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Abstract

An extended Orthogonal-Symplectic Clifford Algebraic formalism is developed which
allows the novel construction of a graded Clifford gauge field theory of gravity. It has
a direct relationship to higher spin gauge fields, bimetric gravity, antisymmetric met-
rics and biconnections. In one particular case it allows a plausible mechanism to can-
cel the cosmological constant contribution to the action. The possibility of embedding
these Orthogonal-Symplectic Clifford algebras into an infinite dimensional algebra, coined
Super-Clifford Algebra is described. Finally, some physical applications of the geometry of
Super-Clifford spaces to Generalized Supergeometries, Double Field Theories, U -duality,
11D supergravity, M -theory, and E7, E8, E11 algebras are outlined.

Keywords : Super-Clifford algebras; orthogonal Clifford algebras; symplectic Clifford
algebras; supersymmetry; Higher spins; Bimetric gravity; Biconnections; Antisymmet-
ric metrics; Cosmological constant; Super Clifford spaces; Generalized Super Geometry;
Exceptional algebras.

PACS :

1 Orthogonal-Symplectic Clifford Algebras

In the past years it has become more clear that extensions and/or generalizations of su-
persymmetry are needed. Clifford algebras are essential ingredients to attain such goals.
A classification of Hermitian versus holomorphic complex and quaternionic generalized
supersymmetries of M -theory was attained in [12], including the 12-dim Euclidean gen-
eralized supersymmetric F algebra and the 11-dim M theory superalgebra.
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Polyvector super Poincare algebras like

{ Qα, Qβ } =
∑
k

(Cγµ1µ2....µk)αβ W
(k)
µ1µ2.....µk

(1)

were studied by [13]. The summation over k must obey certain crucial restrictions to
match the degrees of freedom with the terms in the left hand side and to ensure that there
is symmetry under the exchange of spinorial α, β indices. C is the charge conjugation
matrix and W (k)

µ1µ2.....µk
are the polyvector-valued momentum like generators. Polyvector

valued extensions of supersymmetry in Clifford Spaces involving spinor-tensorial super-
charge generators Qµ1µ2....µn

α and momentum polyvectors Pµ1µ2....µn were analyzed in [15],
[16]. Clifford-Superspace is an extension of Clifford-space and whose symmetry transfor-
mations are generalized polyvector-valued supersymmetries.

The superconformal algebra su(2, 2|1) in 4D can be realized in terms of 5× 5 matri-
ces [1] and whose entries are given explicitly in terms of the gamma matrices γa. The
momentum, conformal boost, Lorentz and dilation generators are realized as the entries
of the 4 × 4 matrices embedded into 5 × 5 matrices by setting all the entries of the 5-th
column and 5-th rows to zero while identifying the entries of the 4× 4 matrices by

(Pa)
β
α = − 1

2
γa (1 − γ5)

β
α , (Ka)

β
α = − 1

2
γa (1 + γ5)

β
α , a, b = 1, 2, 3, 4. (2a)

The Lorentz and dilation generator are

(Jab)
β
α =

1

2
γab =

1

4
[γa, γb]

β
α , (D) β

α = − 1

2
(γ5)

β
α , α, β = 1, 2, 3, 4. (2b)

The axial charge A generator is represented by − i
4

times a diagonal 5 × 5 matrix whose
entries are (1, 1, 1, 1, 4).

The 8 fermionic generators Qα, Sα are represented by 5× 5 matrices with zeros along
the 4 × 4 block matrices and whose only nonzero entries are along the 5-th column and
5-th rows as follows

(Qα)5β = − 1

2
(1 − γ5)

β
α , (Qα)β5 =

1

2
[ (1 + γ5) C] βα , (Qα)55 = 0 (3a)

(Sα)5β =
1

2
(1 + γ5)

β
α , (Sα)β5 = − 1

2
[ (1 − γ5) C] βα , (Sα)55 = 0 (3b)

where C is the charge conjugation matrix obeying C = −C−1 = −CT , CγaC
−1 = −(γa)

T

where T denotes the transpose. In the representation chosen above C = γ0. The authors
[1] have shown explicitly that the above realization of the bosonic and fermionic generators
in terms of gamma matrices obey the superconformal su(2, 2|1) algebra graded commu-
tator relations. More recently, a 6× 6 matrix realization of the osp(1|4) superalgebra was

2



provide by [5]. The noncompact symplectic algebra sp(2, 2) is isomorphic to so(3, 2). The
(Anti) de Sitter group is so(3, 2), so(4, 1) respectively.

A (4 + N) × (4 + N) matrix realization of the N -extended superconformal algebra
su(2, 2|N) algebra (whose even part is su(2, 2) ⊕ u(N)) is also possible. In particular, a
(4+N)×(4+N) matrix realization of the N spinorial supercharges Qi

α, S
i
α; i = 1, 2, ...., N

can be given by a generalization of eqs-(3a, 3b)

(Qi
α)AB = − 1

2
(1 − γ5)

B
α δ4+i A, (Qi

α)BA =
1

2
[ (1 + γ5) C]Bα δ4+i A (4a)

(Siα)AB =
1

2
(1 + γ5)

B
α δ4+i A, (Siα)BA = − 1

2
[ (1 − γ5) C]Bα δ4+i A (4b)

the other matrix components are zero, for instance

(Qi
α)4+j 4+j = 0, (Siα)4+j 4+j = 0, i, j = 1, 2, ...N (4c)

when i, j = 1 one recovers the 5× 5 matrix realization of eqs-(3a, 3b).
We will go beyond this ordinary description of Lie superalgebras, like su(2, 2|1), in

terms of the gamma matrices as displayed above, by incorporating both orthogonal and
symplectic Clifford algebras into the framework of super Clifford algebras and which
differs from the notion of super Clifford algebras studied earlier by [3]. Orthogonal
Clifford algebras are well known. What is less known is the notion of symplectic Clif-
ford algebras [2]. A Clifford analysis approach to Superspace based on orthogonal and
symplectic Clifford algebras was undertaken by [6]. A theory of quantized fields based on
orthogonal and symplectic Clifford Algebras’ can be found in [8]. Super Clifford algebras
with a Z4 grading and generalized Clifford algebras, orthogonal and symplectic were con-
structed by [3], [4]. We shall take a quite different approach and extend further the work
of these authors. To our knowledge the results of this work are new.

