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Abstract

For there to be M > 1 target items to be searched in an unsorted database
of size N, with M/N < 1 for a sufficiently large N, we explore the perfor-
mance of Grover’s search algorithm when considering some possible situa-
tions that may arise in a four-complex-dimensional subspace, for which in
the case of identical rotation angles ¢ = 6, we give the maximum success
probabilities of finding a desired state and their corresponding numbers of
Grover iterations in an approximate fashion. Our analysis reveals that the
case of identical rotation angles ¢ = 0 is energetically favorable compared
to the case |6 — @| > 0 for boosting the probability to detect a desired state.

Keywords:  Grover’s search algorithm; Identical rotation angles; Four-
complex-dimensional subspace; Minimal polynomial.

1 Introduction

The original Grover’s search algorithm [1] exhibits a quadratic speedup over clas-
sical counterparts for searching an unsorted database, i.e., the problem of finding
a single target item in an unsorted database containing N items takes O(v/N) op-
erations on a quantum computer, and it was shown to be optimal [2—4]. Farhi et al.
[5] gave an analog analogue of the Grover’s search algorithm result by studying a
Hamiltonian version of the Grover problem with a time dependent Hamiltonian.
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Pati [6] recast Grover’s search algorithm in a geometric language and discussed
the bounds on quantum search. As explained in Refs. [7, 8], the working of
Grover’s search algorithm can be understood geometrically. So far, several gener-
alizations of the original Grover’s search algorithm [1] have been developed from
different aspects by some modifications mainly resulted from

(a) dealing with the case of more than one desired state [9, 10];

(b) substituting almost any unitary transform for the Walsh-Hadamard transform
[10, 11];

(c¢) introduction of the concept of amplitude amplification [10, 12];

(d) further speedup for repeated quantum search by means of quantum computa-
tions in parallel [13, 14];

(e) replacing the phase inversion by arbitrary phase rotations [15];

(f) allowing for an arbitrary complex initial amplitude distribution, instead of the
uniform initial amplitude distribution [16, 17];

(g) investigating the case of an arbitrarily entangled initial state [18].

Long et al. [15] first presented the phase matching condition, i.e., identical ro-
tation angles ¢ = 6, and subsequently Hgyer [19] gave the exact phase condition
tan (¢ /2) =tan(6/2)(1 —2/N). By virtue of a recursion equation, it was con-
cluded that in order for the quantum search algorithm to apply, the two rotation
angles must be equal [17]. The results of identical rotation angles ¢ = 0 [20] and
the same general phase formula (see Eq. (15) of Ref. [21]) as given in Eq. (10)
of Ref. [22] were derived again, respectively. Furthermore, Li et al. [23] derived
the iterated formulas and the simpler approximate formulas and the precise for-
mula for the amplitude in the desired state. The experimental implementation of
phase matching has been achieved by using classical Fourier optics [24] and NMR
system [25].

In Ref. [26], an algebraic approach to the analysis of Grover’s search algorithm
with an arbitrary initial quantum state was introduced by Shapira et al., revealing
a geometrical structure of the quantum search process that turns out to be con-
fined to a four-dimensional subspace of the Hilbert space. In the present paper,
by taking some possible situations that may arise in a four-complex-dimensional
subspace into consideration, we deduce approximately both the maximum success
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probabilities of finding one of M desired states in a large database that consists of
N unsorted objects and their corresponding numbers of Grover iterations for the
case when M /N < 1 and ¢ = 0 with a different technique. We also prove that
if we let the absolute difference |6 — ¢| > 0, then this situation will lead to a
deterioration of the performance of Grover’s search algorithm.

2 The four-dimensional unitary matrix representa-
tion

Let M be the number of the desired states in an unsorted database of size N.
Consider an initial superposition of basis states |y) = YV c;|x) for a set of

complex numbers T = {cq,cy,...,cy—1} With not all elements zero. We may
write |}p) in the most general form
[%) = cos o o) + e sinPo |Br) )

where ¢ is an arbitrary real number, 3y = arcsin ( \/ Yorey ]cx\z), the normalized

basis vectors | ) and |fB;) are given by

1
o) = ——— ¥ el
Zx€?|cx’ xey
and

e ¢

—2 Z Cx |x),
\/ Y ey |Cx, xEX

respectively. Here arcsin (o) is defined as —m/2 < arcsin(e) < 7/2, Y and
Y are the sets of the undesired and desired states respectively, all ¢, € T ful-
fill the normalization condition }, _; x> + Loey lcx|* = 1 with the constraints

1B1)

Yo7 lco]* £ 0 and ¥y |cx|* # 0, and the notation |.| denotes the modulus of any
complex number. As to |}p), we shall suppose for the sake of argument that the
ratio k=M /N and By are both small throughout this paper.

