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Preface 

I started the Hilbert Book Model during my studies in physics in 

the sixties on the Technical University of Eindhoven (TUE). 

In the first two years the lectures concerned only classical physics. 

In the third year quantum physics was introduced. I had great diffi-

culty in understanding why the methodology of doing physics 

changed drastically. So I went to the teacher, which was an old nearly 

retired and very wise professor and asked him: 

"Why is quantum mechanics done so differently from classical 

mechanics?".  

His answer was short. He stated": 

"The reason is that quantum mechanics is based on the superpo-

sition principle".  

 

I quickly realized that this was part of the methodology and could 

not be the reason of the difference in methodology. So I went back 

and told him my concern. He told me that he could not give me a 

better answer and if I wanted a useful answer I should research that 

myself. So, I first went to the library, but the university was quite 

new and its library only contained rather old second hand books, 

which they got as a gift from other institutions. Next I went to the 

city’s book shops. I finally found a booklet from P. Mittelstaedt: 

(Philosophische Probleme der modernen Physik, BI 

Hochschultaschenbücher, Band 50, 1963) that contained a chapter 

on quantum logic.  

Small particles appear to obey a kind of logic that differs from 

classical logic. As a result their dynamic behavior differs from the 

behavior of larger objects. I concluded that this produced the answer 

that I was looking for. 

I searched further and encountered papers from Garret Birkhoff 

and John von Neumann that explained the correspondence between 



quantum logic and separable Hilbert spaces. That produced a more 

conclusive answer to my question. 

 

The lectures also told me that observables were related to eigen-

values of Hermitian operators. These eigenvalues are real numbers. 

However, it was clearly visible that nature has a 3+1D structure. So 

I tried to solve that discrepancy as well. After a few days of puzzling 

I discovered a number system that had this 3+1D structure and I 

called them compound numbers. I went back to my professor and 

asked him why such compound numbers were not used in physics. 

Again he could not give a reasonable answer.  

When I asked the same question to a much younger assistant pro-

fessor he told me that these numbers were discovered more than a 

century earlier by William Rowan Hamilton when he was walking 

with his wife over a bridge in Dublin. He was so glad about his dis-

covery that he carved the formula that treats the multiplication of 

these numbers into the sidewall of the bridge. The inscription has 

faded away, but it is now molded in bronze and fixed to the same 

wall. The numbers are known as quaternions. So, I went to the library 

and searched for papers on quaternions.  

In those years C. Piron wrote his papers on the number systems 

that can be used by Hilbert spaces. That information completed my 

insight in this subject. I finalized my physics study with an internal 

paper on quaternionic Hilbert spaces.  

 

The university was specialized in applied physics and not in the-

oretical physics. This did not stimulate me to proceed with the sub-

ject. Next, I went into a career in industry where I used my 

knowledge of physics in helping to analyze intensified imaging and 

in assisting with the design of night vision equipment and X-ray im-

age intensifiers. That put me with my nose on the notion of quanta.  



The output window of image intensifiers did not show radiation. 

Instead they showed clouds of impinging quanta. In those times I had 

not much opportunity to deliberate on that fact. However, after my 

retirement I started to rethink the matter. That was the instant that the 

Hilbert Book Model project was started. 

 

In 2009 I started the Hilbert Book Model project. The HBM is a 

very simple model of a tiny part of physics that is completely de-

duced. For that reason it is strictly based on a solid foundation. For 

that foundation I choose the lattice structure of traditional quantum 

logic. The lattice structure of this logic system is isomorphic to the 

lattice structure of the sub-spaces of a Hilbert space. 

Since neither the logic system nor the Hilbert space can represent 

dynamics, a full dynamics model is based on an ordered sequence of 

such static sub-models. This sequence shows great similarity with 

the set of pages of a book. This has led to the name “Hilbert Book 

Model” 

 

Thus, in a few words: The Hilbert Book Model tries to explain the 

existence of quanta. It does that by starting from traditional quantum 

logic. 

 

You will find the model to be in many aspects controversial and 

non-conventional. That is why the author took great efforts in order 

to keep the model self-consistent. 

 

Its main purpose is to get insight into the possibilities of the phys-

ical toolkit.  

 

Each time that I read this book I encounter small and sometimes 

big inconsistencies. When I see them I repair them. Due to my sloppy 

nature there must still be a lot of them left. I apologize to the reader 



for this inconvenience. I do not consider myself a good and precise 

mathematician and I consider myself as a horrible physicist. The 

Great Creator must be a lot better. For a better manuscript you better 

invite Him. He constructed this structure. 

 

 
 

 

 

If a mathematical theory is self-consistent, then there is a realistic 

chance that nature somewhere somehow uses it. 

 

If that theory is compatible with traditional quantum logic, then 

there is a much larger chance that nature will use it. 

 

This drives my intuition. 

 

HvL 
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1. Introduction 

I present you my personal view on the lower part of the hierarchy 

of objects that occur in nature. Only fields and elementary particles 

are treated in some detail. Composite particle objects are treated in a 

more general way. Cosmology is touched. 

For the greater part, the model is deduced. For that reason the 

model is founded on a solid and well accepted foundation. That foun-

dation is traditional quantum logic.  

The model does not aim at experimental verification of its results, 

but it uses experimentally verified results of physics as a guidance. 

The model uses mathematical tools for extending the foundation. In 

some cases “new” mathematics is applied. 

The paper is founded on three starting points:  

 A sub-model in the form of traditional quantum logic 

that represents a static status quo.  

 A correlation vehicle that establishes cohesion be-

tween subsequent members of a sequence of such 

static sub-models. 

 The cosmological principle. 
Further it uses a small set of hypotheses. It turns out that the cos-

mological principle is already a corollary of the first two points.  

The correlation vehicle must provide sufficient cohesion between 

the subsequent members of the sequence. The cohesion must not be 

too stiff otherwise no dynamics will take place. 

The cosmological principle means that at large scales, universe 

looks the same for whomever and wherever you are. One of the con-

sequences is that at larger scales universe possesses no preferred di-

rections. It is quasi-isotropic (on average isotropic). 

The mathematical concepts are treated in more detail in the sec-

ond part, which is called Q-formulæ 



The HBM refines quantum logic to Hilbert Logic. A Hilbert logic 

system resembles a separable Hilbert space much closer than quan-

tum logic does. Together with quantum logic this refined logical sys-

tem represents a new hierarchy that introduces nature’s building 

blocks and their constituents.  

 

The paper explains1 all features of fundamental physics that are 

encountered in the discussed hierarchy which ranges from proposi-

tions about physical objects until elementary particles and their com-

posites. Amongst them are the cosmological principle, the existence 

of quantum physics, the existence of a maximum speed of infor-

mation transfer, the existence of physical fields, the origin of curva-

ture, the origin of inertia, the dynamics of gravity, the existence of 

elementary particles, the existence of generations of elementary par-

ticles, the existence of the Pauli principle and the history of the uni-

verse.  

On the other hand the current HBM does not explore further than 

composites that are constructed from elementary particles. It only 

touches some aspects of cosmology. 

New mathematics is involved in the dynamic generation of poten-

tial functions. 

                                                           
1 Or it indicates a possible explanation 



2 The Book Model 

The name of the research project that treats this investigation is 

due to the main starting point on which this study is based.  

 

The Hilbert Book Model (HBM) is based on the assumption that 

universe steps with universe wide progression steps and that the 

static status quo of each of these steps can be described by an infinite 

dimensional separable Hilbert space and its Gelfand triple. With 

other words a dynamic model will consist of an ordered sequence of 

these static sub-models. 

 

The sequence of the static models show similarity with the se-

quence of pages in a book. That is why the name “Hilbert Book 

Model” is selected for the project. 

 

The progression step size defines an ultra-high frequency, which 

represents the basic carrier frequency for transport of information. 

 

3 General remarks 

3.1 Completely deduced model 

The Hilbert Book Model is completely deduced. It is based on a 

solid foundation, which is extended by using trustworthy mathemat-

ical tools. We want to understand the physics of the developed 

model. For that reason the first priority of the HBM is to understand 

how this model works and it is not considered her primary task to 

verify whether nature behaves that way. This is compensated by pur-

suing a strong degree of self-consistence of the model. At the same 

time the knowledge of how nature works is a guide in the develop-

ment of the model.  



For example the HBM uses proper time instead of coordinate 

time. Proper time is a Lorentz invariant measure of time. The corre-

sponding clock ticks at the location of the observed item. Our com-

mon notion of time is coordinate time. The coordinate time clock 

ticks at the location of the observer. The HBM adds to this fact that 

all proper time clocks are synchronized. The HBM does not bother 

about the fact that in general proper time cannot practicably be meas-

ured.  

Further, the model includes lower level objects that cannot be ob-

served as individuals. Only as groups these objects become noticea-

ble behavior. 

The result is that the HBM introduces its own methodology that 

often deviates considerably from the methodology of contemporary 

physics. The advantage is that this approach enables the researcher 

to dive deeper into the undercrofts of physics than is possible with 

conventional methodology.  

 

As a consequence the HBM must be reluctant in comparing these 

methodologies and in using similar names. Confusions in discussion 

groups about these items have shown that great care is necessary. 

Otherwise, the author can easily be accused from stealing ideas from 

other theories that are not meant to be included in the HBM model.  

This again will make it difficult to design measurements. Meas-

uring methods are designed for measuring physical phenomena that 

are common in contemporary physics. This is best assured when is 

sought for phenomena that are similar between the model and con-

temporary physics. This action contradicts the caution not to use sim-

ilar terms and concepts. This is the main reason why the HBM does 

not make experimental verification to its first priority. 

 

On the other hand, also contemporary physics contains items that 

cannot be measured. For example color charge is an item that cannot 



(yet) be measured. Due to color confinement, quarks have never been 

detected as separate objects.  

As indicated above, proper time is a concept that also exists in 

contemporary physics, but in general it cannot be measured. Con-

temporary physics uses the field concept, but except for the cases 

that the fields are raised by properties of separate particles contem-

porary physics does not bother what causes the field. 

3.2 Generators, spread and descriptors. 

The HBM allows very pictorial representations of its fundamental 

concepts. Let me give you a small preview. 

In the model, generators produce coherent groups of discrete ob-

jects that are spread over an embedding continuum. The density dis-

tribution and the current density distribution of these coherent groups 

are continuous functions that describe and categorize these groups.  

Depending on a suitable Green’s function, the distributions of dis-

crete objects also correspond to potential functions. Depending on 

the way in which the potential is generated, the potential function 

corresponds to a local curvature of the embedding space. This can be 

comprehended when the groups are generated dynamically in a rate 

of one element per progression step.  

During its very short existence the element transmits a wave front2 

that slightly folds and thus curves the embedding space. The wave 

front keeps floating away with light speed from its previous source. 