We begin by introducing the ordinary orthogonal Clifford algebra generators γa, a =
1, 2, 3, ...m, and the symplectic Clifford algebra generators ξi, i = 1, 2, 3, ....., 2n obeying
the graded commutation relations

1

2
{ ξi, ξj } = ξij = ξji, [ ξi, ξj ] = ωij = − ωji; i, j = 1, 2, 3, ..., 2n (5a)

ω2k1 2k2 = ω2k1−1 2k2−1 = 0 (5b)

ω2k1−1 2k2 = − ω2k2 2k1−1 = δk1k2 (5c)

ωij is a 2n×2n antisymmetric matrix consisting of diagonal blocks of 2×2 antisymmetric
matrices whose nonzero entries are ±1. The relation 1

2
{ ξi, ξj } = ξij = ξji and its

implications was not considered by [6], [7]. The other commutators are

1

2
{ γa, γb } = gab 1;

1

2
[ γa, γb ] = γab = − γba, a, b = 1, 2, 3, ....,m (6)
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[ γa, γbc ] = 2 gab γc − 2 gac γb (7)

[ γab, γcd ] = − 2 gac γbd + 2 gad γbc − 2 gbd γac + 2 gbc γad (8)

[ γa, ξi ] = 0, [ γab, ξi ] = 0, [ γa, ξij ] = 0, [ γab, ξij ] = 0 (9)

[ ξi, ξjk ] = ωij ξk + ωik ξj (10)

[ ξij, ξkl ] = ωik ξjl + ωil ξjk + ωjk ξil + ωjl ξik (11)

We take all the generators of the orthogonal Clifford algebra to be of even grade, while
the ξi generator has odd grade and ξij has even grade. Afterwards we shall study the
case where all the odd-rank generators of the orthogonal Clifford algebra have an odd
grade; and all the even-rank generators have even grade. For instance, if the grade of γa
is chosen to be odd, one must replace [γa, ξi] = 0 with {γa, ξi } = 0 in eq-(9). The graded
commutator is defined as

[ A, B } = A B − (−1)(grade A grade B) B A (12)

where the grade of the even part of the superalgebra is 0, and the grade of the odd part
of the superalgebra is 1. Denoting the grades of A,B,C respectively by a, b, c, the graded
Jacobi identities are given by

(−1)ac [ A, [ B, C } } + (−1)ba [ B, [ C, A } } + (−1)cb [ C, [ A, B } } = 0 (13)

the above graded Jacobi identity can be also rewritten in terms of the superalgebra of
derivations as

[ A, [ B, C } } = [ [ A, B }, C } + (−1)ab [ B, [ A, C } } (14)

In the Appendix we show explicitly that the graded Jacobi identities corresponding to
the superalgebra are satisfied.

For simplicity let us take at the moment m = 2 and 2n = 2 and define

Aµ = Aµ + Aaµ γa + Aabµ γab + Aiµ ξi + Aijµ ξij; a, b = 1, 2; i, j = 1, 2 (15)

since ξi belongs to the odd part of the algebra, the gauge field component Aiµ is taken to be
anticommuting; i.e. it is Grassmannian odd, an a-number. The other field components are
commuting; i.e. they are Grassmannian even, a c-number. Because 1

2
{ξi, ξj} = ξij = ξji,

the latter belongs to the even part of the algebra. Also we have Aabµ = −Abaµ and Aijµ = Ajiµ .
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The field strength is defined as F = dA + 1
2
A ∧A. One should note that due to the

anticommuting nature of the gauge field component Aiµ one has Aiµ A
j
ν = −Ajν Aiµ so that

wedge product

1

2

(
Aiµ A

j
ν ξi ξj − Ajν A

i
µ ξj ξi

)
dxµ ∧ dxν =

1

2
Aiµ A

j
ν { ξi, ξj } dxµ ∧ dxν =

Aiµ A
j
ν ξij dx

µ ∧ dxν (16)

involves the anticommutator {ξi, ξj} rather than the commutator [ξi, ξj] . Hence, the field
strength component associated to the ξij generator is given by

F ij
µν = ∂µ A

ij
ν − ∂ν A

ij
µ + Aik[µ A

kj
ν] +

1

2
(Aiµ A

j
ν + Ajµ A

i
ν), Aijµ = Ajiµ (17)

such that

F ij
µν = − F ij

νµ, F ij
µν = F ji

νµ (18)

due to the Grassmannian odd character AiµA
j
ν = −AjνAiµ. The other components are

F ab
µν = ∂µ A

ab
ν − ∂ν A

ab
µ + 2 Aac[µ A

cb
ν] +

1

2
Aa[µ A

b
ν], Aabµ = −Abaµ (19)

F i
µν = ∂µ A

i
ν − ∂ν A

i
µ + Ai j[µ A

j
ν] (20)

F a
µν = ∂µ A

a
ν − ∂ν A

a
µ + 2 Aab[µ A

b
ν] (21)

