
 1 

 

ABEL RESUMMATION , REGULARIZATION, 
RENORMALIZATION AND INFINITE SERIES 

 
Jose Javier Garcia Moreta 

Graduate student of Physics at the UPV/EHU (University of Basque country) 
In Solid State Physics 

Addres: Practicantes Adan y Grijalba 2 5 G 
P.O 644 48920 Portugalete Vizcaya (Spain) 

Phone: (00) 34 685 77 16 53 
E-mail: josegarc2002@yahoo.es 

 
 

 ABSTRACT: We Study the use of Abel summation applied to the evaluation of infinite 

series and infinite (divergent) integrals , we give several examples of how we can 
obtain a regularization for the case of divergent sums and integrals. 

 Keywords: = Abel sum formula,Abel-Plana formula, poles , infinities, renormalization, 

regularization, multiple integrals, Casimir effect. 

 
 

Abel summation for divergent series: 
 

Given a power series of the form 
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| | 1x   we define the Abel resummation of the series 
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  , if such limit exist we will say that the series 
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n
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a
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  is ‘Abel 

summable’ to the value A(s). 
 
As an example let be the series [6] 
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Unfortunately the series 
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

 is NOT Abel summable, this is due to the pole at 

x=1 of the function   
1

1 x


  , however Guo [5] studied this series and gave the 

following identity using an exponential regulator. 
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Where we have used inside (2) the Taylor expansion involving Bernoulli’s 

number 
01 !

j

jx
j

x x
B
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


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

  and the expression for negative values of the Riemann 

zeta function  (1 ) kB
k

k
     .  

 
To evaluate the Riemann zeta inside (2)  for negative values we will need the 

Riemann’s functional equation defined by  (1 ) 2 2 ( )cos ( )
2

s s
s s s


  

  
    

 
 , 

with  ( ) (1 )
sin( )

s s
s




     

 
They introduce an small parameter ‘epsilon’ and after calculations take 0  , 
unfortunately for k= -1 Guo’s method gives only an infinite answer  
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Harmonic number and for the Laplace transform of the logarithm 
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Where  0.57721..   is the Euler-Mascheroni constant. 

If we take (2) and ignore the pole part we have that 
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every k ecept k=-1 , this is precisely the value of the series obtained via Zeta 
regularization, so Abel resummation and Zeta regularization are linked and give 
the same answer for the divergent series provide we ignore the poles 1k    
 
To study an example of how the regularization and renormalization of the poles 
is made we will study the Casimir Effect 
 

o Casimir effect: 
 
The Casimir effect is a physical force due to the quantizatio of Electromagnetic 
fields , see [7] , in the simplest version of the  Casimir effect the vacuum Energy 
of the system per unit of Area ‘A’  is given by 
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Here, 341.054 10 .
2

h
J s



    is the reduced Planck’s constant and 

83 10 /c m s   is the speed of light in the vacuum.  
 



 3 

If we use Zeta regularization [3] we find the value  3

1
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  , if we insert this 

value inside (4) we get the correct experimental value of Casimir effect 
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The physicists approach to ‘Casimir effect’ is a bit more complicate, for example 
they use renormalization and compute the quantity 
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This difference can be computed with the aid of the Euler-Maclaurin sum 
formula  
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Or using the Abel-Plana sum formula with 0   
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If we return to Guo’s formula (2) , and we use the identity  
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find the following. 
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So although the Abel regularization is not valid for the series  
0

k

n

n




  , the 

difference  
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Makes perfect sense and is always FINITE, also for the case k=-1 we find that 
the Harmonic series is ‘summable’ and its sum is equal to Euler-Mascheroni 

constant 1

0n

n 






  after removing the regulator  e  . 

 
So, both methods ‘renormalization’ and zeta regularization gives the same finite 
answer, however Zeta regularization is an easier and faster method and can be 
generalized to the case of more general operators, for example 
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 1

2
E cTrace       ,

,

1 i j
i j

i j

g g
g

        (10) 

The operator inside (10) is the Laplace-Beltrami operator and  1,1 1,2

1,2 2,2

det
g g

g
g g

  

is a determinant of a 2x2 matrix , equation (10) is the expression for the vacuum 
energy of the Laplacian operator in two dimensions. 
 

