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Abstract: We demonstrate how fermion rest massgsh@ understood on a strictly geometric
footing, by showing how the Dirac equation is jaisbther form of the Einstein equation for
gravitation in curved spacetime, in view of Wetitisory of gauge (phase) invariance.
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1. Introduction

It is well-understood that the Dirac equatifd —m)¢ =0 may be thought of as the non-
trivial square root of the relativistic energy tedaship p, p° - nf =0. For, if one writes this in
flat spacetime ag” p, p, = nf and then applies™ =1(y"y" +y'y*) =1{y*.y’} wheren® is
the contravariant Minkowski metric tensor, onetfobtains %(y"y’ + y’y") p, p, — nt =0.

Using the dagger notationp = y” p, this becomespp= nt. Then, separating the two parts of
this square root and using the resulting expredsi@perate from the left on a Dirac spimpr
yields the equatior@p— m) u=0 in which the masm represents the eigenvalues of the daggered

momentum matrixp . Upon promoting the spinor to a wavefunction- ¢ simultaneously
with making the substitutiorp — i@, the new wavefunction equation beconfis-m)y =0,

which is Dirac’s equation. In essence, this isgath that Dirac followed to derive his equation
in [1], [2].

This, in turn is based on the equatid’ = g, dX dX for the spacetime metric / proper
time. For, if one simply converts thisie- g, (dx" / dr)( dx / d) = g, Gy where

u’ =dx’ / dr defines the velocity vector, and then multipliesotigh by a square mass then
upon further defining the momentum vectaf = mu’, one obtainsp, p° — nf =0, which is the

starting point for obtaining the Dirac equationowéver, as one can readily see from this well-
known derivation, the massis introduced entirely by hand. It would be dakle to find a way

to obtain Dirac’s equation without the hand-introtlon of a mass, but rather, to have mass arise
spontaneously, based strictly on a deeper undelisgof the spacetime geometry.

It turns out that an exercise similar to the abasi@g the Einstein equation
-«T,, =R, —3 ¢, Rdoes enable us to do exactly that, namely, towbtatrictly geometric

interpretation of the fermion rest mass(im —m)w =0. At the same time, we come to view
Dirac’s equation as just a variant of the Einstmination. Let us now see how this is done.



2. Connecting the Dirac Equation to the Einstein Egation via Weyl's Gauge Theory

The geometric foundation of Einstein’s equationrggs from the Bianchi identity
0,R?,+0,R?, +0, R’ =0 of Riemannian geometry, whede, is the gravitationally-

covariant derivative which makes well-known usé¢hef Christoffel connectiong” ,. For, if

one does a first index contraction of this identtyile noting thatR""}y IS antisymmetric in

{4,V one obtaing. R’ -0, R, +0d., R”_ =0 whereby two of the three terms are contracted
to the Ricci tensor vilR” , = K. A second contraction yields,R-9.,R’, -9., R, =0
whereby the Ricci scalaR = R”[,,. With simple index gymnastics this converts deethe very
well-known d., (R"U -107, R) =0. Because we also know that the local conservati@mergy

is represented via the mixed energy tenBtr by the equation., T*, =0, one connects this to
the contracted Bianchi identity in the foraxd., T, =9., (R"U -107, R) =0 which upon
integration sans cosmological constant yietdS ,, =R, -3 g, R. [3]

Hermann Weyl teaches [4], [5], [6] that whenevervave a field equation or a
Lagrangian for a scalap or fermion¢ field which includes a term. ¢ or 0. 4, we should

subject the field to thivcal gauge (phase) transformatign- € °®g or ¢ — €°“y and insist
that the field equation or Lagrangian remain inaatriunder this transformation. What does one
do to ensure such invariance? Replage- D, =0 ,-iG,,. So now, one changes

d.,9- D, gandd g - Dy with the consequence thator ¢/ acquires an interaction with
the gauge fields, . If we apply Weyl's gauge recipe ted ., T%, =0, (R”g -107, R) =0, then
we should promot®., -~ D., and write this with a bit of index gymnastics as:

-k9”D,T, =9"D,(R,-% g, R=0. (1)

Now, using theg” expressly shown in the above, let us follow thectsame recipe that Dirac
used [1], [2] to convery” p, p. = nf into (i@ —m)z// =0 and see what happens.