It represents a trace of the existence of the element. This trace sur-

vives the element when that element is long gone. These traces can 

be observed without affecting the emitter.  

For each coherent group, the elements are generated at a rate of 

one element per progression step. With other words the wave fronts 

                                                           
2 For anisotropic elements the message is transmitted by an ani-

sotropic wave. 



form ultra-high frequency waves that move with light speed away 

from their source. However, each wave front is emitted at a slightly 

different location. Already at a small distance it appears as if they 

originate from the same center location. The coherent group forms a 

building block. These waves together constitute the potential func-

tion(s) of this building block. 

The elements act as step stones and together they form a micro-

path for the corresponding group. This micro-movement can be con-

sidered as a combination of a quasi-oscillation and a quasi-rotation. 

Indirectly, the generator influences space curvature. The descriptors 

only describe the influence of the potentials on the local space cur-

vature. The ultra-high frequency wave cannot be observed. Only its 

averaged effect is observable. The resulting potential is an integral 

and therefore a rather static effect. Modulations of this wave that are 

due to oscillations of the emitter can be observed. These modulation 

waves possess a much lower frequency than the ultra-high frequency 

carrier wave has. 

 

The element generator can be described by the convolution of a 

sharp continuous function and a low scale spread function that blurs 

the continuous function. In this way, the spreading part can be seen 

as the activator of local space curvature, while the derivative of the 

sharp part defines a local metric that can be considered as the de-

scriptor of the local curvature. The two parts must be in concordance. 

In this way two kinds of descriptors of local curvature exist. The first 

is the density distribution that describes the spread of the discrete 

objects. It corresponds to a potential function. The second descriptor 

is the local metric. Since these functions act on different scales, they 

can usually be treated separately. 

 

The origin of the local curvature is the dynamic stochastic pro-

cess that produces the low scale spread of the discrete objects. As 



described above these objects transmit waves that curve the local 

space. The HBM suggests the combination of a Poisson process that 

is coupled to a binomial process, where the attenuation of the bino-

mial process is implemented by a 3D spread function3. The stochastic 

generator process will generate according to a standard plan. In prin-

ciple, at each location where it is active the generator produces lo-

cally the same kind of patterns. In undisturbed (natal) format, these 

patterns may only differ in their symmetry properties. However, 

these patterns cause space curvature. The local curvature is generated 

by the considered group and by neighboring groups. Due to an exist-

ing uniform move of the building block and due to the variance in 

space curvature, the center location of the pattern may become dis-

placed. Both effects disturb the natal state of the distributions that 

are generated by the generating process. Since the patterns are gen-

erated with a single element per progression step, the generation 

poses a large chance to not generate the target natal shape but instead 

a distorted shape that in addition is spread over the path that the cen-

ter location decides to follow. The produced distribution can still be 

described by a continuous function, but that function will differ from 

the continuous function that describes the undisturbed natal state. So 

the generation process is characterized by two functions. The first 

one represents the characteristics of the local generation process. It 

describes the natal state of the intended distribution. It is more a pro-

spector than a descriptor. The second one describes the actually pro-

duced distribution that is distorted by the local space curvature and 

spread out by the movement of the center location. Further the gen-

eration of the distribution may not be completely finished, because 

not enough elements were generated since the generation of the pat-

tern was started. The generated element only lives during the current 

progression step. In the next step a newly generated element replaces 
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the previous object. At any instant the generated distribution consists 

of only one element. Thus for its most part the distribution can be 

considered as a set of virtual elements that lived in the past or will 

live in the future. The virtual distribution together with its current 

non-virtual element represents a pattern. The local curvature is partly 

caused by the pattern itself, but for another part it is caused by neigh-

bor patterns. 

 

The previous description of the natal generation can be imagined 

visually. At a rate of one element per progression instant the genera-

tor produces step stones that are used by the generated building 

block. The step stones are located randomly in a coherent region of 

3D space. The building block walks along these step stones. As a 

consequence even at rest the building block follows a stochastic mi-

cro-path. Any movement of the building block as a whole, will be 

superposed on the micro-path. At every arrival at a step stone, the 

building block transmits its presence via a wave front that slightly 

folds and thus curves the embedding continuum. These wave fronts 

and the transmitted content constitute the potentials of the building 

block. 

Nobody said that the undercrofts of physics behave in a simple 

way! 

3.3 Coupling and events 

The HBM introduces the notion of coupling of fields. It also 

means that non-coupled fields exists. Coupling is described by a cou-

pling equation, which is a special kind of differential continuity 

equation4. 

Coupling takes place between stochastic fields. Stochastic fields 

describe density distributions and current density distributions of 
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lower order objects. The distributions are generated by a local gen-

eration process that in each progression step produces ONE lower 

order object per stochastic field. 

 

Coupling is implemented by messages that are transmitted in the 

embedding continuum by the active elements of the distribution via 

wave fronts5 that slightly fold and thus curve this continuum. To-

gether these waves constitute the potentials that are raised by the dis-

tribution. It is sensible to presume that the element generator reacts 

on the potentials that are active in that location. 

When the particle is annihilated, the coupling stops. This also 

means that no further wave fronts are generated that contribute to the 

potential. However, the existing wave fronts keep flowing away from 

their original source. They keep extending their reach with light 

speed. With these wave fronts the potential flees away. 

 

In order to keep the considered group coherent, an inbound or out-

bound micro-move must on average be followed by a move in a re-

verse direction. This must hold separately in each spatial dimension. 

Thus in each spatial dimension a kind of quasi oscillation takes place. 

The synchronization of this quasi oscillation may differ per dimen-

sion. In a similar way a quasi-rotation can exist. A certain kind of 

coupling of fields may be based on induced synchronization of these 

quasi oscillations and quasi-rotations. 

 

Coupling becomes complicated when it involves coupling de-

pendencies that live in different dimensions. Such cases can no 

longer be solved by separating the problem per dimension. It also 

means that the problem is inherently quaternionic and cannot be 

                                                           
5 For anisotropic elements the message is transmitted by an ani-

sotropic wave. 



solved by simple complex number based technology. This occurs in 

the coupling equation of elementary particles where two quaterni-

onic functions are coupled that belong to different discrete symmetry 

sets. Dirac has solved this problem by applying spinors and Dirac 

matrices. The HBM solves this with quaternionic methodology. The 

HBM applies special indices that identify symmetry flavors. 

 

The wave fronts that constitute the potentials of the building 

blocks are non-coupled fields. When the source oscillates then these 

ultra-high frequency carrier waves get modulated. The correspond-

ing modulation frequency is much lower than the carrier frequency. 

Photons are examples of these modulating waves. 

3.4 Wave particle duality 

A point-like object can hop along a stochastically distributed set 

of step stones that together form a micro-path. The step stones form 

a coherent distribution that can be described by a continuous object 

density distribution. Via a properly selected Green’s function the 

step stone distribution can also be converted into a potential function. 

Each suitable Green’s function corresponds to a corresponding po-

tential function.  

A direct conversion from density distribution to a potential func-

tion is also possible and also uses a dedicated Green’s function.  

These higher level objects are different views of the same thing. 

Let us call it a building block.  

Both the density distribution and the potential function have a 

Fourier transform and can be considered as a wave package. Problem 

with this view is the fact that the step stones only are used in a single 

progression instant. So most of the time the step stones are virtual. 

This becomes less relevant when the step stone distribution is gener-

ated according to a given plan. In that case the plan represents the 

building block. 



The most impressing view is raised by the fact that at every arrival 

at a step stone the building block emits a wave front that contains 

information about its presence and about its properties. The flow of 

these wave fronts are controlled by the Huygens principle. Together 

the wave fronts constitute an ultra-high frequency carrier wave that 

cannot be observed directly, but that can show observable lower fre-

quency modulations and that shows its influence in the form of the 

potentials of the building block.  

 

Now we have a higher level object that at the same time is a point-

like particle and will act as a wave package and an ultra-high fre-

quency carrier wave 

This idea is exploited by the Hilbert Book Model. 



4 The logic model 

In this chapter the basic phenomena of physics will be deduced 

from its logical foundation. The HBM choses traditional quantum 

logic as its most basic foundation. In 1936, this foundation was sug-

gested by Garret Birkhoff and John von Neumann6. 

4.1 Static status quo 

4.1.1 Quantum logic 

The most basic level of objects in nature is formed by the propo-

sitions that can be made about the objects that occur in nature. The 

relations between these propositions appear to be restricted by the 

axioms of traditional quantum logic. This set of related propositions 

can only describe a static status quo. The axioms that specify quan-

tum logic are specified in Q-FORMULÆ 2. 

In mathematical terminology the propositions whose relations are 

described by traditional quantum logic form a lattice. More particu-

lar, they form an orthomodular lattice that contains a countable infi-

nite set of atomic (=mutually independent) propositions. Within the 

same quantum logic system multiple versions of sets of these mutu-

ally independent atoms exist. In this phase of the model the content 

of the propositions is totally unimportant. As a consequence these 

                                                           
6http://en.wikipedia.org/wiki/John_von_Neumann#Quan-

tum_logics & Stanford Encyclopedia of Philosophy, Quantum Logic 

and Probability Theory, http://plato.stanford.edu/entries/qt-

quantlog/ 

http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
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atoms form principally an unordered set7. Only the interrelations be-

tween the propositions count. 

Traditional quantum logic shows narrow similarity with classical 

logic, however the modular law, which is one of the about 25 axioms 

that define the classical logic, is weakened in quantum logic. This is 

the cause of the fact that the structure of quantum logic is signifi-

cantly more complicated than the structure of classical logic. 

4.1.2 Hilbert logic 

The set of propositions of traditional quantum logic is lattice iso-

morphic with the set of closed subspaces of a separable Hilbert 

space. However still significant differences exist between this logic 

system and the Hilbert space. This gap can be closed by a small re-

finement of the quantum logic system.  

Step 1: Define linear propositions (also called Hilbert proposi-

tions) as quantum logical propositions that are characterized by a 

number valued strength or relevance. This number is taken from a 

division ring. 

Step 2: Require that linear combinations of Hilbert propositions 

also belong to the logic system.  

Step 3: Introduce the notion of relational relevance between two 

linear propositions. This measure has properties that are similar to 

the inner product of Hilbert space vectors. 

Step 4: Close the subsets of the new logic system with respect to 

this relational coupling measure. 

The relational relevance measure can have values that are taken 

from a suitable division ring. The resulting logic system will be 

called Hilbert logic.  

                                                           
7 This fact will prove to be the underpinning of the cosmologic 

principle. 



The Hilbert logic is lattice isomorphic as well topological isomor-

phic with the corresponding Hilbert space. 

The definition of Hilbert logic is specified in Q-FORMULÆ 3. 

In this correspondence, Hilbert propositions are the equivalents of 

Hilbert vectors. General quantum logic propositions are the equiva-

lents of (closed) subspaces of a Hilbert space.  