 

Abel summation and divergent integrals: 
 
Abel summation formula can be extended  to obtain finite results for divergent 
integrals too, first we need the formula 
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22
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  (11) 

 
Where ‘a’ is a positive integer, and the infinite sum inside (9) must be 

understood in the sense  of Abel regularization , so 
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Also this recurrence (11) is finite for ‘k’ a positive integer, due to the poles of the 
Gamma function at the negative integers, in case ‘k’ is a positive and real 
number the recurrence (11) is infinite and it must be truncated , in this case we 

can also use the identity 
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The case m=-1 is not included and must be taken separately, if we take the 

finite part 1
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Euler-Maclaurin summation formula  
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And taking  into account the following series expansion for the Digamma 
function 
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We get the renormalized result for the integral with a logarithmic divergence in 

the form  log
a renorm

dx
a

x a



 
  , this means that in a regularized/renormalized 

sense the 3 integrals 
1 1
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    
1
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  are equal to 0  

 
For the case k=0 , which is the first term inside the recurrence formula (11) we 

find that  0
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0
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divergent sum we get the finite value  0
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o Renormalization/regularization theory from divergent series: 
 
 
Using Abel summtion and formula (11)  we can give an easy method to 

regularize divergent integrals of the form 
0

( )f x dx


  , which any person could 

understand since it uses very simple mathematics, this method of 
renormalization regularization is based on the resummation of divergent series 
of power of the positive integers and also on a relationship in the form of a 

recurrence equation between the divergent integral 
0

a
kx dx  and its discrete 

divergent series counterpart 
1

k

n

n




 , the method is the following. 

 

 Split the integral above into a finite part 
0

( )
a

f x dx  plus a divergent part 

( )
a

f x dx


  , this can always be made 

 Expand the integrand inside ( )
a

f x dx


  into a Laurent series of the form  

k
n

n
n
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

  with coefficients given by   an integral over the complex plane 

using Cauchy’s theorem [1]  1

1 ( )

2n n
C
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   

 Apply  integration on each term of 
2

n
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



  and the formula 
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1
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m
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
  

which is valid and well defined for 2m   
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 Use the regularization for the Harmonic series  1

0n

n 






  and of the 

logarithmic integral log
a

dx
a

x



   to regularize and give a finite meaning 

the the divergent logarithmic integral 

 Use formula  (11) to regularize the divergent integrals m

a

dxx


  for every 

m=0,1,2,...,k  with Abel resummation 
1

m n

n

n e 






 , the ‘renormalized’ value 

for every ‘m’ of this series is just  
1

( )
renorm

m n

n

n e m 






   so Abel and Zeta 

regularization give both the same results, except for the harmonic series 
 Another definition of the renormalized infinite series is made with the 

Abel-plana sum formula, use Abel-Plana formula to compute the 

renormalized value of the series  
0

n n x

n a

e x e dx 


 



   when the regulator 

‘epsilon’ is taken to 0 , this results is analogue to zeta regularization. 
 

As an example , let be the divergent integral 
2

0

x
dx

x c



  , with c >0 , the 

renormalized value of this integral using formula (11) would be 
 

2 2
2 2

0 0 0 0 0

1
log

2 6reg

x dx x c
dx xdx c dx c dx c c

x c x c x c

    

       
          (14) 

 

A more complicate 2-loop integral  
0 0 1

xy
dx dy

x y

 

    can be computed with our 

renormalizatio method based on the regularization and study of divergent 
series, in this case , the integral has a sub divergence in the variable ‘x’ which 
should be renormalized first, the renormalized value of this integral is 
 

0 0 1

x
dx dy

x y

 

   = 2

0 0 0

1
( 1)

( 1)( 1) 2

dx
dyy y ydy

x y x

  

  
          (15) 

 

The integral inside (15) 
0

( )
( 1)( 1)

dx
f x

x y x




    is finite for every positive ‘x’ , to 

simplify the calculations we can replace (approximate) this integral by a 
quadrature formula with n-points so the sum (quadrature) is easier to work with, 
for example if we use the Laguerre quadrature formula, valid for [0, )  see [1] 
 