Working in curved spacetime, we make use wkgbeinfield €’ , [6] where the Greek

indexes label general spacetime coordinates anldatieindexes label the local Lorentz /
Minkowski coordinates. The metric tensor is thelated to this in the customary manner as:

gaT - eaaéb”ab :% éa éb(yayb+ybya) :_;(I—Urr +rrra) :_;{ra,rr} ’ (2)

where we defind ? = y”e”,. This is simply a generalization gf* :%{y”,y’} into curved
spacetime. We shall continue to employ the usDakt-Dagger” notation, but shall now define
this in curved spacetime such that for any arhyjtvector B,, we haveB=r°B, .
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Let us now turn back to (1) and make use6fD,,T,, =0. Making use of (2) in the
g D,T,, =0 portion of (1) now enables us to write the antiowmator equation:

g”D,T, =4(r°r +rr’)p,t,

ol

=3(0T,+T,D)=4{D.T,} =0, @

whereT, =I''T,, is the “half-daggered” energy tensor daggerechimiadex while retaining
one free index. We then use this to operate fluerdft on a Dirac wavefunction as such:

1(T,0+DT,)y =T, D}y =0 . 4)

This is the Einstein equation used as an opergumaten for fermions, no more, and no less.
The bears exactly the same relationship to theggreamservation relatiorkg” D, T,, =0
linked to geometry viay” D, (R, —% @, R =0 in (1), which Dirac’s equatiofid -m)y =0
bears to the metric equatiar’ = g,, d¥ dX.

This, however, raises the prospect of introduerigrmion rest massithouthaving to
do so by hand, and in the process, of obtainingaangtric understanding of this mass which
links Einstein’s equation to Dirac’s. This is iontrast to when we multiply= g, u’ " by a

hand-addedn” without ever explaining anything about the mpssse Specifically, we take
Dirac’s equatior(i@ —m)z// =0, regard this in curved spacetime such thaty“0., , and use

Weyl's gauge prescription to introduce a gaugerautigon by promotingd — D to write:
(D +im)y =0. (5)

We have also multiplied through by, which allows us to contrast (5) directly with ,(4s one
should now do.

Contrasting, we see that both (4) and (5) corttamadded terms. The left hand terms
have the respective formg,Dy and Dy . The right hand terms af®T ¢ andimy . This

suggests that perhaps the fermion mass can berietied via a commutat@ﬁ'v, IZ)] :

Specifically: If we take both (4) and (5) to bedrequations, with (4) being the Einstein
equation represented in Dirac form with a Weyl depento., - D.,, and with (5) being

Dirac’s equation with a gauge field in curved spexe, then we see that (4) and (5) are in fact
one and the same equatjohand only if:

[D.7,]¢ =(DT, -T,D)¢ = 2T,my. (6)

Specifically, if we now substitute (6) into (4), wee that



1(T,D+DT, )@ =4(T,D+T,D+2T,m)y =T, (D+im)@ =0 . 7)

We then factor ou, from the above, and the result is identically gglént to Dirac’s equation
represented in the form of (5). So, consolida{)g we see that:

T,my =1[T,,iD]y . (8)

If (8) is true, then Dirac’s equation with a gadigdd couplingd — D as in (5) is just a
special case of the Einstein equation (1) with Veyhuge supplemert - D as represented in
the Dirac form (4).

3. Conclusion

Using the foregoing approach, the fermion rest nemgs/en a strictly geometric
interpretation in terms of the commutatibTL,iD)] of a half-daggered energy tensy with the
daggered gauge-covariant derivatideof Weyl. The fermion mass no longer needs to be
regarded as something that is added “by hand,tleiscghould help to understand how to
“reveal” a fermion rest mass via spontaneous symnteeaking. The correspondenge- id
which is such a familiar part of the quantum meatelriandscape is now shown to have an
analogous correspondenoe« iD with rest mass when used in the form of (8). Fymavith
the fermion rest mass now understood as in (8adXrequation written in the form of (4) as

4T, D}y =0, is simply a variant of Einstein’s equatienT,, =R, -4 g,, R. Thisis
completely analogous to how the usual Dirac equa(ﬁiib—m)w =0 is just a variant of the
metric relationshipdz® = g , dX dX.
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