For any two rotation angles ¢, 0 € (0, 7], we define

Up =1+ (e —1) ¥ x

xeY



and

Ug =1+ (1) Im)(n|

respectively, where I denotes the identity operator, i denotes the principal square
root of —1, and |n) is a unit vector in the N-dimensional complex Hilbert space
spanned by all the desired and undesired states and it is defined through Eq. (2).
Let A be any unitary operator, and let

) =Aln) 2)

be the result of applying A to |n). The Grover iteration G = —AUpA~'U,, where
the superscript ~! refers to the inverse of an operator, then reads

G==(r+ ("= 1) hwtwl) (1+ (¢ -1) X w) 3)

in view of Eq. (2).
In case that the state vector |i) lies outside the two-dimensional complex sub-
space L spanned by o) and |B;), we can get the unit vector

5)= 1 (1) (o 1) ) — (B | ) B1))

V=1 [ =148 )P

that is perpendicular to L by means of the Gram-Schmidt orthogonalization pro-
cess. We now set

1) = sinwcos @™ |0y ) + sin wsin @™ |By) + cos we™ |S) (4)

where ¢; € (0, ], @ € (0,7/2], and 11, 1, t3 are arbitrary real numbers. In gen-
eral, for the case when ® # 7/2 and there are more than one desired state to be
searched, the third component vector on the right-hand side of Eq. (4), correspond-
ing to some sequence of complex numbers dy,dy,- - ,dy_1 with Zf;[:_ol \dxlz =1,
Y, 7 dycy =0and ),y dicx =0, has a further decomposition

1) = cos @z | o) + el ") sin @, | B) (5)

where ® denotes the complex conjugate of a complex number, 74 is an arbitrary
real number,

(it3—ity)
‘ Y d.|x) (©)

\/ erY |dX|2 xe¥
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and

1

o) = ——— ¥
V er? |dx| xeY

are the normalized superposition of the desired states and that of the remaining
ones, and here, to allow for the possibility of the change of |S), for all ¢; € (0, o]
and all w € (0,7/2) we let the angle

dy |x)

0= arcsin( erY |dx|2) #0 (7)

satisfy the relation
sin” @ sin’ 0 + cos> @sin? o < sin’ Bo (8)

which holds also for @ = 7 /2, meaning that the probability to measure a desired
state in |it) as defined by Eq. (4) is not greater than the probability to measure a
desired state in |yp).

Parenthetically, we should note that for any given ¢; € (0, By], the possible
values of ¢, depend upon the magnitude of the angle ®. In accordance with in-
equality (8), it is straightforward to show that ¢, is also small when @ is small,
but it is very likely to be considerably large as @ approaches 7 /2. In addition,
when @ = 7 /2, |S) does not exist; however, |it) can always be expressed in terms
of |og) and |B;) as |u) = cos @re |ay) + sin @e™ |B;), independent of the exis-
tence of |S) and the choice of ¢. For this reason we will be free from Eq. (7) and
take @, to be an arbitrary real number for such an exceptional case.

Thus, Eq. (4) by substitution now takes the form

|1L) = sin@cos @1 |0 ) +sin @sin 1€ | B;) +cos @ cos Pre’ | ) +cos wsin gre™ [ Ba) .
)

By exploiting Eq. (9), the matrix representation of G in Eq. (3) relative to the

ordered orthonormal basis {|o), |B1),|02),|B2)} is computed to be

Oty Ot Ot13 Oti4
| Oy Ot QO3 Ot
or= 0131 Ot Of33  QOtzs |’ (10)

Ot41 Oty Otz Oty
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whose entries are
011 = —1 + Asin’ wcos @y,
Oty = Ae'el™ 1) sin? wsin @ cos @y,
Ot13 = A=) 5in @ cos @ cos @y cos @,
Ot14 = Ae'® el =) sin @ cos @ cos @) sin @,
0= Ael7i+i) Gin2 gy sin @1 cos @y,
Ot = Ae'? sin® wsin® @) — 9,
Oty = Ael™7) sin @ cos @ sin @y cos @,
Oty = Ae'? ™71 gin @ cos @ sin @, sin @,
0131 = Ael~17) in @ cos @ cos @) cos @,
Ot = Ae'® e =1+1) gin @ cos @ sin @) cos @,
Otz3 = —1 4 A cos® a)cosz(pz7
Ot34 = Ae™? el 11) cos? @ sin @, cos @,
Ot41 = Lel ™M) 5in @ cos @ cos @) sin @,
Oty = Ae'®e"1+1) gin @ cos w sin @) sin @,
Otz = el ") cos? @ sin @, cos s,
Otas = Ae' cos® wsin® 0 — e?,

where A = 1 —¢'?.

