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Abstract: This is the second partial draft of a papnder development to further elaborate the
author’s thesis presented in several earlier-puidid papers, that baryons including protons and
neutrons are Yang-Mills magnetic monopoles. Thysep fully develops the non-linear aspects
of Yang-Mills gauge theory and applies these tarkerses used to populate the Yang-Mills
magnetic monopolies with quarks and turn them loraryons and give rise to QCD. We also
show how the perturbations in these inverses, whiide from the non-linear theory, are
responsible for the short-range of the nucleariattion, notwithstanding the zero-mass gluon
gauge fields. This solves the mass gap problendantbnstrates how strong interactions may
have a short range notwithstanding their massléssrggauge fields. Additionally, sections 7
and 8 develop a classical field equation whichyfulhifies gauge theory with gravitational
theory.
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1. Introduction

Quantum Chromodynamics (QCD) is a highly-succesifebry of strong interactions.
Yet despite its success, QCD has a number of lilmita which owe less to any endemic
problems with QCD, than to our own human inabilidy heretofore perform exact analytical
calculations which fully and completely take adway® of the non-linear gauge field interactions
of Yang-Mills theory. Specifically, there are sealedistinct shortcomings — not of QCD itself
but in our present understanding of QCD and YanlisMiauge theory and how to calculate with
these — which must be fairly acknowledged and reeded

First, while it is abundantly clear that baryonslurding protons and neutrons comprise
exactly three quarks, QCD, which is premised ugen Yang-Mills gauge group SU@&)does
not explain the “three-ness” of these nucleons@thdr baryons. It essentially postulates (with
solid support from empirical evidence) three quapges baryon without explaining on a
theoretical footingvhythis number must be 3 rather than 4 or 7 or 1doarne other number, and
thus, why SU(3) rather than SU(4) or SU(7) or SY(@1some other group is the gauge group
that works to accurately reproduce the empiricadence.

Second, as Jaffe and Witten point out on page [3]pft has not yet proven possible to
use QCD 1) “to explain why the nuclear force i®sty but shortranged,” 2) to explain “quark
confinement,” that is, even though the theory iscd®ed in terms of elementary fields, such as
the quark fields, that transform non-trivially und&U(3), the physical particle states — such as
the proton, neutron, and pion — are SU(3)-invariaahd 3) to explain “chiral symmetry
breaking’.” Jaffe and Witten continue (emphasideat):

“Both experiment — since QCD has numerous successesnfrontation
with experiment — and computer simulations . . .vehagiven strong
encouragement that QCD does have the propertiest [slnge, confinement and
chiral symmetry breaking] cited above. These prig®rcan be seen, to some
extent, in theoretical calculations carried outiimariety of highly oversimplified
models (like strongly coupled lattice gauge themse, for example, [3]).But
they are not fully understood theoretically; thedees not exist a convincing,
whether or not mathematically complete, theoretmanputation demonstrating
any of the three properties in QCD, as opposed $e\erely simplified truncation
of it.”

It remains vital to demonstrate a convincing theoa¢ basis for nuclear short range
notwithstanding zero-mass gauge fields (gluonsyylgand gauge field confinement, and chiral
symmetry breaking, without truncation or oversirfigdition.

Third, as Zee points out in section VII.1 of [Pfesent methods used to calculate in
Yang-Mills theory, such as perturbation theory attite gauge theory, are among the severely
truncated methods used at present which must ealgntoe replaced by more complete and
exact ways of doingnalytical (as opposed to numerical) calculations with YantdsMheory.
Perturbation theory in Zee’s description is “an atumal act as it involves brutally splitting [the
Lagrangian densityf into two parts: a part quadratic in the fields ahd rest,” while lattice
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gauge theory [3], in contrast, “does violence tordmbz invariance rather than to gauge
invariance.” This is not an adverse reflectionY@ng-Mills or QCD, but only on our ability to
calculate with them, analytically. Better methoalsd approaches are needed which does
violence to neither.

Fourth and finally, as pointed out in [4]:

“the European Muon Scattering Collaboration showed the quark structure of
the nucleus was different than the quark struatitbe nuclei. And that offered a
completely different perspective. | think of it asparadigm shift. Some people
think that's too strong. But at that time, we hajon problems in nuclear

physics. There were fundamental aspects of theenadhat we were calculating
and we were getting the wrong answer. And if youtkat the quark structure of
a proton changes inside a nucleus, then our coiovetway of doing nuclear

calculations might, in fact, not be right. And dwede QCD effects then could
explain why we have trouble getting the bindingrggeof helium-4, the binding

energy in nuclear matter, or problems with otherl@ar structure problems.”

So while we have to date been able to use our preselerstanding of QCD to explain
many things about strong interactions, there i$ atdisconnect between QCD agparticle
theory and QCD as aucleartheory. We are able with strong supporting evigeto model
baryons and nucleons as systems of three quarkedwato not knowa priori as a theoretical
matterwhy these should be based upon three quarks. Weage@ID using an SU(g)color
group to represent a color triplet of quarks tramsing non-trivially under SU(3)_(particle
physics) but do not presently understand how ang ‘e physical particle states [of nuclear
physics] — such as the proton, neutron, and piaré¢ngenerally mesons] — are SU(3)-invariant.”
Our methods of calculating, such as perturbatiahlatiice gauge theory, are severely truncated,
at the cost of either gauge or Lorentz symmetrpd As a result of all of this, we are not yet able
to make use of QCD to connect the elementary pestic quarks — to the observed physical
particle states — protons and neutrons and othgobs, as well as mesons — in such a way as to
even calculate such long-known but not-yet-explittfgngs as nuclear binding energies and
mass defects, not to mention proton and neutrorotimet hadron masses themselves.

Two additional points need to be made in ordeavoid misunderstanding of the scope
and intent of this paper and more generally ofahthor’s research in this field. First, although
lattice gauge theory [3] is the method most-comm@mhployed to do calculations in QCD, it is
not the author’'s goal or intent to use lattice gatigeory in any way in this paper or in his
research. Lattice gauge theory is an approximatireme devised precisely because it was
found to be troublesome to do exact calculatiorth Wang-Mills theory. Essentially, one takes
the infinitesimal differential elemerdx and approximates continuum spacetime to a finitely
spaced lattice so as to reduce “the functionalgrattgon to a finite-dimensional integral. One
must then verify the existence of limits of appiaf@ expectations of gauge-invariant
observables as the lattice spacing tends to zetaarthe volume tends to infinity.” [1] at page
11. The author’s goal is to do direct, exact amedy calculations using Yang-Mills theory while
preserving both gauge symmetry and Lorentz symmaetithout any truncation or
approximation. Thus, there will be no consideratiof particular ways to normalize or
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regularize a lattice gauge calculation, becausewthele intent of this work is to go beyond
having to take the trouble to calculate in suclamalytically-limited, albeit effective, manner.

Second, Jaffe and Witten in [1] at pages 1-2 poiut that for non-Abelian (non-
commuting) gauge theory:

“At the classical level one replaces the gauge gfd(ll) of electromagnetism by
a compact gauge group G. The definition of the atume arising from the
connection must be modified t6= dA + gA " A, and Maxwell’'s equations are
replaced by the Yang—Mills equations, Q&g = da*F, whered, is the gauge-
covariant extension of the exterior derivative.”

They later proceed to survey a wide variety of mndthused “to show the existence of quantum
fields on non-compact configuration space” and sigatly to demonstrate that “relativistic,
nonlinear quantum field theories exist.” On pageot [1], they then observe that (embedded
references renumbered here):

“One view of the mass gap in Yang—Mills theory sesjg that it could
arise from the quartic potentiah (* A)? in the action, wheré = dA + gA" A, see
[5], and may be tied to curvature in the spaceooihections, see [6].”

This is the view upon which the author has bassduairk, in particular, because it is in accord
Occam’s razor as restated by Einstein [7], thae “tipreme goal of all theory is to make the
irreducible basic elements as simple and as fewaasible without having to surrender the
adequate representation of a single datum of expezi” In the specific context under
consideration here, all of the other methods enatadrin section 6 of [1] appear to entail
supplementing pure Yang-Mills theory with other deg or suppositions or making truncated
approximations in order to be able to explain alearcshort range coincident with massless
gauge fields, quark and gauge field confinemend, emral symmetry breakinglf, however,
these can baully explained using no more than the Yang-Mills fiedtiength F = dA + gA * A
via the quartic action terms (A ~ Ajand perhaps also the cubic terms), then this avplalce the
mass gap and confinement and chiral solutiemgrely on the shoulders of Yang-Mills theory
without any supplement, and this would undoubteloéy the simplest view one can take.
Furthermore, because the classical Yang-Mills egnatare simply those of Maxwell extended
into the non-Abelian domain, this would entirelyp&in nuclear short range, quark and gauge
field confinement, and chiral symmetry breaking the basis of Maxwell’'s theory in non-
Abelian form. This would then reveal Maxwell’'s theory with nomreouting gauge fields and
nothing more, to be the governing theory of nuclglaysics. A simpler result — so long as it is
not too simple to explain the datum of experiencar-scarcely be imagined.

2.  Thesis and Methodology

In a recent paper [8], the author presented thsighbat the non-vanishing magnetic
monopoles of Yang-Mills theory are in fact synonyrmowith baryons. That is, magnetic
monopoles, long-pursued since the time of JamegskChMaxwell have, in Yang-Mills
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incarnation, always been hiding in plain sight asybns, and most importantly, as the protons
and neutrons which rest at the center of the nzteniverse.

Moreto be added.

3. Classical Yang-Mills Theory: Three Equivalent Viewpoints

Yang-Mills gauge theories, developed in 1954 [Hstr mathematically upon the
generalization of the 2x2 Pauli matrices of SU(Rtoi SU(N) matrices of any NxN
dimensionality. These Pauli matrices in turn embtte quaternions developed in 1843 by
William Rowan Hamilton, famously carved into theoBgham Bridge in Dublin, Ireland.

Normalized such thaTr(/l‘/lj ) =10", the N° -1 generatorst';i =1,2,3.N* - : of any Yang-
Mills gauge group SU(N) maintain the commutatoetienship 4,4, | =if, A , where f,, are
the group structure constants. This generalize$Huli relationship which iEai 0, ] =ig, g,

for the normalizationTr(a‘aj ) =10". Each generator is an NxN matrix and so can beeari

Ae A B=1,2,3.N, but in general it is simpler to suppress thés® indexes and simply
keep in mind at all times that these indexes amiamly there.

Physically, an SU(N) gauge theory extending Maxwe#lectrodynamics into non-
Abelian domains is developed from these generatattse following way: first, one posits a set

of N?-1 vector potentials (gauge field§'*; i=1,2,3.N°- .. Next, one sums these with the
generators to fornG*,, =A',,G* which with A B indexes implicit is normally written as
G*=A'G*. This is an NxN matrix of spacetime 4-vector poigds. Similarly, one forms a set
of N? -1 field strength tensor§'* , each of which is a bivector with a “chromo-eletfield

E; and a chromo-magnetic fieBl. We then use these to forf(y = A\ ,F'** which is an NxN
Yang-Mills matrix of 4x4 antisymmetric second raeksor bivectors. Finallyn very important
contrast to the electrodynamic field strengit” =0“G" —0"G*, we specify the NxN field

strength matrixF** in terms of the NxN gauge field matri@” as (see, e.g., [2], equation
IV.5(16)):

F/ =0“G" -0"G" il G, G |=d¥C" - &, G ] (3.1)

This commutator| G*,G" | is non-vanishing,| G,G" |#0. Everything that differentiates
Yang-Mills gauge theory from an Abelian gauge tlgesuch as QED, originates solely and
exclusively from the fact that these gauge fiel@dtor potential matricess* = A'G'* do not
commute, i.e., from the fact the®*,G" | # 0.

Starting with (3.1), there are several different]yf equivalent ways in which one can
think about Yang-Mills gauge theories. Becausghefdifficulties surveyed in the introduction
that have been encountered to date doing calcotatath Yang-Mills theory, the way one
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chooses to think about Yang-Mills, depending oruwimstance, can make a big difference in
whether a calculation or conceptualization is reabty clean and simple, or messy and obtuse.
The first way to think about Yang-Mills is that(8f1), as a theory in which the gauge fields do
not commute. As we shall review momentarily, this leads veryectly to non-vanishing
magnetic monopole source charges that will be aktdrthe development here.

For a second way to think about Yang-Mills, it isniin being reminded how to expand
out (3.1) usingF* =A'F'*, G*=A'G* and [A,A, |=if A . We find while renaming
summed indexes as needed that:

AFH™ =9“1G" -0 A GH - [/T G A G’ ]
='0"G" ~N9"G* ~i[ A, N |G#a" (3.2)
=19*G" -10'G*+ M A G#G"

The A' is then factored out from all terms, leaving, afteore renaming, the perhaps more-
familiar expression:

FI =9/GY ~0G  + X GGV =g & + P GF & (3.3)

If we now use (3.3) to form a Lagrangian densitynd& the pure field terms in (2.21), we obtain
the also familiar:

— _%FWVFM/ — —%(O[NGW] + fijk Gjﬂdv)(a[yGV] + T|m Gy qw)
—_%a[/-’GiV]a G __; fijka['uGV] G],u cév _711 fjk Im GIJ GV G/.( Qv

[u=v]

(3.4)

The first term,-10%“G"19,,G,,, a “harmonic oscillator” term, is quadratic in thauge fields,

and is fully analogous and indeed identical in faorthe term—3F*'F, -19"“G"0 9,G, in
the Lagrangian density of electrodynamics. Butm@aining terms~§ fuka“‘G'”]Guqv and

-1 f¥%f, G“G"G,G,, the “perturbation” terms, represent vertices witiree and four

interacting gauge fields. This is unprecedente@léctrodynamics, and makes Yang-Mills a
non-lineartheory. So the seconday to think about Yang-Mills theory is that of4(3.in which
the gauge fields do not act like photons and foriageractions one another like ships passing in
the night. Rather, the Yang-Mills gauge fielddyfumteract with one another as well as with
their fermion (current) sourcesUnfortunately, doing exact calculations with (3ig difficult,
and in general we will find it unhelpful to spli8.4) into harmonic and perturbative parts as is
done in perturbative gauge theory, or to spoilltbeentz invariance as in lattice gauge theory,
again, see the discussion in the introduction. tA@oapproach is needed.

A third way to think about Yang-Mills gauge theasyto expand the commutator in (3.1)
and then reconsolidate using gauge covariant daresaD” =0* —iG*, as such: (In general we
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shall scale the interaction charge strengtimto the gauge field vigG” — G“. Thisg can
always be extracted back out when explicitly negded

F* =0"G" -9"G* -iG*G +iG'G' =(0" - iG") G -(0"-iG) @ =D C-DC= ¥ J(35)

We compareF* =D“G" above to the Abelian field strength*’ =0'“G"" and see that the
only difference is that the ordinary derivative is es@d byo* - D =90* —-iG*. This is
actually a very pedagogically-useful observatiofonsider that gauge theory first originates
when one has a field equation or a Lagrangian &oadarg or fermion¢/ field which includes

atermd,@ or 0,4 . One then subjects the field to tleeal gauge (phase) transformation

- €y or - €y and insists that the field equation or Lagrangiemain invariant
under this transformation. What does one do tarensuch invariance? Make the replacement
0“ -~ D* =0”-iG". So now, one chang&sy - D, andd ¢ - D with the consequence

that @ or ¢ now acquires an interaction with the gauge field.

