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Abstract

For there to be M > 1 target items to be searched in an unsorted database
of size N, with M/N ≪ 1 for a sufficiently large N, we explore the perfor-
mance of Grover’s search algorithm when considering some possible situa-
tions that may arise in a four-complex-dimensional subspace, for which in
the case of identical rotation angles ϕ = θ , we give the maximum success
probabilities of finding a desired state and their corresponding numbers of
Grover iterations in an approximate fashion. Our analysis reveals that the
case of identical rotation angles ϕ = θ is energetically favorable compared
to the case |θ −ϕ | ≫ 0 for boosting the probability to detect a desired state.

Keywords: Grover’s search algorithm; Identical rotation angles; Four-
complex-dimensional subspace; Minimal polynomial.

1 Introduction
The original Grover’s search algorithm [1] exhibits a quadratic speedup over clas-
sical counterparts for searching an unsorted database, i.e., the problem of finding
a single target item in an unsorted database containing N items takes O(

√
N) op-

erations on a quantum computer, and it was shown to be optimal [2–4]. Farhi et al.
[5] gave an analog analogue of the Grover’s search algorithm result by studying a
Hamiltonian version of the Grover problem with a time dependent Hamiltonian.
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Pati [6] recast Grover’s search algorithm in a geometric language and discussed
the bounds on quantum search. As explained in Refs. [7, 8], the working of
Grover’s search algorithm can be understood geometrically. So far, several gener-
alizations of the original Grover’s search algorithm [1] have been developed from
different aspects by some modifications mainly resulted from

(a) dealing with the case of more than one desired state [9, 10];

(b) substituting almost any unitary transform for the Walsh-Hadamard transform
[10, 11];

(c) introduction of the concept of amplitude amplification [10, 12];

(d) further speedup for repeated quantum search by means of quantum computa-
tions in parallel [13, 14];

(e) replacing the phase inversion by arbitrary phase rotations [15];

(f) allowing for an arbitrary complex initial amplitude distribution, instead of the
uniform initial amplitude distribution [16, 17];

(g) investigating the case of an arbitrarily entangled initial state [18].

Long et al. [15] first presented the phase matching condition, i.e., identical ro-
tation angles ϕ = θ , and subsequently Høyer [19] gave the exact phase condition
tan(ϕ/2) = tan(θ/2)(1− 2/N). By virtue of a recursion equation, it was con-
cluded that in order for the quantum search algorithm to apply, the two rotation
angles must be equal [17]. The results of identical rotation angles ϕ = θ [20] and
the same general phase formula (see Eq. (15) of Ref. [21]) as given in Eq. (10)
of Ref. [22] were derived again, respectively. Furthermore, Li et al. [23] derived
the iterated formulas and the simpler approximate formulas and the precise for-
mula for the amplitude in the desired state. The experimental implementation of
phase matching has been achieved by using classical Fourier optics [24] and NMR
system [25].

In Ref. [26], an algebraic approach to the analysis of Grover’s search algorithm
with an arbitrary initial quantum state was introduced by Shapira et al., revealing
a geometrical structure of the quantum search process that turns out to be con-
fined to a four-dimensional subspace of the Hilbert space. In the present paper,
by taking some possible situations that may arise in a four-complex-dimensional
subspace into consideration, we deduce approximately both the maximum success
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probabilities of finding one of M desired states in a large database that consists of
N unsorted objects and their corresponding numbers of Grover iterations for the
case when M/N ≪ 1 and ϕ = θ with a different technique. We also prove that
if we let the absolute difference |θ −ϕ | ≫ 0, then this situation will lead to a
deterioration of the performance of Grover’s search algorithm.