3 The performance of Grover’s search algorithm in
the four-dimensional complex subspace

Theorem 1 Let |yy) and 1) be defined as in Egs. (1) and (9), respectively, and

suppose that N is sufficiently large and M < N. Then, in the case of ¢ = 0 € (0, 7],

the maximum success probability of Grover’s search algorithm is approximately

equal to 1/ (1+ cot? wcos® @) for any fixed @ € (0,7/2), any @1 € (0, Bol, and
all possible values of ¢, satisfying the condition of inequality (8).

Proof From inequality (8), it follows that

sin @ cos @ sin @ sin @, < sin’ fy/2 (11)



and

cos> @sin? ¢ < sin’ Bo (12)

for all ¢; € (0, ] and all @ € (0,7/2). Neglecting the higher-order terms of ¢;
and the product terms associated respectively with the two quantities on the left-
hand sides of the above inequalities in the elements of the unitary matrix Qr given
in Eq. (10), we may approximately write this matrix as

q11 q12 q13 qi14

. q21 q2» q23 q24
=0t = 13
Q=0 q31 q32 q33 q34 (13)

q41 q42 q43 q44

where

g11 = —1+ Asin’ o, g12 = @AM gin? @,

q13 = A7) gin @ cos w cos @, gra = Ae'?el™~1) sin @ cos @ sin @,

g21 = @rAel ") sin? @, qn = —€",

g = @A™ ) sinwcoswcos @y, gaa =0,

g31 = A" ) sinwcoswcos @r,  gar = @i Ae?el "™t sin @ cos w cos @,
g33 = —1+ Acos? o, g3a = Ae'?el11) cos? @ sin @, cos @y,
ga1 = Lel ™M) in @ cos @ sin @, gs =0,

guz = Lel T4 o sin @y cos @y, qus = —e'.

It is convenient to multiply the matrix Qt’ by a global phase factor —ei(040)/2 g4
that Eq. (13) can be rewritten in a tractable form

0=~ "0 = 0, — 00, —RQs, (14)
where
£i(0—9)/2 0 0 0
0 e i(60—-9)/2 0 0
Q1= 0 0 0i(6-9)/2 0 ’
0 0 0 e i(60-9)/2



i& i
i, e’>2cotmsin ¢

0 0
_ , 1
—e i 0 —e % cotwcos (1)) 0
= . i& cot? @sin (2
= 0 €% cot w cos @, 0 ¢ 20 (2¢2)
1
_e”'62 cot @ sin @y 0 _e’ig“ cot? ®sin (2¢) 0
¢ 20
—cos’ @ 0 elm—Bginwcoswcos@, 0
0:— 0 0 0 0
37 | et sinwcosweos gy 0 —sin’ 0]’
0 0 0 0
R=e i(619)/2 _ ,i(6-9)/2
and Q is given by Eq. (16), where &1, &, &3, &4, and Q are defined through
—¢ ( i(6+9)/2 _ e—i(9—¢)/2)e(it1—it2) sin? @ = Qe'S!
—¢ (e’ 6+9)/ i(9*¢)/2)e(if1*if4) sin2 @ = Qe's
. o P (15)
—¢ (ez 0+¢)/ l(9—¢!)/2)e(zt3—ztz) sin2 @ — Qez§3
— (el 0+9¢)/2 e i(9—¢)/2)e(it3—it4) Sin2 W= Qei§4
whence
Q = @;sin @/2(1 —cos ) (16)
and

§i—8&=8—-C=t1—15 (17)
By applying inequality (12) we find that

(03)° = —0s, (18)
and furthermore, that
QRO>03 =0 and QRQO30, =0 (19)

with the aid of Eq. (17), where O denotes a 4 x4 zero matrix.
In the special case when ¢ = 0, Eq. (14) becomes