Fµν = ∂µ Aν − ∂ν Aµ (22)

where the [µν] denotes antisymmetrization of the indices with unit weight.
A Yang-Mills like invariant Lagrangian is quadratic in the field strengths < Fµν Fµν >

where the bracket < > denotes extracting the unit element of the superalgebra in the
product of two generators as follows

< γa γb > = gab, < γab γcd > = gac gbd − gbc gad, < γa γcd > = 0 (23a)

< ξi ξj > =
1

2
ωij, < ξi ξjk > = 0 (23b)

< ξij ξkl > =
1

4
( ωik ωjl + ωil ωjk ) (23c)

To obtain eqs-(23) one needs the initial (anti) commutators and the relations

{ γab, γcd } = 2 γabcd − 2 gac gbd − 2 gbc gad, {γab, γc} = 2 γabc (24)

{ ξij , ξk } = ξij,k, { ξij , ξkl } = ξij,kl +
1

2
( ωik ωjl + ωil ωjk ) (25)
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[ξkl,j , ξi] = ξij,kl, { ξkl,j , ξi } = ωki ξlj + ωli ξkj + ωji ξkl (26)

obtained from the identities

[A, BC] = [A, B] C + B [A, C], {A, BC} = {A, B} C − B [A, C] (27)

One must introduce new generators in eqs-(25,26) obeying

ξij,k = ξji,k = ξk,ij = ξk,ji (28a)

ξij,kl = ξkl,ij = ξji,kl = ξij,lk = ξji,lk = ξlk,ji (28b)

and as a result one may enlarge the number of terms in the decomposition of the field Aµ

in eq-(15), using these new generators ξij,k and ξij,kl. The only caveat is that the super
algebra will not close because the graded commutators

[ ξij,kl , ξmn,p } = [ ξij,kl , ξmn,p ] ∼ ωim ξjn,klp + ....... (29)

[ ξij,kl , ξmn,pq } = [ ξij,kl , ξmn,pq ] ∼ ωim ξjn,klpq + ....... (30)

furnish the new generators ξjn,klp, ξjn,klpq which were not included . The other graded
commutators are fine because no new generators are introduced in

[ξkl,j, ξi} = {ξkl,j, ξi} ∼ ωki ξlj + ...., [ξij,k , ξlm] ∼ ωil ξjm,k + .........

[ξij,kl , ξmn] ∼ ωim ξjn,kl + ....., {ξij,k , ξlm,n} ∼ ωil ξjm,kn + ..... (31)

However, by just including Aij,kµ ξij,k and excluding Aij,klµ ξij,kl, one will have another
problem due to the last anticommutator relation {ξij,k , ξlm,n} ∼ ωil ξjm,kn which will
preclude the exclusion of ξjm,kn. Therefore one will be forced to introduce an infinite
number of generators beyond ξi and ξij. The new field Aij,kµ , for example, is Grassmannian
odd, it is an a-number. Its addition will also modify the expression for the terms in F ij

µν ξij
due to the anticommutator contribution of the first terms of eq(31).

In the orthogonal Clifford algebra Cl(m) case the introduction of new generators stops
when the number of different factors in the antisymmetric product of the gammas equals
to m, the dimension of spacetime; i.e the rank of an antisymmetric tensor cannot exceed
the spacetime dimension.

Concluding, by just keeping ξi, ξij one can explicitly verify that the super algebra
closes with respect to the graded commutation relations and the graded Jacobi identities
are obeyed as shown in the Appendix. In this case we have the orthogonal Clifford alge-
bra generators 1, γa, γab and the ξi, ξij generators associated with the symplectic Clifford
algebra. In the most general case when m > 2, 2n > 2 we have a super-Clifford valued
gauge field associated with the ortho-symplectic Clifford algebras of the form

Aµ = Aµ + Aaµ γa + Aa1a2µ γa1a2 + Aa1a2a3 γa1a2a3 + ..... + Aa1a2a3...am γa1a2a3....am +

Aiµ ξi + Ai1i2µ ξi1i2 + Ai1i2,j1µ ξi1i2,j1 + Ai1i2,j1j2µ ξi1i2,j1j2 + ...... (32)
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The range of indices is a1, a2, a3, .... = 1, 2, 3, ...,m and i1, i2, ....j1, j2... = 1, 2, 3, ...., 2n.
The (anti) commutators of the γa, γa1a2 , ....., γa1a2.....am generators can be found in the
monograph [23]. The (anti) commutators of the infinite number of ξ’s generators would
require a computer algebra package. One expects to have analogous formulae to those in
eqs-(5,10,11,25,26,29,30,31).

The infinite number of terms in (32) resembles the expansion based on the frame-like
formalism, developed by [17], [18], describing the higher spin fields dynamics in terms
of higher spin connection gauge fields that generalize objects such as vielbeins and spin
connections in gravity. Constructing consistent gauge theories of interacting higher spin
fields is a difficult and unsolved problem.

Higher spin fields [18] have been conjectured to be part of the spectrum of tensionless
strings. Higher conformal spin field currents generate the W∞ (super) algebras which are
the higher spin extensions of the (super) Virasoro algebra in 2D. The analog of “photons”
in the Extended Relativity theory in C-spaces (Clifford spaces) correspond to tensionless
strings and branes [11]. The quantum Virasoro algebra generators can be constructed in
terms of operators of the generalized Clifford algebras as shown by [24]. For these reasons
the gauge field theory proposed in this work deserves further scrutiny.