2 The four-dimensional unitary matrix representa-
tion

Let M be the number of the desired states in an unsorted database of size N.
Consider an initial superposition of basis states |γ0⟩ = ∑N−1

x=0 cx |x⟩ for a set of
complex numbers T = {c0,c1, . . . ,cN−1} with not all elements zero. We may
write |γ0⟩ in the most general form

|γ0⟩= cosβ0 |α1⟩+ eiς sinβ0 |β1⟩ , (1)

where ς is an arbitrary real number, β0 = arcsin
(√

∑x∈Y |cx|2
)

, the normalized

basis vectors |α1⟩ and |β1⟩ are given by

|α1⟩=
1√

∑x∈Ỹ |cx|2
∑
x∈Ỹ

cx |x⟩

and

|β1⟩=
e−iς√

∑x∈Y |cx|2
∑
x∈Y

cx |x⟩,

respectively. Here arcsin(•) is defined as −π/2 ≤ arcsin(•) ≤ π/2, Ỹ and
Y are the sets of the undesired and desired states respectively, all cx ∈ T ful-
fill the normalization condition ∑x∈Ỹ |cx|2 +∑x∈Y |cx|2 = 1 with the constraints

∑x∈Ỹ |cx|2 ̸= 0 and ∑x∈Y |cx|2 ̸= 0, and the notation |�| denotes the modulus of any
complex number. As to |γ0⟩, we shall suppose for the sake of argument that the
ratio κ =M/N and β0 are both small throughout this paper.

For any two rotation angles ϕ ,θ ∈ (0,π], we define

Uϕ = I +
(

eiϕ −1
)

∑
x∈ Y

|x⟩⟨x|
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and

Uθ = I +
(

eiθ −1
)
|η⟩⟨η |

respectively, where I denotes the identity operator, i denotes the principal square
root of −1, and |η⟩ is a unit vector in the N–dimensional complex Hilbert space
spanned by all the desired and undesired states and it is defined through Eq. (2).
Let A be any unitary operator, and let

|µ⟩= A |η⟩ (2)

be the result of applying A to |η⟩. The Grover iteration G =−AUθ A−1Uϕ , where
the superscript −1 refers to the inverse of an operator, then reads

G =−
(

I +
(

eiθ −1
)
|µ⟩⟨µ|

)(
I +
(

eiϕ −1
)

∑
x∈ Y

|x⟩⟨x|
)

(3)

in view of Eq. (2).
In case that the state vector |µ⟩ lies outside the two-dimensional complex sub-

space L spanned by |α1⟩ and |β1⟩, we can get the unit vector

|S⟩= 1√
1−|⟨α1 | µ⟩|2 −|⟨β1 | µ⟩|2

(
|µ⟩−⟨α1 | µ⟩ |α1⟩−⟨β1 | µ⟩ |β1⟩

)
that is perpendicular to L by means of the Gram-Schmidt orthogonalization pro-
cess. We now set

|µ⟩= sinω cosφ1eit1 |α1⟩+ sinω sinφ1eit2 |β1⟩+ cosωeit3 |S⟩ , (4)

where φ1 ∈ (0,β0], ω ∈ (0,π/2], and t1, t2, t3 are arbitrary real numbers. In gen-
eral, for the case when ω ̸= π/2 and there are more than one desired state to be
searched, the third component vector on the right-hand side of Eq. (4), correspond-
ing to some sequence of complex numbers d0,d1, · · · ,dN−1 with ∑N−1

x=0 |dx|2 = 1,
∑x∈Ỹ dxcx = 0 and ∑x∈Y dxcx = 0, has a further decomposition

|S⟩= cosφ2 |α2⟩+ e(−it3+it4) sinφ2 |β2⟩ , (5)

where • denotes the complex conjugate of a complex number, t4 is an arbitrary
real number,

|β2⟩=
e(it3−it4)√
∑x∈Y |dx|2

∑
x∈Y

dx |x⟩ (6)
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and

|α2⟩=
1√

∑x∈Ỹ |dx|2
∑
x∈Ỹ

dx |x⟩

are the normalized superposition of the desired states and that of the remaining
ones, and here, to allow for the possibility of the change of |S⟩, for all φ1 ∈ (0,β0]
and all ω ∈ (0,π/2) we let the angle

φ2 = arcsin
(√

∑x∈Y |dx|2
)
̸= 0 (7)

satisfy the relation

sin2 ω sin2 φ1 + cos2 ω sin2 φ2 ≤ sin2 β0 (8)

which holds also for ω = π/2, meaning that the probability to measure a desired
state in |µ⟩ as defined by Eq. (4) is not greater than the probability to measure a
desired state in |γ0⟩.

