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Abstract.  It has been known since the 19th century that a circularly 
polarised electromagnetic wave carries an angular momentum. A 
simple experiment (Righi, 1882) apparently indicates that the 
angular momentum is distributed over the entire cross section of the 
beam. According to some modern ideas, the angular momentum of 
the beam with the given polarisation is localised near the beam ‘sur-
face’ and represents a spin of photons, while the energy in the beam 
is distributed throughout its cross section, which is inconsistent with 
the principle of locality. For the experimental determination of the 
localisation of the angular momentum, we propose a new scheme, in 
which we study the interference pattern of two coherent circularly 
polarised beams. Each beam first passes through a half-wave plate, 
one of the plates being divided into two coaxial parts. With (man-
ual) rotation of one parts of the plate we change the frequency of 
the light passing through it: the plate absorbs the momentum and, 
therefore, work is done. This change in frequency should cause a 
movement of the interference fringes and show the distribution of 
the angular momentum over the beam cross section. 

Keywords: angular momentum of a light beam, electrodynamic 
torque, classical spin, interferometer. 

1. Introduction 

It is well known that a beam of electromagnetic radiation 
with circular polarisation [1, 2], 

¶ ¶( ) [ ( )] ( , )zexp i i i ikz t
k

u x yE x y 1
x yw w= - + + - ,

/ikB E w=- 	 (1)

(the expression is written for the right-hand circular polarisa-
tion), carries an angular momentum [1 – 7]. Therefore, the 
body, which absorbs at least a portion of the beam and/or 
changes the state of its polarisation, will be subjected to a 
torque. 

The electromagnetic field (1) satisfies the wave equation, 
which is widely used in the paraxial approximation. This 
approximation suggests a slow change in the intensity of the 
beam along its axis (¶zu << ku) and leads to the equation  
¶ ¶ ¶2 0iu u k uxx yy z
2 2

+ + =  [2]. In analogy with [1, 5, 6], we con-

sider a wide beam (1) and assume that the amplitude u is con-
stant in the central part of the beam (u = u0) and vanishes in a 
narrow surface layer at a distance R from its axis (see Figs 1a 
and 9.3 from [5], and Fig. 1 from [6]). 

Beth’s experiment [3] and many modern experiments with 
microparticles [2, 7] confirm the existence of an angular 
momentum in a circularly polarised beam. Theoretically, this 
issue was also discussed in papers [8 – 10]. Unfortunately, 
there are no known experiments in which the distribution of 
the angular momentum is determined by the beam cross sec-
tion. However, it is this distribution that is of special interest 
because of the following. 

According to papers [2, 4], the z-component of the angular 
momentum volume density jz and the z-component of the 
angular momentum flux density along the z axis, i.e., the com-
ponent of the torque density mz, are localised near the beam 
‘surface’ and are given by

¶ /2c re w¶ ( ) /2, ( )j r u r u rz r z r0
2

0
2e w m=- =- 	 (2)

(by the beam ‘surface’ is meant a layer in which the radial 
intensity gradient is very large). These densities are propor-
tional to the radial gradient of the beam intensity, while the 
energy density w and the Poynting vector S depend on the 
intensity itself: 
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Therefore, the ratio of densities 
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should vary significantly in the beam cross section. 
Allen and his co-authors write: ‘Consequently, in a beam 

that satisfies the paraxial condition, this means that the ratio 
changes from place to place’ [2, p. 300]. ‘A different amount 
of angular momentum might be expected to be transferred at 
different positions in the wavefront’ [11, p. 70]. ‘At a particu-
lar local point the z-component of angular momentum flux 
divided by energy flux does not yield a simple value’ [7]. 

Simmonds and Guttman write: ‘The skin region of the 
[beam] is the only place in which the z-component of the 
angular momentum does not vanish’ [5]. 

Thus, | mz /S | >> 1/w in the surface layer and mz /S = 0 at all 
other points. Hence, it is natural to conclude that a body 
absorbing the beam under consideration experiences a torque 
only in places where the surface layer of the beam is absorbed, 
and most of the inner region of the absorber does not experi-
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ence the torque, although according to (3), it absorbs all the 
power of the beam. 

However, Beth [3] explained the emergence of the current 
torque in his own way: ‘The moment of force or torque 
exerted on a doubly refracting medium by a light wave pass-
ing through it arises from the fact that the dielectric constant  
Kt  is a tensor. Consequently the electric intensity E is, in gen-
eral, not parallel to the electric polarisation P or to the electric 
displacement 4KD E E Pp= = +t  in the medium. The torque 
per unit volume produced by the action of the electric field on 
the polarisation of the medium is t/V = P ´ E.’ According to 
this reasoning, the torque is distributed evenly over the entire 
cross section of the beam. 

