1). Stmilarly the group H, corresponds to the four-
dimensional symmetry point group of the regular four-
dimensional polytope {3,3,5} or its dual {5,3,3} (Figure 3).

TABLE Il. The indecomposable finite root systems

Root system Lattice Number of root vectors Construction
A, A, n(n+1) Projection of ¢;—¢; (i, j = 1 to n—1) into n-space
B, zn 2n2 {te;. teqte;} where (i,j =1 to n)
C, D, 202 {+2e;, teite;} where (i,j =1 to n)
D, D, 2n(n—1) {irer-ﬂ'j} where (i,j = | to n)
Gy Ay 12 {(],O),(3)‘3,J§)‘3)} and six-fold rotations of these points
Fy Dy 48 By®{ ' (te tertestey))
Eq Eq 72 As® 1207, 5(te eyt ste stesteg)ter/A2} with 343
Eq E5 126 A® {1 5(+e terterte testegtesteg)t with 444
Eg Eg 240 Dg{ '/3 (e teteste testeqtesteg) ) with even # +

Croat. Chem. Acta 77 (1-2) 133-140 (2004)

John Baez on H3 and H4

7) Andreas Fring and Christian Korff, Non-crystallographic reduction
of Calogero-Moser models, Jour. Phys. A 39 (2006), 1115-1131. Also
available as hep-th/0509152.

We apply a recently introduced reduction procedure based on the embedding of non-
crystallographic Coxeter groups into crystallographic ones to Calogero—Moser systems. For
rational potentials the familiar generalized Calogero Hamiltonian is recovered. For the
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Hamiltonians of trigonometric, hyperbolic and elliptic types, we obtain novel integrable
dynamical systems with a second potential term which is rescaled by the golden ratio. We
explicitly show for the simplest of these non-crystallographic models, how the corresponding
classical equations of motion can be derived from a Lie algebraic Lax pair based on the larger,

crystallographic Coxeter group.

They set up a nice correspondence between some non-crystallographic
Coxeter groups and some crystallographic ones:

the H2 Coxeter group and the A4 Coxeter group,
the H3 Coxeter group and the D6 Coxeter group,
the H4 Coxeter group and the E8 Coxeter group.

A Coxeter group is a finite group of linear transformations of
R”n that's generated by reflections. We say such a group is

"non-crystallographic” if it's not the symmetries of any lattice.
The ones listed above are closely tied to the number 5:

H2 is the symmetry group of a regular pentagon.
H3 is the symmetry group of a regular dodecahedron.
H4 is the symmetry group of a regular 120-cell.

Note these live in 2d, 3d and 4d space. Only in these dimensions

are there regular polytopes with 5-fold rotational symmetry! Their

symmetry groups are non-crystallographic, because no lattice can
have 5-fold rotational symmetry.

A Coxeter group is "crystallographic”, or a "Weyl group", if it
*is* symmetries of a lattice. In particular:

A4 is the symmetry group of a 4-dimensional lattice also called A4.
D6 is the symmetry group of a 6-dimensional lattice also called D6.
E8 is the symmetry group of an 8-dimensional lattice also called ES8.

Hs is the group of symmetries of the dodecahedron or icosahedron. H, is the
group of symmetries of a regular solid in 4 dimensions which | talked about in
"week20". This regular solid is also called the "unit icosians" - it has 120
vertices, and is a close relative of the icosahedron and dodecahedron. One
amazing thing is that it itself is a group in a very natural way. There are no
"hypericosahedra" or "hyperdodecahedra" in dimensions greater than 4,
which is related to the fact that the H series quits at this point.
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Conclusion

R. B. King mentions a few more points in his key paper, which we shall raise
here to emphasize their importance. In a previous paper in this series, the
author published a chart which illustrated the facts that the Hopf Fibrations
occur only in odd dimensions, that there are different varieties of Hopf
Fibrations, and that they appear in alternate dimensions from key lattices. The
author shall again post this chart in this paper, but with a few of the holes filled
in by topics raised by R. B. King.