Parenthetically, we should note that for any given φ1 ∈ (0,β0], the possible
values of φ2 depend upon the magnitude of the angle ω . In accordance with in-
equality (8), it is straightforward to show that φ2 is also small when ω is small,
but it is very likely to be considerably large as ω approaches π/2. In addition,
when ω = π/2, |S⟩ does not exist; however, |µ⟩ can always be expressed in terms
of |α1⟩ and |β1⟩ as |µ⟩ = cosφ1eit1 |α1⟩+ sinφ1eit2 |β1⟩, independent of the exis-
tence of |S⟩ and the choice of φ2. For this reason we will be free from Eq. (7) and
take φ2 to be an arbitrary real number for such an exceptional case.

Thus, Eq. (4) by substitution now takes the form

|µ⟩= sinω cosφ1eit1 |α1⟩+sinω sinφ1eit2 |β1⟩+cosω cosφ2eit3 |α2⟩+cosω sinφ2eit4 |β2⟩ .
(9)

By exploiting Eq. (9), the matrix representation of G in Eq. (3) relative to the
ordered orthonormal basis {|α1⟩, |β1⟩, |α2⟩, |β2⟩} is computed to be

Qt =


Qt11 Qt12 Qt13 Qt14
Qt21 Qt22 Qt23 Qt24
Qt31 Qt32 Qt33 Qt34
Qt41 Qt42 Qt43 Qt44

 , (10)
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whose entries are

Qt11 =−1+λ sin2 ω cos2 φ1,

Qt12 = λeiϕ e(it1−it2) sin2 ω sinφ1 cosφ1,

Qt13 = λe(it1−it3) sinω cosω cosφ1 cosφ2,

Qt14 = λeiϕ e(it1−it4) sinω cosω cosφ1 sinφ2,

Qt21 = λe(−it1+it2) sin2 ω sinφ1 cosφ1,

Qt22 = λeiϕ sin2 ω sin2 φ1 − eiϕ ,

Qt23 = λe(it2−it3) sinω cosω sinφ1 cosφ2,

Qt24 = λeiϕ e(it2−it4) sinω cosω sinφ1 sinφ2,

Qt31 = λe(−it1+it3) sinω cosω cosφ1 cosφ2,

Qt32 = λeiϕ e(−it2+it3) sinω cosω sinφ1 cosφ2,

Qt33 =−1+λ cos2 ω cos2 φ2,

Qt34 = λeiϕ e(it3−it4) cos2 ω sinφ2 cosφ2,

Qt41 = λe(−it1+it4) sinω cosω cosφ1 sinφ2,

Qt42 = λeiϕ e(−it2+it4) sinω cosω sinφ1 sinφ2,

Qt43 = λe(−it3+it4) cos2 ω sinφ2 cosφ2,

Qt44 = λeiϕ cos2 ω sin2 φ2 − eiϕ ,

where λ = 1− eiθ .

3 The performance of Grover’s search algorithm in
the four-dimensional complex subspace

Theorem 1 Let |γ0⟩ and |µ⟩ be defined as in Eqs. (1) and (9), respectively, and
suppose that N is sufficiently large and M ≪N. Then, in the case of ϕ = θ ∈ (0,π],
the maximum success probability of Grover’s search algorithm is approximately
equal to 1/

(
1+ cot2 ω cos2 φ2

)
for any fixed ω ∈ (0,π/2), any φ1 ∈ (0,β0], and

all possible values of φ2 satisfying the condition of inequality (8).

Proof From inequality (8), it follows that

sinω cosω sinφ1 sinφ2 ≤ sin2 β0/2 (11)
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and

cos2 ω sin2 φ2 < sin2 β0 (12)

for all φ1 ∈ (0,β0] and all ω ∈ (0,π/2). Neglecting the higher-order terms of φ1
and the product terms associated respectively with the two quantities on the left-
hand sides of the above inequalities in the elements of the unitary matrix Qt given
in Eq. (10), we may approximately write this matrix as

