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There are infinitely many primes of the form  n , 

  n  and   2
1 mn

 

 

Zhen Liu 

 

Abstract  Using the method for equation reconstruction of prime sequence, this 

paper gives the proof that there are infinitely many primes of the form  n , 

  n  and   2
1 mn . 

 

1  Introduction 

Because it can not be divisible except 1 and itself, primes are difficult to be described 

by appropriate expressions. This property makes prime sequence be difficult to be 

described such as arithmetic progression, geometric progression with the determined 

term formula. However, this property can make prime number establish some 

diophantine equations. And prime numbers can be decided by whether there is 

positive whole number solutions of these diophantine equations. Therefore, the 

expressions for solutions of these diophantine equations and its transform are used to 

describe the divisible property of prime number, and forming an equivalent sequence 

for the property. Thus, this will be easy to find the key node and the law implied to 

solve the problem. To this end, the theorem for equation reconstruction of prime 

sequence is presented and proved. Using the method, this paper gives the proof that 

there are infinitely many primes of the form  n ,   n  and   2
1 mn . 

It could be hope to provide an idea and methods to solve similar problems. 
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In this paper, all parameters are positive whole number except where stated. 

 

2  Proof of the theorem for equation reconstruction of prime sequence 

Lemma: The prime sequence could be equivalent to the sequence with the determined 

general term formula through equation reconstruction of prime number for the 

divisible property. 

Proof. 

Any prime number c could be expressed as 13 a ( a  is an positive even), 14 a  

or 16 a . 

Proof is carried out the following in the case of 13 a  first. 

If 13 a  is a prime number, it certainly can not be written )13)(13(13 21  xxa ,  

otherwise, and vice versa. 

Case 1: 13 a  

1)(39)13)(13(13 212121  xxxxxxa  

or 

1)(39)13)(13(13 212121  xxxxxxa  

Where, let 11 xx  , 22 xx  . 

Then there is )(3 2121 xxxxa  . 

It is easy to see that whether 13 a  is a prime number depends entirely on the a . 

Namely 13 a  is a prime number that is equivalent 1x  and 2x are both positive 

whole number in )(3 2121 xxxxa  . 

Let qxx  21 , pxx 21  

According to Vieta's formulas, equation (1) is established. 

02  pqxx                          (1) 

Then there is 
2

42

2,1

pqq
x


  
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Therefore, if 1x  and 2x of equation (1) roots are not both positive whole number, 

13 a  must be a prime number. Otherwise, it will be a composite number. 

There is  

qpa  3  

Obviously, if 13 a  is a prime number, q and pq 42  are not both even numbers. 

Therefore, in the divisible property of prime number, ic  in prime sequence  nc  is 

equivalent to iii qpa  3  in sequence  na , namely prime sequence  nc  is 

equivalent to sequence na . 

Here iq  and ii pq 42   are not both even numbers. 

In order to facilitate the expression, let sq 2 , rp 2 . 

Here s  and r are real numbers. 

∴ rssx 22
2,1   

Let trs  22  

There is 

ststa 21212 2   

Therefore, iii qpa  3  in sequence na  ( iq  and ii pq 42   are not both even 

numbers) is equivalent to iiiii sttsa 21212 2   in sequence  na  ( is  and it  are 

not both positive whole number solutions) . 

Namely, in the divisible property of prime number, prime sequence  nc  is 

equivalent to sequence  na . 

It is obvious that 

2
3

22 as
ss

t




  

Let 22

3

2
e

as
s 


  
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Then there is  

22 323 essa   

Therefore, iiiii sttsa 21212 2   in sequence na  ( is  and it  are not both positive 

whole number solutions) is equivalent to 22 323 iiii essa   in sequence  na   ( is  

and ie  are not both positive whole number solutions) . 

Namely, in the divisible property of prime number, prime sequence  nc  is 

equivalent to sequence  na  . 

It is obvious that 

3

1391 2 


ae
s  

Let  22 13139  hae  

Then there is  

   22 31313 eha   

22 323 ehha   

Therefore, 22 323 iiii essa   in sequence  na   ( is  and ie  are not both positive 

whole number solutions) is equivalent to    22 31313 iin eha   in sequence 

 na   ( ie  and ih  are not both positive whole number solutions) . 