The measure of the relational relevance between two Hilbert 

propositions is the equivalent of the inner product between two Hil-

bert vectors.  

Due to this similarity the Hilbert logic will also feature operators8. 

In a Hilbert logic, linear operators can be defined that have atomic 

Hilbert propositions as their eigen-propositions. Their eigenspace is 

countable. 

In a Hilbert logic system the superposition principle holds. A lin-

ear combination of Hilbert proposition is again a Hilbert proposition. 

  

                                                           
8 The Hilbert logic does not feature dynamic operators. 



5 Dynamic model 

A dynamic model can be constructed from an ordered sequence 

of the above static sub-models. Care must be taken to keep sufficient 

coherence between subsequent static models. Otherwise, the model 

just represents dynamical chaos. However, some deviation must be 

tolerated, because otherwise, nothing dynamical will happen in this 

new dynamic model. The cohesion is established by a suitable cor-

relation vehicle. 

5.1 Correlation vehicle 

The correlation vehicle supports and guards the coherence of the 

dynamics of the model. The correlation vehicle uses a toolkit con-

sisting of an enumerator generator, an embedding continuum and a 

continuous function that maps the enumerators onto the continuum. 

The function is a continuous function of both the sequence number 

of the sub-models and the enumerators that are attached to a member 

of the selected set of atomic propositions. The enumeration is artifi-

cial and is not allowed to structurally add extra characteristics or 

functionality to the attached proposition. For example, if the enumer-

ation takes the form of a coordinate system, then this coordinate sys-

tem cannot have a unique origin and it is not allowed to structurally 

introduce preferred directions. These restrictions lead to an affine 

space. The avoidance of preferred directions produces problems in 

multidimensional coordinate systems. As a consequence, in case of 

a multidimensional coordinate system the correlation vehicle must 

use a smooth touch. This means, that at very small scales the coordi-

nate system must get blurred. This means that the guarantee for co-

herence between subsequent sub-models cannot be made super hard. 

Instead coherence is reached with an acceptable tolerance. In any 

case a super hard coherence is unwanted. 

 



The correlation vehicle also takes care of the perseverance of the 

emitted potential. For that reason it uses the Huygens principle. At 

every progression step the existing ultra-high frequency waves are 

re-emitted from locations at the wave fronts. 

  



6 Isomorphic model 

The natural form of the enumeration system can be derived from 

the lattice isomorphic companion of the quantum logic sub-model. 

Or it can be derived via a corresponding Hilbert logic system. Here 

we follow the historical development that was initialized by Birkhoff 

and von Neumann. 

In the third decade of the twentieth century Garret Birkhoff and 

John von Neumann9 were able to prove that for the set of proposi-

tions in the traditional quantum logic model a mathematical lattice 

isomorphic model exists in the form of the set of the closed sub-

spaces of an infinite dimensional separable Hilbert space. The Hil-

bert space is a linear vector space that features an inner vector prod-

uct. It offers a mathematical environment that is far better suited for 

the formulation of physical laws than what the purely logic model 

can provide. 

Some decades later Constantin Piron10 proved that the only num-

ber systems that can be used to construct the inner products of the 

Hilbert vectors must be division rings. Later Solèr’s theorem formu-

lated this discovery more precisely. The only suitable division rings 

are the real numbers, the complex numbers and the quaternions11. 

Quaternions can be seen as combinations of a real scalar and a 3D 

(real) vector. The number system of the quaternions represent a 

                                                           
9http://en.wikipedia.org/wiki/John_von_Neumann#Quan-

tum_logics & Stanford Encyclopedia of Philosophy, Quantum Logic 

and Probability Theory, http://plato.stanford.edu/entries/qt-

quantlog/ 
10 C. Piron 1964; _Axiomatique quantique_  
11 Bi-quaternions have complex coordinate values and do not form 

a division ring. 
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1+3D coordinate system. It can be shown that the eigenvalues of nor-

mal operators must also be taken from the same division ring. 

Since the set of real numbers is multiple times contained in the set 

of complex numbers and the set of complex numbers is multiple 

times contained in the set of quaternions, the most extensive isomor-

phic model is contained in an infinite dimensional quaternionic sep-

arable Hilbert space. For our final model we will choose the quater-

nionic Hilbert space, but first we study what the real Hilbert space 

model and the complex Hilbert space model provide. What can be 

done by using a quaternionic Hilbert space can also be done in a real 

or complex Hilbert space by adding extra structure12. 

It appears that a cross product of two quaternionic Hilbert spaces 

no longer equals a quaternionic Hilbert space13. The HBM does not 

use such cross products. 

The set of closed subspaces of the Hilbert space represents the set 

of propositions that forms the static quantum logic system. Like the 

sets of mutually independent atoms in the quantum logic system, 

multiple sets of orthonormal base vectors exist in the Hilbert space. 

The base vectors do not form an ordered set. However, a so called 

normal operator will have a set of eigenvectors that form a complete 

orthonormal base. The corresponding eigenvalues may provide a 

means for enumeration and thus for ordering these base vectors. An 

arbitrary normal operator will in general not fit the purpose of 

providing an affine eigenspace Usually the eigenvalues of a normal 

operator introduce a unique n origin and in the case of a multidimen-

sional eigenspace the eigenspace may structurally contain preferred 

directions. Still, suitable enumeration operators exist. Several things 

can already be said about the eigenspace of the wanted enumeration 

operator. Its eigenspace is countable. It has no unique origin. It does 

                                                           
12 http://math.ucr.edu/home/baez/rch.pdf 
13 The result is an abstraction to a real Hilbert space. 
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not show preferred directions. Its eigenvalues can be embedded in an 

appropriate reference continuum. 

As part of its corresponding Gelfand triple14 a selected separable 

Hilbert space forms a sandwich that features uncountable orthonor-

mal bases and (compact) normal operators with eigenspaces that 

form a continuum. A reference continuum can be taken as the eigen-

space of the corresponding enumeration operator that resides in the 

Gelfand triple of this reference Hilbert space. 

Together with the pure quantum logic model, we now have a dual 

model that is significantly better suited for use with calculable math-

ematics. Both models represent a static status quo. 

The Hilbert space model suits as part of the toolkit that is used by 

the correlation vehicle. 

As a consequence, an ordered sequence of infinite dimensional 

quaternionic separable Hilbert spaces forms the isomorphic model 

of the dynamic logical model. 

6.1 Hierarchy 

The refinement of quantum logic to Hilbert logic also can deliver 

an enumeration system. However, the fact that the selected separable 

Hilbert space offers a reference continuum via its Gelfand triple 

make the Hilbert space more suitable for implementing the Hilbert 

Book Model. 

The two logic systems feature a hierarchy that is replicated in the 

Hilbert space. Quantum logic propositions can be represented by 

closed sub-spaces of the Hilbert space. Atomic Hilbert propositions 

can be represented by base vectors of the Hilbert space. The base 

vectors that span a closed sub-space belong to that sub-space. This 

                                                           
14 See http://vixra.org/abs/1210.0111 for more details on the Hil-

bert space and the Gelfand triple. See the paragraph on the Gelfand 

triple.  



situation becomes interesting when the base vectors are eigenvectors. 

In that case the corresponding eigenvalues can be used to enumerate 

the eigenvectors of the Hilbert space operator and the corresponding 

eigen atoms of the Hilbert logic operator. 

A similar hierarchy can be found when a coherent set of lower 

order objects forms a building block. Here the lower order objects 

correspond to atomic Hilbert propositions and to corresponding Hil-

bert base vectors. The building block corresponds to the quantum 

logical proposition and to the corresponding closed Hilbert subspace. 

  



6.2 Correspondences 

Several correspondences exist between the sub models: 

Quantum 

logic 

Hilbert space Hilbert 

logic 

Proposi-

tions: 

𝑎, 𝑏 

Subspaces 

a,b 

Vec-

tors: 

|𝑎⟩, |𝑏⟩ 

Hilbert 

proposi-

tions: 

𝑎, 𝑏 

atoms 

𝑐, 𝑑 

 Base 

vectors: 

|𝑐⟩, |𝑑⟩ 

atoms 

𝑐, 𝑑 

Relational 

complexity: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑎 

∩  𝑏) 

Relational 

complexity: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑎 

∩  𝑏) 

Inner 

product: 

〈𝑎|𝑏〉 

Rela-

tional cou-

pling 

measure 

Inclusion: 

(𝑎 ∪  𝑏) 

Inclusion: 

(𝑎 ∪  𝑏) 

Linear 

combina-

tion: 

𝛼|𝑎⟩
+ 𝛽|𝑏⟩ 

Linear 

combina-

tion: 

𝛼𝑎 + 𝛽𝑏 

For atoms 

𝑐𝑖: 

⋃ 𝑐𝑖

𝒊

 

Subspace 

{∑ 𝛼𝑖|𝑐𝑖⟩

𝑖

}

∀𝛼𝑖

 

Subset 

{∑ 𝛼𝑖𝑐𝑖

𝑖

} 

 

The distribution 

𝑎(𝑖) ≡ {〈𝑎|𝑐𝑖〉}∀𝑖
  

has no proper definition in quantum logic. It can be interpreted 

via the Hilbert logic and Hilbert space sub-models. 



6.3 Affine space 

The set of mutually independent atomic propositions is repre-

sented by an orthonormal set of base vectors in Hilbert space. Both 

sets span the whole of the corresponding structure. An arbitrary or-

thonormal base is not an ordered set. It has no start and no end. It is 

comparable to an affine space. However, all or a part of these base 

vectors can be enumerated for example with rational quaternions. 

Enumeration introduces an artificial origin and may introduce artifi-

cially preferred directions. Thus, in general enumeration will apply 

to a part of the affine space. As is shown in the last paragraph this 

enumeration process defines a corresponding normal operator. 

The installation of the correlation vehicle requests the introduc-

tion of enumerators. The enumeration may introduce an ordering. In 

that case the attachment of the numerical values of the enumerators 

to the Hilbert base vectors defines a corresponding operator. It must 

be remembered that the selection of the enumerators and therefore 

the corresponding ordering is kind of artificial. The eigenspace of the 

enumeration operator has no unique origin and is has no natural 

preferred directions. Thus it has no natural axes. It can only indicate 

the distance between two or more locations. It will be shown that for 

multidimensional rational enumerators the distance is not precise. In 

that case the enumeration represents a blurred coordinate system. 

Both in the Hilbert space and in its Gelfand triple, the enumeration 

can be represented by a normal enumeration operator. 

6.4 Continuity 

The task of the correlation vehicle is to arrange sufficient coher-

ence between subsequent members of the sequence. Coherence 

translates to a moderate form of continuity. 