Qt=̇Qt ′ =


q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

 , (13)

where

q11 =−1+λ sin2 ω, q12 = φ1λeiϕ e(it1−it2) sin2 ω,

q13 = λe(it1−it3) sinω cosω cosφ2, q14 = λeiϕ e(it1−it4) sinω cosω sinφ2,

q21 = φ1λe(−it1+it2) sin2 ω , q22 =−eiϕ ,

q23 = φ1λe(it2−it3) sinω cosω cosφ2, q24 = 0,

q31 = λe(−it1+it3) sinω cosω cosφ2, q32 = φ1λeiϕ e(−it2+it3) sinω cosω cosφ2,

q33 =−1+λ cos2 ω , q34 = λeiϕ e(it3−it4) cos2 ω sinφ2 cosφ2,

q41 = λe(−it1+it4) sinω cosω sinφ2, q42 = 0,

q43 = λe(−it3+it4) cos2 ω sinφ2 cosφ2, q44 =−eiϕ .

It is convenient to multiply the matrix Qt ′ by a global phase factor −e−i(θ+ϕ)/2 so
that Eq. (13) can be rewritten in a tractable form

Q=̇− e−i(θ+ϕ)/2Qt ′ = Q1 −ΩQ2 −RQ3 , (14)

where

Q1 =


ei(θ−ϕ)/2 0 0 0

0 e−i(θ−ϕ)/2 0 0
0 0 ei(θ−ϕ)/2 0
0 0 0 e−i(θ−ϕ)/2

 ,
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Q2 =



0 eiξ1 0
eiξ2 cotω sinφ2

φ1
−e−iξ1 0 −e−iξ3 cotω cosφ2 0

0 eiξ3 cotω cosφ2 0
eiξ4 cot2 ω sin(2φ2)

2φ1

−
e−iξ2 cotω sinφ2

φ1
0 −

e−iξ4 cot2 ω sin(2φ2)

2φ1
0


,

Q3 =


−cos2 ω 0 e(it1−it3) sinω cosω cosφ2 0

0 0 0 0
e(−it1+it3) sinω cosω cosφ2 0 −sin2 ω 0

0 0 0 0

 ,

R = e−i(θ+ϕ)/2 − ei(θ−ϕ)/2,

and Ω is given by Eq. (16), where ξ1, ξ2, ξ3, ξ4, and Ω are defined through
−φ1

(
ei(θ+ϕ)/2 − e−i(θ−ϕ)/2)e(it1−it2) sin2 ω = Ωeiξ1

−φ1
(
ei(θ+ϕ)/2 − e−i(θ−ϕ)/2)e(it1−it4) sin2 ω = Ωeiξ2

−φ1
(
ei(θ+ϕ)/2 − e−i(θ−ϕ)/2)e(it3−it2) sin2 ω = Ωeiξ3

−φ1
(
ei(θ+ϕ)/2 − e−i(θ−ϕ)/2)e(it3−it4) sin2 ω = Ωeiξ4

, (15)

whence
Ω = φ1 sin2 ω

√
2(1− cosθ) (16)

and
ξ1 −ξ3 = ξ2 −ξ4 = t1 − t3. (17)

By applying inequality (12) we find that

(Q3)
2 .
=−Q3, (18)

and furthermore, that

ΩRQ2Q3
.
= O and ΩRQ3Q2

.
= O (19)

with the aid of Eq. (17), where O denotes a 4×4 zero matrix.
In the special case when ϕ = θ , Eq. (14) becomes

Qϕ=θ =̇I −ΩQ′
2 −R′Q3 ≈ e−ΩQ′

2 −R′Q3, (20)
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in which R′ =−1+ e−iθ , and

Q′
2 =



0 eiξ ′
1 0

eiξ ′
2 cotω sinφ2

φ1
−e−iξ ′

1 0 −e−iξ ′
3 cotω cosφ2 0

0 eiξ ′
3 cotω cosφ2 0

eiξ ′
4 cot2 ω sin(2φ2)

2φ1

−
e−iξ ′

2 cotω sinφ2

φ1
0 −

e−iξ ′
4 cot2 ω sin(2φ2)