So if we start with an Abelian gauge theory suglQ&D for whichF* =9“G"!, we can
easily turn it into a non-Abelian gauge theory lBplacing 0 —» D¥ =9* -iG* so that
F# =D¥G" ,which is (3.5). As a consequence, the gauge f&ldacquires an interaction with
the gauge fieldG*, i.e., the gauge field now starts to interact finearly with itself! This says
exactly the same thing as (3.4), with the exceptiat in the form of (3.5), the pure gauge term

in the Lagrangian is the much cleaner (the ¥ rathan ¥ owes to the'l'r(/l‘/l"):%é”
normalization):

£=-1TrF"F, =-1TD¥*G"Q G, . (3.6)

Given that (3.4) and (3.6) stateactly the same physjds should be clear that (3.6) is a much
easier expression to work with than (3.Zhis is a third way to think about Yang-Mills thess:

A non-Abelian gauge theory is simply an Abelianggatheory for which gauge theory has been
applied to gauge theory. Or, perhaps with a bitrenocolor (pun intended), Yang-Mills gauge

theory is_gauge theory on steroids.

Specifically, in gravitational theory, the prinagpbf minimal coupling suggests that we
merely replace the ordinary derivative&GV of a vector G” with covariant derivatives

0,G'=9,G'+I
generalized metric tensog,,, for the gravitational field, to migrate from a tflapacetime to

G’ simultaneously with replacing the Minkowski metignsors;,, with the

v
Uo

curved one in WhicH'ZUG” represents the curvature discerned under patediesport. (See,

e.g., [10] page 259) In gauge theory, this stedoicplacement ofd” - D* =9* -iG*
represents an analogous principle of minimal cowgplor gauge theory, in which theiG*
represents the gauge (really, phase) curvaturell@sa relative comparison of non-observable
phases.
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We shall find that for chromo-magnetic source$” with a classical field equation
P =9 F* +9*F" +0"F?, it is most helpful to view Yang-Mills theory ihe form of (3.1),
as a theory on which the gauge field does notcmtimute, that is, to think about the “non-
Abelian” view of Yang-Mills theory. But, when itocmes to chromo-electric sources with the

classical equationJ” =9 ,F*, the more convenient view is that of (3.6), in ethiwe view
Yang-Mills as gauge theory on steroids. In theatiohs to be used here, the gauge-covariant
derivativesda referenced on page 2 of [1] will be denoted simplith the uppercas®, and
when written in vector form will be represented@$ =0 —-iG*.

4. The Field Equations and Configuration Space Operator of Classical
Yang-Mills Theory

Now we turn to Yang-Mills theory at the level diet classical field equations OdzF =
da*F discussed on pages 1 and 2 of [1]. Udngather thard,, these are writtem vacuoas 0 =
DF = D*F. And, for non-vanishing electric and magneticrseaJ (one-form) andP (three-
form), these are respectively written a@sB*F andP=DF. Expanded into tensor notation, these
classical Yang-Mills equations, with sources, are:

JV=D,F", (4.1)
P = D°F® + D*FY + DVE* = DY E#) =g E*) -G EM) | (4.2)

In (4.2), we have also defined a “cyclator” notatitouv) to represent the cycling of three
indexes over three terms, as shown, which will eful for compacting the somewhat lengthy
expressions we shall soon be deriving ", and we have also regarded the spacetime as
curved and so have included the gravitationallyac@ant derivativesd, G” =0, G+’ G’.
Here in (4.1) and (4.2) too, we see a “steroidalhimal coupling in which the spacetime
derivatives of the classical Maxwell equations eplaced with gauge-covariant derivatives
0¥ -~ D¥ =90 -iG* - D" =0* -iG* where we also apply the minimal coupling principle
from gravitational theory G” - 0.,G" =9, G’ +I"/ /G’ as reviewed in the previous section.
As a first step, taking the “gauge theory on sterbview of Yang-Mills, now employing

spacetime-covariant derivatives, we substitutefitle strength represented &" = DG
from (3.5) into (4.1), while taking the “gauge fislthat do not commute” view of Yang-Mills,

we substitute the entirely equivaleRt” =9'“G" ~i[ G*,G" | of (3.1) into (4.2).
For (4.1), usingD* =9'* —iG* and some well-known index gymnastics, we obtain:

J*=D,F"”=D,D"“G=D,DG' - D,D'G'=(¢" D, ¥ - ¥ ) G

+m?

(4.3)
= (g“”(D;gD;” +nt)- D D'”) G,
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In the final line, we introduce a “Proca mass’for the gauge field, by hand, in the usual way,
usingd,0° - 8,0° +m’. The Proca mass serves three purposes. Firmstciimstances where
one isnot concerned with gauge symmetry and renormalizghalitd simply wants to know the
effect of masan on the field equation (4.3), this tells us whattkffect will be. Second, for
circumstances where omeconcerned with preserving gauge symmetry, and sManbe able to
generate masses from a Lagrangian with gauge symwiat spontaneous symmetry breaking,
the Proca mas® operates as a “red flag” to tell us which masseswant to be able to introduce
not by hand, but by symmetry breaking. In otherdsoterms with Proca masses eventually
need to be zeroed out and replaced with mass tkitden in the gauge symmetry, in more
complete theories. This will be very important tbe filling mass gap in section 9, where we
shall eventually set this mass to zero and show déwem with this mass going to zero there will
be non-zero gauge boson mass eigenstates reméigligd in the Yang-Mills inverses. Third,

with m=0, the configuration space operator of electrodyeamig”’d 0’ —0“0" in flat
spacetime, has no inverse, which requires gaugdedfi see, e.g., [2], chapter lll.4. But
g” (aga” + mz) —-0%0" with the Proca mass is easily invertible as wél sie in section 9.

The above (4.3) should be contrasted]lfo=(g”” (6;06?" + mz)—d?"a?”) G,, which is the

analogous classical equation for Maxwell’s elegyra@inics, in curved as well as flat spacetime
because we are including the spacetime-covarianvatiees. We see the gauge theory
“minimal coupling principle” at work here: each ordry spacetime-covariant derivative, is

replaced by the steroiddD.,, which is covariant in both spacetime and in thegga(phase)

space. The configuration space operator in (4.8 ( D,D7 + n12) - D#* DY, in contrast to the

analogous electrodynamic operatgr"”(a;ga;”+mz)—awa;”. These operators will play an
important role in the development here, and inise@ we shall be obtaining their inverses.

For (4.2), it will help to first review how the mopole density (4.2) behaves in an
Abelian gauge theory for which the field strengttsimply F* =9™“G" . In doing so, we keep
in mind that the Riemann curvature ten&r,,, maybedefinedvia [aw,a;v]c;a =RrR,,G asa

auv auv
direct measure of the degree to which spacetimeal®es are non-commuting. This can be
explicitly expanded to show the Christoffel symbuia the expressiow, G" =0, G +I" G

for the covariant (;) derivative of a vector fieldlVe also keep in mind that one of the important
geometric identities satisfied by the Riemann tenss the first Bianchi identity
R"™+ R + R =0, with a cycling of indexes identical to that whiabtains in the
magnetic monopole field equation (4.2). Writing .24 in the Abelian form
P =97 F* +9*F" +90"F? and combining with the Abelian field strengr” =0“G",
this well-known calculation is as follows:

10
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P =0 F* +#F" +9" F%
=07 (0"G" -9"G*)+0* (9" G" -9 G")+8" (9“ @' -9* @)
=[07,0*]G" +[9#,0" |G° +[8",0° | G
:(er("' R + Fg‘“’") G=0

(4.4)

This is a very important result, because it telts that the vanishing of magnetic
monopoles in Maxwell’s theory (and to be discuslkseer, the confinement of quarks in QCD,

see Section 1 of [8]) is brought about not only tha trivial relationship[a”,av] =0 for the

commuting of derivatives in flat spacetime, butrewe curved spacetiméy the very nature of
the spacetime geometry itsellhat is, the non-existence of magnetic monopwldgaxwell’s

electrodynamics is a direct consequence of spaeetigometry, such thaP?" =0 is a

geometrically-rooted relationship. In the languafédifferential forms,” (4.4) forP*" =0 is
expressed compactly &= dF = ddG=0, and is discussed in geometric terms by saying tha
“the exterior derivative of an exterior derivatisezero,”dd =0, see, e.g., [11] §4.6.

It will also be of interest here to consider thenmpole equation (4.4) and its non-
Abelian counterparts in integral form. Differemtfarms provide a very helpful way to take
volume and surface integrals while easily apply@auss’ / Stokes theorem, which theorem we

write generally for any differential forrK, as ”dx :95 X . Specifically, to express in integral

form the absence of magnetic monopole densitiescifsggee in (4.4), one writes
P=dF=ddG=0 as: (wedge products] in 5 F“dx Odx = F* dx dx are considered to
already have been summed)

JifP=[]jaF =[] ddG={p F=dp P~ dg dx=¢p de-0. 45

One may extract Maxwell’'s magnetic charge equaitoimtegral form,@éﬂjjbco, from the

space-space bivector components oﬁi F#dx, dx =0. While magnetic fields may flow across

some surfaces, there is nevanaiflux of a magnetic field through argfosedtwo dimensional
surface. In non-Abelian theory, this will tell tisat there is no net color passing through any
closed two dimensional surface surrounding a Yaitsvhonopole, and will thus be at the root

of how quarks and gluons become confined. Faradaguctive IanS Efdl = —” (aé/at) oA
is extracted from the time-spacé& Divector components. While magnetic fields areerof
referred to as dipole fields, it is probably bettethink of them asterminalfields, i.e., as fields
for which the field lines never end at any termiloakle.

We now turn back to the non-Abeligfr” =9%“G" ~i[ G#,G" | of (3.1). Using this in
the non-Abelian (4.2), also making use bf =0* -iG*, noting as just reviewed in (4.4) that
(R,””” + R + R"“") G =0, and condensing with the cyclat@ruv) , we obtain:
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P = DYFA + DHFY + DY F¥

=D” (%G -i[6*,6" )+ D*(d" " -i[ ¢, ¢ ||+ D' (6 G - { &, &)
=(R™+R™+R") G- (0”] @, G|+d*[ &, c]+o*[ &, &)
-i(cratc" +cra' e + @ @ )-( @[ @, ¢]+ ¢ 66°]+c [, @)
=0-i(97[G*,G"]+0%[G",G7 |+9*[ &, @']+ Ga & + @ & + &I'” &)

-(e’[e".¢]+@[c. d]+¢[ ¢, a])
=0-i(9[6*,G"]+Ga"c")-a[ &, @]

(4.6)

=0-i (a:(a [G#,G"]+GeDIGY )

It can be shown thatd"’|G*,G” |+G 0" G? =91 &* & by fully expanding the
commutators, reducing, and reconsolidating. Thiactually a form of product rule when recast
as 6?(”(6[”G“D):6;(”G'”G’D + G#“0'? @ and closely examine spacetime indexes which are
fully antisymmetric ino, 1,v. But we shall not use this here because we veantdintain the
ability to apply Gauss'/Stokes’ theorem to the ahoand having the ternd” [G”,G”]
explicitly appear in (4.6) gives us this ability.

So, in sum, (4.3) is the classical chromo-eleclietd equation of Yang-Mills gauge
theory corresponding to Maxwell’s equatiali ZGWF‘” for electric charges, and (4.6) is the

classical chromo-magnetic field equation of YandkMigauge theory corresponding to
Maxwell's magnetic equatio=0“F* +9*F" +9"F% for magnetic charges.

5. The Chromo-Magnetic Field Equation of Classical Yang-Mills
Theory, and its Apparent Confinement Properties

The first point to be observed as regards thesgg¥dills monopoles (4.6) is that the
term (RT“"”+ R + R’”") G once again vanishes as in QED with the able assistof the

spacetime geometry itself. As discussed in secti@bove, this is why there are no magnetic
monopoles in QED. But, solely and directly as suteof the fact tha[G”,G“] # 0, due to the

remaining terms-i (a;“’ [G”,G”’]+ G“’a;“’G“D)— G"[ G, G“’], these magnetic monopoles are

non-vanishing. So if one believes in Yang-Mills gauge theoryeanust also believe that the
magnetic monopoles (4.6) exist somewhere, in sarma,fin the physical universe. What form
they exist in is an open question. Whether theytapologically unstable objects that can only
be observed for a small fraction of a second inga kenergy accelerator; whether they can be
made stable via spontaneous symmetry breaking endliding in plain sight as baryons and
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most notably as protons and neutrons (which thiecautontends is the case); or whether they are
something else, is an open question at this pdgit the non-commuting nature of the Yang-
Mills gauge fields compels us to take these morep@#.6) seriously and ask: what are they,
physically, and where and how can we find them spiafly?

Second, the above gets even more interesting wbasidered in differential forms

language. The relationship (3.1) now takes oncthrepacted formF =dG-iG*= DG. As a
result, (4.6) is written compactly witD =d -iG as:

P =DF = D(dG-iG’) =(d-iG)( dG- i&)=0- { d&+ GdG- & (5.1)

where (R,”"" + R™ + R””") G is again responsible foild =0, “the exterior derivative of an

exterior derivative is zero.” So that term drops as in Abelian gauge theory, but the remaining
terms are non-vanishing. The correspondences battie non-zero terms in (4.6) and (5.1) are

dG* - 0| G*, G ], GdG ~ G“0% &” andG’® - G“[G*,G”|. So now, via (5.1) and the
use of Gauss’/Stokes’ theorerﬁdchﬁ X in differential forms, the Yang-Mills magnetic
monopole equation in integral form is:

Jlfp=1lfer=dpF=[[[(cdc- (d& + Gag- &)= [[](- { d&+ cap- §
=fpdG-iff c*-[[[(icde+ &) =0- f} &~ [[[(icdG+ G)

Importantly, we are able to apply Gauss'/Stokegotem todG* - 6?("[6", G”)J but not to
GdG = G9“ @ or G = G(”[G’, G’)] which is why we kep®9© [G”,GV)} eSriiel)

rather than converting over ®“G“G"? as mentioned after (4.6). Note from the bottame bf
(5.2), that we may dedua# dG =0, which in (4.5) for electrodynamics tells us tHare is no

netmagnetic field flux across argjosedtwo-dimensional surface.

(5.2)

Now, focusing on the correspondena@G® - 6?("[6",6”)] let us expand the

differential form to formally write (antisymmetriovedge products;dx, Odx, [ dy are
considered to have already been summed):

-i[[Jdc? =-io[c*,6"]=-i[[[(e°[c*. ¢ |+o*[ ¢, & ]+0*[ &, &) dx dx &
=-3fp[c*,G" |dx,dx =~ ifp G

Then let us use this with (4.6) to expand some teesns in (5.2), and thereafter consolidate
using D# =9* —iG* as follows:

(5.3)
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JI[P=[1] P, dx dx
= [[[(R"+ R + ™) & 05 o ox
-if[f(o[c*.c"|+o*[c". 6" ]+d*[ &, G']) d d dx
-iff[ (G°o"G" +G"a" G" + G'° @ ) dy dy dx . (5.4)
-[[[(e’[c".c ]+ a[c.a]+ c[ &, &]) dx dx dx
=0-3{p[G*,G" |dx, dx -3if[[ &" D* & dx dx dx

=fpdc-ifpc* -i[[[cac-[[[ &=4p dG- ff &~ {[[ cDC

So we see thansidethe monopole volumef[[(R"* + R* + R*?) G dx dx d» describes the
coupling of individual theN? -1 gauge fieldsG'" of G" =A'G" to the spacetime geometry,
and that this coupling vi®R " + R*" + R*"” =0 conspires to result iltj':ﬁ dG=0. Thus the

geometry couples to the gauge fields in a manredrgtevents gauge fields fronet flowing in
and out acrosslosedsurfaces enclosing the monopole for exactly tineeseeasons that there are
no magnetic monopoles at all in Abelian gauge thehat also does naotet flow across any
closedsurface, but is nonetheless clearly containedimvitie overall volume represented by the

triple integral, is ”J'GDG:J'”(GdG— iG3) :”J' G’ ¥ & dx dx dx, whatever this
represents. This expression simply is not intdgrabith ”dx :95 X. But whatever
@GZ = 3@3[6”,6”] dx, dx represents, does ridw across a closed two-dimensional surface.
We shall soon demonstrate that this term repregleatiow of mesons.