6.4.1 Arranging dynamics 

Embedding the enumerators in a continuum highlights the inter-

spacing between the enumerators. Having a sequence of static sub-

models is no guarantee that anything happens in the dynamic model. 

A fixed (everywhere equal) interspacing will effectively lame any 

dynamics. A more effective dynamics can be arranged by playing 

with the sizes of the interspacing in a stochastic way. This is the task 

of an enumerator generator. 

6.4.2 Establishing coherence 

The coherence between subsequent static models can be estab-

lished by embedding each of the countable sets in an appropriate 

continuum. For example the whole Hilbert space can be embedded 

in its Gelfand triple. The enumerators of the base vectors of the sep-

arable Hilbert space or of a subspace can also be embedded in a cor-

responding continuum. In the reference Hilbert space that continuum 

is formed by the values of the enumerators that enumerate a corre-

sponding orthonormal base of the Gelfand triple15. For subsequent 

Hilbert spaces a new appropriate embedding continuum will be used, 

but that continuum may be curved.  

Next a correlation vehicle is established by introducing a contin-

uous allocation function that controls the coherence between subse-

quent members of the sequence of static models. It does that by cre-

ating a moderate relocation in the countable set of the enumerators 

that act in the separable Hilbert space by mapping them to the em-

bedding continuum. The relocation is controlled by a stochastic pro-

cess. In fact the differential of the allocation function is used to spec-

ify the small scale working space for this stochastic process16. The 

                                                           
15 See Gelfand triple 
16 The differential defines a local metric. 



allocation function also takes care of the persistence of the embed-

ding continuum. 

The equivalence of this action for the logic model is that the enumerators 

of the atomic propositions are embedded in a continuum that is used by an 

appropriate correlation vehicle. 

The allocation function uses a combination of progression and the 

enumerator id as its parameter value. The value of the progression 

might be included in the value of the id. Apart from their relation via 

the allocation function, the enumerators and the embedding contin-

uum are mutually independent17. For the selected correlation vehicle 

it is useful to use numbers as the value of the enumerators. The type 

of the numbers will be taken equal to the number type that is used 

for specifying the inner product of the corresponding Hilbert space 

and Gelfand triple.  

The danger is then that in general a direct relation between the 

value of the enumerator of the Hilbert base vectors and the embed-

ding continuum is suggested. An exception is formed by the selected 

reference Hilbert space. So, for later Hilbert spaces a warning is at 

its place. Without the allocation function there is no relation between 

the value of the enumerators and corresponding values in the embed-

ding continuum that is formed by the Gelfand triple. However, there 

is a well-defined relation between the images18 produced by the allo-

cation function and the selected embedding continuum19. The rela-

tion between the members of a countable set and the members of a 

continuum raises a serious one-to-many problem. That problem can 

                                                           
17 This is not the case for the reference Hilbert space in the se-

quence. There a direct (close) relation exists. 
18 Later these images will be called Qpatches 
19 Later the nature of this embedding continuum will be revealed. 

In later Hilbert spaces the embedding continuum is constituted by 

potentials.  



easily be resolved for real Hilbert spaces and complex Hilbert spaces, 

but it requires a special solution for quaternionic Hilbert spaces. That 

solution is treated below. 

Together with the selected embedding continuum and the Hilbert 

base enumeration set the allocation function defines the evolution of 

the model. 

6.4.3 Structure of the correlation vehicle 

At every progression step the correlation vehicle regenerates the 

eigenspaces of the non-conserved operators20. This regeneration runs 

at an ultra-high frequency. That frequency is set by the progression 

step size. 

 

An important part of the functionality of the correlation vehicle is 

implemented by the allocation function. This function is the convo-

lution of a continuous part and a local blur. The local blur is imple-

mented by the combination of a Poisson process and a binomial pro-

cess. The binomial process is implemented by a 3D spread function. 

The derivative of the continuous part of the allocation function 

defines a local metric. 

 

Another part of the functionality of the correlation vehicle con-

cerns the regeneration of the embedding continuums. This regenera-

tion is governed by Huygens principle. It is implemented by wave 

fronts that flow with the constant maximum speed of information 

transfer. 

Later we will see that the correlation vehicle is restricted by color 

confinement. 

                                                           
20 These operators reside in Hilbert logic, in the corresponding 

Hilbert space and in the corresponding Gelfand triple. 



7 Hilbert spaces 

Sets of subsets of Hilbert spaces represent quantum logical sys-

tems and associated Hilbert logic systems. Closed subspaces of the 

Hilbert space represent quantum logical propositions and Hilbert 

space vectors represent Hilbert propositions. 

 

The Hilbert space is a static hull. A normal operator with a count-

able ordered set of eigenvalues can be used as a reference operator. 

This operator will be used for enumeration purposes. These enumer-

ators will be used as parameters for the functions that implement the 

correlation mechanism. 

 

Each Hilbert space corresponds to a Gelfand triple. That space 

features operators which have a continuum as it eigenspace. Also in 

this space a normal operator with an ordered set of eigenvalues can 

be used as a reference operator. 

 

The reference operators are static objects. 

 

Several normal operators in the Gelfand triple will be used to de-

liver target values for functions that implement the correlation mech-

anism. These operators are dynamic objects. They will be re-created 

at every progression step.  

7.1 Real Hilbert space model 

When a real separable Hilbert space is used to represent the static 

quantum logic, then it is sensible to use a countable set of real num-

bers for the enumeration. A possible selection is formed by the nat-

ural numbers. Within the real numbers the natural numbers have a 

fixed interspacing. Since the rational number system has the same 

cardinality as the natural number system, the rational numbers can 



also be used as enumerators. In that case it is sensible to specify a 

(fixed) smallest rational number as the enumeration step size. In this 

way the notion of interspacing is preserved and can the allocation 

function do its scaling task21. In the realm of the real Hilbert space 

model, the continuum that embeds the enumerators is formed by the 

real numbers. The values of the enumerators of the Hilbert base vec-

tors are used as parameters for the allocation function. The value that 

is produced by the allocation function determines the target location 

for the corresponding enumerator in the target embedding contin-

uum. The target embedding continuum is taken from an operator that 

resides in the Gelfand triple. The interspacing freedom is used in or-

der to introduce dynamics in which something happens.  

In fact what we do is defining an enumeration operator that has 

the enumeration numbers as its eigenvalues. The corresponding ei-

genvectors of this operator are the target of the enumerator. 

With respect to the logic model, what we do is enumerate a previously 

unordered set of atomic propositions that together span the quantum logic 

system and next we embed the numerators in an appropriate continuum. The 

correlation vehicle takes care of the cohesion between subsequent quantum 

logical systems. 

While the progression step is kept fixed, the (otherwise fixed) 

space step might scale with progression. 

 

Instead of using a fixed smallest rational number as the enumera-

tion step size and a map into a reference continuum we could also 

have chosen for a model in which the rational numbered step size 

varies with the index of the enumerator. 

                                                           
21 Later, in the quaternionic Hilbert space model, this freedom is 

used to introduce space curvature and it is used for resolving the one 

to many problem. 



7.2 Gelfand triple 

The Gelfand triple of a real separable Hilbert space can be under-

stood via the enumeration model of the real separable Hilbert space. 

This enumeration is obtained by taking the set of eigenvectors of a 

normal operator that has rational numbers as its eigenvalues. Let the 

smallest enumeration value of the rational enumerators approach 

zero. Even when zero is reached, then still the set of enumerators is 

countable. Now add all limits of converging rows of rational enu-

merators to the enumeration set. When appropriate also add a corre-

sponding eigenvector. After this operation the enumeration set has 

become a continuum and has the same cardinality as the set of the 

real numbers. This operation converts the Hilbert space into its Gel-

fand triple and it converts the normal operator in a new operator that 

has the real numbers as its eigenspace. It means that the orthonormal 

base of the Gelfand triple that is formed by the eigenvectors of the 

new normal operator has the cardinality of the real numbers. It also 

means that linear operators in this Gelfand triple have eigenspaces 

that are continuums and have the cardinality of the real numbers22. 

The same reasoning holds for complex number based Hilbert spaces 

and quaternionic Hilbert spaces and their respective Gelfand triples. 

7.3 Complex Hilbert space model 

When a complex separable Hilbert space is used to represent 

quantum logic, then it is sensible to use rational complex numbers 

for the enumeration. Again a smallest enumeration step size is intro-

duced. However, the imaginary fixed enumeration step size may dif-

fer from the real fixed enumeration step size. The otherwise fixed 

imaginary enumeration step may be scaled as a function of progres-

sion. In the complex Hilbert space model, the continuum that embeds 

                                                           
22 This story also applies to the complex and the quaternionic Hil-

bert spaces and their Gelfand triples. 



the enumerators of the Hilbert base vectors is formed by the system 

of the complex numbers. This continuum belongs as eigenspace to 

the enumerator operator that resides in the Gelfand triple. It is sensi-

ble to let the real part of the Hilbert base enumerators represent pro-

gression. The same will happen to the real axis of the embedding 

continuum. On the real axis of the embedding continuum the inter-

spacing can be kept fixed. Instead, it is possible to let the allocation 

function control the interspacing in the imaginary axis of the embed-

ding continuum. The values of the rational complex enumerators are 

used as parameters for the allocation function. The complex value of 

the allocation function determines the target location for the corre-

sponding target value in the continuum. The allocation function es-

tablishes the necessary coherence between the subsequent Hilbert 

spaces in the sequence. The difference with the real Hilbert space 

model is, that now the progression is included into the values of the 

enumerators. The result of these choices is that the whole model 

steps with (very small, say practically infinitesimal) fixed progres-

sion steps. 

In the model that uses complex Hilbert spaces, the enumeration 

operator has rational complex numbers as its eigenvalues. In the 

complex Hilbert space model, the fixed enumeration real step size 

and the fixed enumeration imaginary step size define a maximum 

speed. The fixed imaginary step size may scale as a function of pro-

gression. The same will then happen with the maximum speed, de-

fined as space step divided by progression step. However, if infor-

mation steps one step per progression step, then the information 

transfer speed will be constant. Progression plays the role of proper 

time. Now define a new concept that takes the length of the complex 

path step as the step value. Call this concept the coordinate time step. 

Define a new speed as the space step divided by the coordinate time 

step. This new maximum speed is a model constant. Proper time is 



the time that ticks in the reference frame of the observed item. Coor-

dinate time is the time that ticks in the reference frame of the ob-

server23. Coordinate time is our conventional notion of time. 

Again the eigenvectors of the (complex enumeration) operator are 

the targets of the enumerator whose value corresponds to the com-

plex eigenvalue.  

In the complex Hilbert space model the squared modulus of the 

quantum state function represents the probability of finding the loca-

tion of the corresponding particle at the position that is defined by 

the parameter of this function. 

If we ignore the case of negative progression, then the complex 

Hilbert model exist in two forms, one in which the interspacing ap-

pears to expand and one in which the interspacing decreases with 

progression24. 