2φ1
0


,

(21)
where ξ ′

1, ξ ′
2, ξ ′

3, and ξ ′
4 are defined via

−φ1

(
eiθ −1

)
e(it1−it2) sin2 ω = Ωeiξ ′

1

−φ1

(
eiθ −1

)
e(it1−it4) sin2 ω = Ωeiξ ′

2

−φ1

(
eiθ −1

)
e(it3−it2) sin2 ω = Ωeiξ ′

3

−φ1

(
eiθ −1

)
e(it3−it4) sin2 ω = Ωeiξ ′

4

which follows from Eq. (15) putting ϕ = θ . Likewise for this case

ξ ′
1 −ξ ′

3 = ξ ′
2 −ξ ′

4 = t1 − t3, (22)

ΩR′Q′
2Q3

.
= O and ΩR′Q3Q′

2
.
= O (23)

can also be obtained. As a result of the foregoing calculations, for any positive
integer j ≥ 1, Q j

ϕ=θ can now be compactly expressed as

Q j
ϕ=θ =̇e− jΩQ′

2 −
((

R′+1
) j −1

)
Q3. (24)

To calculate Q j
ϕ=θ we need to determine the matrix exponential e− jΩQ′

2 . To
do this, taking Eq. (22) into account and letting the characteristic polynomial
of the complex skew-symmetric matrix Q′

2 equal to zero, i.e., the determinant
det(Q′

2 −ρI) = 0, yields the following eigenvalues of Q′
2: ρ1 = ρ2 = 0, ρ3 = i

√
τ ,

and ρ4 =−i
√

τ , where

τ =
(
1+ cot2 ω cos2 φ2

)(
1+

cot2 ω sin2 φ2

φ2
1

)
. (25)
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Since

Q′
2
(
Q′

2 −ρ3I
)(

Q′
2 −ρ4I

)
=
(
Q′

2
)3

+ρ3ρ4Q′
2 = O

ensures that the minimal polynomial of Q′
2 takes on the form ρ (ρ −ρ3)(ρ −ρ4),

we may set

e− jΩρ = a+bρ + cρ2 (26)

with undetermined coefficients a, b, and c. Upon substitution of the values of ρ1,
ρ3 and ρ4 into Eq. (26), respectively, we arrive at a nonhomogeneous system of
linear equations


e− jΩρ1 = a+bρ1 + c(ρ1)

2

e− jΩρ3 = a+bρ3 + c(ρ3)
2

e− jΩρ4 = a+bρ4 + c(ρ4)
2

,

from which, we obtain a = 1, b = −sin
(

jΩ
√

τ
)
/
√

τ , and c =
(
1 −

cos
(

jΩ
√

τ
))
/τ . As a consequence, substituting Q′

2 for ρ in Eq. (26) directly
gives

e− jΩQ′
2 = aI +bQ′

2 + c
(
Q′

2
)2
.

Accordingly, we appeal to this result and Eq. (22), and some rearrangement, to
deduce that

Q j
ϕ=θ

.
=


qq11 qq12 qq13 qq14
qq21 qq22 qq23 qq24
qq31 qq32 qq33 qq34
qq41 qq42 qq43 qq44

 , (27)
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where

qq11 =
(

e−iθ j −1
)

cos2 ω +
cot2 ω cos2 φ2 + cos

(
jΩ

√
τ
)

1+ cot2 ω cos2 φ2
,

qq12 =−eiξ ′
1 sin

(
jΩ

√
τ
)
/
√

τ,

qq13 =−e(iξ ′
1−iξ ′

3)

((
e−iθ j −1

)
sinω cosω cosφ2 +

cotω cosφ2
(
1− cos

(
jΩ

√
τ
))

1+ cot2 ω cos2 φ2

)
,

qq14 =−eiξ ′
2 sin

(
jΩ

√
τ
)

cotω sinφ2/
(
φ1

√
τ
)
,

qq21 = e−iξ ′
1 sin

(
jΩ

√
τ
)
/
√

τ,
qq22 = 1−

(
1− cos

(
jΩ

√
τ
))

/
(
1+ cot2 ω sin2 φ2/φ2

1
)
,

qq23 = e−iξ ′
3 cotω cosφ2 sin

(
jΩ

√
τ
)
/
√

τ,

qq24 =−e(−iξ ′
1+iξ ′

2)
(
1− cos

(
jΩ

√
τ
))

cotω sinφ2(
1+ cot2 ω sin2 φ2/φ2

1
)

φ1
,

qq31 =−e(−iξ ′
1+iξ ′

3)