Third, making (4.6) even more interesting, as dedain section 1 of [8], if we perform a
local transformatiorF - F'=F —dG on the field strengtk, which in expanded form is written

asF* o F*'=F* -9"G*, then we find from (5.2) as a direct result@‘dG =0, that:

[i[p=gpF - gpF=dp(F-ce)=dpF . (55)

This means that the flow of the field strengﬁ.[)F = —i<ﬁ>G2 across a two dimensional surface

is invariant under the local gauge-like transforioratF#* — F*'=F* -9l"G*.

Fourth, we see from (5.4) thd{[G® =3[[[G"[ G*, G ] dx d dx is one of the non-

integrable terms. This involves pure antisymmetiniee-field cubic interaction&’ 0G* 0 G’
among the gauge fields. While we shall avoid tee af the term “glueball” to describe this
because this term already has certain technicahimgs for which its use here might cause
confusion, certainly this term contained within tm®nopole volume is an amalgam of pure
interaction gauge fields which nicely displays ttom-linearity of Yang-Mills gauge theory.
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Now, as much as the MIT Bag Model reviewed in,,e[§2] section 18 has certain
inelegant features such as th@ hocintroduction of backpressures to force confineméms
model very correctly makes one very important ptiatt deserves utmost attention beyond the
specifics of any particular model of confinemefuicus carefully on what flows and does not
flow across any closed two-dimensional surfadéis is why the integral form of Maxwell’s
equations is so vital to any sensible discussiotoofinement. The confinement of gauge fields

(which in SU(3) QCD are represented by the eighbgé of G" =A'G” with i =1,2,3...€) is
symbolically specified byﬁ) Gluons= (. Similarly, the confinement of individual quarkshich
are represented by the SU(3) Dirac wavefuncignA=1, 2,3 with three color eigenstat&s G,
B) is specified symbolically byﬁ) Quarks= (. Different theories may have different ways to

achieve these two symbolic confinements, but inethé, one should pay close attention to the
two-dimensional closed surface integrals and clye@ixamine what does and does not flow
across these closed surfaces. Equations (5.2)ghr¢b.5) contain a lot of information about

what does and does not flow across the clo#dsurface of a Yang-Mills monopole, so as

taught by the MIT Bag Model, we should study thegeations carefully to see if these magnetic
monopoles exhibit any attributes of confined gluand quarks, or interactions via mesons.

A first point is made b)JJ'.[(R,”"” + R™ + R"”") G dx dx @ which leads togfﬁ dG=0
in (5.4) and is the exact same expression whicldyi¢he absence of magnetic monopoles
entirely, in Abelian electrodynamics, review (4.4Jhis J“(R}””+ R + R‘”") G dx dx ¢

term contains aindividual gauge fieldG" = A'G”", zeroed out as a direct result of its coupling
through the Riemannian geometry in the configuratwd the first Bianchi identity, and upon

Gauss’ / Stokes’ integration yieldgg dG=0. So the question, in the context of the MIT bag

model, is whether this term is to be interpretededisng us that gauge fields (gluons in SU(3)
QCD) are confined, which means that there is navet flow of gauge fields across awjosed
surface surrounding a Yang-Mills magnetic monopoks is the case with electrodynamics,
Yang-Mills magnetic fields (and gluon fields in QEBan and do flow, in net, througipen
surfaces, but because magnetic fields are ateratd$, an outward flux over one portion of a
closed surface is always cancelled by an inward dleross another portion of the closed surface.

This is strengthened by the fact displayed in (Sha} <ﬂ> F - <ﬂ> = :<ﬁ> F is invariant under

the transformationF — F'=F -dG, i.e., F* - F*'=F* -9“G* which renders the gauge
fields (gluons in QCDhot observablavith respect to net flux through the closed swefachis
would mean as argued in section 1 of [8] that gafiglkls are confined in Yang-Mills theory for
the exact same geometric reasons that magnetic potg® do not exist at all in Abelian gauge
theory.

A second point is made by the fact thihG* =3fp[ G*,G" | dx, dx which is the

integrable term in (5.4), is really the telling tiee crux of whatdoesnet flow across closed
surfaces of a Yang-Mills magnetic monopole. Théydhing that does net flow, are these
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3[G*,G’| entities. While we still must determine, physigalvhat these3[G#,G' | entities
represent, we do know th%G”,GV] # 0is at the heart of the non-Abelian character of g¢can

Mills theories. If theseB[G”,G”] donotturn out to represent individual quarks, then wa4)

would be telling us, in the sense of the MIT bagdeipis that neither individual gluons nor
individual quarks net flow across the closed swfad a Yang-Mills magnetic monopole,

#Gluons: C and #Quarks: (. But what we also know is that baryons interaat meson

exchange, and that mesons have a color wavefunatitite form RR+GG + BB. So mesons
shouldbe permitted to flow in and out of baryons, tlstwe should also hav@ Mesonszt (.

So if we can show thaff G* =3ff[ G*,G" | dx, dy represents meson flow, as we shall shortly

do, then these magnetic monopoles would forbidquetrk and gluon flows but permit net
meson flow, and we would have some very strong &measons for identifying Yang-Mills
magnetic monopoles with baryons.

Additionally, the factors of “3" which also emerge $G* =3{p[ G*,G" | dx, dy and

in HjGDGzBﬂI G D G? dy dy dx in (5.3) and (5.4), although it comes from theeéhr

additive terms in the various expressions in (550 signifies the number of colors of quark in
QCD, the number of quarks in a baryon, and the rmundf terms in the meson color

wavefunctionRR+ GG + BB. So this “3” is a very strong hint — on top oétfact thatP™"
itself has three totally-antisymmetric spacetimeeixes each capable of accommodating one of
three vector current densities, and contains tlagditive terms — that there is some very
definitive “three-ness” associated with these Yailis monopoles. This “three-ness” could
save us having tpostulatethree quarks per baryon as is presently done iD,Qdd would
insteadrequire us to have three quarks per baryon upon afterhwhie would then impose QCD
as an Exclusion Principle. In other words, if thisree-ness” is telling us that a Yang-Mills
monopole contains three quarks and has all ther adwpiired symmetries of a baryons, then
postulating Yang-Mills theory would be synonymouth wostulating QCD and postulating
baryons and postulating that the baryons contameehcolored quarks. This would make QCD
itself an unavoidable, purely deductive consequesfc&ang-Mills gauge theory, and would
greatly strengthen the roots of QCR!would at the same time answer the unansweregtoun

as to why baryons contain three quarks and not sother number. These symmetry
relationships are what led the author in April 2@0%egin taking seriously, the thesis that these
non-vanishing magnetic monopoles originating frdra hon-commuting gauge fields of Yang-
Mills gauge theory might be baryons.

But so far, beyond this number “3,” there is nathn this present development of any
quarks in the Yang-Mills monopole (5.4). So we chée now see if there is some way to
“populate” these magnetic monopoles with quarksis brings us back to (4.3), which is the

field equation relating Yang-Millelectric charge densities)” to the gauge fields5,, and

which we shall study more closely in section 9. t Bt this point, it will be helpful to first
explore two more views of Yang-Mills theory, namdlye “perturbative” view to now be
developed in section 6, and the “curvature” vievo¢odeveloped in section 7. Not only are these
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two views helpful as to how we conceptualize Yangjsvtheory, but they also simplify the
mathematical development of Yang-Mills theory.

6. The Yang-Mills Perturbation Tensor: A Fourth View of Yang-Mills

In section 4, we described three equivalent “vieofsYang-Mills gauge theory: as a
field theory of non-commuting gauge fields (3.13; atheory of non-linear interactions among
the gauge fields (3.4); and as a minimally-cougladge theory on steroids (3.6), (4.1), (4.2) in

which ordinary derivatives are made gauge-covar@nt. D* =9* —iG*. Now, we introduce
yet a fourth view of Yang-Mills gauge theory, theetturbative view,” which is motivated by the

field equations (4.1), (4.2) when the field strdnigt expressed aB* = D'“G" in the steroidal
view of (3.5). This view is rooted in the Klein-@wmn equation

0=(D,D +1?) = ((ag -iG,) (07 -iG" )+ mz)wz (0,07 +nt-8,5-iGo" - GGy
(6.1)
= (6Ja” +n +V)¢1
for an interacting scalar field, where in the finkshe one identifies and defines an
electromagnetiperturbationspacetime scalar:

V =-id,G° -iG,0° -G, G’ (6.2)

In virtually identical fashion, we may use (3.6)rewrite the Yang-Mills chromo-electric
field equation (4.3) as:

3 :(g””((a;ga;”—i(a;gG‘7+Gﬂ0;‘7)— G G )+ ri)-(0%0" - (0¥ G+ Go*)- & G)) G

(6.3)
=(g" (0,07 +v+nt)-(00" +v*)) G,
where in the final line, we have defined a “perairbn tensor” and its trace scalar:
V= -i(04G" + GV ) - GG (6.4)
V=V7=-i0,G"-iG,0°-G,G =-0,G; — i1G,z,0° — G, G- (6.5)

The perturbation scalar identicalin form to (6.2), but in Yang-Mills theory, it B 3x3 Yang-
Mills matrix of spacetime scalars, as we are remihdbout by the explicit showing of Yang-
Mills indexes in (6.5).

Noting that for any two successive gave-covarigamivatives:

D#D" =(8*# -iG*) (9" ~iG") = 949" -id*G" ~iG*d" -GG’ =9"0" +V*, (6.6)
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we see that in flat spacetime wh%ﬂé/’,a;“] = [6”,6”] =0, the antisymmetric combination:
Vil =y v =l oo, o], (6.7)

soVvI*!is synonymous with the commutator of the Yang-8/dobvariant derivatives. In curved
spacetime, using (6.7) to operate on a vector fidfd and applying the Riemann curvature
definition [0,,,0,, |G, = R’,,, G, , we obtain:

[D*, DA =[8#,0" | A + V" :( R +4,7 \Jf’”l) A. (6.8)

Applying (6.8) to the magnetic monopole (4.6), thevature terms vanish as in (4.4) via
R"+ R + R*"? =0, and so we obtain simplin both curved and flat spacetime

P# = D’DIG" + D*D"G” + D' I’ &
=[D?,D*]G" +[ D¥, D" |G’ +[ D", D’ | G*. (6.9)
[D*.D”]6"+[ D" D" |67 +[ D", D"
=Vl + Ve + el @

The chromo-electric and chromo-magnetic field eigusat expressed in the form of (6.3) and
(6.9), illustrate this fourth, “perturbative” vieaf Yang-Mills theory. In fact, it is a very useful
exercise, to ask about thifferencebetween the physics of Yang-Mills theory and tbat
ordinary Abelian gauge theory, which differencewisolly measured by the perturbation and
functions of the perturbationit is this fourth view of Yang-Mills — the pertuthee view — that
will enable us to fill the “mass gap.”

To better understand the perturbative view, weodhice the labels “P” to denote
“Perturbative,” “YM” to denote the complete, holistphysics encompassing all features of
Yang-Mills, and “L” to denote the “Linear” expressis of Abelian gauge theories, most notably
electrodynamics. Schematically, YM=L+P, that ise tcomplete physics of Yang Mills YM
theory may be thought of and analyzed as the suarpefturbative portion P and a linear portion

L. Thus, from (6.3), we can deduce that the pbetive-only portion of the current density, ,
which is the differencely,, — J/ between the complete Yang-Mills current denslty, of (6.3)

and the linear density” :(g”” (a;ga;” + mz)—a;“a”) G, of Abelian theory. This is given by:

3= 3, -3 =( g (0,07 + v+ m)- (00" + v)) G-( ¢ (9,07 + H)-0“0") ¢

.(6.10)
= (g/fVV —V”") Gﬂ

In other words, J; :(g"”V—V‘”) G, summarizes all of the effects which are addedrto a
Abelian gauge theory, by the non-linear perturbetiof Yang-Mills theory.
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For the magnetic monopoles, of courd&™ =R}", because the Abelian monopole

densities of Abelian gauge theory are zéRf,” =0. We know this of course from (4.4), but we
also see this by inspection from (6.9) in which tl@n-vanishing magnetic monopole arises

completely via the index-cyclical application oktantisymmetrized perturbation opera‘tdf’”]

to Yang-Mills gauge fieldsG?. If V# - 0, the monopole densitieP*” - 0 go to zero.
Yang-Mills monopoles are entirely a creature oftydration, as they equivalently are creatures
of non-Abelian gauge fields, of non-linear gaugetactions, and of gauge theory on steroids.

7. Hermann Weyl’s Gauge Theory and Gravitational Curvature: A Fifth
Geometric View of Yang-Mills

Hermann Weyl in 1918 [13], [14] first conceived tlkdea that that electrodynamics might
be unified with gravitation by analyzing the “twig” of vectors under parallel transport to
measure the geometric curvature of the space. eNNikyl first conceived of this as a local
“gauge” symmetry, in 1929 [15] he corrected higjioral misconception into the modern view of
a local “phase” symmetry. Notwithstanding, thegoral misnomer “gauge” is still used to name
his theory, perhaps as a reminder to posterity that most bedrock physical theories are
sometimes properly-conceived in the abstract bgtcaniceived in some details that need to be
worked out over time. While gravitation operatés the curvature of a physical, non-compact
configuration space* first pioneered by Minkowski [16] based on Einstei 1905
development of Lorentz invariance into Special Reély [17], Weyl's theory operates along the

circle of an abstract phase space centered ardwnbbcal phaseexpi@(x) for Abelian theory,
and expid(x) = expA'd (x) with i =1,2,3..N* - Zfor an SU(N) Yang-Mills theory.

The relationship (6.8), illustrates Weyl's curvaudea very clearly. We see that the
anti-symmetrizeddr‘fv[w] plays a role in Yang-Mills theory very similar toat played by the

auv

Riemann tensoR " in gravitational theory: each is a “curvature” m@dng of the degree to

which the spacetime derivatives do or do not conaemun fact, lowering all of the indexes on
the Riemann tensor in (6.8), we see that in gonegnfan Abelian gauge theory in curved
spacetime to a Yang-Mills theory in curved spacetime make theoperator replacement

Row = Row * 9, Y. When operating on any vectér . Thus:

gm[D;/j' D;v] A :( RG’/!I/ + 9 Y,uv]) A. (71)

So just asR,,, represents curvature in spacetingg,V,,, represents Weyl's gauge curvature.