First, King notes on page 134 the two — dimensional quasilattices which have
rotational symmetries of orders 5, 8, 10 and 12. The presence of these
quasilattices helps to explain some of the missing information in the following
chart, at least in the previously - published version. By filling in the missing
information, we can begin to see the patterns which emerge between the
Real, Complex, Quarternionic and Octionic Hopf Fibrations, and the root
lattices and lattices associated with Exceptional Lie Algebras, especially in the
region between the second Magic Square of G2, B4, F4 and E8, as was noted
in an earlier paper in this series.

Then, King notes at in the abstract and in the conclusion of his paper:

Thus the generation of a two-dimensional quasilattice with
seven-fold symmetry requires projection from a six-di-
mensional root lattice’® in contrast to a two-dimensional
quasilattice with five-fold symmetry (H,) where projec-
tion from the four-dimensional A, root lattice 1s sufficient.

can generate quasicrystals of other symmetries. Four-dimensional root lattices are sufficient for
projections to two-dimensional quasicrystals of eight-fold and twelve-fold symmetries. How-
ever, root lattices of at least six-dimensions (e.g., the A lattice) are required to generate two-
dimensional quasicrystals of seven-fold symmetry. This might account for the absence of
seven-fold symmetry in experimentally observed quasicrystals.

This discussion helps to explain the gap found in the seventh dimension of
this chart. Even so, Frank “Tony” Smith has shown how action in the seventh
dimension, specifically S7 x S7 x G2 leads to G2 in the fourteenth dimension,
as Smith has described on his website and as the author has noted in a paper
earlier in this series.

Finally, with regard to the ninth degree or dimension, we find that the
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Pontryagin class disappears in this location. Wikipedia states:
In mathematics, the Pontryagin classes are certain characteristic classes. The Pontryagin class lies

in cohomology groups with degree a multiple of four. It applies to real vector bundles.

The vanishing of the Pontryagin classes and Stiefel-Whitney classes of a vector bundle does not

guarantee that the vector bundle is trivial. For example, up to vector bundle isomorphism, there is
a unique nontrivial rank 10 vector bundle £, over the 9-sphere. (The clutching function for £y
arises from the stable homotopy group ns(O(10)) = Z/2Z.) The Pontryagin classes and Stiefel-

Whitney classes all vanish: the Pontryagin classes don't exist in degree 9, and the Stiefel-Whitney
class wy of E, vanishes by the Wu formula we = wiws + Sq'(ws). Moreover, this vector bundle is
stably nontrivial, i.e. the Whitney sum of £}, with any trivial bundle remains nontrivial. (Hatcher
2009, p. 76)

Pontryagin classes of a manifold

The Pontryagin classes of a smooth manifold are defined to be the
Pontryagin classes of its tangent bundle.

Novikov proved in 1966 that if manifolds are homeomorphic then their
rational Pontryagin classes pi(M, Q) in H*(M, Q) are the same.

If the dimension is at least five, there are at most finitely many
different smooth manifolds with given homotopy type and Pontryagin
classes.

Now, if Pontryagin Classes fail to exist in the ninth dimension or ninth degree,
for some inexplicable reason, then there obviously cannot appear their
associated smooth manifolds, nor tangent bundles. This helps to explain why
the ninth dimension in the chart below appears empty.

In addition, apparently the binary icosahedral group itself lacks a form in the
ninth dimension.

Below the reader may find the chart in its entirety on the next page:

This paper has shown the construction of Polytope (3,3,5) and its intimate
relation to the three types of Hopf Fibrations, found in even dimensions while
root lattices are found in even dimensions. Similarly, division algebras are
found in even dimensions. This paper has tried to account for the anomalies
found in various dimensions, including the 5", 7, 10", 12", 14" and 15", in
order to account for every stage in the process of formation of visible matter,
after its emergence from the substratum.
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Appendix

Wikipedia

The 600—cell partitions into 20 rings of 30 tetrahedra each in a very
interesting, quasi-periodic chain called the Boerdijk - Coxeter helix.