7.4 Quaternionic Hilbert space model 

When a quaternionic separable Hilbert space is used to model the 

static quantum logic, then it is sensible to use rational quaternions 

for the enumeration. Again the fixed enumeration step sizes are ap-

plied for the real part of the enumerators and again the real parts of 

the enumerators represent progression. The reference continuum that 

embeds the enumerators is formed by the number system of the qua-

ternions. The scaling allocation function of the complex Hilbert 

space translates into an isotropic scaling function in the quaternionic 

Hilbert space. However, we may instead use a full 3D allocation 

function that incorporates the isotropic scaling function. This new 

                                                           
23 In fact coordinate time is a mixture of progression and space. 

See paragraph on spacetime metric. 
24 The situation that expands from the point of view of the count-

able enumeration set, will contract from the point of view of the em-

bedding continuum of enumerators. 



allocation function may act differently in different spatial dimen-

sions. However, when this happens at very large scales, then it con-

flicts with the cosmological principle. At those scales the allocation 

function must be quasi isotropic. The allocation function is not al-

lowed to create preferred directions. 

Now the enumeration operator of the Hilbert space has rational 

quaternions as its eigenvalues. The relation between eigenvalues, ei-

genvectors and enumerators is the same as in the case of the complex 

Hilbert space. Again the whole model steps with fixed progression 

steps. 

In the quaternionic Hilbert space model the real part of the quan-

tum state function represents the probability of finding the location 

of the corresponding particle at the position that is defined by the 

parameter of this function. It corresponds to a density distribution of 

the locations where the corresponding building block can/could be 

found. 

7.4.1 Curvature and fundamental fuzziness 

The spatially fixed interspacing that is used with complex Hilbert 

spaces poses problems with quaternionic Hilbert spaces. Any regular 

spatial interspacing pattern will introduce preferred directions. Pre-

ferred directions are not observed in nature25 and the model must not 

create them. A solution is formed by the randomization of the inter-

spacing. Thus instead of a fixed imaginary interspacing we get an 

average interspacing. This problem does not play on the real axis. On 

the real axis we can still use a fixed interspacing. The result is an 

average maximum speed. This speed is measured as space step per 

coordinate time step, where the coordinate time step is given by the 

                                                           
25 Preffered directions are in conflict with the cosmological prin-

ciple. 



length of the 1+3D quaternionic path step. Further, the actual loca-

tion of the enumerators in the embedding continuum will be deter-

mined by the combination of a sharp continuous allocation function 

(SCAF) ℘ and a stochastic spatial spread function (SSSF) 𝒮 that 

specifies the local blur. The form factor of the blur may differ in each 

direction and is set by the differential of the sharp allocation function 

℘. The total effect is given by the convolution 𝒫 =  ℘ . 𝒮 of the sharp 

allocation function ℘ and spread function 𝒮. The result is a blurred 

allocation function 𝒫. The result of 𝒮 alone is described by a quater-

nionic probability amplitude function (QPAD). This is a descriptor. 

It describes the planned distribution of a set of discrete objects that 

will be generated in a sequence. The result of 𝒫 is the actual local 
QPAD. In the quaternionic Hilbert space model it conforms to the 
quaternionic quantum state function. It is a close equivalent of 
the ell known wave function. 

The requirement that the cosmological principle must be obeyed 

is the cause26 of a fundamental fuzziness of the quaternionic Hil-

bert model. It is the reason of existence of quantum physics. 

An important observation is that the blur mainly occurs locally. 

The blur has a very limited extent. On the other hand, due to the 

emission of potential generating wave fronts, the blur corresponds to 

a potential function that has an unlimited extent, but its influence 

decreases with distance. 

At larger distances the freedom that is tolerated by the allocation 

function causes curvature of observed space. However, as explained 

before, at very large scales the allocation function must be quasi iso-

tropic27. The local curvature is described by the differential of the 

sharp part of the allocation function. 

                                                           
26 Another cause is the requirement that coherence between sub-

sequent progression steps must not be too stiff. 
27 Quasi-isotropic = on average isoropic. 



The continuous part of the allocation function defines the current 

target embedding continuum. In fact it determines the eigenspace of 

a corresponding operator that resides in the Gelfand triple. Apart 

from the exceptional case of the reference Hilbert space, the selection 

of this operator poses a problem. The HBM selects the superposition 

of all gravitational potentials as the proper choice for subsequent Hil-

bert spaces. 

This picture only tells that space curvature might exist. It does not 

describe the origin of space curvature. For a more detailed explana-

tion of the origin of space curvature, please see the paragraph on the 

enumeration process. 

7.4.2 Discrete symmetry sets 

Quaternionic number systems exist in 16 versions (sign flavors28) 

that differ in their discrete symmetry sets. The same holds for sets of 

rational quaternionic enumerators and for continuous quaternionic 

functions. Four members of the set represent isotropic expansion or 

isotropic contraction of the imaginary interspacing. At large scales 

two of them are symmetric functions of progression. The other two 

are at large scales anti-symmetric functions of progression. We will 

take the symmetrical member that expands with positive progression 

as the reference rational quaternionic enumerator set. Each mem-

ber of the set corresponds with a quaternionic Hilbert space model. 

Thus apart from a reference continuum we now have a reference ra-

tional quaternionic enumerator set. Both reference sets meet at the 

reference Hilbert space. Even at the instance of the reference Hilbert 

space, the allocation function must be a continuous function of pro-

gression. 

                                                           
28 See paragraph on Qpattern coupling 



When the real parts are ignored, then eight sign flavors result. 

These eight flavors are discerned by their “color” and their handed-

ness. Besides of color, we use special indices in order to mark the 

sign flavors. 

 

 

 

 

Within a coherent set of enumerators or in the images of such a set 

that are produced by the allocation function all objects possess the 

same sign flavor.  

Eight sign flavors  

(discrete symmetries) 

Colors N, R, G, B, R̅, G̅, B̅, W 

Right or Left handedness R,L 

 
Figure 1: Sign flavors 

 

 



A similar split in quaternionic sign flavors as exists with quaterni-

onic number systems occurs with continuous quaternionic func-

tions. In the picture they are listed as ψ⓪…ψ⑦.  

In the picture the color N and the continuous function version ψ⓪  

represent the reference sign flavor.  

 

For each discrete symmetry set of their parameter space, the func-

tion values of the continuous quaternionic distribution exist in 16 

versions that differ in their discrete symmetry set. Within the target 

domain of the continuous quaternionic distribution the symmetry set 

will stay constant. 

7.4.3 Generations and Qpatterns 

Depending on its characteristics, the local generator of enumera-

tors can generate a certain distribution of randomized enumerators. 

A Poisson generator combined by a binomial process that is imple-

mented by a suitable 3D isotropic spread function can implement a 

suitable distribution. The planned distribution is described by a local 

QPAD. The local QPAD corresponds to the characteristics of the 

generator, but depending on its starting condition the stochastic gen-

erator can generate different distributions. Thus, different distribu-

tions may correspond to a single QPAD. The QPAD is a continuous 

quaternionic function that describes in its real part the density of the 

elements of the described distribution. In its imaginary part the 

QPAD describes the associated current density distribution. 

 

If generators with different characteristics exist, then several gen-

erations29 of local QPAD’s exist.  

 

HYPOTHESIS 1: For a selected generation the following holds: 

                                                           
29 See the later paragraph on generations 



Apart from the adaptation of the form factor that is determined by 

the local curvature and apart from the discrete symmetry set of the 

QPAD, the natal QPAD’s are everywhere in the model the same.  

 

Therefore we will call the distribution of objects that is described 

by this basic form of the selected QPAD generation a Qpattern. For 

each generation, QPAD’s exist in 16 versions that differ in their dis-

crete symmetry set. Each Qpattern has a weighted center location, 

which is called Qpatch. 

At each progression step, all generators produce only a single el-

ement of the distribution. This means that each Hilbert space con-

tains only one element of the Qpattern. That element is called Qtar-

get. 

7.4.4 Microstate 

A Qpattern corresponds with the statistic mechanical notion of a 

microstate. A microstate of a gas is defined as a set of numbers which 

specify in which cell each atom is located, that is, a number labeling 

the atom, an index for the cell in which atom s is located and a label 

for the microstate30. 

7.5 Optimal ordering 

In the Hilbert space it is possible to select a base that has optimal 

ordering for the eigenvalues of a normal operator. Optimally ordered 

means that these sections are uniformly distributed and that stochas-

tic properties of these sections are the same. In the Hilbert logic sys-

tem a similar selection is possible for the set of mutually independent 

                                                           
30 http://www.intechopen.com/books/theoretical-concepts-of-

quantum-mechanics/quantum-mechanical-ensembles-and-the-h-

theorem 



atomic propositions. There the atoms are enumerated by the same set 

of rational quaternionic values. 

For the Hilbert spaces it means that in the Gelfand triple a corre-

sponding operator exist whose eigen space maps onto the well-or-

dered eigenspace of the operator that resides in the Hilbert space. 

We will call these operators “reference operators”. 

7.6 The reference Hilbert space 

The reference Hilbert space is taken as the member of the se-

quence of Hilbert spaces at the progression instance where the allo-

cation function is a symmetric function of progression that expands 

in directions that depart from the progression value of the reference 

Hilbert space. 

At large and medium scales the reference member of the sequence 

of quaternionic Hilbert spaces is supposed to have a quasi-uniform31 

distribution of the enumerators in the embedding continuum. This is 

realized by requiring that the eigenspace of the enumeration operator 

that acts in the Gelfand triple of the zero progression value Hilbert 

space represents the reference embedding continuum.  

At this instance of progression, the target embedding continuum 

is flat. For the reference Hilbert space the isotropic scaling function 

is symmetric at zero progression value. Thus for the reference Hilbert 

space at the reference progression instance the distribution of the 

enumerators will realize a densest packaging32of the target images.  

 

For all subsequent Hilbert spaces the embedding continuum 

will be taken from the superposition of potentials that are initiated 

in earlier Hilbert spaces. 

                                                           
31 quasi-uniform = on average uniform. 
32 The densest packaging will also be realized locally when the 

geometry generates black regions. 



 

The (reference) Hilbert space together with its Gelfand triple and 

the reference operators in both structures form a static block that re-

appears in all later members of the sequence. 

  



7.7 The embedding continuum 

For the reference Hilbert space the embedding continuum is taken 

from a flat normal location operator that resides in its Gelfand triple. 

That continuum is the virginal reference continuum. 

For subsequent Hilbert spaces the embedding continuum for fer-

mions is formed by the superposition of all potentials that are gener-

ated by objects that lived in previous Hilbert spaces. The result is a 

curved version of the virginal reference continuum. The curvature is 

caused by the mechanism that emits the ultra-high frequency waves 

that constitute the potentials. 