((
e−iθ j −1

)
sinω cosω cosφ2 +

cotω cosφ2
(
1− cos

(
jΩ

√
τ
))

1+ cot2 ω cos2 φ2

)
,

qq32 =−eiξ ′
3 cotω cosφ2 sin

(
jΩ

√
τ
)
/
√

τ,

qq33 =
(

e−iθ j −1
)

sin2 ω +
1+ cos

(
jΩ

√
τ
)

cot2 ω cos2 φ2

1+ cot2 ω cos2 φ2
,

qq34 =−eiξ ′
4 sin

(
jΩ

√
τ
)

cot2 ω sinφ2 cosφ2/
(
φ1

√
τ
)
,

qq41 = e−iξ ′
2 sin

(
jΩ

√
τ
)

cotω sinφ2/
(
φ1

√
τ
)
,

qq42 =−e(iξ ′
1−iξ ′

2)
(
1− cos

(
jΩ

√
τ
))

cotω sinφ2(
1+ cot2 ω sin2 φ2/φ2

1
)

φ1
,

qq43 = e−iξ ′
4 sin

(
jΩ

√
τ
)

cot2 ω sinφ2 cosφ2/
(
φ1

√
τ
)
,

qq44 =
1+ cos

(
jΩ

√
τ
)

cot2 ω sin2 φ2/φ2
1

1+ cot2 ω sin2 φ2/φ2
1

.

It then follows that

⟨β1|G j
ϕ=θ |γ0⟩

.
=

e−iξ ′
1 sin

(
jΩ

√
τ
)

cosβ0√
τ

+ eiς sinβ0

(
1−

1− cos
(

jΩ
√

τ
)

1+ cot2 ω sin2 φ2/φ2
1

)
(28)
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and

⟨β2|G j
ϕ=θ |γ0⟩

.
=

e−iξ ′
2 cotω sinφ2

φ1

(
sin
(

jΩ
√

τ
)

cosβ0√
τ

−
e(iς+iξ ′

1) sinβ0
(
1− cos

(
jΩ

√
τ
))

1+ cot2 ω sin2 φ2/φ2
1

)
.

(29)

Obviously, when jΩ
√

τ → π/2, then in this case the second terms on the right-
hand sides of Eqs. (28) and (29) are completely negligible for sufficiently small
β0, so after

J(ω ,ϕ=θ)
.
=
⌊

π/
(
2Ω

√
τ
)⌋

(30)

iterations of Gϕ=θ , ⌊z⌋ representing the largest integer which is smaller than z, the
maximum success probability of Grover’s search algorithm corresponding to the
case of identical rotation angles ϕ = θ is given approximately by

Pmax
(

j = J(ω,ϕ=θ)
) .
=
∣∣∣⟨β1|G j

ϕ=θ |γ0⟩
∣∣∣2 + ∣∣∣⟨β2|G j

ϕ=θ |γ0⟩
∣∣∣2 .
=

1
1+ cot2 ω cos2 φ2

,

(31)
where we have used Eq. (25).

Theorem 1 follows. ⊓⊔

It remains to see that Eqs. (30) and (31) also hold true for ω = π/2. We now
list a few immediate consequences of Theorem 1.

Corollary 1 Let N be sufficiently large and let M ≪ N.

(i) We have

J(ω=π/2,ϕ=θ)
.
=
⌊

π/(4φ1 sin(θ/2))
⌋

(32)

and

J(ω=ω ′,ϕ=θ)=̇
⌊

J(ω=π/2,ϕ=θ)/
(√

τω=ω ′ sin2 ω ′)⌋ (33)

for any given ω ′ ∈ (0,π/2) and φ1 ∈ (0,β0], where τω=ω ′ is defined by
Eq. (25).