When superimposed onto the 3—-sphere curvature it becomes periodic
with a period of 10 vertices, encompassing all 30 cells. In addition,
the 16—cell partitions into two 8—tetrahedron chains, four edges
long, and the 5—cell partitions into a single degenerate 5-
tetrahedron chain.

The above fibrations all map to the following specific tilings of the
41

2—sphere.
In geometry, the 600—cell (or hexacosichoron) is the convex regular
4-polytope, or polychoron, with Schlafli symbol {3,3,5}. Its boundary
is composed of 600 tetrahedral cells with 20 meeting at each vertex.
Together they form 1200 triangular faces, 720 edges, and 120
vertices. The edges form 72 flat regular decagons. Each vertex of the
600—cell is a vertex of six such decagons.

The mutual distances of the vertices, measured in degrees of arc on

the circumscribed hypersphere, only have the values 36° = ?T/5,
60° = m/3, 72° =2m/5 90° =w/2 108° =3m/5, 120° =27/3,

144° = 4?T/5, and 180° = 4. Departing from an arbitrary vertex V

one has at 36° and 144° the 12 vertices of an icosahedron, at 60°
and 120° the 20 vertices of a dodecahedron, at 72° and 108° again
the 12 vertices of an icosahedron, at 90° the 30 vertices of an
icosadodecahedron, and finally at 180° the antipodal vertex of V.
References: S.L. van Oss (1899):; F. Buekenhout and M. Parker (1998).

The 600—-cell is regarded as the 4-dimensional analog of the
icosahedron, since it has five tetrahedra meeting at every edge, just
as the icosahedron has five triangles meeting at every vertex. It is
also called a tetraplex (abbreviated from “tetrahedral complex”) and
polytetrahedron, being bounded by tetrahedral cells
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Its vertex figure is an icosahedron, and its dual polytope is the
120—cell.

Each cell touches, in some manner, 56 other cells. One cell contacts
each of the four faces; two cells contact each of the six edges, but
not a face; and ten cells contact each of the four vertices, but not
a face or edge.

In geometry, the 120—cell (or hecatonicosachoron) is the convex
regular 4-polvtope with Schlafli symbol {5, 3, 3}.

The boundary of the 120-cell is composed of 120 dodecahedral cells
with 4 meeting at each vertex.

It can be thought of as the 4-dimensional analog of the dodecahedron

and has been called a dodecaplex (short for ”“dodecahedral complex”),
hyperdodecahedron, and polydodecahedron. Just as a dodecahedron can
be built up as a model with 12 pentagons, 3 around each vertex, the

dodecaplex can be built up from 120 dodecahedra, with 3 around each
edge.

The Davis 120-cell, introduced by Davis (1985), is a compact 4-
dimensional hyperbolic manifold obtained by identifying opposite
faces of the 120-cell, whose universal cover gives the regular
honeycomb {5, 3, 3,5} of 4-dimensional hyperbolic space.

Binary Icosahedron

Relation to 4-dimensional symmetry groups

The 4-dimensional analog of the icosahedral svmmetrvy group [, is the
symmetry group of the 600—cell (also that of its dual, the 120-cell).
Just as the former is the Coxeter group of type /5, the latter is the
Coxeter group of type H, also denoted [3,3,5]. Its rotational
subgroup, denoted [3,3.5]" is a group of order 7200 living in SO(4).
S0(4) has a double cover called Spin(4) in much the same way that
Spin(3) is the double cover of SO(3). Similar to the isomorphism
Spin(3) = Sp(1), the group Spin(4) is isomorphic to Sp(1) X Sp(1).

The preimage of [3,3,5]" in Spin(4) (a four—dimensional analogue of
21) is precisely the product group 27 X 27 of order 14400. The
rotational symmetry group of the 600-cell is then
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[3,3,5]" = (27 X 2I) / { +£1 }.