For simplicity purposes and without loss of generality we shall retain the original
decomposition of the field Aµ displayed in eq-(15). To sum up, from eqs-(17-22) one has
for the quadratic Yang-Mills like invariant Lagrangian the following

L =
1

2
ωij F

i
µν F

j
ρσ g

µρ gνσ +
1

2
ωik ωjl F

ij
µν F

kl
ρσ g

µρ gνσ +

F a
µν F

µν
a − 2 F ab

µν F
µν
ab + Fµν F

µν (33)

One can rewrite
ωij F

i
µν F

j
ρσ g

µρ gνσ = F i
µν F

µν
i (34)

and
ωik ωjl F

ij
µν F

kl
ρσ g

µρ gνσ = − F ij
µν F

µν
ij (35)

the change in sign in (35) is due to the subtle ordering of indices in the contraction

ωik F
kl ωjl = − ωik F

kl ωlj = − Fij (36)

the index contraction is performed among adjacent indices. One should note that
δijF

i
µνF

jµν = 0 due to the Grassmannian odd character of F i
µν . For this reason one

must contract the i, j indices with ωij = −ωji. The contraction of the vector indices in
F aF b requires the metric gab and the contraction of bivector indices in F abF cd requires
gacgbd − gbcgad as displayed in eq-(23a).

The Lagrangian (33) is invariant under the super gauge transformations involving the
super Clifford algebra valued gauge parameter

Λ = λ + λa γa + λab γab + λi ξi + λij ξij; λab = −λba, λij = λji (37)

δAµ = ∂µΛ + [Aµ, Λ}, δFµν = [Fµν , Λ} (38)

7



In component form one has

δAiµ = ∂µλ
i + 2 Aijµ λj + 2 Ajµ λ

i
j , δF i

µν = 2 F ij
µν λj + 2 F j

µν λ
i
j (39)

δAaµ = ∂µλ
a + 4 Aabµ λb + 4 Abµ λ

a
b , δF a

µν = 4 F ab
µν λb + 4 F b

µν λ
a
b (40)

δAabµ = ∂µλ
ab + 4 Aacµ λ b

c − 4 Abcµ λ a
c + Aaµ λ

b − Abµ λ
a (41)

δF ab
µ = 4 F ac

µν λ
b
c − 4 F bc

µν λ
a
c + F a

µν λ
b − F b

µν λ
a (42)

δAijµ = ∂µλ
ij + 2 Aikµ λ j

k + 2 Ajkµ λ i
k + Aiµ λ

j + Ajµ λ
i (43)

δF ij
µν = 2 F ik

µν λ
j
k + 2 F jk

µν λ
i
k + F i

µν λ
j + F j

µν λ
i (44)

δAµ = ∂µλ, δFµν = 0 (45)

In Appendix B we show explicitly that the Lagrangian (33) is invariant under the
graded gauge transformations (39-45).

2 Bimetric Gravity, Biconnection, Antisymmetric

Metrics and Cosmological Constant

In this section we discuss the physical implications of the field theory constructed above.
If Aaµ ↔ eaµ, is identified with the vielbein then the contraction eaµe

b
νgab = gµν yields the

spacetime metric. The partner Aiµ ↔ eiµ is Grassmannian odd so that the contraction

hµν = eiµ e
j
ν ωij = − ejν e

i
µ ωij = ejν e

i
µ ωji = hνµ (47)

furnishes another symmetric rank two tensor hµν = hνµ, that can be interpreted as another
metric tensor typical of bi-metric gravity [10]. The actual contraction should be performed
as eiµ ωij e

j
ν = hµν so the indices are adjacent.

The spin connection Aabµ ↔ ωabµ has for partner Aijµ ↔ ωijµ which is also Grassmannian
even. The pair of connections ωabµ , ω

ij
µ can be used in formulations of bi-connection exten-

sions of ordinary gravity [9] in the same fashion that gµν , hµν are the elements in bi-metric
gravity [10].

When Aaµ ↔ eaµ, Aabµ ↔ ωabµ , one has that F ab
µν dx

µ ∧ dxν coincides with the 2-form
(Rab

µν+ea[µ e
b
ν]) dx

µ∧dxν where Rab
µν dx

µ∧dxν is the curvature 2-form. F a
µν dx

µ∧dxν becomes
the Torsion 2-form. The Macdowell-Mansouri-Chamsedinne-West (MMCW) Lagrangian
in 4D is given by

LMMCW = (Rab + ea ∧ eb) ∧ (Rcd + ec ∧ ed)

which in component form becomes

εµνρσ (Rab
µν + ea[µ e

b
ν]) (Rcd

ρσ + ec[ρ e
d
σ]) εabcd (48)

8



The R ∧R terms are the topological Gauss-Bonnet curvature squared terms. R ∧ e∧ e is
the Einstein-Hilbert term and e ∧ e ∧ e ∧ e is the cosmological constant term (after one
introduces a proper length scale to match units). Since the connection Aaµ has units of
(length)−1 the proper correspondence is Aaµ ↔ eaµ/L so there is an overall factor L−4 in
front of the spacetime volume term L−4

∫ √
g d4x in the action. The length scale L can

be set to the Planck scale.
In 4D the following contraction involving e(iµ ej)ν = eiµ e

j
ν + ejµ e

i
ν ; ωij and εµνρσ is

trivially zero

L−4 ωik ωjl e
(i
µ e

j)
ν e(kρ el)σ ε

µνρσ = 2L−4 εµνρσ ( hµρ hνσ + hνρ hµσ ) = 0 (49)

due to the antisymmetry of the epsilon tensor density. While the actual contraction
involving the metric tensor in the Yang-Mills terms of eq-(35) is nonvanishing

L−4 ωik ωjl e
(i
µ e

j)
ν e(kρ el)σ g

µρ gνσ = 2L−4 gµρ gνσ ( hµρ hνσ + hνρ hµσ ) 6= 0 (50)

the latter nonvanishing contraction has the form of mass-like terms for the symmetric
rank 2 tensor hµν