Namely, in the divisible property of prime number, prime sequence  nc  is 

equivalent to sequence  na  . 

Case 2: 13 a  

1)(39)13)(13(13 122121  xxxxxxa  

Where, let 11 xx  , 22 xx  . 

Then there is )(3 2121 xxxxa  . 

Namely 13 a  is a prime number that is equivalent 1x and 2x are both positive whole 
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number in )(3 2121 xxxxa  . 

Let qxx  21 , pxx 21 . Here p  is negative whole number. 

According to Vieta's formulas, equation (2) is established. 

02  pqxx                         (2) 

Then there is 
2

42

2,1

pqq
x


 . 

Therefore, if 1x  and 2x of equation (2) roots are not both positive whole number, 

13 a  must be a prime number. Otherwise, it will be a composite number. 

There is  

qpa  3  

Obviously, if 13 a  is a prime number, q and pq 42  are not both even numbers. 

Therefore, in the divisible property of prime number, ic  in prime sequence  nc  is 

equivalent to iii qpa  3  in sequence  na , namely prime sequence  nc  is 

equivalent to sequence na . 

Using the same argument as in the case 1, we can easily get 

sstta 21212 2   

Therefore, iii qpa  3 in sequence na  ( iq  and ii pq 42   are not both even 

numbers) is equivalent to iiiii ststa 21212 2  in sequence  na  ( is  and it  are 

not both positive whole number solutions) . 

Namely, in the divisible property of prime number, prime sequence  nc  is 

equivalent to sequence  na . 

It is obvious that 

2
3

22 as
ss

t




  
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Let 22

3

2
e

as
s 


  

Then there is  

ssea 233 22   

Therefore, iiiii ststa 21212 2   in sequence na  ( is  and it  are not both positive 

whole number solutions) is equivalent to ssea iii 233 22  in sequence  na   ( is  

and ie  are not both positive whole number solutions) . 

Namely, in the divisible property of prime number, prime sequence  nc  is 

equivalent to sequence  na  . 

It is obvious that 

3

1391 2 


ae
s  

Let  22 13139  hae   

Then there is  

   22 13313  hea  

hhea 233 22   

Therefore, ssea iii 233 22  in sequence  na   ( is  and ie  are not both positive 

whole number solutions) is equivalent to    22 13313  iin hea in sequence 

 na   ( ie  and ih  are not both positive whole number solutions) . 

Namely, in the divisible property of prime number, prime sequence  nc  is 

equivalent to sequence  na  . 

The prime sequence that prime number c could be expressed as 14 a  or 16 a , 

have equivalent methods that are similar to the case of 13 a . It can be proved in the 

same way as shown in the case of 13 a  before. Of course, some new equivalent 

sequences are reconstructed through establishing other forms equations. 

This completes the proof. 
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According to above proof, in the divisible property of prime number, the prime 

sequence  nc  without term formula is analyzed by using the sequence  na 、 na 、

 na  、 na   with term formula. This will be easy to find the key node and the law 

implied to solve the problem. 

 

3  Proof of existing infinitely many primes of the form  n ,   n  and 

  2
1 mn . 

Theorem: There are infinitely many primes of the form  n ,   n  and 

  2
1 mn , where  ,   and   are constants, and   and   are both 

positive whole numbers,   is an integer, n  and m  are both any positive whole 

number. 

Proof. 

It proves the Theorem with the reduction to absurdity follows. 

If the Theorem is not true, it becomes: there is an even number 0a  large enough that 

makes all primes of the form  n ,   n  and   2
1 mn and bigger than 

13 0 a  be composite numbers. 

According to the Lemma for equation reconstruction of prime sequence, there are 

  131313 21  xxa                       (3) 

  131313 21  xxa  or   131313 21  xxa           (4) 

Where, la 2 , l  is positive whole number. 

Therefore, when a  is large enough, at least one of equation (9) and equation (10) 

has integer solutions. 