We note the leading role of the anti-symmetrizedysbationV, ,,, in this curvature connection.

vl
It is also interesting to note the superpositiorthed symmetric metric tensay,, against the

antisymmetricto indexes in the first two positions of the Riemaensor, which means that the
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resulting operatoR ,, + d,,V,,; is non-symmetric. But this is absorbed in therapen on A’
which sums out the index.

In fact, we can and should apply the same curvaamaysis to the gauge-covariant
derivative in curved spacetime, which we now waise

D,A =0,A-iG,A=0,A-T", A-iG A. (7.2)
With minor manipulation, and using, , :%(ng + Oy nga) , we can reframe this as:

gav D;uAa = ( gava/j _rayv - Igav G/j) A. (73)

So here, the curvature view is highlighted by taet that when going from Abelian to Yang-
Mills gauge theory in curved spacetime, we make tloperator replacement

Few — Tow+i9,,G, when operating on the vectét’. Becausd ,,, captures the effects of
parallel transport in curved spacetime, we seeitf)gG, represents Weyl's parallel transport in
gauge (phase) space. As with (7.1), the combirgstator ", , +ig,,G,is non-symmetric,
becausd”, , is symmetric iny,v while ig,, G, is symmetric ina,v. And as with (7.1), this is

absorbed in the operation @& which sums out ther index. In contrast to (7.1), however, the

curvature operatorR , , + ¢, Y, is a tensor, but the parallel transport operatpy, +ig,,G,, is

not becausé , , is not a tensor. Only the entigg,0,-T, , —ig,,G, is a tensor operator.

Given this curvature view of Yang-Mills, and es@dlgi (7.1), we now note the two
geometric Bianchi identite®®,, +R,,, + R, =0 ando R, +0. R, +0, R, =0. The
former was already employed in (4.4) to yield vAmg magnetic monopoles in Abelian gauge
theory and a vanishing tern(uR,V"”+ R™ + R”””) G =0 in the non-vanishing magnetic
monopole (4.6) of Yang-Mills theory, which “0” iesponsible for the confinement of gauge
fields with respect to any closed surface, as wasudsed at length in section 5. The latter,
when manipulated into the contracted forcm(R’”—% g"“R’):O and then connected to a

conserved energy tensad; T’ =0, is at the center of classical gravitational fitidory. So we

certainly want to inject these identities into Yawdls theory to the greatest degree possible
because they are at the center of both the magnetopoles and gravitational theory.

First, let's takeR,, +R,, + R,, =0. Because (4.1) contairR,,, which is the first

term of this identity, let use rewrite (4.1) two radimes with a simple renaming of indexes to
match the other two terms R, + R, + R, =0. Then, let's add these all together to write:
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(9+[D,.D.]*4,[0..D, ]+ 6.[ D,. D,]) A
=(Row * Ruo * Ru® % Vs 4 Va* 8 W) %. (7.4)
=9V * GV * G Vo) A
= gr(JI:[);,U’ D:v)] A =G Yy A

In the final line, we have applie®, , +R, , + R, =0 to zero out the terms that contain the

Riemann tensor. Once again the perturbation amduhvature views converge together. In fact,
here, in contrast to (7.1) and (7.3), wan slice off the A" operand, and simply write the
operator equation:

Y0 [ D, D:v)] = %o Mw - (7.5)

This is allowed because the spacetime index synesebn the left and right side of the above
match, and so we do not need to sum out index7rthedex to obtain matching spacetime
symmetries.

Let us now absorb the spacetime indexes to loaeirndexes on the generalized vector
A", and then rename this into tepecificvector A, - G, :/liGp with represents the Yang-
Mills gauge field. Now, (7.4) becomes:

P,uvcr:I:D;#’[);V:IGJ+|:[);V’D;J:IG,U-'-[D;U’ D/-I:Iq :YﬂV] c‘3+ Maj c2+ [\1/7/-] g
=[D,,.D, ]Gy =V G '

([pv] ~0)

(7.6)

Contrasting, this isotally identicalto equation (6.9) for the Yang-Mills monopole, pisnwith
covariant rather than contravariant indexes. Agtia perturbative and curvature views
converge: The Yang-Mills monopole density is no enand no less than the geometric operator

identity g,,[D,,D,)]= 0,V Of (7.5) — which is the Yang-Mills version of
Row * Ruo t Ry =0 —applied to the Yang-Mills gauge fiet, .

Next, because (7.5) is valid standing alone aspmrator equation, let us now multiply
this (in the expanded form of (7.4)) from tleét by a general vectoA’. Thus we now write:

Ar(gm[D;,u' D;V:|+ gr,ul: D,v’ D,U:|+ gVI: DU’ D,u:l): A( gaYuv] + gl Mzﬂ + g [\4/.])' (77)
Upon lowering indexes this becomes:

AJ[D;#’D;VJ-I_A)I[D;V’ D;a]-l_ Aﬁ[D;J’ D;ﬂ]: Ar}\{w] + 'e)vmi + '9‘[\/#1

(7.8)
=As [ D, D;v)] = Ao\
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Contrasting to (7.4) written aED;(y,D;V]A,) =V, A, We see thaany vector A may be

commuted withV,,,

important commutativity relationship to have in ehiwhen we regardy, as an NxN matrix of
vectors in Yang Mills theory.

when the spacetime indexes are cycles as in tbegeab This is an

Speaking of which, let us do just that. If we ggt- G, :)IiGL again as we did for
(7.6), then (7.8) becomesg[Dw, DV)] =G,V » Which is a cousin of the magnetic monopole
equation (7.6) in which the gauge fields appeathenleft rather than the right. But because the
gauge fields are contained within , =0, -iG,, let us set the vecto”, -~ D, in both (7.4)

D;V]AJ) =V, A, and in (7.8), and then use the Jacobian (detentinetated)
identity [ a,[b,d |+ b[ ¢ §]+[ ¢[ a b]= 0to combine these into the single relationship:

written as[D;( "

[P Py [Py Vi Dy = Do | B0 Dy | = DY

([av] =

(7.9)

) -

Because this commute3,, to the left of the commutatdD,,, D, |, this sets up the ability to
now incorporate the remaining Bianchi identit;,R,,,,=0,R,, +9,R,,+0, B, =0
which underpins the expressian) (R’” -19” R) =0 that is at the heart of gravitational theory.

In the expression, R, we define the notatiofro | as a “wall” to seal off and fix theo

indexes (this isnot an absolute value symbol as used here) from(the/) cycling of the
remaining indexes. But before we do this, let xy3a@d one of the gauge-covariant derivatives

in (7.9) and also bring in (7.6) in the foriP,,, =~i[ D, ,,D, |G, ==iV,,G, , and also pull
back in (4.6) which is our earlier monopole expi@ssto write the above as:
P/wo = i(DJ(U[D;,U’ D;v) } _I:D:(//' D:V:Ia:a)) =i (D:(UV[W]) _V([//V]aio) ) (7.10)

=i (a;(a I:Gﬂ’ GV)] +Go DGy )
In this form, we have now turned the magnetic mat®pensity itself, into an operator!

Now, let's move on to the second Bianchi idendty, R, ,,=0. We start with (7.1)
written in the form[ D, D;V]A, =R, A+V,, A. We operate on all three terms from the left
using D,. Thus, D;a([Dw,D;V]AU): D, (Row A)+ D, (VYay A)- Then we replicate this

expression two more times via a simple renamingaéxes with a cycling of,,v,a . We then
add all of these together, to fashion:
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D, ([D,.D,]4)+D,([D..D,]4)+D,([D,.D,]A)
=Dy (Row A )+ By (R A)* D( Ry A+ R( M &)+ R( s A+ DY A1)
=Dy (I:D;ll' D;V)]AT) - D?(”(RTUWV) A()+ D (\{”V]) %)

It should be clear how the teri,, (RMVN)AT) sets up the ability to applg.,R,,,,=0. So
now let’s proceed.

We can slightly expand the compacted form in thdétdno line of (7.11) using
D, =0, -iG,, take the spacetime derivatigg, using the product rule, and make use of the

Bianchi identityd, ,R,,,,,, =0 to write d. , (RWLW)A’) = R, w94 A, thus obtaining:

Do ([ DDy JA) 0,0 (R &) = 1Gio ( R A)+ Dir( Vi '5-\)_

. (7.12)
= Rm(ﬂva:a) A - IGIG I%tTI,W) A+ D(“( \61"]) é)

That is it We have now incorporated the Bianderitity 0. ,R,,,,, =0 which underlies the

geometric heart of gravitational theorg,, (R’” -19” R) =0, directly into Yang-Mills. Now
what remains is to rework (7.12) to make somesifrieanings more transparent.

Continuing with (7.12), in the third line below weommute G ,R,,.,,= R, G
because whileR , is a spacetime fourth rank tensor, it is simplyxd matrix in Yang-Mills
theory. In other words, whilé&, and areD, andV,,, are all NxN matrices which do not

mutually commute with one another or even with teelves when the spacetime indexes are
different, R, and (when it appearsy,, can be freely moved to any left-right position as

desired. In the fourth line we consolidate thetfand second term usifg,, =d.,, —iG,,. In
the fifth line we useD,,, =0, -iG,, to expand theD,, (VWD A,) term. In the sixth line we

apply the product rule for the ordinary derivatiamd in the seventh line we reconsolidate the
second and fourth terms usiy, =0.,, —iG, . The resultis:
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D, ([0 P JA) =0c (Rt A) = G ( R A)+ a( Vi )
= R0 A =G, Ryp) A+ Dy ( Y '3‘)
= Row0am A =Ry G) A+ QH( Y '3‘)
=Row Dy A+ D (\{wl) ’AA) : (7.13)
= Rou Doy A +00 (Vup B) = 1Ga Y A
= Rt By A +0a Ny A+ YO0 B~ 1@ Moy £
= Row Doy A +( DoV + V%)) A

Now the “odd duck” is the(D;(aVWD +V 110, ) A, term which has as mix of gauge-

covariant and ordinary-covariant derivatives conmeduto opposite sides of But from

[av] -
(7.10) with one index renamed, this is jBt,V, ;) =V ;904 = ~iP,,, which is why we wanted
to make the one final connection in (7.10) befamninhg to 9, ,R =0. So with the final

substitution of (7.10) into (7.13), we obtain:

va !

Toluv)

P/!Vﬂpb = iD;(t?/ (I: D;/J’ D;V)] Af)_ iRm(,uv D,a) A( =" B;(OI[G,U’ Q):I '% - iQa Q,j (51) 'S‘ (7'14)

This is our final result for the magnetic sourcensiéy written as an operator operating on any

vector A“. Above, we have also included the monopole of)(4\We can also manipulate the
indexes to clearly display the spacetime symmetries

ngiWAT = igaT D,(a ([ D;#' D,V)] A()_ iRU(#V Da) A. (7'15)

Of course, A" represents anything that transforms like a fowtae in spacetime.
Among the specific vectors which may be of interast yet a fourth gauge covariant derivative

AY - D*, and a gauge fieldy - G* (which is implicit in A“ - D*). Thus, it helps to use
(7.14) to form:

Dy ([D,:D.) ]y ) = Ry Dy D" = iR, D, (7.16)

wa o

In particular, this is now an operator identity ahitells us what happens when we take four
successive gauge covariant derivatives inmp([Dw, D;V)] D;U) cyclic combination.

Finally, in flat spacetime, wherg ,,, =0 andD,, — D, , (7.14) reduces simply to:

P..A =iD,([D,.D,]A ). (7.17)
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So this monopole density operating on an arbitvagtor A, in the form P, , A, now becomes

associated with the particular gauge-covariantlerigerivative iD(a([Dﬂ,DV)]AU). For a
succession of four gauge-covariant derivatives, igi

P..D, =iD, ([D,.D, ]D,). (7.18)

wa o

So Hermann Weyl's curvature view of Yang-Mills tinedeaches us quite a bit, in
particular, about the nature of the Yang-Mills mpale densities. This ought not to be
surprising, ~ because the two Bianchi densiteR, ,+R,,+ R, =0 and

d,R,, *+0.,R,,*+0,R,, =0 contain cyclic index structures just as do the opates.

Above, we have illustrated the curvatuaealogy between gauge theory and gravitation, and
embedded these two important identities of spaee@ometry in the Yang-Mills identities
(7.14) and (7.15). Based on this embedding, howeve can go even further, to fully unify
Yang-Mills gauge theory with classical gravitatioia a single classical field equation which
combines them both.

8. The Gravitational Field Equation for Yang-Mills Gauge Theory,
Inclusive of Maxwell’s Electrodynamics

Because the second Bianchi identi#y,R,, +9.,R,, +9, R, =0 is embedded in

(7.14) and (7.15), there should be some manipuldhat will reveal a Yang-Mills analog to the
equationd,, (R"” -1 g” R) =0 which underlies gravitational theory. We now deslthat.

2

We start by manipulating (7.15) according to th#ofving sequence of steps which
apply D, =0,, —iG,, and the product rule for differentiation:

Qo Pua A = 16, D [ D, By ] A) = IRy Dy A
=105,0,4 ([D:w D;V)]A’)+ or Ga ([ D,.D,] A)‘ iRy Dny A
=i0,;0,4| D,y: Dy | A +i0y [ Dy, D, [0.0)A + 6, G, | D, D, | A= iRy, D) A
=i95:D o[ D, Dy | A" +ig, | Dy, D, |0,y A =R, D,y A

(8.1)

Now, becauseA’ is just a dummy operand which can be any foureredét us just lop it off of
(8.1) entirely. The equations on each side of égaal sign will no longer have matching

symmetries becausg,, is symmetric whileR, is antisymmetric in these same two indexes.
So we shall use a “=" sign, that is, an equal sigguotes. Thus, we now write:

00 Pue " =" 10, Dy [ D, D, |+ig, | Dy D, 0, =R, Dy (8.2)
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The two sides of this equation are only equal thpgrate on a vector as in (8.1), or if the
symmetries can be restored in some other way. éSailvneed to now manipulate this in such a
way that the symmetries on both sides once aga&ionbe matching.