Various other 4-dimensional symmetry groups can be constructed from

21. For details, see (Conway and Smith, 2003).

S3 S2
600——cell Icosahedron
{3, 3,5} {3, 5}
120—cell Dodecahedron
{5,3, 3} {5, 3}
24—cell Tetrahedron
{3, 4, 3} {3, 3}

Cube {4, 3}
16—cell Dihedron {n, 2}
{3, 3,4}
8——cell Dihedron {n, 2}
{4, 3, 3}
5—cell Whole 2-sphere
{3,3,3}

# of
rings
20

12

# of cells
per ring
30

10

Cell Stacking

Boerdi jk - Coxeter
helix

face stacking
face stacking

vertex stacking

Boerdi jk - Coxeter
helix

face stacking

Boerdi jk - Coxeter
helix
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Properties

The following tables lists some properties of the six convex regular

polychora. The symmetry groups of these polychora are all Coxeter
groups and given in the notation described in that article. The
number following the name of the group is the order of the group.

Name Family Schld Vertic Edge Faces Cells Vertex Dual Symmet
fli es s figures polytop ry group
symb e
ol
pentachor simplex {3,3,3 5 10 10 5 tetrahedr (self- A; 120
on } triangles tetrahedra a dual)
tesseract hypercube {4,3,3 16 32 24 8 tetrahedr 16-cell B, 384
} squares cubes a
16-cell cross- {3,34 8 24 32 16 octahedr tessera B, 384
polytope } triangles tetrahedra a ct
24-cell {343 24 96 96 24 cubes (self- F, 1152
} triangles octahedra dual)
120-cell {5,3,3 600 1200 720 120  tetrahedr 600-cell H, 14400
} pentago dodecahe a
ns dra
600-cell {3,3,5 120 720 1200 600 icosahed 120-cell H, 1440
} triangles tetrahedra ra

onvex regular 4-polytopes
pentachoron tesseract 16—cell 24-cell 120-cell 600-cell
{3, 3,3} {4,3,3) 1{3,3,4} {3,4,3} {5,3,3} {3,3,5
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Abstract. The packing of tetrahedra in face contact is well-known to be relevant to atomic clustering in
many complex alloys. We briefly review some of the structures that can arise in this way, and introduce
methods of dealing with the geometry of the polytope {3, 3,5}, which is highly relevant to an understanding
of these structures. Finally, we present a method of projection from Sz to Es that enables coordinates for
the key vertices of the collagen model of Sadoc and Rivier to be calculated.
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The icosahedral quasicrystals of five-fold symmetry in two, three, and four dimensions are re-
lated to the corresponding regular polytopes exhibiting five-fold symmetry, namely the regular
pentagon (H, reflection group), the regular icosahedron {3,5} (H, reflection group), and the
regular four-dimensional polytope {3,3.5} (H, reflection group). These quasicrystals exhibit-
ing five-fold symmetry can be generated by projections from indecomposable root lattices with
twice the number of dimensions, namely A,—H,, D,—H,, E.—H,. Because of the subgroup
relationships H, © Hy < Hy, study of the projection Eg—H, provides information on all of the
possible icosahedral quasicrystals. Similar projections from other indecomposable root lattices
can generate quasicrystals of other symmetries. Four-dimensional root lattices are sufficient for
projections to two-dimensional quasicrystals of eight-fold and twelve-fold symmetries. How-
ever, root lattices of at least six-dimensions (e.g., the A lattice) are required to generate two-
dimensional quasicrystals of seven-fold symmetry. This might account for the absence of
seven-fold symmetry in experimentally observed quasicrystals.

John Baez on H3 and H4 in a weekly talk.

34



Contact

The author may be reached at

Jaq 2013 at out look dot com all of this connected with no spaces

“Some men see things and ask, why? | dream of things that never were and |
ask, why not?”

Robert Francis Kennedy (RFK), after George Bernard Shaw
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