Carrara [12] also wrote: ‘If a circularly polarised wave is 
absorbed by a screen or is transformed into a linearly polar-
ised wave, the angular momentum vanishes. Therefore the 
screen must be subjected to a torque per unit surface equal to 
the variation of the angular momentum per unit time. The 
intensity of the torque is ± S/w.’ 

Loudon [13] is a supporter of the concept described by 
formulas (2) and (4). Nevertheless, he takes into account the 
term P ´ E in the calculation of the impact of the beam on a 
dielectric {see equation (7.18) in [13]}. 

Feynman et al. [14] used the concept of the spin of pho-
tons with circular polarisation of light: ‘... the resultant elec-
tric vector E goes in a circle – as drawn in Fig. 17-5(a). Now 
suppose that such light shines on a wall which is going to 
absorb it – or at least some of it – and consider an atom in 
the wall according to the classical physics... The net result is 
that the electron moves in a circle, as shown in Fig. 17-5(b). 
The electron is displaced at some displacement r from its 
equilibrium position at the origin and goes around with 
some phase lag with respect to the vector E. The relation 
between E and r might be as shown in Fig. 17-5(b). As time 
goes on, the electric field rotates and the displacement 
rotates with the same frequency, so their relative orientation 
stays the same. Now let’s look at the work being done on 
this electron.  The rate that energy is being put into this elec-
tron is u, its velocity, times the component of E parallel to 
the velocity: dW/dt = eEt u. 

But look, there is angular momentum being poured into 
this electron, because there is always a torque about the ori-
gin. The torque is  t = eEtr, which must be equal to the rate of 
change of angular momentum  dJz /dt: 

/d dJ t eE rtz t= =

Remembering that u = wr, we have that / 1/d dJ Wz w= .’ 
Thus, according to Feynman the density of the torque mz 

refers to the energy flux density on the absorbing surface S in 
the same way as the net torque refers to the net energy flux 
and the spin of the photon ħ refers to the photon energy ħw: 

| / | | / | | / | 1/d dS J W j wz z zm w= = = .	 (5)

To this end, the density of the torque is constant on the 
absorbing surface within the illuminated area, and not 
localised on the boundary of this area, as follows from (2). 

In the spring of 1999 the problem of the angular momen-
tum distribution over the cross section of a circularly polar-
ised beam was discussed at the All-Moscow Seminar on 
Theoretical Physics headed by V.L. Ginzburg and was formu-

lated in terms of a possible experiment [8]. Later, the problem 
was analysed in detail theoretically in [10]. 

The analysis consisted in the following. Suppose that the 
absorber is divided coaxially at a radius r1 < R on the inner 
(r < r1) and outer (r > r1) parts so that the surface layer of the 
light beam is absorbed by the outer part. The question is: Will 
the inner part experience the action of the torque (and rotate)? 
This question is crucial. 

Indeed, if the inner part does not experience a torque, the 
spin angular momentum of the photons is absorbed in the 
periphery of the absorber, while the energy of the photons is 
absorbed by the inner part. If the inner part of the absorber 
experiences a torque, it would contradict formulas (2) and (4). 
In any case, it is interesting to investigate this problem exper-
imentally, because both possible answers suggest a significant 
‘nonlocality’ of electrodynamics. The scheme of the corre-
sponding experiment is proposed and discussed in this paper. 

2. The Righi experiment (1882) 

Let us consider, as in Beth’s experiment [3], instead of an 
absorbing body, a half-wave plate, which changes the hand-
edness of the circular polarisation into the reversed one, so 
that the plate experiences the torque density m = 2mz. In the 
Righi experiment described in [15], the plate was rotated by 
hand (in the plane of the plate) with angular velocity W. Thus, 
work was done with the beam, which led to a change in the 
photon energy. A change in the photon energy means a 
change in the frequency of light and results in the movement 
of the interference fringes in the corresponding interference 
experiment. Interestingly, this effect can be observed in the 
experiment on a student optical bench with a Fresnel biprism 
[15]. 

The change of the Poynting vector DS = 2mzW causes a 
shift in frequency 

2
S
S

S
zw w w

mD D W= = ,	 (6)

where w is the angular frequency of light. The corresponding 
phase shift for the time t is Dj = Dwt; the phase shift per revo-
lution of the plate (t = 2p /W) has the form 

4
S
zp m
wF = ,	 (7)

and the interference pattern is shifted with the number of 
fringes 

2N
S
zm
w= .	 (8)

According to the concept described by equation (2), the 
fringes should not shift in the inner part of the illuminated 
plate, because mz/S = 0 in this region, while at the same time 
an extremely large shift (N >>  1) should be observed in a nar-
row region of absorption of the surface layer of the beam, 
because |mz/S | >> 1/w in this region. 