First, we fully expand the cyclators in (8.2) tatain:

Oor Pua " =" 19, D, [ D, D, ]*ig,, D, D,, D, ] +ig, D,[ D, D, |
+ig,,| D,,.D, ]0,, +ig,,[ D, .D, ]9., +ig,, [ D,.D,, ]9, . (8.3)
_iRTO',UV D;a - IRTO’VG [);/1 - iR{O’H,U E),V

Next, we use the termR,, D, and the like as a guide and engage in the saméutatons
normally used to derive,, (R"” -2 0° R) =0 from o ,R,, +0.,R,, +9, R, =0. We raise

7o indexes everywhere to put the Riemann tensornmiied form so we can extract the Ricci
tensor. Then we contract one pair of indexes Iyngerv =7 and we start to reveal the Ricci

tensor viaR” , = R, including revealing one sign reversal. This ysefide intermediate result:

g“P,,"="ig"D,[ D, D,]+ig”D,[D,. D, ]+ig” D,[ D, D,]
+igrg[D;#’ D;r]a:ﬂ +igm[D?T’ D?ﬂ]a?ﬂ +igm[D:a’Dw]a;r ' (8'4)
~iR°,D, +iR?, D, ~iR?,, D

Now we do a second index contraction by settingo. This yields the Ricci scalaR’, = R

and allows another application &”,, =—RK, with a second sign reversal. We then usegfie
to raise indexes. Now we have:

P, =iD,[D",D, |+iD"[D,,D, ]+D,[D,D"]
+i[D",D, |0, +i[D,.D,]0" +[D,D"]o, . (8.5)
—iRD;a+iR"aD;U+iR’a D;T

We have now removed the quotes from the equal biggause now the only free indexasand
there is no longer a mismatched symmetry. Thdahessymmetry became mismatched when we

looped off A"from (8.1) and it became restored when we contdadtevn to (8.4) which is a
vector equation containing one free index But given the commutation properties in the above

P’ =0 because it is a third-rank totally antisymmetgodor, and all of the other terms in the
first and second lines also cancel out by inspacti§o all that we have left in (8.5) after some
very simple rearrangement, and applying the Einstguation-«T*" = R" -1 g F, is:

-kT*D, =(R" -1 ¢g" R D, =0. (8.6)
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This is the gravitational field equation of YangHMlitheory! It resembles the usual
—k0,, T* =0, (R”“—i g Q:O but here, we have an operator equation, the ateres is

moved to the right (it does not operate to difféee R* —1 g R), and it is a gauge-covariant

derivative If we want to highlight the nexus to Yang- Mltlseory in the clearest way possible,
we may expand to above into the form:

-kT* (9, -iG,) = (R" -1 ¢” R(a, - iG) =0. (8.7)
And, if we then use this to operate on some amyitractor A, we may further expand this to:
0=-«7* (9, A, -iG A)=(R" -1 ¢" R(8, A- iG 4)

=-«T"(0,A,-T",A-IGA)=(R" -1 ¢" B(3, A-T",, A~ i A
= KT (0,0, =T, ~i67,G,) A = (R"” % g” R0, 4T A= 16 4)
( (

=-kT"9,,0, T, igmq)A( ( g’ go, -, — ig g;) 2

(8.8)

By the connection t@*", we further come to understand the coupling betvwgsaige fields and
source matter.

This brings Hermann Weyl full circle back to Alb&instein, as there is no more concise
way to express the role of geometry in spacetinteiamgauge space then through the “Einstein-

Weyl” unified field equation(R‘” -1g” R) D, =0. The term R* -3 g™ R emerges from
Einstein’s understanding of parallel transport andvature in spacetime, whil®, =d., —iG,

emerges from Weyl's understanding of .parallel spaont and curvature in gauge (phase) space.
The contracted combination ()R‘” -1 9" R) D, =0 marries the two together into one!

While we have developed the foregoing based on Y\illg gauge theory, and have
generally regarded, =0, -iG, =0,, —iA'G, to be an NxN matrix, this is not an absolute
requirement. Weyl developeD, =d., —iG, twenty five years before Yang and Mills came on

the scene. So we can also take the gauge grobe t(1), of electrodynamics, and we may
regard the gauge fiels, as Maxwell’s electrodynamic vector potentid (now we arenot

taking A, to be arbitrary but making a specific associatoth the electromagnetic potential).
When we do sathe geometric operator equati((rR”“ -1g" R)(a;v - iA) =0 now becomes the

classical unified field equation for gravitation é@relectromagnetism All of classical field
theory is geometry! Quantum field theory then egaerfrom path integration of the classical
fields.
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9. The Configuration Space Inverse of the Chromo-Electric Field
Equation of Classical Yang-Mills Theory

Much of the focus in the last two sections waste@a on the magnetic charge density
P, primarily because this has the same index-cyalitisymmetric tensor properties as the

two Bianchi identitiesR, ,+R ,+ R, =0 andd R, +0 R, *+0, R, =0 the Jacobian
identity [a,[b,c]+[ b[c d]+[ ¢[ a b]=0 which were central to the development of the

classical unified field equation in the variousnmations of (8.6) to (8.8). Now it is time to
return our focus largely to the field equation §48the chromo-electric charge density.

If we compare J¥ =(g”” ( D, D’ + mz)— D* D“) G, which is the chromo-electric

charge density field equation (4.3) side by sidéhwP™ :—i(a;“’ [G”,GV’]+G(" D“’G’D)

which is the chromo-magnetic charge density fieldation (4.6) while keeping in mind that the

gauge-covariant derivativ®* =90 —-iG*, then we notice a remarkable thing: Mathematycall
these two non-Abelian Maxwell’'s equations can mutint of asa pair of parametric equations

in which the gauge fields* is itself the parameter These means in turn that there is a
definitive, albeit complicated relationship betwettie monopole density??®” and the charge

density J”. As such, we should endeavor to find out moreuslbiois relationship. Keep in
mind, this would never become a consideration irlfn electrodynamics, because there, the

magnetic sourceP”” =0. But this isnotthe case in Yang-Mills theory.

Additionally, the chromo-magnetic densitp? = —i (a*” [G”, G”’]+ G p# G’D) of

(4.6) looks on the surface like a bundle of glu@s. (Again, we avoid the term “glueball” to

avert confusion with specific meanings that haveaaly been given to this term.) But if we take
a conservative view of field theory, wherein gatigéd are always generated by some source,
then the natural progression from (4.6) shoulddmdquire about the sources from which these

gauge fieldsG* originate. Other than the monopole souR®e’ , the only other logical source
of G* is the chromo-electric source densiy.

Furthermore, in Dirac theory, an electric soureasity J* may in turn be expressed in
terms of fermion wavefunctiong . Specifically, Dirac’s equation says tr(ay”ay —m)(// =0.

For the adjoint spinory =¢'y° the field equation isiaﬂtZy" +mzz =0. Adding yields
2, (zZy"zp) =0 as is well known. And because the conserved ouiseexpressed by, J* =0,
we identify the current density witld# =17/y"z,0. In Yang-Mills theory, for a compact, simple
gauge group SU(N), this generalizes 3¢ = A\ J* = Al WA *W , = Wy*W | with Yang-

Mills adjoint i and fundamentalA,B,C,D indexes explicitty shown for illustration, where
W=W, is an N-component column vector of 4-componentmelgary Dirac fermion

wavefunctions /. Thus, $y'y = (g‘” (D;U D’ + mz)— D* D?”) G, becomes another way to
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write (4.3). With this progression frod* — Wy*W  the gauge fields* now is the parameter

which specifies a relationship between the magrssiircesP*” and the Dirac fermionsV .

Because we already seen based on some of the syigsrmitlined in section 5 that thefg"”
have attributes reminiscent of baryons, this pataneation may provide a way to “populate”

these magnetic monopoleB*” with fermion eigenstateg/. If, in turn, these fermions
eigenstates exhibit the same symmetries as th&gjtizat we know reside inside baryons, this
would provide support for regarding thege as quark wavefunctions, and tRé" themselves
as baryon densities. So, we shall now proceedyalmese lines to populate the monopoles with
fermions by developing the inverse field equati&)s=1,,J".

Specifically, we will want tadefinean inversel , such thatG, = IwJT. Then, we can
insertG, = 1,J" = 1, Wy W into P* = —i(a;(" [G”,GV)]+ G’ D G’D) for each occurrence of

the gauge fieldG*, thereby populatind®®” with fermions. It helps to briefly review how shi
inversion is done in electrodynamics, to preparetlie more complicated calculation required
for Yang-Mills theory.

In electrodynamics, we use the classical field @gnamentioned just after (4.3) to

specify this inversés, =1, J", namely:

37 =(g" (0,07 +nt)-0"0") G =0, T =( ¢ (0,07 + rh)-0"0") |, J . @D

I!ru

We have specifically denoted this inverkge, with a “L” subscript to keep note of the fact that

this is thelinear inverse of Abelian gauge theory. We will shodigrive the more complicated
inversel,,,, which includes all the effects of Yang-Mills thgdyoth linear and non-linear, and

then from this will form al, , =1, ~1 ,, which tells us the precise portion of the complete

Pru
Yang-Mills inversel,,, , arises from theerturbativeeffects which account for the difference

between| and | This follows the approach introduced prior tol(® where we found

YMru
that the perturbative-only contribution to the emtrdensity isJ, = ( g’V - V‘”) G,.

Loy *

Dropping J* from the last two terms with index renaming th8aves us to sift out:

" = (g‘” (0,07 +n?) —a:fa;”) | (9.2)

v Lvr *

Looking at the momentum space operagdf(a;ga?" + rr12) -070*, we see that in flat spacetime
this will be symmetric in itsy, 7 indexes, but in curved spacetime it will not. darved
spacetime, the Riemann tens[cﬂw,a;v]Ga =R’,, G is non-zero as noted just prior to (4.4),

auv

and so left-right ordering matters. Especiallycsithe non-AbeIiarg’”(D;g D7 + mz)— D* D’
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with D* =9* —iG* where G* = ,,G* is an NxN matrix for SU(N) is manifestly nqt,7

symmetric even in flat spacetimeit will be important to pay attention right awayp
commutativity issues. One will also discern framsf that except in flat spacetime for Abelian

gauge theory, inverse, will be non-symmetric between it5 7 indexes. Thus, the definitional
choice G, =1.,J" where the left index in the inverse is summed with current density is
different than the reversed-index definiti€) = 1,,J" in which the right index is so-summed.

Based on the terms in (9.2), we may surmise khat=g,, A+0.,d..B will be the general
form of the inverse, witH . defined to have the same index ordering g8, , and withA and

B being unknowns we shall now deduce. We defirandB to the right, so that when we insert
l,,, into (9.2) to specify:

Lvr

&, =(g" (9,07 +m?)-0"0")( g, A+,0, B , (9.3)

v

the A andB will not come between the known terms. Agains tisipart of our desire to pay very
close attention to commutativity order, which Wik especially important when we progress to
Yang-Mills theory.

Now we expand (9.3) to obtain:
5", = 6", (0,07 + ) A-0,0% A+((0,,07 + nt)a,0% -070%3,0, ) E, (9.4)

where we may freely commutg’”, and where we then make usedf, = g’ g,, and also use
the remaining metric tensors to raise or lower xedeas appropriate. The first step is to
eliminate thed*, (a;ga;" +m2) A term by setting(a;ga?" +m2) A=1, and more specifically, by

left-multiplying with (6;06?” + mz)_1 to write:
A=(0,,07 +n?) (9,07 + nt) A=(0,,07 + i), (9.5)

Becaused.,0 +m’ is not a matrix (shortly, its Yang-Mills counterpaill be), the use of

inverses is not required and we can employ the +oonemon A:1/(6;06?0+ mz). But this

“overkill” will be important for Yang-Mills theory. Inserting (9.5) back into (9.4) while
maintaining all the “overkill” of ordering and taig inverses yields, with some rearrangement:

00" (0,07 +m?) " =((0,0 + n)0*0* ~0,0%0*0") B. (9.6)

Multiplying from the left by((a;ga;" + mz)a?va?” —676“’6“’6”) ' then yields:
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B=((0,07 +n?)a"0* -0,040*37 ) 9*0* (0,07 + nt) " 9.7)
Now using (9.5) and (9.7) ih_, =g,,A+0,,0.,. B we obtain:
|w:[gw+a;va;,((a;,,a:ﬂ'+mZ)a?f’a;ﬁ-—a;,,a?ﬁc‘a;ac‘rf")_la;aa;ﬁ}(a;,,a?”+m?)‘l . (9.8)

Since these inverses have a Yang-Mills dimensfdixiN=1x1, they are not Yang-Mills
matrices and may be placed into denominators itbomery manner. Thus (9.8) becomes:

9,0,00”
(0,07 +m*)o“0” -0,,076"9°
v 0,07 +m’ '

gl/T +
(9.9)

In flat spacetime where the derivatives may beljreemmuted, we can factor out t&"9”
terms and which leaves a,0° -0.,0° =0 which also zeros out. Thus, we convert to

momentum space vid” - ik” and add thetie prescription yields the inverse for a massive
vector boson, thus obtaining:

0,0, _. kk k k

+ v . - + -
| gvr mz B gvr rnz +ie g/r nf

_ - _ 9.10
W9 9 kK- kK- mh+d (9-10)

We make note of the fact that up to a factor, dhis inverse is identical to the QED propagator
., ie., thatr, =il .. Finally, we return to use the aboveG =1 ,J" (note reversed index

VT

ordering versus (9.10) traceable to (9.2)), whighdg:

kK,
G - —On m2 = 1 p m=0 1 (9.11)
K e KK-mrE T kKT '

After a final flat spacetime commutatida,,d,]=~[k,.k ] =0, the final reduction occurs via

conservation of charge densidyJ” =0, which in momentum space, ksJ" =0 (e.g., [2] after
1.5(4)).

Now, it is easy to see from (9.10), Wak / nf - o hencel, , — © asm - 0 , which
is why the configuration space operaigf'd.,0° -9“0" for a masslessector particle irflat

spacetimehas no inverse (e.g., [2] section 3.4). But wiggipens in curved spacetime, use,
and setm - 0? This will be instructive for our monetary coresidgtion of Yang-Mills. In this

circumstance, using (9.9) i@, =1,,,J", the inverse equation corresponding to (9.11) imeso
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9.,0.,099" 9.,0.,099"
gTI/ + . \ .’ . . . . grv + . ’. ’. . . .
(0,07 +m*)0 07 -0,,07907 mo" " 9,(070“0" -0700")
G, = ' R = ' _— . (9.12)
0,07 +m +ie 0,07 +ie

None of the reductions of (9.10) or (9.11) occurTo obtain a;va;”a:ﬂa;,y =0 from
0..0,099”J" one would need to commut®, to the right past all 0P, generating
several new non-vanishing terms containing the Riemand Ricci tensors. But of particular
interest is what happens if we sat=0 (and also addedic), as we have done on the rightmost
expression above. This, of course, describes hioékop. Even here, wittm=0 (so long as we
use +i¢), the inverse is only singular in the circumstantere d?9“0” -00“0'° =0, i.e., in
flat spacetime. In curved spacetime, the commuiat®?d” # 0, and so while the inverse of
g“a.,07 —0*0" will still become very large in relatively flatgens of spacetimeso long as
there is a modicum of gravitational curvature, faliy speaking, the inverse will never become
infinite. In the real physical world — as opposed to trethematical idealization that is flat
spacetime — anywhere there is matter there is tgtégon. So in the real physical world where
one cannot escape at least some modicum of maltiehwnherently gravitates, the inverse in
(9.12) will always be finite. Of course, we stiked to addtie in the bottom denominator,

because for a massless photon on-sh&llg” = -k, k” =0, this inverse will still become

singular even in curved spacetime. We point thishecause these types of behaviors due to
non-commuting derivatives will be manifest very yasively in Yang-Mills theory, and will
actually fill the mass gap.