Lmass = 2L−4 ( hµσ hµσ + (hµµ)2 ) > 0, hµµ = trace (hµρ) = gµρ hµρ (51)

Since Lmass > 0 is positive definite these terms cannot be used to cancel out the cosmo-
logical constant contribution

L−4 εabcd e
a
µ e

b
ν e

c
ρ e

d
σ ε

µνρσ = L−4 |det e| = L−4
√
|g| (52)

There is another possibility worth exploring if one takes the grade of γa to be odd
while the grade of γab still remains even. In this case we will have that Aaµ ↔ eaµ is now
Grassmannian odd (instead of even), and a-number so that eaµ e

b
ν = −ebν eaµ and the

contraction eaµ e
b
ν gab = g[µν] yields an antisymmetric metric tensor g[µν]. In this case, a

symmetric tensor is only obtained from the contraction in eq-(47) hµν = eiµ e
j
ν ωij = hνµ.

If we were to identify hµν with a spacetime metric g(µν), in this case the ”emergent”
metric hµν can be seen as the ”condensate” of two Grassmannian odd valued fields hµν =
eiµ e

j
ν ωij = hνµ.
A symmetric and antisymmetric metric can both be accommodated within a Hermitian

complex metric gµν = g(µν) + ig[µν] obeying

g∗µν = gνµ ⇒ g†µν = gµν (53)

When the grade of γa is taken to be odd we have now that the graded commutator
must be [γa, ξi} = {γa, ξi} = 0, instead of having [γa, ξi] = 0 as displayed before in eq-(9).
Due to the Grassmannian odd nature of Aaµ we have also modifications to the expressions
for the following field strength components

F ab
µν = ∂µ A

ab
ν − ∂ν A

ab
µ + 2 Aac[µ A

cb
ν] (54)
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Fµν = ∂µ Aν − ∂ν Aµ + Aaµ A
b
ν gab (55)

since [γa, γb} = {γa, γb} = 2gab1, instead of having [γa, γb] = 2γab. One should compared
eqs-(54,55) with the prior expressions in eqs-(19,22).

Using the definition eaµ e
b
ν gab = g[µν] the quadratic terms FµνF

µν will yield mass

terms for Kalb-Ramond like fields of the form g[µν] g
[µν] = Bµν B

µν , after identifying
Bµν = g[µν] and raising the indices with the metric hµν = g(µν). Another possibility is to
raise the indices with the inverse Hermitian complex metric

(gµν)
−1 = gµν = g̃(µν) + i g̃[µν] 6= g(µν) + i g[µν] (56a)

we specifically used the tilde symbol and the inequality to emphasize that both g̃(µν), g̃[µν]

are nontrivial functions of both gµν and g[µν]. However, when a complex metric is involved
one has to add the complex (Hermitian) conjugate of any given term in order to have a
real-valued action. The measure associated with such Hermitian complex metric gµν is

(|| det gµν ||)
1
2 = ( (det gµν) (det gµν)

∗)
1
4 (56b)

Furthermore one can also use the epsilon tensor in 4D and contract indices in the following
expression which can be included in the action

L−4 Bµν Bρσ ε
µνρσ = L−4

√
|det g(µν)|

 Bµν Bρσ
εµνρσ√
|det g(µν)|

 (57a)

One of the most salient features of choosing the grade of γa to be odd, and consequently
when eaµ is an a-number, is that it is possible for the terms in eq-(57a) to cancel out a
cosmological constant term constructed now in terms of hµν as

L−4
√
|det hµν | = L−4

√
|det g(µν)| (57b)

the contributions from hµν = g(µν) and Bµν = g[µν] in eqs-(57a, 57b) may cancel each
other when the on-shell dynamics of the fields (associated with the action) satisfies

Bµν Bρσ
εµνρσ√
|det g(µν)|

+ 1 = 0 (57c)

after solving the field equations for hµν = g(µν) and Bµν = g[µν] and inserting their solutions
back into eq-(57c). This problem deserves further investigation.

3 Super-Clifford Algebras and Generalized Super-

Geometry

Clifford gauge field theories based on orthogonal Clifford Cl(m) algebras have been ex-
plored in [14] and references therein. One may assign an odd grade to the odd-valued rank
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polyvector basis generators γa, γa1a2a3 , ...., and an even grade to the even-valued rank, like
the unit element 1 and γa1a2 , γa1a2a3,a4 , ..... There is an addition the odd grade ξi, ξi1i2,j, ....
and even grade ξij, ξi1i2,j1j2 , ..... generators associated with the symplectic Clifford algebra.
In this way one can generalize our construction to the case when m > 2; 2n > 2 and build
a super gauge field theory.

Now we turn to the question of constructing a super-Clifford algebra and which is
very different from the so-called “super Clifford” algebras with a Z4 grading proposed
by [3], [4]. To proceed we turn to the the Lie superalgebra osp(m|2n) (ortho-symplectic
superalgebra) whose even part is so(m) ⊕ sp(2n). In particular sp(4) ∼ so(5). Since
we’ve started with an orthogonal and a symplectic Clifford algebra, we may assign now
an even grade to all the generators of the latter orthogonal-symplectic Clifford algebras.
Therefore, the super-Clifford algebra in question must be a super algebra such that its
even grade part must be given by the orthogonal-symplectic Clifford algebras, and its odd
grade part must be an algebra whose generators Qu, u = 1, 2, 3, ..... (not to be confused
with the spinorial charge generators Qα, Sα of ordinary super conformal algebras ! )
should obey the graded commutator relations