(ii) Given any φ1 ∈ (0,β0], if φ2 tends to zero for any fixed ω ′ ∈ (0,π/2), then

J(ω=ω ′,ϕ=θ ,φ2→0)=̇
⌊

J(ω=π/2,ϕ=θ)/sinω ′
⌋

(34)
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and

Pmax
(

j = J(ω=ω ′,ϕ=θ ,φ2→0)
) .
= sin2 ω ′. (35)

(iii) Given any φ1 and ω ′ as above, if there are two distinct values φ2(1), φ2(2)
such that cosω ′ sinφ2(1) = φ1 sinω ′, and φ2(2) → 0, then

J(ω=ω ′,ϕ=θ ,φ2=φ2(1))
.
=
⌊

J(ω=ω ′,ϕ=θ ,φ2=φ2(2))
/
√

2
⌋

(36)

and

Pmax

(
j = J(ω=ω ′,ϕ=θ ,φ2=φ2(1))

)
.
= Pmax

(
j = J(ω=ω ′,ϕ=θ ,φ2=φ2(2))

)
.
= sin2 ω ′.

(37)

(iv) If ω ′ is in the range [π/2−β0,π/2), then for any φ1 and all possible values
of φ2 satisfying inequality (8) we have that

J(ω=ω ′,ϕ=θ)=̇
⌊

J(ω=π/2,ϕ=θ)/
(
1+κ2

1 sin2 φ2
)1/2

⌋
(38)

with κ1 = (π/2−ω ′)/φ1, and moreover that from the order-of-magnitude
standpoint, Pmax

(
j = J(ω=ω ′,ϕ=θ)

)
and Pmax

(
j = J(ω=π/2,ϕ=θ)

)
are equiv-

alent.

Proof (i) It follows from Eq. (30) that when ω = π/2,

J(ω=π/2,ϕ=θ)
.
=
⌊

π/(4φ1 sin(θ/2))
⌋
.
= π/(4φ1 sin(θ/2)) ,

and hence that

J(ω=ω ′,ϕ=θ)
.
=
⌊

π/
(
4φ1 sin(θ/2)

√
τω=ω ′ sin2 ω ′)⌋ .

=
⌊

J(ω=π/2,ϕ=θ)/
(√

τω=ω ′ sin2 ω ′)⌋,
where we have used Eqs. (16) and (25) and the trigonometric identity

sin(θ/2) =
√
(1− cosθ)/2.

(ii) Since, for all ω ′ ∈ (0,π/2),
√τω=ω ′ → 1/sinω ′ as φ2 → 0, formulae

(34) and (35) follow from Eqs. (33) and (31), respectively. These are, of course,
identical to the results given previously [27, 28].
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(iii) Eqs. (33) and (31) combined with Eq. (25) and the condition
cosω ′ sinφ2(1) = φ1 sinω ′ can yield

J(ω=ω ′,ϕ=θ ,φ2=φ2(1))
=̇
⌊

J(ω=π/2,ϕ=θ)/
(√

2sinω ′
)⌋

and Pmax

(
j = J(ω=ω ′,ϕ=θ ,φ2=φ2(1))

)
.
= sin2 ω ′. Comparing with the relations (34)

and (35) for φ2 = φ2(2) → 0, we arrive at the desired equations (36) and (37).

(iv) This follows immediately from Eqs. (33) and (31) respectively with the
neglect of second and higher order terms of π/2−ω ′. ⊓⊔

Theorem 2 Suppose that N is sufficiently large and M ≪N. For any ω ∈ (0,π/2]
and any θ ,ϕ ∈ (0,π], if 2∆ = |θ −ϕ | ≫ 0, then the Grover’s search algorithm
deteriorates.

Proof Taking advantage of the formula (14) together with Eqs. (18) and (19)
we can, through the neglect of the respective higher-order terms of φ1 and
cosω sinφ2, and the terms involving the mixed product of these two quantities,
i.e. φ1 cosω sinφ2, approximately obtain

Q j ≈ Qq−
((

R+ ei∆
) j

−
(

ei∆
) j
)

Q3, (39)

where

Qq =


Qq11 Qq12 Qq13 Qq14
Qq21 Qq22 Qq23 Qq24
Qq31 Qq32 Qq33 Qq34
Qq41 Qq42 Qq43 Qq44

 ,
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where

Qq11 = ei j∆, Qq12 =−Ωeiξ1e−i( j−1)∆
(

1− ei2 j∆

1− ei2∆

)
,

Qq13 = 0, Qq14 =−
Ωcotω sinφ2

φ1
eiξ2e−i( j−1)∆

(
1− ei2 j∆

1− ei2∆

)
,

Qq21 = Ωe−iξ1e−i( j−1)∆
(

1− ei2 j∆

1− ei2∆

)
, Qq22 = e−i j∆,

Qq23 = Ωcotω cosφ2e−iξ3e−i( j−1)∆
(

1− ei2 j∆

1− ei2∆

)
, Qq24 = 0,

Qq31 = 0, Qq32 =−Ωcotω cosφ2eiξ3e−i( j−1)∆
(

1− ei2 j∆

1− ei2∆

)
,

Qq33 = ei j∆, Qq34 =−
Ωcot2 ω sin(2φ2)