Now we turn back to the Yang-Mills inverses. Hexe start with the classical chromo-
electric field strength (4.3) which we cast in anicanalogous to (9.1), namely:

3 =(¢"(D,D"+nf)-D*D’) G =0, T =(¢"(D ¥+ )~ O D)}, I, (9.13)

where I, is now the Yang-Mills inverse an@, = I,,,,,J" to includeall the effects of Yang-
Mills, both linear and perturbativd,,, , =1, +I The calculation then proceeds exactly in

the manner of (9.2) to (9.8), but now the “ovefkilf being very careful about inverses and left-
right ordering is essential. Completely analogpusl (9.8), but with the Yang-Mills “minimal
coupling” discussed in relation to the “gauge tlyemn steroids” view of (3.6), with the simple

replacement o8* — D* =9 —iG*, we obtain:

P *

lowr = [gw +D,D, (m*D” D + D, D’ D’ D¥ - D, D’ D D) D* D?ﬁ}( D, D +nt) " .(9.14)

Here, not only is the left-right ordering essenbakcause theés” :)ILBG‘” are all Yang-Mills

matrices, but so is the specification of matrixarses which areot ordinary denominatorsTo
express (9.14) in a way that facilitates visual panson to (9.9) for Abelian gauge theory, we
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shall now adopt a “quoted denominator” notion whgreve represent the inverse of any matrix

M according tol/"M"=M™, and to keep track of the proper placement ofraerse in the
overall series of matrix multiplications, we usé@’ down-arrow as a placement marker. In
this notation, (9.14) now is written as:

.\ D,D, ,D“D*
_ "m2D? D” + D;J D° D D¥ - D;a D?D?D?" o
YMvr T " D;UD;U+m2" .

gVT
(9.15)

By comparison to (9.9), we see in stark reliefttenner in which Yang-Mills gauge theory — at
least at the classical level — is simply Gauge mhamn steroids with the minimal coupling

principle 0¥ - D* =9* —=iG*. On should note two factorizations which are km@é in the
upper denominator of (9.15). The first two termsyrbe written as{m2 +D, D?”) D“ D# which
matches up with th®“D* in the top numerator. But these do not simplydiaout as they did
going from (9.9) to (9.10) because of the Yang-Mithatrices and the inverses involved. And
the latter two terms in the upper denominator maynitten asD;J(D?”D”’D;” - D?ﬂD?"D"’).

As discussed after (9.12), this helps avert a samqumerator even if we set=0, because this
will remain finite to the degree thab“D"*D* - D*D*“D" = D’D“D# #0.

We note finally, referring back to sections 7 andhét the symmetries of sequences of
covariant derivatives is integrally connected te thurvature view” of Yang-Mills theory and
helped us to derive the Einstein-Weyl equation)(88ong the way, we obtained several useful
identities involving the commutativity propertie$ taking three of four successive covariant
derivatives, specifically (7.9), and (7.13) to (.1 Clearly, based on these identities, as a

general ruleDD’D” #£0. Thus,(9.15) will not become infinite even if we sat=0 and
even if we do not includeie and even if the gauge patrticles for which (9.X5)hie inverse are
placed on shell withoutie. This property of (9.15) will become essential fiimg the mass

gap.

10. Populating Yang-Mills Monopoles with Fermions, and the
Recursive Nature of the Yang-Mills: A Sixth View of Yang-Mills

We will examine (9.14) and (9.15) much more clgdgalthe next section. But for the
moment, let us return to the complete the goabésteed at the start of the last section, which is

to “populate” these magnetic monopole§” with fermion eigenstateg/ . Via G, = IYMwJT,

we now use the final line of (4.6) to populate thagnetic monopole density (4.6) with inverses
lymy @nd current densitied”, and we further make use of the Dirac relationdhepween
fermion wavefunctions and chromo-electric curremirse densities as discussed at the outset of
the last section, namely* = Wy W = Al J% = X, WA y*W , to write:
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P ==i(0% [1943,,1623,, ]+ 156,011 403 )

=i (0% [15 Wy, W1 5 Wy, |41 e By uD 1 £ Wy w) (10.1)

T YM

A A A R AT A SR AT A R R A R

+y7 Wy, WIS Wy, W +1 % Wy WD S Wy W+l T Wy uD 1 4 Wy W

M

The Yang-Mills monopole is now fully populated wifiermion wavefunctions. We now
explicitly can see the fermion sources from whibk gauge fields originateAll of the non-
linear plus non-linear/perturbative (L+P) aspedt¥ ang-Mills gauge theory are fully included
in the above.

In fact, it is critically-important to observe thiitwe wish to do so, we may explicitly
substitute thel,,,,, of (9.14) with a renaming and raising of some kefeinto (10.1) to obtain
an even more detailed expression. And then, weetaploy the gauge-covariant derivative
0“ - D¥ =0* —iG* throughout the inverses teintroduce additional gauge fieldsAnd then,
we can useG, = l,,,,, J* to replace these new gauge fields with currensities and then use

J¥ =YY to add more fermion wavefunctions and then @4e- D =% -iG* to again

replace gauge fields and repeat this cycle itezftjwecursivelyad infinitum! So while (10.1)
represents this Yang-Mills monopole in its most pact form, this is a recursive expression

because of the fact that if we u€e, = 1,,,,,J" to write gauge fieldG, in terms of the current

density J” via:

G, :[gw +D,D, (n? D” D + D, D’ D" D - D, D D" D°) " D" Dﬂ}( D, D7+ n?)" ¥ .(10.2)

we obtain a host of terms with” =0* —iG* which specify the gauge fiel@“ recursively in
terms of itself.

In other words, it is very important to observattif10.2) isnot a closed expression,
becauseG, is self-definedrecursivelyin terms of itself. To obtain a closed expressione

would have to repeatedly inse®, into itself,ad infinitum It may well be possible to discern

the patterns and develop a closed form of (10.8), for the moment, we simply note this
recursion as yet aixth viewof Yang-Mills gauge theory. Yang Mills field thgois 1) non-
commuting, 2) non-linear, 3) steroidal, 4) pertutiba, 5) geometrically-curved and now 6),
based on (10.2), recursive And as noted in section 3, all of these views alternative,

equivalent, and complementary. Thlé"”“:—i(a;("[l’”"\]a,lﬁj’\]ﬂ]+I'T("JTD;[”I%DJ/;) of
(10.1), is the compact, irreducible kernel of tleeursive specification of the Yang-Mills

monopole, withall non-linear aspects of Yang-Mills inherently inchadto infinite recursive
order. This is the same monopole (7.10), (7.14pum section 8, starting with (8.1), to derive

the classical unified Einstein-Weyl field equatierT*’D,, = ( RY -1 9" I% D, =0 of (8.6).
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On page 7 of [1], Jaffe and Witten state:

“Since the inception of quantum field theory, twentral methods have
emerged to show the existence of quantum fielde@mcompact configuration
space (such as Minkowski space). These known methoal (i) Find an exact
solution in closed form; (ii) Solve a sequence ppraximate problems, and
establish convergence of these solutions to thieedielimit.”

The foregoing suggests a third method which islyealhybrid of (i) and (ii): find an exact
recursive kernein closed form, and then expand that kernel ircessive iterations to see how
the recursion behaves in the limit of infinite resiue nesting.

It will of course be of great interest to examihe behavior of (9.14) a.k.a. (9.15) to see
if it is exhibits suitable convergence under irtnrecursive nesting, and how this relates to
expression obtained during efforts to quantize Yhtigs. If we look at the numeratoN in

(9.15) and raise one free index to tugp into J," which is a unit matrix, we see that this has

the skeletal mathematical forll =1+ A/ B. Noting that one definition of* includes the
similar form e* = lim (1+ x/ n)n, and thinking for example howe®" expresses the continuous

n-oo

growth of a “principal’P at a rateR for a timeT which principal is, in essence, recursively fed
into itself for compounding, we may think & as the quintessential, self-feeding, recursive

mathematical function. So we ask if there is a@Bcexplicitlyrecursivedefinition for €*which
might give some insight into how to tame expressisauch as (9.14), (9.15). If we define a
dummy variablex =1+ Bx/ n and feed this into itself, each time settmtp the number of the

nesting level, it turns out that as the nesting@gghes infinity, we obtaie®:

. B+ 5
Bx B(L+ ) Ba+  247)
Bx B+ ) Bl+——3°) B+ 3
X=1+—> _ 1+ 2 1+ 2 . 2 (10.3)
1 1 1 1
S4B+ LB LB+ LB XL &
217 31 4l

In other words, the infinite recursive nesting &1+ Ax/ n with n set to the nesting level is
another way to define@®. This is not to say that (9.15) will necessarilyrt out to have an

exponential form, but rather to point out how a Madn series fore® may be recursively
defined from the recursive kerngl=1+ Bx/ n wheren is the nesting level.lt would seem a
fruitful mathematical exercise to develop simila&cursive definitions for other mathematical
functions via their seriesand then, armed with those definitions, to takeeah look at (9.15)
and see if that provides further insight into umsstemding this recursive series and the
circumstances under which this series divergesaatably-converges, and what it looks like in
truly closed form.
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The other very important insight to carry awaynirthe recursive expression (10.2), in
light of (10.3), which is a mathematical insightthwvipossible physical implications is this: In
(10.3)x is a “dummy” variable that gets stripped awayhe tnfinite application of recursion.
This means that in (10.2) the gauge fi@dis the dummy variable that will get stripped aviogy

the recursion as the nesting reaches infinity, tihait what will remain behind is the singg& on

the left (10.2) expressed as an infinite seriepawers of the source curred’. Possibly
analogously, when we take a path integral, such &D:

z = [ DG, expi[ d*x(1 G,( g (0,07 + ni)-0"0") G- ¥ g

kﬂ

- , 10.4)
_ . _ 1pd'k L, Iw T (
= cexp(iw (J)) = ¢ ex EII(ZH)4J T J

the gauge fieldG, is the variable of integration, it also gets gigg away as the integration
takes place, and what is left behind is an infisg#ges in powers of the source currdfit

With this in mind, using what Zee [2] in Appendixrafers to as the “central identity of
guantum field theory” (we have reversed the signJfbecause we are using the electrodynamic
convention in which the units of charge (electroas) negative whereas Zee uses a positive
charge sign convention):

[ Dpexp(~1 oK -V (¢) - Ip) =€ ex{ V(3 ) exps IOK0), (10.5)

it would be a very interesting mathematical exer¢tssee whether the core Gaussian integral:
jdxexp(—% AX - J>§ =(-271/ A)'5 ex;{ 3§ /2%)\ (10.6)
can be fully reformulated in terms of a recursivaedtions. As s start toward this, it helps to

develop what may be a new mathematical notatiorepoesent this sort of recursive nesting.
Analogously to how series are summarized usingsyrebol >, we shall now create an

infinite nest symbol represented by a pair of reegtarenthesig()),.,. In the function to be
nested, we shall enclose the dummy variable (whiabx in (10.3)) in the form((x)). This, in
this (possibly new) notation, we may write (10:3compact form as:

(). (2+B((%)/ ) (10.7)

This means that the Gaussian integral (10.6) maghg@sivelywritten as:

B

e
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[dxexp(~% A%~ ) =(-271 A exqf 3 12A &4 =(- 7 | K ))‘:lL }m] (10.8)

2An

where x (an abstracted gauge field), which islammy variableof integration is what gets
stripped away during the infinite recursion adwsmmy variableof recursion It is not at this
point clear whether this sort of recursive analgsis be helpful in breaking through to enable an
exact, analytical path integral quantization of YyaMills theory in closed form, but it is
worthwhile to see what contributions can be madea Ibgcursive analysis in which the physical
field to be subjected to path integration is indteegarded as a dummy variable in a recursive
expansion. What is absolutely clear, howeverh& Yang-Mills theory, in the form of (10.1)
and (10.2), forces upon us the need to analyzeerstahd, and better develop its recursive
features, which are yet a sixth view of Yang Miits which all of the non-linearities are
expressed and developed through recursive mathesmati

It is also worth observing that the magnetic matep(10.1), now populated with
fermions (which we will later show are quarks) eéslty, at bottom, a non-Abelian combination
of both of Maxwell’s classical equations (4.1) and (4.2piasingle equation Specifically, the
chromo-electric charge equation combined with Diragavefunction theory via
JV=D,F" =D,D*G" =W)’W is represented in inverse form via (10.2) and timserted
into the monopole density (4.6) to arrive at (10.Ejinstein, in his final paper [18] at page 159
points out the “surprising” finding that Maxwellta/o equations, taken together, possess a field
strength z =12 which is the exact same strength as the equaRgr=0 for pure geometry.

This would suggest (10.1), which is a field equatielating all three of)” =W)*¥, P* and

G* (two sources and one gauge field) to one anotmsat, which merges both of Maxwell’'s
equations together, will also have a strengtlz,cf12 interrelating each of its=1,2,3.N?-

Abelian sources)”, P and fieldsG'.

The final, very important point to note is that &ese of its origin in (4.2) and (4.6) as a
Yang-Mills monopole, (10.1) contairikree additive term# index-cyclic configuration of the

form 0;‘”[I$(,,’Gyaw,lfhj)myﬁw}, and similarly 13 Wy, WD P Wy, W Further, W =W, is

an N-component column vector of 4-component Dirac spwavefunctionsy/ for whatever
gauge group SU(N) we choose to employ. To this erdmwe have been exploring Yang-Mills
gauge theoryn genera) but have made no selection of any specific gayrgap. Now that is
about to change. Becaus®" is the density of &ingle magnetic monopoleP?" must be
regarded as a system which contains th€seW ,. But by virtue of the three additive terms, it
would appear to contain three such fermions. Was the source of the “three-ness” discussed
at some length toward the end of section 5. Diacni-Pauli exclusion tells us to make certain
that that the fermions in each of these terms mrmifferent eigenstates, so that this monopole
system does not contain any two fermions in theesatate. Because there are three additive

terms, thesmallestgroup we are permitted to choose is SU(3). Byadts razor, we make this
smallest permitted selectioand so do choose SU(3)
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Once we choose SU(3), we place each of the novwe-#reof W =W,, A=1,2,3 into a

distinct eigenstate. In order to discuss thisneed to name these states. So we will name them
Red, Green and Blue, and denote thgm ¢, and¢;. And with that, we move from Yang-

Mills gauge theory generally, to Chromodynamicsc#pmlly. And while we start with three
fermions ¢, Y, and ¢; which we shall soon establish may be interpretedjaarks, the
recursive nature of (10.1) via (10.2) amt' =0* -iG* and G, =1, J" = I;ﬂmy’LP ensures us
the monopole system of (10.1) will be teeming wiibn-linear physics and many additional
guarks and antiquarks that arise at the first, m&cthousandth, and millionth recursive order,

which may thought of as various “excited” baryosiates. This will all be developed in detail in
section 12.

In this light, and as we shall detail in the fodhdng development, QCD is not a theory
of first principle, it is a theory of second pript2. The theory of first principle is Maxwell’s
electrodynamics as extended into non-Abelian dosnain Yang-Mills gauge theory. QCD is
thenderived by deductioas a consequence of enforcing exclusion for thiéas contained in
the non-vanishing magnetic monopoles of Yang-Mjlsige theory, and choosing a gauge group
no larger than is necessary to enforce this exausin the process, we fully explain why nature
chooses three quarks per baryon (in the “grouratesaf zero-recursive order) rather than some
other number.

Now we turn to two specific showings: First, weaklshow how the relation (10.2),
which of course is contained to infinite recursorder in (10.1), fills the mass gap. To preview:
if we setm=0 in (10.1), due the non-commuting nature of Yandidvtheory, we still retain
terms which create mass-like effects and which,abse of the specific matrix inversion

(D;JD?” +m2)_l in (10.2), yield a mass eigenvalue spectrum, wbioh expects will come to be

associated with the masses of the observed mes®esond, as has already been developed to
some degree in section 5, we shall show from a rfmreal standpoint how and why (10.1)
contains all of the expected color symmetries dfagyon, and at the same time confines its
quarks and its gauge fields, while permitting thex fof colorless quark combinations that we
observe in the form of mesons.

11. The Mass Gap Solution

Let us now show how the solution to the mass gap s embedded in the infinitely-
recursive equation (9.14), which we shall discusisgithe more “user-friendly” representation
(9.15).