Bosons use an embedding continuum that is formed by the poten-

tials that are emitted locally in previous Hilbert spaces.  

The correlation vehicle takes care of the persistence of the poten-

tials. 

7.8 The cosmological principle revisited 

The enumeration process attaches an artificial content to each of 

the members in the unordered set of atomic propositions. The unre-

stricted enumeration with rational quaternions generates an artificial 

origin and it generates artificial preferred directions that are not pre-

sent in the original set of atomic propositions. The correlation vehi-

cle is not allowed to attach this extra functionality to the original 

propositions. However, the vehicle must still perform its task to es-

tablish cohesion between subsequent sub-models. One measure is to 

turn the enumeration space into an affine space or to restrict the enu-

meration to a closed subset of a larger affine space. An affine space 

has no origin. The next measure is to randomize the enumeration 

process sufficiently such that an acceptable degree of cohesion is 

reached and at the same time a quasi-isotropy of this affine space is 

established. This measure requires the freedom of some interspacing, 

which is obtained by assigning a lowest rational number. In princi-

ple, a lowest rational number can be chosen for the real part and a 



different smallest base number can be chosen for the imaginary part. 

This choice defines a basic notion of speed. The resulting (imagi-

nary) space is on average isotropic. The randomization results in a 

local blur of the continuous function that regulates the enumeration 

process. 

The result of these measures is that roughly the cosmologic prin-

ciple is installed. Thus, in fact the cosmological principle is a corol-

lary of the other two starting points. 

However, according to this model, apart from the low scale ran-

domization, the universe would be quite well ordered. After a myriad 

of progression steps this medium to large scale ordering is signifi-

cantly disturbed. 

 

Looking away33 from any point in universe is in fact looking back 

in proper time. Looking as far as is physically possible will open the 

view at a reference member of the Hilbert Book Model. This refer-

ence member represents a densest and well-ordered packaging. This 

will result in a uniform background at the horizon of the universe. 

The well-known microwave background radiation is not fully uni-

form and is expelled by members that are close to the densest pack-

aged member. 

                                                           
33 Looking away = receiving messages from other objects. 





8 The HBM picture 

In the advance of quantum physics two views on quantum physics 

existed. This manuscript adds two extra pictures. 

8.1 The Schrödinger picture 

The Schrödinger picture describes a dynamic implementation in 

Hilbert space in which the quantum states carry the time dependence. 

The operators are static34.  

8.2 The Heisenberg picture 

The Heisenberg picture describes a dynamic implementation in 

Hilbert space in which the operators (represented by matrices) carry 

the time dependence. The quantum states are static35. 

8.3 The Hilbert Book Model picture 

In the HBM picture an ordered sequence of Hilbert spaces and 

their corresponding Gelfand triples are used. Each of these spaces 

represent a static status quo. 

In the HBM the whole Hilbert space carries the proper time de-

pendence. Both the enumeration operator and the patterns that repre-

sent the quantum state functions depend on the progression parame-

ter. However, for the enumerator operator only the real part of the 

eigenvalue is affected. Other operators describe the target images of 

these enumerators. These target images form the Qtargets. For each 

Qpattern the Hilbert space contains only the actual element, the cur-

rent Qtarget. Thus if only a single Hilbert space is considered, then 

the Qpatterns cannot be recognized. The virtual elements are not ac-

tually present in any member of the sequence of Hilbert spaces. The 

                                                           
34 http://en.wikipedia.org/wiki/Schr%C3%B6dinger_picture 
35 http://en.wikipedia.org/wiki/Heisenberg_picture 

http://en.wikipedia.org/wiki/Schr%C3%B6dinger_picture
http://en.wikipedia.org/wiki/Heisenberg_picture


virtual elements can only exist as place holders. However, the poten-

tials of Qpatterns act as traces of the existing and passed Qpatterns 

and the corresponding wave fronts form traces of the Qtargets. They 

affect the embedding continuum that is formed by the potentials of 

particles that existed in the past. 

The correlation vehicle ensures the cohesion between subsequent 

Hilbert spaces and takes care of the persistence of the emitted poten-

tials. In order to achieve this the correlation vehicle uses at each pro-

gression step the Huygens principle36. 

The potentials survive the extinction of the sources that created 

them. If they do not compensate each other, then they exist forever. 

Gravitation potentials do not compensate each other. This fact ren-

ders the HBM into a never ending story. 

8.4 The operational picture 

In the operational picture only a single Hilbert space and its Gel-

fand triple are used. An operator that resides in the Hilbert space acts 

as the reference operator. It has an equivalent in the Gelfand triple 

and the eigenspaces of these operators map onto each other in an 

orderly fashion. Together with the Hilbert space and Gelfand triple 

these reference operators represent the static part of the model37. 

The eigenvalues of the reference operators represent the progres-

sion value in their real part. 

In the Hilbert space and in its Gelfand triple the correlation vehi-

cle supports the existence of progression dependent operators. This 

concerns a stochastically operating operator in the Hilbert space and 

                                                           
36 If the potentials are emitted in two dimensions, then the situa-

tion is more complicated. 
37 An exception holds for the real parts of the eigenvalues. They 

represent progression. 



for each potential type a compact normal operator that installs the 

temporal behavior of these potentials. 

The correlation vehicle uses the eigenspaces of the reference op-

erators as its parameter spaces. It uses eigenspaces of other operators 

as its target space. As a consequence these target operators depend 

on progression.  

This picture comes close to the Heisenberg picture, but it does not 

keep states static. 

8.5 Discussion 

Obviously the Hilbert Book Model selects the HBM picture. Ac-

cording to the feel of the author this picture offers the cleanest view. 

In this picture the difference between virtual and actual elements of 

a building block can be clearly explained. 

The Hilbert space and Gelfand triple hulls together with the ref-

erence operators form the static part of both the HBM picture and the 

operational picture. In the HBM picture this static part is represented 

by the reference Hilbert space, its Gelfand triple and the reference 

operators. There is one small exception to this static behavior: the 

eigenvalues of the reference operators represent the progression 

value in their real parts. 

Not all of the eigenvectors of the Hilbert space reference operator 

are constantly in use. Annihilation and (re)creation events regulate 

this usage. Virtual elements of building blocks are not used. Only the 

Qtarget is used, which is an actual element. 

The models only use a huge subspace of the Hilbert space(s). Enu-

meration is considered to be an artificial action and the enumerators 

must be seen as to be embedded in an affine space.  

 

The correlation vehicle controls all aspects of dynamics. It does 

that both in Hilbert space and in the Gelfand triple. Since the Hilbert 

space and the Gelfand triple are static hulls, the correlation vehicle 



controls a selected set of operators that reside in these spaces. The 

tools of the correlation vehicle are the allocation function (in the Hil-

bert space) and the Huygens principle (in the Gelfand triple). Its ac-

tions are coordinated. 

8.6 Quantum state function 

In contemporary physics the “quantum state function” is used in 

its complex format. There it is a complex probability amplitude dis-

tribution (CPAD). It is also called “wave function”. The squared 

modulus of the quantum state function is interpreted as the probabil-

ity to be able to detect the corresponding building block at the loca-

tion that is specified by the parameter of the wave function. The com-

plex phase of the wave function can be freely selected. This freedom 

is used in gauge transformations. 

 

In quaternionic quantum physics the quaternionic quantum state 

function is defined as a continuous quaternionic function. Its real part 

equals the squared modulus of the complex quantum state function 

and has the same interpretation. This part has no complex phase. In 

fact the real part can be interpreted as an object density distribution, 

where the objects are the locations where the corresponding building 

block can be detected. The imaginary part of the quaternionic quan-

tum state function can be interpreted as the associated current density 

distribution. In fact it registers the displacement of the described 

building block since its last location. At every progression instant the 

building block gets a new location. 

 

The displacement is the some of the displacement that is due to 

the movement of the building block as a whole and the displacement 

that is caused by the stochastic spatial spread. This last category of 

displacements cause the walk of the building block along a random 

micro-path. 



In quaternionic quantum physics the gauge transformation re-

duces to a mathematical trick.  

 

The characterization of the quaternionic quantum state function 

as a quaternionic probability amplitude distribution (QPAD) is used 

in analogy to the characterization of the complex quantum state func-

tion as a complex probability amplitude distribution (CPAD), but 

care must be taken because the interpretations of the CPAD and the 

QPAD slightly differ. 

 



9 Fields 

Field theory exists independent of what it describes. It describes 

fields varying from fluid dynamics, via electromagnetism to gravita-

tion. You can describe scalar fields and vector fields separately or 

combined in a quaternionic field. Apart from that tensor fields exist. 

Fields can be seen as variations (modulations) of an embedding 

continuum such as photons and gluons. Other types of fields can be 

seen as representing the distribution of the density of discrete objects 

and the corresponding current densities. Fields can also represent the 

potentials of these distributions of discrete objects. Examples of this 

last category are gravitation fields and electrostatic fields. The type 

of the potential is set by its Green’s function. All these fields have 

many similarities and some differences. Only in case of density dis-

tributions and corresponding potentials the fields describe the same 

objects, which form the discrete distribution that underlies these 

fields. The elements of the distributions are treated as anonymous 

objects. However, it is also possible to enumerate them and allow 

each individual object to possess a series of properties. The elements 

can also share properties. These properties will characterize the dis-

tribution and the corresponding fields.  

  



10 The enumeration process 
It is not yet clear how Qpatterns will be shaped. This information 

can be derived from the requirements that are set for the correlation 

vehicle. We will start with a suggestion for the enumeration process 

that for this vehicle will lead to the wanted functionality. 

HYPOTHESIS 2: At small scales the enumeration process is gov-

erned by a Poisson process. The lateral spread that goes together 

with the low scale randomization of the interspacing plays the role 

of a binomial process. The combination of a Poisson process and a 

binomial process is again a Poisson process, but locally it has a 

lower efficiency than the original Poisson process. The binomial dis-

tribution is implemented by a continuous 3D spread function. 

 

As an example, we consider the special situation that this combi-

nation produces a 3D normal distribution. For a large number of enu-

merator generations the resulting Poisson distribution resembles a 

Gaussian distribution38. If the generated enumerators are considered 

as charge carriers, then the corresponding potential has the shape of 

an Error function divided by 𝑟. Already at a short distance from its 

center location the potential function starts decreasing with distance 

𝑟 as a 1/𝑟 function39. 

10.1 Gravity and electrostatics 

Potentials depend on the Green’s function that is used to convert 

the corresponding density distribution into a potential function. 

Apart from their Green’s function, gravity and electrostatics can be 

treated by similar equations. 