3. Modification of the experiment 

We hope to answer the question posed in [8], by observing the 
local shift of the interference fringes (8). To do this, we will 
use in a two-beam interferometer two half-wave plates, one of 
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which is divided into the inner part (in the form of a disk) and 
the outer annular part (Fig. 1a). For the experiment to be per-
formed, it is necessary to provide independent manual rota-
tion of the two parts of the plate. The half-wave plates are 
varied in thickness by a small value a. Because of this differ-
ence, the interference fringes are observed on the screen where 
the two beams are superimposed (Fig. 1b). 

The calculation of the difference of the optical paths is 
shown in Fig. 2. If a is the angle of incidence of light, the opti-
cal path ABC is equal to an/cosb + a(tana – tanb)sina (n is 
the refractive index), and the corresponding path AD through 
the air is equal to a/cosa. The condition of constructive inter-
ference is given by an/cosb + a(tana – tanb)sina – a/cosa = 
ml, i.e. 

/ , , , , ...cos cosn m a m 0 1 2b a l- = =  .	 (9)

If sina » a, and cosa » 1- a2/2, equation (9) yields 

1 ( 1) /(2 ) /n n n m a2a l- + - = .	 (10)

Omitting the constant term n – 1, we obtain the angular 
size of the ring with the number m

( )n a
n m
1

2
ma l
=

-
.	 (11)

Let l = 630 nm and a quartz half-wave plate be used, i.e., 
n = 1.55, Dn = no – ne = 0.009. Then, the minimum thickness 
of the half-wave plate, at which the handedness of the circular 
polarisation is reversed, is equal to l1/2 = l/(2Dn) = 35 mm. If 
we put a = 17 l1/2 = 595 mm, then 0.0772 mma =  and mmax G 
167a2max. According to Fig. 1b, the angle amax » 10° = 0.175; 
therefore, mmax = 5. These five rings are shown in Fig. 3. 

According to (5), we expect the shift of the interference 
fringes (8) to be equal to 2, when the inner part of the plate 
makes a complete revolution. According to (4), we expect a 
large shift of the fringes on the edge of the illuminated area 
when the outer part of the plate is rotated. As far as we can 
judge by the report [15], the shift of the interference fringes in 
the inner illuminated area really was 2 per revolution of the 
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Figure 1.  (a) Half-wave plate whose parts can be rotated by hand and (b) scheme of the experimental setup: ( 1 ) outer part of the plate; ( 2 ) inner 
part of the plate; ( 3 ) beam field profile; ( 4, 10 ) mirrors; ( 5 ) laser beam; ( 6 ) diffuser; ( 7, 11 ) semi-transparent mirrors; ( 8 ) first half-wave plate 
whose parts are rotated by hand; ( 9 ) second half-wave plate; ( 12 ) collecting lens; ( 13 ) screen, where the two beams are superimposed. 
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Figure 2.  Calculation of the path difference ABC – AD: 	
( 1 ) beam passing through the layer of thickness a through air near the 
first plate, and ( 2 ) beam passing through the layer of thickness a 
through the second plate.
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Figure 3.  Interference fringes: ( 1 ) interface between the inner and outer 
parts of the half-wave plate.
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undivided plate. In this case, perhaps, a large shift of the 
fringes at the boundary of the illuminated region was unno-
ticed. 

Acknowledgements.  I am deeply grateful to Prof. Robert 
H.  Romer for valiant publishing of my question [8] (submit-
ted on 7 October 1999) and to Prof. Timo Nieminen who 
drew my attention to paper [15]. 

References
  1.	 Jackson J.D. Classical Electrodynamics (New York: John Wiley, 

1999) p. 350.
  2.	 Allen L., Padgett M.J., Babiker M., in Progress in Optics 

(Amsterdam: Elsevier, 1999) Vol. XXXIX.
  3.	 Beth R.A. Phys. Rev., 50, 115 (1936).
  4.	 Zambrini R., Barnett S.M. J. Mod. Opt., 52, 1045 (2005). 
  5.	 Simmonds J.W., Guttmann M.J. States, Waves and Photons 

(Addison-Wesley, Reading, MA, 1970).
  6.	 Ohanian H.C. Am. J. Phys., 54, 500 (1986).
  7.	 Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P. 

Phys. Rev. A, 45, 8185 (1992).
  8.	 Khrapko R.I. Am. J. Phys., 69, 405 (2001).
  9.	 Khrapko R.I. Izm. Tekh., (4), 3 (2003) [ Meas. Tech., 46 (4), 317 

(2003)]. 
10.	 Khrapko R.I. J. Mod. Opt., 55, 1487 (2008).
11.	 Allen L., Padgett M.J. Opt. Commun., 184, 67 (2000). 
12.	 Carrara N. Nature, 164, 882 (1949).
13.	 Loudon R. Phys. Rev. A, 68, 013806 (2003).
14.	 Feynman R.P. et al. The Feynman Lectures on Physics (Reading, 

Massachusetts: Addison-Wesley Publishing Company, 1973) 
Vol. 3, Ch. 17-4. 

15.	 Atkinson R. Phys. Rev., 47, 623 (1935).