Qp—o=I—Q0, —R'Q3 ~ e % R (3, (20)
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in which R = —1+¢%9 and

i&) :
e’>2cotmsin ¢

0 el 0
L . 1
—e i 0 —e % cotcos (1)) 0
/I ié/ 2 .
= e e'4cot” wsin (2
e 0 % cot w cos (0) 0 (2¢2)
I .z 2(P1
e~% cot @ sin @, 0 e~ cot? msin (2¢,) 0
¢1 29
21
where &, &, &}, and &, are defined via
= <ei9 — 1) M=) 6in2 gy — Q'S
—@ (eie — 1> M=) 6in2 gy — Qe
—@ <ei9 — 1> e1=12) 6in? gy = Q'S
| —® (eie — 1) el137114) gin? @ = Qe
which follows from Eq. (15) putting ¢ = 6. Likewise for this case
§-&=8-8=n-n, (22)
QR' 0503 =0 and QR'0305 =0 (23)

can also be obtained. As a result of the foregoing calculations, for any positive

integer j > 1, Qé:e can now be compactly expressed as

0} g=¢ 1%~ ((R+1)'-1) 0x

(24)

To calculate Qé:e we need to determine the matrix exponential e 20 To

do this, taking Eq. (22) into account and letting the characteristic polynomial
of the complex skew-symmetric matrix Q) equal to zero, i.e., the determinant
det (Q5 — pI) =0, yields the following eigenvalues of Q5: p; = p» =0, p3 = i\/7,
and py = —i\/T, where

; (25)

T= (l—l—cotza)coszgoz) (1+ .
1

cot? wsin® ¢, )
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Since

0 (0 —psl) (O —pal) = (05)° +p3psQh =0

ensures that the minimal polynomial of Q) takes on the form p (p — p3) (p — p4),
we may set

e 1P = g4 bp + cp? (26)

with undetermined coefficients a, b, and c. Upon substitution of the values of pq,
p3 and p4 into Eq. (26), respectively, we arrive at a nonhomogeneous system of
linear equations

e W =a+bpy+c(pr)’
eI = a+bps+c(ps)’
eI = a+bpy+c(ps)’

from which, we obtain ¢ = 1, b = —sin (jQﬁ) /V/T, and ¢ = (1 —
cos ( jQ\/‘_L')) /7. As a consequence, substituting Q) for p in Eq. (26) directly
gives

e 2% — al + b0y +c (Qh)”.

Accordingly, we appeal to this result and Eq. (22), and some rearrangement, to
deduce that

qq11 q4q12 q4913 q4q14
Jjo - | 4921 4922 4923 q924 27
Qo 931 q99% 9933 qq34 @7
4941 49942 qqs3  qqaa
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where

cot® @ cos?® @ + cos (jQ/T)
1+ cot? @cos? @,

b

qq11 = <e_iej — 1) cos> o+
qq12 = —¢1 sin (j&V7) /V7,

qq13 = _oli&i—i&;) ((e‘iej — 1) sin @ cos @ cos ¢, +

cotwcos @ (1 —cos (jQ/7))
1 +cot? wcos? @, ’
qqi4 = —€' sin (jQVT) cotwsingy/ (¢11/7),
qqo1 = e "Isin (jQV/7) /v,
qqn =1— (1 —cos (]Q\/‘_L')) / (1 + cot® wsin® q)z/(plz) )
q4q23 = €% cotwcos @y sin (jQVT) /T,
S(—iE+iEY) (1—cos (jQ4/T)) cot@sin ¢,
(14 cot? wsin @,/ 97) @y

q924 = —

qqz1 = —e(IHE) <(ei9j — 1) sin @ cos ® cos ¢, + cot®cos ¢, (1~ cos QQ\E))) ’

1 +cot? wcos? @,
qq3 = —l%s cotmcos @ sin (jQVT) //7,
e _ 1+ cos (jQ4/T) cot® @ cos® ¢,
= (e —1) sin’
9433 <e ) S+ 1 + cot? wcos? @y
qq34 = —e'% sin (jQVT) cot® @sin @ cos @, / (@1V7),
qqa1 = ¢ %sin (jQV/T) cotwsings / (@11/7)
(iE-ig) (1—cos (jQ4/T)) cotwsin ¢,
(1 + cot2 @ sin? (pz/(Plz) 0
qq43 = eiiéé{ sin (‘]Q\/%) COt2 o sin (PzCOS (PZ/ ((P] \/?) )
1+ cos (jQ/7) cot? wsin® ¢ / ¢}
1 + cot? wsin? 02/ @} .