                                                           
38 http://en.wikipedia.org/wiki/Poisson's_equation#Poten-

tial_of_a_Gaussian_charge_density 
39 http://farside.ph.utexas.edu/teaching/em/lectures/node28.html 
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Description Gravity Electrostatics 

Field 𝒈 = −𝛁 φ 𝑬 = −𝛁 φ 

Force 𝑭 = 𝑚𝒈 𝑭 = 𝑄𝑬 

Gauss law 〈𝛁, g〉 = −4𝜋𝐺𝜌 
〈𝛁, E〉 =

𝑄

𝜀
 

Poisson law 

∆𝜑 = 〈 𝜵, 𝜵𝜑〉 

∆𝜑 = 4𝜋𝐺𝜌 
∆𝜑 = −

𝑄

𝜀
 

Greens func-

tion 

−𝜌(𝒓′)

|𝒓 − 𝒓′|
 

𝑄

|𝒓 − 𝒓′|
 

Single charge 

potential 
𝜑 = −

4𝜋𝐺𝑚

|𝒓|
 𝜑 =

𝑄

4𝜋𝜀|𝒓|
 

Single charge 

field 
𝑔 = −

4𝜋𝐺𝑚

|𝒓|2
𝒓 𝑬 =

𝑄

4𝜋𝜀|𝒓|2
𝒓 

Two charge 

force 
𝑭 = −

4𝜋𝐺𝑚1𝑚2

|𝒓|3
𝒓 𝑭 =

𝑄1𝑄2

4𝜋𝜀|𝒓|3
𝒓 

Mode attracting repelling 

 

The table shows that the Greens functions of both fields differ in 

sign. For the gravitation potential the Green’s function is charged 

with the local “charge” density 𝜌(𝒓′). For the electrostatic potential 

the Green’s function is charged with a (constant) electric charge 𝑄. 

The Yukawa potential40 uses a short range Green’s function:  

 
−𝜌(𝒓′)

|𝒓 − 𝒓′|
exp(−𝜇|𝒓 − 𝒓′|) 

 

 

 

                                                           
40 http://en.wikipedia.org/wiki/Yukawa_potential 

(1) 

http://en.wikipedia.org/wiki/Yukawa_potential


 

In this example we use the gravitational Green’s function.  

 

Since the items are carriers with charge 𝜌𝑖, the density distributionρf(𝐫) corre-

spond to a potential 𝜑(𝒓). Every item contributes a term 𝜑𝑖(𝒓 − 𝒓𝒊) =
−𝜌𝑖

|𝒓−𝒓𝒊|
 

𝜑(𝒓) = ∑ 𝜑𝑖(𝒓 − 𝒓𝒊)

𝑖

= ∑
−𝜌𝑖

|𝒓 − 𝒓𝒊|
𝑖

 

 

Example: If there is a static spherically symmetric Gaussian charge density 

ρg(r) =
ρ𝑐

σ3√2π
3 exp (

−r2

2σ2
) 

where ρ𝑐 is the total charge, then the solution 𝜑(𝑟) of Poisson's equation, 

∇2φ = ρg 

is given by 

φ(r) =
ρ𝑐

4πεr
erf (

r

√2σ
) =

−1

4πε
∫

ρg(𝒓′)

|𝒓 − 𝒓′|
𝑑3𝒓′ 

where 𝑒𝑟𝑓(𝑥) is the error function. 

 

Note that, for 𝑟 much greater than 𝜎, the erf function approaches unity and the 

potential 𝜑 (𝑟) approaches the point charge potential 

φ(r) ≈
−ρ𝑐

4πεr
 

as one would expect. Furthermore the 𝑒𝑟𝑓 function approaches 1 extremely 

quickly as its argument increases; in practice for 𝑟 >  3𝜎 the relative error is 

smaller than one part in a thousand. 

http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Electrical_potential


10.1.1 Bertrand’s theorem 

Now we remember Bertrand’s theorem.41 : 

Bertrand's theorem states that only two types of central force poten-

tials produce stable, closed orbits:  

(1) an inverse-square central force such as the gravita-
tional or electrostatic potential 

𝑉(𝑟) =  
−𝑘

𝑟
 

and  

(2) the radial harmonic oscillator potential 

𝑉(𝑟) =  ½ 𝑘 𝑟2 

According to this investigation it becomes acceptable to assume 

that the undisturbed shape of the Qpatterns can be characterized by 

something that comes close to a 3D Gaussian distributions. Since 

such a distribution produces the correct shape of the gravitation po-

tential, the underlying mechanism would explain the origin of cur-

vature.  

                                                           
41 http://en.wikipedia.org/wiki/Bertrand's_theorem. 

(1) 

(2) 

http://en.wikipedia.org/wiki/Central_force
http://en.wikipedia.org/wiki/Potential
http://en.wikipedia.org/wiki/Potential
http://en.wikipedia.org/wiki/Orbit_(dynamics)
http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Electrostatics
http://en.wikipedia.org/wiki/Simple_harmonic_oscillator


10.2 The internal dynamics of Qpatterns 

A Qpattern is generated in a rate of one element per progression 

step. A corresponding allocation operator that resides in the Hilbert 

space will reflect these Qtargets in its eigenspace.  

During each progression step an increment is added to the static 

potential function. This is performed by transmitting a message to 

the environment of the Qtarget. The Qtarget is the element, which is 

currently active. Depending on the discrete symmetric difference 

with the embedding continuum to which the building block couples, 

the wave is either spherical or anisotropic, or better said, it is iso-

tropic in less than three dimensions. For full 3D isotropic coupling 

Qtargets42 the message is sent in the form of a 3D tsunami-like spher-

ical wave ront . The wave folds the embedding continuum. This is 

the mechanism, which is used in order to transport the message. By 

repeating that message for every Qtarget a constant stream of mes-

sages is produced that together form a wave pattern that oscillates 

with ultra-high frequency43. If the Qpattern does not move, then at 

some distance the situation looks as if a “sine” wave is transmitted 

from a single source. If the Qpattern oscillates, then that ultra-high 

temporal frequency wave gets a lower temporal frequency amplitude 

and a phase modulation. 

The geometry of the emitted wave fronts may depend on the type 

of the potential and on the symmetry properties of the emitting 

Qtarget. 

                                                           
42 See Discrete symmetry sets. 
43 That frequency is determined by the progression step size. 



 
 

The waves curve the embedded continuum. The effect on local 

curvature diminishes with distance from the Qtargets. This effect is 

described by the corresponding potential function44. 

The sharp continuous part of the allocation function registers the 

effect on the embedding continuum and stores this data for the crea-

tion of the next version of the embedding continuum. A correspond-

ing operator that resides in the Gelfand triple will reflect the embed-

ding continuum in its eigen space. The correlation vehicle applies the 

Huygens principle for recreating the embedding continuum at every 

progression step. 

                                                           
44 See: Waves that spread information. 



10.3 Qpatterns 

10.3.1 Natal and actual Qpatterns 

The Qpattern is a dynamic building block. Qpatterns extend over 

many progression steps. A Qtarget lasts only during a single progres-

sion step. 

A Qpattern is a coherent collection of objects that are distributed 

in space by a stochastic process. It means that each Qpattern is cre-

ated differently. This coherent distribution can be described by two 

density distributions. The first one is a scalar function that describes 

the distribution of the density of the spatial locations. The second one 

describes the corresponding current density distribution. It adminis-

ters the displacement since the last element generation. The two de-

scriptions combine in a single Quaternionic Probability Amplitude 

Distribution (QPAD). The QPAD is a continuous quaternionic func-

tion. According to the hypothesis, Qpatterns of a given generation 

have a QPAD with a fixed natal shape.  

 

The distribution of discrete objects corresponds to several poten-

tial functions. For each suitable Green’s function a corresponding 

potential function exists. In this way the scalar density distribution 

correspond to a set of scalar potential functions and the current den-

sity distribution corresponds to a set of 3D vector potential functions.  

A direct conversion from density distribution to a potential func-

tion uses a dedicated Green’s function. Each suitable Green’s func-

tion gives a corresponding potential function. The reverse conversion 

is only possible when the design plan of the Qpattern is known. 

 

Each natal Qpattern corresponds to a plan. Not all enumerations 

that are required for generating the planned Qpattern must be used 

during the life of the actual Qpattern. Per progression step the gener-

ator creates only a single member of the Qpattern and that member 



is replaced in the next step by another member. At every instant of 

progression, Qpatterns contain one actual member and for the rest it 

consists of virtual members. The actual member is a location where 

an event can happen. This actual element is called Qtarget. That 

event may be the annihilation of the Qpattern. After that the genera-

tion of new elements stops. In any case at every progression instant 

at the location of the Qtarget, small contributions to the potentials of 

the Qpattern are generated by the current Qtarget.  

Each realization of a Qpattern corresponds to a micro-path that 

runs along step stones. The Qpatch may move and/or oscillate. The 

actual distribution of Qtargets spreads along the actual path of the 

building block. This actual path differs from the planned micro-path. 

The contributions to the potentials are transmitted by Qtargets at the 

halts along the actual path. 

The natal Qpattern can be described by a temporal function that 

produces a stochastic spatial location at every subsequent progres-

sion interval. 

Since the collection is generated in a rate of one element per pro-

gression step, the contributions to the potential functions are also 

generated in that rate and at the locations of the Qtargets, which form 

the current actual element. It is shown above that the potential func-

tions are generated with the help of wave fronts45 that with light 

speed move away from the locations of the elements that generated 

them.  

These wave fronts are emitted with a fixed ultra-high frequency. 

In the HBM no higher frequency exists. 

Only if the Qpattern stays fixed at a single location in an non-

curved part of the embedding continuum, then that location will see 

the generation of a virtual Qpattern that takes a shape that approaches 

                                                           
45 The isotropy of the wave front depends on the isotropy of the 

emitting Qtarget. 



the planned target distribution. It will take a huge number of progres-

sion steps to reach that condition. 

A moving Qpattern will be spread along the path of the corre-

sponding building block. 

A move of the building block may affect the life of the realizable 

part of the Qpattern46. 

10.3.2 Micro-paths 

Qpatterns are representatives of nature’s building blocks. They 

are coherent collections of lower order objects that each can be con-

sidered as a location where the building block can be. These objects 

are generated in a rate of one element per progression step. The situ-

ation can be interpreted as if the building block hops from step stone 

to step stone. These micro-movements form a micro-path in the form 

of a random string. At each arrival at a step stone the building block 

emits a message. That emission contributes to the potentials of the 

building block. The emission does not affect the natal Qpattern. 

However, it may affect the actual Qpattern. 

 

In order to stay at the same position, a step in a given direction 

will on average be followed by a step in the reverse direction. Oth-

erwise the average location will move away or the pattern will im-

plode or explode. This means that the particle moves along a micro-

path and this path is characterized by quasi-oscillations. Similarly the 

micro-path may show quasi-rotations. 

10.3.3 Qpattern history 

A Qpattern can be created and it can be annihilated. If a Qpattern 

is annihilated, then the generator stops producing new elements. 