2φ1
eiξ4e−i( j−1)∆

(
1− ei2 j∆

1− ei2∆

)
,

Qq41 =
Ωcotω sinφ2

φ1
e−iξ2e−i( j−1)∆

(
1− ei2 j∆

1− ei2∆

)
, Qq42 = 0,

Qq43 =
Ωcot2 ω sin(2φ2)

2φ1
e−iξ4e−i( j−1)∆

(
1− ei2 j∆

1− ei2∆

)
, Qq44 = e−i j∆.

Hence, when G j is applied to the initial superposition |γ0⟩ given by Eq. (1), the
success probability of Grover’s search algorithm P( j) may be approximated by

P( j)≈
∣∣∣∣Ωe−iξ1e−i( j−1)∆

(
1− ei2 j∆

1− ei2∆

)
cosβ0 + e−i j∆eiς sinβ0

∣∣∣∣2
+

∣∣∣∣∣Ωcotω sinφ2

φ1
e−iξ2e−i( j−1)∆

(
1− ei2 j∆

1− ei2∆

)
cosβ0

∣∣∣∣∣
2

.
= Ω2

∣∣∣∣1− ei2 j∆

1− ei2∆

∣∣∣∣2(1+
cot2 ω sin2 φ2

φ2
1

)
= Ω2

∣∣∣∣1− ei2 j∆

1− ei2∆

∣∣∣∣2 τ/
(
1+ cot2 ω cos2 φ2

)
,
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owing to the fact that the value of P( j) is governed by the factor(
1− ei2 j∆)/(1− ei2∆). We see that, in the limit 2∆ → 0,

lim
2∆→0

∣∣∣∣1− ei2 j∆

1− ei2∆

∣∣∣∣= lim
2∆→0

∣∣∣∣sin j∆
sin∆

∣∣∣∣= j.

This shows that in the case ϕ = θ , as j approaches J(ω,ϕ=θ), P( j) tends to-
wards the previously given expression (31) for any fixed ω ∈ (0,π/2), any
φ1 ∈ (0,β0], and all possible values of φ2 obeying the requirement (8), provided
that N is sufficiently large and M ≪ N. However, if we let the absolute difference
2∆ = |θ −ϕ | ≫ 0, then whatever value we choose for j, it follows after a few
algebraic maneuvers that |sin j∆/sin∆| ≪ J(ω ,ϕ=θ) and thus this tends to destroy
the Grover’s search algorithm, irrespective of whether ω is large or not.

Theorem 2 follows. ⊓⊔

4 Conclusions
In the case of ϕ = θ and M/N ≪ 1 for sufficiently large N, we have derived the
concise formulae Pmax

(
j = J(ω ,ϕ=θ)

) .
= 1/

(
1+ cot2 ω cos2 φ2

)
and J(ω ,ϕ=θ)

.
=⌊

π/
(
2Ω

√
τ
)⌋

, which are used to approximately evaluate the maximum success
probabilities of finding a desired state and the required numbers of iterations to
attain them under the assumption that the choice of φ2 depends on the inequality
(8) for all φ1 ∈ (0,β0] and all ω ∈ (0,π/2). The advantage of the use of the
approach proposed in this paper is that, given any φ1 ∈ (0,β0], J(ω=ω ′,ϕ=θ) is
readily calculable via J(ω=π/2,ϕ=θ) for any ω ′ ∈ (0,π/2) and all possible values
of φ2 with the restriction posed by the above inequality. Finally, we have shown
that the Grover’s search algorithm fails to enhance the probability of measuring a
desired state provided |θ −ϕ | ≫ 0 in the four-complex-dimensional subspace.
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