[ γa, Qu ] ∼ (Ma)
v
u Qv, [ γab, Qu ] ∼ (Mab)

v
u Qv, [ γabc, Qu ] ∼ (Mabc)

v
u Qv, ... (58)

[ ξi, Qu ] ∼ (Ni)
v
u Qv, [ ξij, Qu ] ∼ (Nij)

v
u Qv, [ ξij,k , Qu ] ∼ (Nij,k)

v
u Qv, ..... (59)

{ Qu, Qv } ∼ δuv 1 + (La)uv γa + (Lab)uv γab + (Labc)uv γabc + ....... +

(Li)uv ξi + (Lij)uv ξij + (Li1i2,j)uv ξi1i2,j + (Li1i2,j1j2)uv ξi1i2,j1j2 + ...... (60)

where the M,N,L are suitable matrices. An analog of the above equations are the (anti)
commutators of the (Anti) de Sitter superalgebra

[ Ja, Qα ] ∼ (Γa)
β
α Qβ, [ Jab, Qα ] ∼ (Γab)

β
α Qβ, [ K, Qα ] ∼ Qα, (61)

{ Qα, Qβ } ∼ δαβ K + Γaαβ Ja + Γabαβ Jab (62)

If one were to set the generators Qu, u = 1, 2, 3, ..... to coincide with the spinorial
charge generators Qα of ordinary supersymmetry by identifying the u index with the
spinorial α index, the Ma,Mab,Mabc, ...., L

a, Lab, Labc matrices in (58) could be identified
with the gamma matrices Γa,Γab,Γabc, .... The matrices Γa,Γab,Γabc, as usual, are simply
obtained by raising the indices of Γa,Γab,Γabc, ... via a metric gab and its antisymmetrized
products as depicted in eq-(23a). The difficulty arises then in constructing the matrices
Ni, Nij, Nij,k, ....., L

i, Lij, Lij,k, .... in eq-(59,60). We do not know at this stage if these
matrices can be expressed in terms of the gamma matrices. This is an interesting problem
that warrants further investigation. To sum up, a truly super Clifford algebra must be
one whose (anti) commutators obey eqs-(58-60), in addition to the commutation relations
among the γ’s and the ξ’s generators (since now we have assigned an even grade to all of
them). To considerably simplify the problem one could set to zero all the ξ’s generators
except ξi, ξij.

How does one relate the Grassmannian odd Aiµ gauge fields to fermions, in particular
to the gravitino Ψα

µ ?. It is well known to the experts that spinors are right/left ideals
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elements of the Clifford algebra and consequently spinors are already encoded within the
Clifford algebraic structure itself. Hence, a natural correspondence (not an equality)
among Aiµ and the spin 3

2
-gravitino field Ψα

µ could be given as (omitting spinorial indices
in the right hand side for simplicity)

Aiµ ωij A
j
ν ↔ c Ψ̄µ Ψν + ca Ψ̄µ Γa Ψν + cab Ψ̄µ Γab Ψν + cabc Ψ̄µ Γabc Ψν + ...... (63)

From the discussion in section 2, when Aiµ ↔ eiµ, the left hand side of (63) becomes hµν
so the mass-like squared terms in eq-(51) will have a correspondence with the quartic
fermionic terms (Ψ̄µΨν)

2 + .....
Another correspondence is

Aiµj A
j
ν A

k
ρl A

l
σ ωik ↔ c1 Ψ̄ν Aµ Aρ Ψσ + c2 Ψ̄ν A

a
µ Γa A

b
ρ Γb Ψσ + c3 Ψ̄ν A

ab
µ Γab A

cd
ρ Γcd Ψσ+...

(64)
c, ca, cab, ...., c1, c2, c3... are numerical coefficients. A further analysis of the correspondence
in eqs-(64, 64) will be left for future investigations.

To finalize, following the approach of [6], [7], we introduce anti-commuting coordinates
yu : yuyv = −yvyu in order to initiate the construction of super-Clifford spaces. When one
has commuting spacetime coordinates xµ, µ = 1, 2, ....,m and anticommuting coordinates
yu, u = 1, 2, ...., 2n the exterior wedge product of super differentials is defined as

dZA ∧ dZB = − (−1)(grade A grade B) dZB ∧ dZA ⇒

dxµ ∧ dxν = − dxν ∧ dxµ, dyu ∧ dyv = dyv ∧ dyu, dxµ ∧ dyv = − dyv ∧ dxµ, (65)

and the field strength associated with the ortho-symplectic Clifford-algebra-valued super
differential one-form Aµdx

µ + Audy
u is

Fµν dx
µ ∧ dxν + Fuv dy

u ∧ dyv, Fµν = −Fνµ, Fuv = Fvu (66)

Au admits an expansion similar to Aµ in eqs-(15,32) by replacing the µ index with u.
Now we are in a position to construct the coordinates of super Clifford spaces in

terms of the polyvector-valued coordinates x[µ1µ2....µn] which are fully antisymmetric un-
der the exchange of indices, and the other set of coordinates with a mixed symmetry
yu1u2.....ur,v1v2.....vs under the index exchange. A recent study of the Extended Relativity
Theory in Clifford Phase Spaces and modifications of gravity at the Planck/Hubble scales,
with many references therein can be found in [19]. We extended the construction of Born’s
Reciprocal Phase Space Relativity to the case of Clifford Spaces which involve the use
of polyvector-valued coordinates and momenta x[µ1µ2....µn], p[σ1σ2....σn]; generalized vielbeins
EA
M = E

[a1a2....ar]
[µ1µ2.....µs]

, E
[b1b2....br]
[σ1σ2.....σs]

corresponding to the coordinate and momentum space di-
rections, respectively; generalized metrics like g[µ1µ2....µr] [ν1ν2....νs], ..... and the inclusion of
an lower/upper (Planck/Hubble) length scale.