  
2 2

00

( 1) ( 1)
( 1)( 1) 1 1

jxn

j
j j j

dx e
y y y y

x y x x y x






    
     

    (16) 
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Now, each term inside (16) depend on ‘y’ so we have to renormalize the n 
divergent integrals (n is the number of points of the quadrature formula used)  

  

2

0 0

( 1)

1 1

jxn

j
j j j

e y y
dy

x y x









  
   , this has a quartic divergence 4   , this can be 

seen if we introduce a cut-off term in the integral, we have converted a 2-loop 
integral into an ordinary integral by using a Numerical method and applying the 

Abel resummation and formula (11) to our original integral 
0 0 1

xy
dx dy

x y

 

    

 
o Understanding the Casimir effect renormalization and why the divergent 

series  
1

( )k

n

n k




   has a finite physical value: 

 
Let be the boundary value problem 
 

2

0 2

d f
D f

dx
        (0) ( ) 0f f       0 nD f E f    2

nE n     (17) 

 

Then, if we define the operator 0T D  , the sums 
0

k

n

n




  are the traces of the 

powers of the operator ‘T’  in terms of the spectral zeta function of the Energies 
of the eiganvalue problem inside (17) 
 

  
0

,
2
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T

n

k
n Trace T L 


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1

, (2 )s
T n

n

s L E s  
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



       (18) 

 
The spectrum of problem (17) is discrete, since we have imposed the boundary 
conditions for the eigenfunctions (0) ( ) 0f f L     , if we take the limit L  
the spectrum is no longer discrete and the traces are given by an integral 

instead of a discrete sum  ,  
0

,
2

k k
TL

k
Trace T t dt L





 
   

 
  , 

This integral is still divergent but if we take the difference between  the 2 ( an 
exponential regulator is assumed) , and we can define a ‘renormalized’ value of 
the divergent series  
 

1 0

, , ( )
2 2

k n k t
T T

n

k k
L L n e dtt e k    


 



   
            
   

             (19) 

 
And for the case of the Harmonic series, the difference is  

1 1
, ,

2 2T TL L   
   

       
   

 which is again a renormalizatio of the divergent 

Harmonic series, so in the end we have only a finite value. 
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This method is use in the evaluation of the functional determinant of an operator 
with a discrete set of eigenvalues det( ) n

n

A   , in general the expression 

log n
n

  is divergent but we can define the logarithm of the functional 

determinant as the finite difference (substraction of the divergence). 
 

log (0, ) (0,0)s sA LogC Z x Z            
0

( , )
s

n
n

Z s x x 






     (20) 

 
And ‘C’ is a finite constant, this method is used for example to expand the 
Gamma function and the sine function into an infinite product over their zeros. 
 

1

2
1

( 1) n

x

x n

 



 
  

   
          

2

2
1

sin( )
1

n

x x

x n









 
  

 
        (21) 

 
 

APPENDIX A: ON THE SERIES 
0

1

n n a



 
  

In this paper we have proved the regularizad value for the series 
1

1

n n






  in 

terms of the Euler-Mascheroni constant , then to evaluate the most general 
Harmonic series one could have used  
 

0 0

1 1 1 '( )
( )

1 ( )n n

a
a

n a n a n a


 

 

 
       

    
         (A.1) 

 
However, Kowalenko [7] proved that (A.1) would be wrong if we compare it to 

renormalization, in [7] Kowalenko estudied the divergent series 
0

1
1n n
b



 
  for 

some positive b >0 he obtained from renormalization theory [7] the value 
 

0

1 1
log

1n

b
bn

b





 
   

 
    (A.2) 

If b=1 both (A.2) and (A.1) agree , since (1)    and the logarithm vanishes, 
the expression (A.2) can be obtained substracting the divergent integral to the 
divergent logarithmic series in the form 
 

0 0 0

1 1
lim ( ) log( )

NN

N
n nreg

dx
a a

n a n a x a




 

 
     

   
       (A.3) 
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This method is very similar to what we have done to regularize the divergent 

series 
0

k n

n

n e 






  , to obtaine a finite value  ( )k   we take the renormalized value 

for the series as follows 
 

0 0 0

lim ( )
NN

k n k n k t
R

N
n n

n e n e dtt e k   


  


 

 
    

 
     (A.4) 
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