9

q4q42 =

qq44 =

It then follows that

: i1 sin (jQ .
<B1‘G(]p:9 70) = e 'Sisin (Jﬁﬁ) cos fi + ¢S sin By (1 _

1 —cos (jQ/T)
1+ cot? sin® @y / @?
(28)
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and

' ¢~i% cot wsin sin (j cos lisHiEl) gin —cos (i
(Bl G ) = L ‘PZ( (12/7)cosy Bo (1 Mw?))).

¢ VT 1+ cot? wsin® o/ @?
(29)

Obviously, when jQ+/T — /2, then in this case the second terms on the right-
hand sides of Eqgs. (28) and (29) are completely negligible for sufficiently small
Bo, so after

Jwg—0) = |7/ 22V7) | (30)

iterations of Gy—_g, |z] representing the largest integer which is smaller than z, the
maximum success probability of Grover’s search algorithm corresponding to the
case of identical rotation angles ¢ = 0 is given approximately by

. . ; 2 . 2 1
Pras (= 09-0) = | (Bl Gl 0| +|(Bel G100 = 1o reorten
3D
where we have used Eq. (25).
Theorem 1 follows. O

It remains to see that Egs. (30) and (31) also hold true for @ = /2. We now
list a few immediate consequences of Theorem 1.

Corollary 1 Let N be sufficiently large and let M < N.

(i) We have
Jo=rjp0=0) = | %/ (491 5in(8/2) | (32)
and
J(w=0' 9p=6)= Hw:n/z@:e)/ (Vo sin® a)’)J (33)
for any given @' € (0,7/2) and @, € (0, By], where Tgy—q is defined by
Eq. (25).

(i) Given any @; € (0, Bo], if @2 tends to zero for any fixed &' € (0,7 /2), then

J(o=0'9=0,0,50)= LJ(w:n/m:e)/Siﬂ (O/J (34)
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and
Prax (] = J(w:w/,¢:97(p2_>0)) = sin’ @' (35)

(iii) Given any @) and @' as above, if there are two distinct values P21y, P2(2)
such that cos @'sin @,y = @y sin @', and Q,(5) — 0, then

J(w:w/7¢:93¢2:¢2(1)) = Lj(w:w/v¢:97%:¢2(2)) /\/EJ (36)

and

. . . )
Pmax <.] — J(w:a)/7¢:9’¢2:¢2<1>)) :Pmax <,] - J(w:w,,¢:97([)2:([)2(2))> — S1n (Dl.
(37)

(iv) If ' is in the range [t/2 — By, 7 /2), then for any @ and all possible values
of ¢ satisfying inequality (8) we have that

. . 1/2
J(w=0' p=6)= {J(w:n/z,(pze)/ (14« sin” ,) J (38)
with k1 = (x/2 — @') /@1, and moreover that from the order-of-magnitude

standpoint, Pmax (j = J(w:w/7¢:9)) and P pax (j = J(w:n/27¢:9)) are equiv-
alent.

Proof (i) It follows from Eq. (30) that when @ = 7 /2,
Jo=njro=0) = | 7/ (4015in(8/2)) | = 7/ (4y 5in(8,/2),
and hence that
Jw=o' 9=0) = {ﬂ/ (415in(6/2)y/Ty—a sin CO')J = {J(co:ﬂ/mp:@)/ (Vo= sin® a)’)J,

where we have used Egs. (16) and (25) and the trigonometric identity

sin(0/2) =+/(1 —cos ) /2.

(ii) Since, for all ®' € (0,7/2), /To—e — 1/sin@’ as @, — 0, formulae
(34) and (35) follow from Egs. (33) and (31), respectively. These are, of course,
identical to the results given previously [27, 28].
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(iii) Egs. (33) and (31) combined with Eq. (25) and the condition
cos ®'sin @y(1) = @1 sin@’ can yield

J(“’Z‘*”»‘i):ev‘l’z:‘!’z(l))iLJ(“’:"/Z“’:G)/ (ﬁsm wl)J

and Ppax < j=J (0=0"9=6,9,= ‘P2(1>)> = sin’ @’. Comparing with the relations (34)
and (35) for @ = @,(3) — 0, we arrive at the desired equations (36) and (37).