A super Clifford valued coordinate in super Clifford spaces has a decomposition

Z = x 1 + xµ γµ + xµ1µ2 γµ1µ2 + ...... + xµ1µ2...µm γµ1µ2...µm +

12



yu ξu + yu1u2 ξu1u2 + yu1u2,v ξu1u2,v + yu1u2,v1v2 ξu1u2,v1v2 + .... (67)

We conclude with some of the salient features of the generalized super-geometry associated
with super Clifford spaces :

(i) A super-Clifford theory of gravity will amount to a generalized supergravity theory
based on an orthogonal-symplectic Clifford algebraic structure and the geometry of super-
Clifford spaces.

(ii) The generalized vielbeins like EA
M = E

[a1a2....ar]
[µ1µ2.....µs]

, E
[b1b2....br]
[σ1σ2.....σs]

, will cast more light to
the preliminary analysis of the generalized vielbein postulate [20] that reveals tantalizing
hints of new structures beyond D = 11 supergravity and ordinary space-time covariance.
An E7-valued vielbein in eleven dimensions was analyzed and they discussed the extension
of these results to E8. An E8 Gauge theory of gravity in 8D based on generalized vielbein
was proposed in [14].

(iii) When the construction of super-Clifford spaces is extended to Clifford Phase
Spaces [19], the coordinates X,P are now doubled, and one may connect with the U -
duality and double field theory formalism of generalized geometry which has been gaining
a lot attraction recently [22].

(iv) The fact that in general one has an infinite number of generators described by the
super Clifford algebras proposed in this work, one should try to find its relation (if any) to
the infinite dimensional hyperbolic Kac-Moody algebras E11 which have been conjectured
[21] to encode the hidden symmetries of M -theory in 11D. It was mentioned earlier that
the quantum Virasoro algebra generators can be constructed in terms of operators of the
generalized Clifford algebras as shown by [24]. By extending this construction using the
super-Clifford algebraic approach in this work we should be able to connect with the
hyperbolic Kac-Moody algebras E11 description of [21].

APPENDIX A : Graded Jacobi Identities

In this Appendix we shall prove that the graded Jacobi identities are satisfied.
We shall firstly take all the generators of the orthogonal Clifford algebra to be of even

grade, while the ξi generator has odd grade and ξij has even grade. Afterwards we shall
take the odd rank generators of the orthogonal Clifford algebra to have odd grade; and
the even rank generators to have even grade. The grades take the values of 0, 1 for even,
odd grade respectively. Let us begin with

(−1)0{ ξi, [ξj, ξkl] } + (−1)1 { ξj, [ξkl, ξi] } + (−1)0 [ ξkl, {ξi, ξj} ] =

{ ξi, ωjk ξl + ωjl ξk } − { ξj, ωki ξl + ωli ξk } + 2 [ ξkl, ξij ] =

2 ωjk ξil + 2 ωjl ξik − 2 ωki ξjl − 2 ωli ξjk +

2 ( ωki ξlj + ωkj ξli + ωli ξkj + ωlj ξki ) = 0 (A.1)

due to ωjk + ωkj = 0, ωjl + ωlj = 0 and ξjk = ξkj, .....
The graded Jacobi relation among ξij, ξkl, ξpq is
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(−1)0[ ξij, [ξkl, ξpq] ] + (−1)0 [ ξkl, [ξpq, ξij] ] + (−1)0 [ ξpq, [ξij, ξkl] ] = 0 (A.2)

it is also zero. One can verify that one ends with a collection of 48 terms, all of which
can be gathered into groups (up to indices permutations) of the form

ωik ωpj ξql + ωpj ωki ξlq = 0 (A.3)

eq-(A.3) is zero because ωik + ωki = 0 and ξql = ξlq, etc...

(−1)1 [ ξi, {ξj, ξk } ] + (−1)1 [ ξj, {ξk, ξi } ] + (−1)1 [ ξk, {ξi, ξj} ] =

− 2 [ ξi, ξjk ] − 2 [ ξj, ξki ] − 2 [ ξk, ξij ] =

−2 ( ωij ξk + ωik ξj + ωjk ξi + ωji ξk + ωki ξj + ωkj ξi ) = 0 (A.4)

Similarly one obtains

(−1)0 [ ξm, [ ξij, ξkl ] + (−1)0 [ ξij, [ ξkl, ξm ] + (−1)0 [ ξkl, [ ξm, ξij ] = 0 (A.5)

The graded Jacobi relation among ξij, γa, ξpq is

(−1)0[ ξij, [γa, ξpq] ] + (−1)0 [ γa, [ ξpq, ξij] ] + (−1)0 [ ξpq, [ξij, γa] ] = 0 (A.6)

because [γa, ξpq] = 0, ... and [ξpq, ξij] = ωpi ξqj + ..... The same result occurs with

(−1)0[ ξij, [γab, ξpq] ] + (−1)0 [ γab, [ξpq, ξij] ] + (−1)0 [ ξpq, [ξij, γab] ] = 0 (A.7)

because [γab, ξpq] = 0, ....
The graded Jacobi relation among ξij, γa, γb is

(−1)0[ ξij, [γa, γb] ] + (−1)0 [ γa, [ γb, ξij] ] + (−1)0 [ γb, [ξij, γa] ] = 0 (A.8)

etc....
In the case that γa is chosen to have on odd grade, eq-(A.8) is replaced by