The configuration space inverse (9.15) represahisf the non-linear, recursive features
of Yang-Mills theory. As we have done previousét,us now identify how much of this inverse
arises strictly from the perturbations P. As we elrlier with (6.10), let us used the framework
YM=L+P (total Yang-Mills effects are the sum of diar effects plus perturbative effects) to
calculatel,,, =1,,, —1 ,,, which is simply the difference between the ent@istic (see [2] at

Pvr
page 356) inverse (9.15) and the linear invers®.(9So what we shall now be studying is what
Yang-Mills theory brings to the table (perturbagan the perturbative viewabove and beyond
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what Abelian gauge theories such as electrodynaafieady bring to the table. So we can study
only the impact of Yang-Mills theory separated from @ampact due to spacetime curvature, we
represent both of (9.9) and (9.15) in flat spacetimnd so turn the gravitationally-covariant
derivativeso into ordinary one9’. Thus, we form:

IPVZ' = IYMVZ' _I r

anAg anp
D,D, ,D°D 9,0.9°0 (11.1)

O,r + 2 e O, + '
"m’DD’ +D,D’DD’ - D,D’D'D?" © nfa“0” +0,0°0°9” —-a,0970°
n DJD0'+m2|l aaaﬂ+m2

The ordinary derivatives in the right hand term omme and the denominators are real
denominators, not matrix inverses. So the aboadilsereduces to (see (9.9) to (9.10) where we
did the same reduction earlier):

I, =1

YMvr _I Lr

Pvr
anA
. D,D, ,D°D L0.0, . (11.2)
~ vr ..m2 Da D,l? + Da' DG Da D,l? _ DJ Dﬂ Da D‘T " D_ gvr m2
“D,D? +m’" 9,0° +nt

The term on the right, of course, is the invergeafmassive spin-1 vector field (vector boson), it
is identical to what we found in (9.10), and whe@& eonvert over to momentum space, it is the
same thing as the vector boson propagator up tactorf ofi, 77, =il ,,. The QED path

integration which establishes thatz, =il ., is displayed in (10.4). The term
D,D“D“D” =D,D’D’D” -D,D’D?D’, which will be at the heart of the discussion to
follow, contains a succession of four covariantadgives, and as we can see from the identities
developed in section 7 and especially (7.18), ttem D,D!D“D” is non-vanishing
everywhere there are non-zero perturbations.

Now let us return to (6.6) for two successive gauagvariant derivatives, and write this
in momentum space in flat spacetime vfa - ik”, as

D“D" =-k*K' +V* =-K'K+ K G+ G k- G @, (11.3)
which also means that:
V¥ =kFG + K -G G. (11.4)

So we expand the variol3“D" =-k“k” +V*” in (11.2) and convert into momentum space, to
obtain:
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YMvr _I r

g+ (k=¥ )o (K K+ v7)
_ RV K- V)RR ) -(kke MR V)T g
= "k k7 =\, 7~ nf"

-g, + &%
- m

k,k? - n?

We of course see the perturbative-only invetgg — O if all the perturbations are

turned off, V* _ 0, as is to be expected. Again, we are now largelsking in the perturbative
view of Yang-Mills.

What we now wish to consider is this: In the fddng Mills inversel,,,,, in (11.5), the

m® is from the Proca mass of the Yang-Mills gaugeohssintroduced by hand back in (4.3).

That mass has followed us all the way through #aeebpment since, but as originally pointed
out, it is a red flag mass that we want to evehtus able to zero out and — if there are massive
particles to be found the in the physics we arermlgiag — to be able to reintroduce those masses
in some other way without ruining the gauge invac&@and the renormalizability of the theory.

So now, that time has come to set the Proca makg,jn to zero. But we shall leave the Proca

mass as is if,, for reasons to be momentarily discussed. Wittingem® =0 in l,,,,,, the
above now reduces to:

IPvr :|YMvr _I Lt

(K =V) o (- K K+ V)
k,k? =V, ) (KK = V)= (kK= ) R R= )"0 ~Ou
P aRVAL kK-

~-g,, + ( N kk - (11.6)

While we are at it, let us even go a step furtlhgrsetting the now-massless gauge bosons in
|,y t0 be on mass shell, witk k” =0 (which means that the terky k°k” K - 0 because the
k? can commute since we have assumed flat spacatiiselate the effects of Yang-Mills all by
themselves), while at the same time addig to the linear inversd . and also introducing
the gauge numbef, which for { =1 is the Feynman gauge and f6~=0 is the Landau gauge.

This gauge number is associated with in the Fad&epov method and was originally
developed by Feynman, see, e.qg., [2] section . [ITHe latteré =0 is the gauge of (11.6). Let

us also raise the frae index everywhere. Thus, (11.16) now becomes:
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(Kk =, )oK+ v7) . 11.7
5Vr+"VUU(V”’8—kakE)+|$I€Vw—\!ﬁ VO + y,g K %" o _5vr+(1_{)kmlz<r ( )
"=V, KK -nf+E

And, to simplify our consideration df ”, a bit, let us choose the Feynman gafigd which is

T
v

what transpires anyway the moment one contractsnthese |, “, with a current density via
k. J" =0, see (9.11). Thus, (11.7) now becomes:

L (kv (ke w)
N TV (VISR V- YV YRR _(11.8)
r "—Vgg" kgka— nt+

Now we arrive at the point: even after we setRineca mass to zero to keep the Yang-
Mills gauge bosons massless and preserve renoahbdiiy, and even after we further set those

zero-mass gauge bosons on-shell, so long as the'lgsionsV* andV,_° are not zero — which
means that so long as Yang-Mills theory is doingnething more than Abelian gauge theory —
the inversel,,,,, remains entirely finite and well-behaved. We at need the Proca mass at

all, and we do not even neede to avoid the pole that occurs ip,, whenk k’ —nf =0 (or

when k,k” =0 with m*=0). The1/"V,”"=(V, ”)_1 =(kT+GK-G G’)_1 term keeps

g

l.wye Well-behaved in exactly the same way thgk’ — nf + i& keeps the linead , well-

behaved. But - at the heart of the matteir/=Vv," = (V. ”)_1 =(kT+GK-G G’)_1 is an

g

NXN matrix inversethat arises witmo artifice from the essential non-linear core of Yang-Mills
theory. In contrast, ik k” — nf + i, the m’ is a renormalization-destroying Proca mass which

has us asking why, for example, the strong interactcan be a short range interaction even
though its gauge boson masses are zero which meamsnnot introduce a Proca mass even
though we need a Proca mass to make the strongatitsn short range and give the inverse /

propagatorrz, =il ., a non-exploding inverse. And in further contragte is another artifice
introduced by hand, to avoid the pole of an onidtwton. Similarly, as we even saw following
(9.12), the moment we sat’ =0, the numerator ternk k / nf — o in I, unless the

spacetime is curved. Here, where we are consgléfang-Mills alone and have removed any

effects of gravitational curvature, the correspagdi “denominator” in (11.7),
-1

(VJ" (V”ﬁ— k"kﬁ)+ k KV7— V' V7 + \f & ‘R) , plays the analogous role to the spacetime

curvature , and is perfectly well-behaved so loaghe perturbationy”’ andV,’ are not zero,
which is exactly what Yang-Mills theory is all aliou
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So, now, to the mass gap: The Klein Gordon eqndb.1) for a massless scalar fietd

with gauge symmetry, plus a hand-added Proca neassfor a vector boson with mass, has an
associated Lagrangian density (every Lagrangiarsifems multiplied by 2 in Yang Mills

because of the generator normalizatTcrr(/l‘/lj ) =14, see the start of section 3):

¢=(D,9) (D*9)-n"G,G" = (@—'Gﬂjaﬂ—'eﬂ -G e
(D.4) (0*9)-nG,6" =g 0.~ i, (0~ iG") 9= ni G .

= 90, 0“p-i¢G"d ,p-i9d .G p- ¢G,G"p- Nt G, G

+

Above, we represen((aﬂ—iG#)qp) qa(é,,—iG#j due to the hermicity of the gauge fields

G, =A'G, which is in turn due tol' =A'" for the Yang-Mills generators. (While we are here
contrast(D/jga)T D“p above to one possible use of the Einstein-Weyktgn (8.6) so as to
operate on a scalar field, name( W-1g” R) D¢ =0.) Although the only ingredients we

started with in (11.9) were a scal@rfor which we took the gauge-covariant derivafi/a, we
ended up with a terngG,G"@. When we then expand the scalar around the vaaging a
Higgs fields in the formp=v+h(x) +... and rescaleG, — gG, to explicitly show the gauge
coupling, this gauge-created term:

~0°¢G,G'p=-F(w ht.) GC&(w k.)=-( W ¢ 6 {2 vh’kr.) GH (11.10)

reveals the term—(vg)2 G,G". So now (11.9) contains(vg)2 G,G' - nf G G. But the term
mZGyG”W% introduced by hand with a Proca mass andnsrilie gauge symmetry. The term

—(vg)2 G, @, on the other hand, is a direct result of the gasignmetry. In fact, the gauge
symmetry would be ruined if we dibt have this term. So we remove the Proca masit (eet
zero) and in its place we regard the te1=|(ri/g)2 G, G to represent the massive boson &gdto
represent the mass of the boson. The experimentdirmation of electroweak theory, of
course, validates this result, and at the same tilvyfmlsing—(vg)2 G,G' rather thanm’G,G" as
the boson mass term, we keep the gauge theorymemaiormalizable.

The exact same sort of thing is happening in (11.Based on what we know from
Abelian gauge theory, we have come to expect tlaatsime vector bosons will have a propagator

m, =l The terml,,, =-i7, in (11.8) is completely analogous to the termG,G'in
(11.9). Each contains a hand-added, renormalizatestroying Proca mass. And (11.8) does

(11.9) one better, because it also has a hand-atidetb ensure that the world does not come to
an end when a boson is on-shell. But in stromgraction theory, we expect the gauge bosons

to be massless. Were we to set0 in the |, of (11.7) before we gauged out this term in

Lvr *

Lvr
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(11.8), everything would blow up. Were we to $&t boson on-shell i, and not useti¢,
everything would blow up. But the compete inverseYang-Mills theory is l,,,,,, not
l,,,=—7mT, . Sol,,,,notl is the inverse in which we should set0. And while we are
at it, if we want the gauge bosons to be on-she|l,, is also the inverse in which we should set

k,k?=0. In (11.7) we have already done all of this. Timass is zero, the bosons are on-shell,

and we have done nothing by hand that is artificiahd what great catastrophe has befallen
lymyr IN (11.7)? Absolutely none! This remains a costgly finite, well-behavednatrix

expression, so long a8’ #0 andV,° #0. But where and how, exactly, mathematically, do
we fill the mass gap?

Lvr 1

This is where the matrix expressions and the segecome in. Written out expressly in
terms of matrices and inverses, (11.8) really says:

v — v 1 v —
IP Z'AB_IYM T AB l LTJAB_

(<&, (K =V ) (W (V- R R)+ RV - e Y kK- KA 0))(- 0)7 (111D

A

~(=0" )1 (k,k* =P + ) 3,

We have taken special pains to make explicit, tRbl Khatrix structure, noting thdt,,”, ,; is a
complete, non-commuting, rather complicated NxN ¢-dills matrix for SU(N), and that
17, ==0", /(kgk” -nt + ie) is not a Yang-Mills matrix . Rather, when we sabt | ", from

1,',, we must putl “ into the diagonal positions of the Yang-Mills umiatrix J,5, thus
forming | ",0,;.

But (11.7) is in the form of an eigenvalue equatior the matrixl,,,”, 5. So if we use

v

this to operate on any Yang-Mills column vecWy, then | “ will represent the eigenvalues,
i.e., theobservablesof the matrixl,,,”, ,s- But we don’t even need to posit a vectgrbecause
we may obtain these eigenvalues directly from (I)l.Via the eigenvalue equation
IM —1A|=det(M -14) = 0which uses the determinant of a maxo compute its eigenvalues
A, and which equation for (11.11) takes the form:

1 ne| =T’ s na=! +0d =0 - (11.12)

P 7AB YM 7 AB Lr

That is it! Once we deduce a non-zero eigenva|yge via the above from some perturbations
V@ £0 andV,° 0 in |,,,", .5, We then know that the masswill be related to this by:

< =" (11.13)

kK -nf+ie 77
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In this way, we may deduce both the m@assnd, if an eigenvalug, ”, is acomplex numbewith

T

any imaginary component (which it may be becauseth generators systemically generate
complex numbers once one takes a matrsersesuch as(vo_”)_l), the imaginary magnitude

+ie which corresponds not to the mass — but hal&life. (See, e.g.,Hrror! Bookmark not
defined.], page 150.)

So, we turn to the mass gap problem in [1], wisiehies at page 3:

“. .. for QCD to describe the strong force sucfighs. . . It must have a “mass
gap;” namely there must be some constart0 such that every excitation of the
vacuum has energy at least

and which at page 6 then sets forth the problem:

“Prove that for any compact simple gauge group @omtrivial quantum
Yang—Mills theory exists on R4 and has a mass gap >. namely there must be
some constamk > 0 such that every excitation of the vacuum hesgy at least
AT

The solution to the mass gap is as follows: Foompact simple gauge group G which
may be 4ny” gauge group SU(N) wittN =2 and generatord' and gauge bosor@* = 1'G*,
the complete, holistic, non-Abelian, non-linearssiaal inversel,,,, associated with these
gauge fieldsG* and defined byG, = I,,,,,J°, with a hand-added Proca masswill be the
lymr iNcluded in (11.1) generally, and included in @1in flat spacetime. As pointed out

already, the ternD,D'“D“D# in (11.2) is non-vanishing. To maintain the renalizability of
gauge group G, wenustset this Proca mass to zero, as we do in (11T8js means that the
gauge bosons are now massless. If one takes thge gaoup to be SU(3)then the gauge
bosons are gluons and these gluons are now mas#assve are in no way restricted to SU(3)
or to any other specific gauge group G. For go@ésuare, though not essential, we even place
the gauge bosons on-shell as in (11.7).

Now that the gauge bosons are massless, the quésttomes how, for every excitation
of the vacuum, “therenustbe constanA > 0 such that every excitation of the vacuum has
energy at leasi.” The “excitations of the vacuum,” in Yang-Millgre the perturbations

V¥ =kfG + G'K - GG of (11.4). For every such perturbation / exomafiv*’ #0 and
V,? 20, by definition. WhereveD<V*" <o and 0<V,? <, the matrixl,,,,, will be finite

and well behaved, and the eigenvalues.gf, obtained through the eigenvalue equation (11.12)

will be finite and non-zero and given by,",. These eigenvalues, which are physical

observables, may, in the process, also be compl&kese eigenvalues in turn, are related to
boson masses and lifetimes via (11.13). This m#aatshe masm in (11.13) will also be non-
zero, that is, will have a value&whereA is some non-zero valuegptwithstanding the fact that
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we have set m=0 in (11.6\nd because this mass is contained within an se/gl’, which is

an eigenvalue of,,,”., this mass is deducible (as are possible nonHeflifetimes) via (11.13).

This works forany compact simple gauge group G, which is to sagpgtoint in thiscompletely
generaldevelopment have we assumed or needed to assunpaxticelar group over any other.
(Though as we have pointed out toward the end efdht section based on (11.1), Yang-Mills
monopoles give us reason for regarding SU(3) aartcplarly important group, which will be
developed further in the next section.)