(iv) This follows immediately from Eqgs. (33) and (31) respectively with the
neglect of second and higher order terms of 7/2 — @’. ad

Theorem 2 Suppose that N is sufficiently large and M < N. For any @ € (0,7/2]
and any 0,¢ € (0,7], if 2A = |0 — @| > 0, then the Grover’s search algorithm
deteriorates.

Proof Taking advantage of the formula (14) together with Eqgs. (18) and (19)
we can, through the neglect of the respective higher-order terms of ¢; and
cos @ sin ¢, and the terms involving the mixed product of these two quantities,
1.e. @ cos @sin ¢, approximately obtain

0/ ~ Qg — <(R + e"A>j . (e"A)j) 0, (39)

where

Oq11 Qqi2  Qqi3  Qqua
0q = Og21 Qg Qg3 04
0Og31 Qg2 Qg3  0Og3
0q41 Oqs2  Qqa3  0qa
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where

0q11 = ijA 0q12 = —Q i€ _—i(j—1)A 1 — 24
q11=¢", q12 = eve 1o )
Qcotwsing@y . _. . 1 — ei2/A
= L ne A Ve i —i(j-1)A
Caia =0 Caie = ¢ e ( 1 —ei2A ) ’
_iE —i(ie 1 —¢i2/A L
Qqa1 = Qe ST U7 (m) : Qg = e V4,
e i 1 — 20
Qg3 = Qcotwcos gre e 1A (m) ; Qg2 =0,
L. 1 — 20
Qq31 =0, Qg3 = —Qcotwcos q)zelée_’(f_l)A (ﬁ) ,
—e
. Qcot’ wsin (2¢) L 1 — ei2iA
Qq33 = €%, Qq34 = — e 07D <— ;
2(p1 1— elZA
Qcotwsing, . i, 1 — ei27A
— —i& ,—i(j—1)A _
0q41 = Te 2g=il=1) <m> ) Qg4 =0,
Qcot’ wsin (2¢;) . . 1 — ei2/A B
— =& —i(j—1)A _ _ijA
QQ43— 2([)1 € l4e =1 (l—eim)’ Qq44—€ A,

Hence, when G/ is applied to the initial superposition |y) given by Eq. (1), the
success probability of Grover’s search algorithm P (j) may be approximated by

T | — i2i " 2
Qe 611 1)A (—1 X ) cos By +e ¢S sin By
—e

2

P(j)~

Qcotwsin . . 1 — ¢i2JA
+ T(pze—lize—t(]—lm (ﬁ) cos Bo

1 — 28 ( cot? @ sin? (pz)
R Lol
?i

2
7/ (1+cot? cos’ ¢,),

iQZ‘

1 — ei2A
1— eiZjA

02
=Q 1 — ei2A
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owing to the fact that the value of P(j) is governed by the factor
(1—e/%) /(1 —e™2). We see that, in the limit 2A — 0,

1 _eiZjA

lim =
2A—0

sinjA| .
1—e?A |~ 2a50| sinA ‘ N

This shows that in the case ¢ = 0, as j approaches J(q g—g), P(j) tends to-
wards the previously given expression (31) for any fixed ® € (0,7/2), any
@1 € (0, Bo], and all possible values of ¢, obeying the requirement (8), provided
that NV is sufficiently large and M < N. However, if we let the absolute difference
2A = |60 — ¢| > 0, then whatever value we choose for j, it follows after a few
algebraic maneuvers that |sin jA/sinA| < J(4 ¢—g) and thus this tends to destroy
the Grover’s search algorithm, irrespective of whether @ is large or not.

Theorem 2 follows. O

4 Conclusions

In the case of ¢ = 6 and M /N < 1 for sufficiently large N, we have derived the
concise formulae Prax (j = J(.9—p)) = 1/ (1+cot® @cos® ¢;) and Jig 9_g) =
|/ (2Q+/7) |, which are used to approximately evaluate the maximum success
probabilities of finding a desired state and the required numbers of iterations to
attain them under the assumption that the choice of ¢, depends on the inequality
(8) for all ¢; € (0,B] and all w € (0,7/2). The advantage of the use of the
approach proposed in this paper is that, given any ¢; € (0, Bo], J(o=a'.0=6) 18
readily calculable via J(y—z /2 ¢—g) for any @’ € (0,7/2) and all possible values
of ¢, with the restriction posed by the above inequality. Finally, we have shown
that the Grover’s search algorithm fails to enhance the probability of measuring a
desired state provided |6 — ¢| > 0 in the four-complex-dimensional subspace.
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