(−1)0[ ξij, {γa, γb} ] +(−1)0 { γa, [ γb, ξij] } +(−1)1 { γb, [ξij, γa] } = [ ξij, 2gab 1 ] = 0
(A.9)

since [ γb, ξij] = 0, ...
Let us look at the graded Jacobi identities involving γs, γmn, γr when the grade of γs, γr

is taken to be odd, and the grade of γmn is even

(−1)1 { γs, [γmn, γr] } + (−1)0 [ γmn, {γr, γs} ] + (−1)0 { γr [γs, γmn] } =
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4 gmr gsn − 4 gnr gsm + 4 gsm grn − 4 gsn grm = 0 (A.10)

Compare (A.10) when the grade of γs, γr, γmn are all chosen to be even

[ γs, [γmn, γr] ] + [ γmn, [γr, γs] ] + [ γr [γs, γmn] ] =

−4 gmr γsn + 4 gnr γsm + 4 gsm γrn − 4 gsn γrm − 4 gmr γns +

4 gnr γms + 4 gsm γnr − 4 gsn γmr = 0 (A.11)

due to the antisymmetry of the bivector generators γmr = −γrm, .....
The (anti) commutators of the γa, γa1a2 , ....., γa1a2.....am generators can be found in pages

543-545 of the monograph [23]. To check that the graded Jacobi identities are satisfied
for the remaining of the infinite number of generators ξi1i2,j1 , ξi1i2,j1j2 , ...... would require a
computer algebra package. They are satisfied for the graded commutators involving ξi, ξjk
as shown in eqs-(A.1-A.5). Therefore, there is true algebraic closure in the description
of the Aµ field, and its field strength Fµν components defined in eqs-(15-22) and which
allowed us to proceed with the remaining analysis and results in sections 1,2.

APPENDIX B : Invariance of the Lagrangian

We shall derive the invariance of the Lagrangian (33) under the graded gauge transfor-
mations (39-45). For simplicity we shall not include the spacetime indices. Let us begin
with the variation

1

4
δ(F ij F kl) (ωik ωjl + ωil ωjk) =

1

2
δ(F ij F kl) ωil ωjk (B.1)

where F ij = F ji, .... It contains two types of terms. One of them is

X1 = − 2 F jm ωmn λ
ni ωil F

lk ωkj (B.2)

Due to the symmetry λni = λin, eq-(B.2) is the same as

X1 = − 2 F jm ωmn λ
in ωil F

lk ωkj (B.3)

upon rearrangement of terms and indices, eq-(B.3) can be rewritten as

X1 = − 2 ωil λ
in ωmn F

jm ωkj F
lk = 2 ωli λ

in ωnm Fmj ωjk F
lk (B.4)

the overall change of sign in (B.4) is due to 3 changes of sign due to the antisymmetry of
the omega tensors. A cyclic permutation of (B.4) and after using F lk = F kl yields

X1 = 2 F kl ωli λ
in ωnm Fmj ωjk = − X1 (B.5)

therefore, after equating eq-(B.3) with eq-(B.5) one arrives at X1 = −X1 ⇒ X1 = 0.
The reason that eq-(B.3) is the same as eq-(B.5) is because both have the same index
contraction structure; i.e. the same trace. A relabeling of indices reveals that they are
the same.

The second type of terms in eq-(B.1) is
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2 ( F i λj + F j λi ) F kl 1

2
ωik ωjl = − 2 F i ωik F

kl ωlj λ
j (B.6)

These terms (B.6) are not zero but will cancel out with those mixed terms stemming from
the variation 1

2
δ(F i F j)ωij. These mixed terms stemming from the latter variation are

given by

1

2
ωij ( 2 F im ωmn λ

n F j + 2 F i F jm ωmn λ
n ) =

2 F im ωmn λ
n F j ωij (B.7)

due to the Grassmannian odd nature of F j and λn. One must change signs as follows
F j λn = −λn F j. Hence, after reversing their ordering in (B.7) one obtains a change of
sign

− 2 F im ωmn F
j λn ωij (B.8)

rearranging terms and indices in (B.8) one gets

2 F j ωji F
im ωmn λ

n (B.9)

due to a sign change ωji = −ωij. Therefore, upon combining (B.9) with (B.6) one has a
cancellation of the mixed terms

2 F j ωji F
im ωmn λ

n − 2 F i ωik F
kl ωlj λ

j = 0 (B.10)

since after an index relabeling one can see that the first and second terms in (B.10) are
equal but with opposite signs. These terms have the same index contraction structure.

The terms in 1
2
δ(F i F j)ωij which are not mixed are

X2 = 2
1

2
2 Fm ωmn λ

ni ωij F
j (B.11)

due to the Grassmannian odd nature of F j and Fm, after reversing their order in (B.11)
one obtains a change of sign

X2 = − 2 F j ωmn λ
ni ωij F

m = − 2 F j (−ωji) λin (−ωnm) Fm =

−2 F j ωji λ
in ωnm Fm = − X2 (B.12)

hence from the equality of (B.11) and (B.12) (both have the same index contraction
structure) one arrives at X2 = −X2 ⇒ X2 = 0. To sum up, after dropping the
spacetime indices for convenience we have seen that the gauge variations of the quadratic
terms involving F i, F jk are exactly zero.

Following a similar procedure, one can show that the variation of the remaining terms
F aFa−2F abFab+F

2, dropping the spacetime indices, is also zero. The variation of FµνF
µν

is trivially zero since δFµν = 0.
To conclude, the gauge variation of the quadratic Lagrangian (33) is zero and conse-

quently it is invariant under the graded ortho-symplectic Clifford-valued gauge transfor-
mations. Ordinary graded gauge theories can be found in [25], for example.
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