Using the same argument as in the proof of equation reconstruction of prime sequence, 

we can easily get this statement fellows. 

For equation (3), there are  
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111
2
1 66

2
stst

a
  

2
3

2 12
11

1

as
ss

t




  

Let 2
1

12
1 3

2
e

as
s 


  

Then, there is  

3

1691 2
1

1




le
s  

Let  2
1

2
1 13169  hle ，Namely it makes 1s  be a positive whole number. 

Then, there is  

 2
1

2
1 13916  hel  

1
2

1
2
1 2332 hhela   

  2
1

2
1 13913  hea                       (5) 

For equation (4), there are  

2
2
222 66

2
stts

a
  

2
3

2 22
22

2

as
ss

t




  

Let 2
2

22
2 3

2
e

as
s 


  

Then, there is 

3

1691 2
2

2




le
s  

Let  2
2

2
2 13169  hle ，Namely it makes 2s  be a positive whole number. 

Then, there is  

  2
2

2
2 91316 ehl   

2
22

2
2 3232 ehhla   
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  2
2

2
2 91313 eha                        (6) 

According to the equation (5) and equation (6), there is 

  22 91313 eha   

Case 1:   na 13  

Then, if the Theorem is not true, it becomes: there is an even number 0a  large 

enough that makes the equation   22 913 ehn    have integer solutions for 

all 13 0  an  . 

When   22 913 ehn   , let 

  Aehan  2
0

2
00 913130   

Where, 0n  is a constant and is also an integer. 

Then the equation     2
0

2
0 9130

eh
nn eh    has integer solutions 

for any n . 

There is  

   



   Aehh nn

eeh  0
0

22
00 1891313

3

1
 

∴    Aeh nn
ee    0

0
22

0 18913  is a square number. 

Then let 

    2
0

22
0

018913 kAeh nn
ee     

  Bh  2
0 13  

There is 

  22
00

093
3

1
kBAee nn

e     

∴ 22
0

09 kBAe nn     is also a square number. 

Then, there is 222
0 0

09 nn
nn kBAe 

    for arbitrary continuous n . 

And there is 

 nn
nnn   10

00

22  
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It is easy to see that this is also in contradiction with the difference between square 

numbers 2
0

2 nn  . 

When  22 139  hen  , let 

  Ahean  2
0

2
00 139130   

Where, 0n  is a constant and is also an integer. 

Then the equation     20
2

0 1390 
he

nn he  has integer solutions 

for any n . 

There is  

   



   Aehh nn

eeh  0
0

22
00 1891313

3

1
 

∴    Aeh nn
ee    0

0
22

0 18913  is a square number. 

Then let 

    2
0

22
0

018913 kAeh nn
ee     

  Bh  2
0 13  

There is 

  22
00

093
3

1
kBAee nn

e     

∴ 22
090 kBAenn    is also a square number. 

Then, there is 222
0 0

0 9 nn
nn kBAe 

    for arbitrary continuous n . 

And there is  

 10

00

22 
nn

nnn   

It is easy to see that this is also in contradiction with the difference between square 

numbers 2
0

2 nn  . 

∴There are infinitely many primes of the form  n . 

Case 2:   22 913 ehn     

Using the same method as in the proof of Case 1, we can easily get: there is 
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  222
00 0

9 nnkBAenn     for arbitrary continuous n . 

And there is  

  ][ 00
22

00

 nnnnnn   

It is easy to see that this is also in contradiction with the difference between square 

numbers 2
0

2 nn  . 

∴There are infinitely many primes of the form   n . 

Case 3:   22
1 9132 ehmn     

Using the same method as in the proof of Case 1, we can easily get: there is 

222
01 0

2 9 nn
n kBAem     for arbitrary continuous n . 

And there is  

  ][ 220

00 0011
22  mmmnn
nnn   

It is easy to see that this is also in contradiction with the difference between square 

numbers 2
0

2 nn  .s 

∴There are infinitely many primes of the form   2
1 mn . 

Therefore, the Theorem is true. 

It is now obvious that the theorem holds. 

This completes the proof. 
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