The massnin |7, in (11.13) is similar tdnszG“ in (11.9). Itis a hand-added version

of a mass that we observe in the physical worldnbay not put into the theory by hand without
ruining the renormalizability of the theory. So l@ek for ways for this “anticipated” mass to be
revealed by the theory in some other way. In 2)1.this mass associated with this mass gap is
revealed in the theory because the excitation&irilQ) give this mass non-zero eigenvalues via

(11.13) and the non-zero eigenvalug$, which are the reciprocals d€ k” - nf + ig, even
though the gauge boson masses have been set tolzem stay on-shell, then these eigenvalues
| V. are simply the reciprocals efn? + i, which is a pure mass number with infinite lifetim

for real eigenvalues, a pure mass number and filfiéime number for complex eigenvalues.
The mass gap is filled, and we then have the asixplaining why Yang-Mills interactions —
most notably the strong interaction — are ableateeha short range which requires massive gauge
bosons and that the same time have gauge bosonh at@ massless. The mass gap is filled
because (11.12) “reveals” a non-zero mass in therse (11.13) without ever introducing that
mass by hand, in exactly the same way that (1d¥Bals a non-zero mass in the Lagrangian
density (11.9) without ever introducing that mag$iand.

Having now filled the mass gap, we return to shwiw it is that the Yang-Mills
monopoles (10.1) have all the chromodyanmic cofamraetries required of a baryon, and at the
same time confines its quarks and its gauge fieldhéle permitting the flux of colorless quark
combinations that we observe in the form of mesdaisen the mass gap now filled here, this in
turn would mean that the nuclear forces associatigldl these baryon/monopoles have short
range.

12. Populating Yang-Mills Monopoles with Fermions to Reveal the
Chromodynamic Symmetries of Baryons and Mesons

Let us return to the monopole (10.1) which we hpepulated with the fermion sources
Y from which its gauge fields arise. As we didhe last section, we write the inverses in the

form |y, =1, *! 5, to show the sum of the linear plus perturbativaticbutions to the
complete Yang-Mills inversd,,,,,. And, let us stay in flat spacetime and thereby &l
spacetime-covariant derivatives to ordinary dewes, 0., - 0,. So, substituting

lvwve =1 e T g iNto (10.1) yields:
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P =-i(0 [ 124 Wy, W, 1 4 By, ] +1 10 Wy, 4D £ By w)
=-i (6(”[(I AR AN (N ) LA R M e LA I F /;“D)Gyﬁw)
=i (a<“[| AN f")myﬂw]ﬂ AR f”)@yﬂw)
—i(0C[1 Wy, W, £y, W ] +1 1 Wy, WD £ By, ) (12.1)
~i (a“[l KJAUN f")myﬂw]ﬂ Wy 4D 14 f”)@yﬂw)
—i(a(”[l JACN §“>Gyﬂw]+| oWy yp 14 fj”@yﬂw)
= RIV + RZY + R + R
At the end, we have respectively denoted eacheofdbr main terms a®”", P%", P and
LL LP PL

P;2” to specify the four combinations of linear (L) aperturbative (P) inverses they contain.

Because our goal is to understand the symmetryeptiep of P*", let us zero in on th&?"
terms, which we segregate out as:

R ==i(0 [ 17y, W, 1 £7Wy, W 41 (W), uD U PP Wy, ) P +PIY (12.2)

We have further used®?{ and R}, to separately denote each of the terms in the eabov
Zeroing in even more, let’s look at:

RYY =10 [179,,1073, ] =0 [ 1#Wy, w1 Py w |, (12.3)

where we have also used], =Wy, W to consolidate back to a source density. Now,uket
substitute the linear inverse derived in (9.10)ss#i# into the above, to obtain:

I:)LT_'ulV :_ia(g[lfy‘]a’ll_ﬁl/)‘]ﬁ:l :_ia(g|: k ka _ mz a? lg Kr _ rﬁ

e 3 3 e Wrv wpw '
Kk -t kK- m kk- m k% f

g% +kKInf . -+ KK/ M }
J J,

(12.4)

The termskk” / nf etc. are eliminated via the conserved curiehl, =0, see (9.11), and then

we raise the index on the current and #hg” absorbed into the current flips the overall sign.
Finally, let us expand the cylcator in the finapesssion in (12.4) as such:
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Yy Py }aﬂ{ YpY Gy }a{ Py Py lj
M (12.5)

R = i(ag

kk -tk K- m kR- ' K%- Kk WKk

_i 1 30 Gy[”wﬁy”ww,, Gy“q@y”]wwv Yy opypd g
k,k - nt k K- m k K- rh k%= fn

g

Now, let's develop the above in some depth. Thesldg@ment to follow parallels sections 2, 3
and 5 of [8], but streamlines and simplifies thatelopment considerably and, perhaps more
importantly, put that development in the overalisxt being developed in this paper.

To start, we note the spin sum relationship wicbften normalized (but not here) such
that N> =E+m. This spin sunprior to normalizationis:

— N2
ZspinsUU = E + m( p+ m) ’ (126)

Also seeing the emergelt¥ =UU in each of the three terms in (12.5), we take4h =UU
in all three of these terms in (12.5), and useg)lt write:

1 N2 (W (prm) W W (p W WY (gpr W
k,k? - nf E+ n-[a k K- rh *o kk- M *o K%k (121

guv
PLLl =1

Next, we keep in mind that the fermion propagator

prm _  ptm

p'p-nt o+ (/e d\z(p_m)_l’ 429

while also noting the appearance(qn‘+ m)/( kK- rﬁ) throughout (12.7) which is very similar
in form to (12.8). So, if we can find some ratingee section 3 of [8]) to associate #lewith

p° which is the four-momentum of the fermion, then widl have established that there are
propagating fermion wavefunctions populating the nopmle P?". Observing that the
1/ (krk’ - mz) represents propagation for a Proca-massive véxson withthree degrees of
freedom and that fermions hafaur degrees of freedom, we shift one degree of freeffom
the Ieadingl/(krkf - rrf) over to the fermions by settinrg=0 to turn that leading term into a
massles®oson propagator. That is, for each term in (12vé shift:

1 gre(prmyly 1 oM (e 'y (12.9)
KK — 7 kK- m K k pp-

and now takep’ to represent the fermion four-momentum. It shdagdclear that both parts of
(3.17) contain a total of six degrees of freeddmeythave just been shifted from a 3+3 to a 2+4
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configuration not dissimilarly to how a degree ofddom is shifted from a Higgs scalar to a
massless gauge boson to create massive vectorsdasomg the Goldstone mechanism. Thus,
following this shifting of degrees of freedom, (Zgbecomes:

oV — 1 N2 me[y(p-i-m)y‘/]kp #G}}V(Ip-l- n)y‘ﬂl_p VGJ}U(/p‘F rbyul.lJ 12 10
R K E+m(a o F- +0 — +0 B (12.10)

If we now normalize such that? = ( E+ m) k K, then via (12.8) we can reduce (12.10) to:
P = i(a”(my“'(p— m) " W)+ 04 (W (p- m w40 (WY (o LIJ)) (12.11)

which contains three additive terms each contaiaipgopagating fermion wavefunction.

Now, we resume the discussion toward the end dioset0 where we noted that because
P?" is the density of @ingle magnetic monopoleP? must be regarded as a system which
contains thesé¥ =W ,, and that Dirac-Fermi-Pauli exclusion tells usmiake certain that that

the fermions in each of these terms are in diffeeggenstates. Thus, as already stated, because
there are three additive terms, tmallestgroup we are permitted to choose is SU(3), and by
Occam’s razor, we make this smallest permittedctiele, and so do choose SU(3)So let us
now implement this.

As already stated at the end of section 10, oreehoose SU(3), we place each of the
now-threeyy of W=W,, A=1,2,3 into a distinct eigenstate. In order tadss this, we need to

name these states. So we will name them Red, Gme#rBlue, and denote thegh,, ¢, and
W,. The generators ard';i =1,2,3...§, the eight gauge bosons a& = A'G*, and the three
fermion eigenstates atg,, ¢, andy, . Specifically, we define these eigenstates as:

/8 0 0
wls\/\f*:%;/\?’:o% 0 ;HJZE‘/]S:—Z—}/E;/]3=%>= We |;W, = Agz—ﬁ-s;/l?’:—gz 0 |- (12.12)
0 0 Ys
This means that:
l//RlZR 00 0 0 0 0 O 0
YW= 0 0 Of; W,W,=|0 ¢y O|; W,Ws=[ 0 0O 0 [. (12.13)
0 00 o 0 0 0 0 ¢,

Then we go back and use (12.13) to display thei@kBk3 matrix character oR? = BT ,z in
(12.5):
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oo VeV Ul o W 0 0
k,k? —nf
o 1 uaey[vweaeyﬂwe 12.14
P & Ikrkr—mz 0 0 K- A 0 (12.14)
o YV Wl oV Y
0 O a kgka _ rn?

Then, repeating the same steps that brought us(ft@rb) to (12.11), we may turn this into:

0" (@ (pe=me) " V) 0 0
R pa =1 0 o (e (pe - ms) " ) 0 (12.15)
0 0 0 (el (o —me) " e

where p., m.; C= R G E now represent the daggered momentpm )’ p. and massn of each
of each of the three fermion eigenstates. TheeteguationTrR? = R/ ., IS then easily
deduced to be:

TR2y =i(07 (@ (o= me) ) +0* (0l (P m)™ 12w o +0" (0o (e m) ™ ¥y ) (12.16)

This is now the fully-developed Yang-Mills magnetonopole termTrR?} 5, populated with
three colored quarks, and it is formally equivalenf5.5] of [8]. There are of course other terms
that we see in (12.1) and (12.2), but we are warkinth this specific term because it most
clearly displays the chromodynamic symmetries @& thonopole P#". Although we are
working with the one termrR?} ., the assignment (12.12) is systemic: with (12.E2gry

LL1 AB?

single W in the complete monopolB*" of (12.1) has been turned into an SU(3) columrorec
with three color eigenstates.

If we now associate each color wavefunction with sipacetime index in the relatéd
operator in (12.16), i.e.o~R, u~G and v~B, and keeping in mind thaTrR? is
antisymmetric in all spacetime indexes, we expthss antisymmetry with wedge products as
cOuOv~ROGOB=H G B+ ¢ B R+ B RL Thisis the exact colorless wavefunction

that is expected of a baryorindeed, the antisymmetric character of the spaeeindexes in a
magnetic monopole should have been a good tipaff tagnetic monopoles would naturally
make good baryons. We now may assert that thig¥éitls monopole has the exact colorless
QCD symmetry required of a baryon.

Furthermore, if we apply Gauss’ / Stokes’ theorenl®.16) and also include from (5.3)
in trace form the finding thaﬁ) TrG? = 3<ﬂ> Tr[G",GV] dx, dx, we find that:
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[[[Tre,=fTrR =-iffTrc® =-8ifpTr[c*.G"]  dx dx
_ o - (12.17)
= iq.:j;([//Ry[ﬂ(pR _mR)_l VV]l//R-'-l//GyIﬂ(pG_ mG)_1 Vg G+[//B;}”(/p3— mE)_ly”z// B) d),( dx

What is the color wavefunction for thei [G” ,G“] entities? By inspectior_RR +GG +BB. So

quarks do_not net flow in and out of closed twostigional surfaces surrounding, ,, except in
the colorless combination of a meso8b (3.25) validates the suspicion expressedeaéria of
section 111.3 that the appearance of a “3” in fr@ht[G”,G“] has something to do with there

being three colors of quark inside the magnetic opote.

Of course, (12.17) does beg the question of wimatsf in and out of the complete
monopole (12.1), because (12.17) only considergdira P, ,. So if we go back to (12.1) to

apply Gauss’/Stokes’ theorem, we obtain:
[P = P15t Py, w1 &) Wy, wdx, dx, + [[[ 15,9y, WD 14 Wy, wax, d, d. (12.18)

The first term in (12.1), because of the leadd in (12.1) is fully integrable via Gauss’/Stokes
theorem. The second term in (12.1h integrable, and so it tells us about all of thggats
that is confined inside the overall volume of thenopole. But the point made by (12.17), is

that whatever does flow across a closed surfacsupat tocﬁ} Lo Gyaw,lfhj)myﬁwdx#d& in

the above, will have the color wavefuncti®R + GG + BB of a meson!

So returning to the MIT bag model as discussedeiction 5, we now see that for the
magnetic monopole (12.1) with surface flux shownthe first term in (12.18), 1) the color

wavefunction is that of a baryon, namByG, B+ d B R+ B R § 2) from (5.4) and (5.5),
@Gluons: ¢ 3) from (12.17),<ﬁ>Mesons¢ ( and 4)<ﬁ>Quarks:C except in the colorless

combination RR+ GG + BB of a meson. Thus, on a formal basis, with the \BAg Model
telling us to look at what flows across the surfateany theoretical entity proposed to be a
baryon, and we see that the Yang-Mills magnetic apoie hasprecisely the required formal
symmetries and boundary flows required for a baryon

On page 3 of [1], Jaffe and Witten note that QCD:

. must have “quark confinement,” that is, ewdiough the theory is
described in terms of elementary fields, such asahark fields, that transform
non-trivially under SU(3), the physical particleatets—such as the proton,
neutron, and pion—are SU(3)-invariant.”

Equation (12.16) shows how the magnetic monopolésYang-Mills, with an
antisymmetric color wavefunctioR[G, B+ d B R+ B R ¢, are indeed SU(3) invariant,
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notwithstanding that the individual fermion eigextes transform non-trivially under SU(3).

This makes the monopoles them well-suited to repriethe physical particle states such as
protons and neutrons, and makes the fermion eigisstvell-suited to represent quark fields.
We further see from (12.17) that all the flux asr@sclosed surface of the monopole has the

symmetric color wavefunctiorRR + GG + BB which is also SU(3) invariant and so make the
physical particle states which the spacetime gegnudes permit to net flow across closed
surfaces well-suited to represent mesons incluthegpion. And in the process, as discussed at
the end of section 10, QCD itself is fully reprodd¢but it not a theory of first principle, but
rather a secondary theory derived by deduction fMaxwell’s electrodynamics as extended
into non-Abelian domains by Yang-Mills gauge theory

Of course, if we wish to associate these magnetinapole with physical baryons, we
still need to make these monopoles topologicaliplst and see how to use them to represent
protons and neutrons which are the most importangdms, see section 6 through 8 of [8], and
we need to calculate their energies to see if thaike sense in relation to empirical data, see
sections 11 and 12 of [8]. Insofar as topologstability, we simply note that the trace equation

(12.16) is non-vanishing, but tharP*" :Tr(A;BFj””V) =0 if we regard the gauge group as

SU(3) because all of' are traceless. In other words, the left and rijtiés of (12.16) do not
match up because one side is traceless and theigthat,if we assume the simple group SU(3)

It is on this basis that we introduce the produciug SU(3}xU(1)s., and then obtain the
monopole (12.16) (and generally, (12.1)) from tiperdganeous symmetry breaking of larger
SU(4) gauge groups with 8—-L (baryon minus lepton number) generator which yietlde
guantum numbers required to turn these baryonsprdton and neutrons and ensure that these
magnetic monopoles are topologically stable. Thiedails are in sections 6 through 8 of [8],
they fully apply to the development here, and seytmeed little if any elaboration or
modification here.

Moreto be added.
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