Thus, also the generation of new potential waves will stop. However, 

                                                           
46 http://en.wikipedia.org/wiki/Particle_decay 

http://en.wikipedia.org/wiki/Particle_decay


existing potential waves will keep proceeding. The last generated 

wave closes a train of previous waves. This edge moves away with 

light speed. A previously rather “static” potential will be replaced by 

a dynamic phenomenon. The annihilation frees the identifier of the 

Qpattern and makes it available for reuse. In this way the identifiers 

of the Qpatterns refer to their virgin equivalents that were born in the 

reference Hilbert space. 

We will define “looking away” as receiving messages from dis-

tant objects. Looking away is looking back in proper time. Looking 

back as far as is possible is looking back at the virginal state of the 

historic Qpattern. Looking as far away as is possible is looking at the 

virginal state. In this way a Qpattern can be coupled both to its past 

and to its distant background. On the other side this means that the 

transmitted potential waves from this virgin state reach the current 

local Qpattern. 

The superposition of all transmitted potentials that were emitted 

in the past and that contribute via superposition to the local potential 

results in huge background potential that acts as a (curved) embed-

ding continuum (for fermions). This effect installs inertia47. 

10.3.4 Fourier transform 

A QPAD that has the form of a QPAD of a Gaussian distribution 

has a Fourier transform that also has the form of a QPAD of a Gauss-

ian distribution. However, the characteristics of the distributions will 

differ. 

The QPAD of a coupled Qpattern is compact in configuration 

space and wide spread in canonical conjugated space. 

                                                           
47 See inertia 



The Fourier transform of a Qpattern is its characteristic function48. 

It is a quaternionic function.  

10.4 Qtargets 

In fact the actual elements, called Qtargets, are represented by 

three different rational quaternions. These rational quaternions de-

fine locations or displacements relative to an embedding continuum. 

That continuum might be curved.  

 

1. The real part of the first quaternion represents pro-

gression. Its imaginary part acts as the identifier of 

the element. For each Qtarget, the first quaternion 

plays the role of the corresponding parameter. This 

also holds at zero progression value. The Qtargets 

walk through a path as a function of progression.  

2. The imaginary part of the second quaternion defines 

the location of the Qtarget in its current embedding 

continuum. Its real part specifies the local density. It 

also acts as the relevance factor of the corresponding 

Hilbert proposition.  

3. The imaginary part of the third quaternion defines the 

displacement . The discrete symmetry set of this qua-

ternion determines the “charge” of the Qtarget. The 

effective charge is set by the difference between the 

discrete symmetry set of the Qtarget and the discrete 

symmetry set of the embedding continuum. Apart 

from the discrete symmetry set this third quaternion 

                                                           
48 http://en.wikipedia.org/wiki/Characteristic_function_(proba-

bility_theory) 

http://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
http://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)


contains no new information. It contains the dis-

placement of the previous Qtarget to the current 

Qtarget. 
 

The planned and the actual distribution can be described by a 

charged carrier density distribution and a corresponding current den-

sity distribution. Via appropriate Green’s functions these density dis-

tributions correspond to a scalar potential and a corresponding vector 

potential. The potentials reflect the transmittance of the existence 

and the discrete properties of the Qtarget via ultra-high frequency 

information carrier waves. 

Since Qtargets are elements of Qpatterns and their identifier is 

also Qtarget of a Qpattern that existed at zero progression value, the 

two patterns are connected as well.  

10.5 New mathematics 

The idea that wave fronts49 implement the contribution that 

Green’s functions add to the potential functions, represents new 

mathematics. This is quite clear for the gravitational potential. The 

emitted wave folds and thus curves the embedding continuum. In this 

way curvature can be explained.  

It is less clear for other potentials. Especially the encoding of elec-

tric charge information in the emitted information is not yet properly 

established. This encoding uses the difference in discrete symmetry 

between the Qtarget and the embedding continuum50. 

                                                           
49 For anisotropic Qpatterns the message is transmitted by an ani-

sotropic wave. 
50 See elementary particle properties 



10.5.1 Waves that spread information 

A Qtarget exists during a single progression step. Even when they 

belong to the same Qpattern will subsequent Qtargets be generated 

at different locations. If the Qtarget is generated, then in the embed-

ding continuum the Qtarget corresponds to a tsunami-like wave front 

that has its source at the location of the Qtarget. After the disappear-

ance of the Qtarget the wave front keeps spreading out. The wave 

fronts that belong to preceding Qtargets and the wave fronts that be-

long to other Qpatterns will interfere with that wave front. If the 

Qpatch is stationary, then at sufficient distance it will look as if the 

waves are generated by a single source. The train of emitted wave 

fronts will resemble an ultra-high frequency oscillating wave. The 

amplitude of this oscillating wave decreases with distance from the 

source. For isotropic spherical waves, this is the reason of the contri-

bution of the term 
𝑄𝑖

|𝒓−𝒓𝒊|
 to the static potential integral. 



 

 

If an event occurs, then the generator stops generating Qtargets 

for this Qpattern in the configuration space. However the wave fronts 

that have been started will proceed spreading over the embedding 

configuration space.  

Example: Generation process with one element per progression instant. Here we use the electrostatic 

Green’s function. 

 Poisson process coupled to a binomial process 

 Binomial process implemented by a 3D spread function 

 Produces a 3D distribution 

 Which approaches a 3D Gaussian distribution 

 ρf(r) =
Q

σ3√2π
3 exp (

−r2

2σ2) 

 This corresponds to a scalar potential of the form  

φ(r) =
Q

4πεr
erf (

r

√2σ
) =

1

4πε
∫

ρf(𝒓′)

|𝒓 − 𝒓′|
𝑑3𝒓′ ≈

Q

4πεr
(𝑟 ≫ 𝜎) 

 And a vector potential of the form  

𝐐

4πεr
(𝑟 ≫ 𝜎) 

 

 Charge Q represents the discrete symmetry set difference between the carrier and the 

embedding continuum. 



When the local generator stops generating then no new wave 

fronts will be formed. The last wave front and foregoing wave fronts 

proceed spreading with light speed. 

The fact that the wave fronts keep spreading is a consequence of 

the characteristics of the correlation vehicle, which is implemented 

by the enumerator generating mechanism. That mechanism also re-

generates the embedding continuum for use in the next progression 

step. The mechanism uses the Huygens principle in order to establish 

persistence of the floating wave fronts. 

 

The scalar potential functions and vector potential functions that 

correspond to the charge and current density distributions reflect the 

transmission of the information that is transmitted by the Qtargets. 

The potential functions reveal the existence and the properties 

of the Qpattern. The potentials can be observed without affecting 

the Qpattern. 

10.5.2 Waves that shrink space 

The tsunami-like wave fronts appear to shrink space. The local 

shrinkage diminishes when the distance from the source increases. 

As a consequence, for 3D spherical information carrier waves, the 

influence diminishes as 1/r. Also this fact is a consequence of the 

actions of the correlation vehicle. 

All quaternionic quantum state functions are fields (they are qua-

ternionic probability amplitude distributions) that extend over a lim-

ited region of the embedding space. Their potentials extend over a 

part of universe that falls within the information horizon of the cor-

responding particles. When a particle annihilates, then the infor-

mation about its existence keeps spreading. However, no new infor-

mation is generated. The potential functions act as traces of 

Qpatterns. 



The tsunami-like wave front that spreads this information appears 

to shrink the space where it passes. However its influence diminishes 

with distance. For spherical waves the influence diminishes with dis-

tance r as 1/r.  

As long as a particle lives, it keeps sending these tsunami-like 

wave fronts. This might be the way that gravitation/ space curvature 

is implemented. 

10.5.3 Information carrier waves 

Information carrier wave fronts are emitted by Qtargets. The cor-

responding building block emits these wave fronts at an ultra-high 

frequency that is set by the progression step size. The wave fronts 

move with “light speed”. This speed is the highest possible speed 

that can be achieved for information transmission. Even when the 

Qtargets belong to the same Qpattern will subsequent Qtargets emit 

their information carrier wave fronts from different locations. 

 

The spread of information carrier waves is governed by the Huy-

gens principle. The correlation vehicle uses this principle in order to 

retransmit the waves at every progression step. This holds for trans-

mission in odd numbers of dimensions. For transmission in two di-

mensions the situation is more complicated. 

 

Information carrier waves pass unblocked through the embedding 

continuum. These waves are only influenced by other information 

carrier waves. Information carrier waves interfere. In that case, the 

information that they carry combines into a new information set. 

 

If the emitting building block moves, then the sources of the emit-

ted wave fronts move as well. 

If the emitting building block oscillates, then the information car-

rier wave gets an amplitude and/or phase modulation. The frequency 



of that modulation will be much lower than the ultra-high frequency 

of the carrier. 

 

A train of emitted carrier wave fronts constitute a potential field. 

The interrelation is set by an appropriate Green’s function. 

10.5.4 Spreading electric charge information 

The Qtarget also contains information about the electric charge of 

the corresponding particle. The process of spreading that information 

corresponds to the way that gravitational information is transmitted. 

In this case not the existence and local density, but the charge is 

transmitted. The charge is determined by the discrete symmetry of 

the Qtarget in comparison to the discrete symmetry of the embedding 

continuum. Only the symmetries of the imaginary parts that encode 

displacement are relevant. 

10.5.5 Huygens principle 

The correlation vehicle applies the Huygens principle. It means 

that in every progression step, every location on a wave front can be 

seen as a source of a new wave. The Huygens principle acts differ-

ently for waves that operate in different numbers of dimensions51. 

The Green’s function differs accordingly. For odd dimensions the 

mechanism works in the commonly understood way. 

 

The Huygens principle acts on ultra-high frequency waves that 

transmit the information that is contained in potential fields. The cor-

responding wave fronts proceed with light speed. 

                                                           
51 An interesting discussion is given at: http://www.math-

pages.com/home/kmath242/kmath242.htm 
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10.6 Quasi oscillations and quasi rotations 

In order to keep the distribution on average coherent in each di-

mension, any step in positive direction must be followed by a step in 

negative direction. With other words a kind of quasi oscillation takes 

place. This oscillation can be synchronous to a reference or it can be 

asynchronous. This (a)synchrony may differ per dimension. In a sim-

ilar way a quasi-rotation can exist. 

A special kind of coupling/interaction between fields can be the 

result of these induced quasi oscillations and or quasi rotations, 

where distant sources of oscillating potentials induce this coupling 

with local oscillations. 

10.7 Distant Qtargets 

The Qtargets of distant Qpatterns also send messages that encode 

their presence in tsunami-like wave fronts. These waves contribute 

to a huge local potential. This effect represents the origin of inertia52. 

Together the potentials of all Qpatterns constitute a local potential 

that can act as an embedding continuum.  

It is a bit strange that electrostatic potential plays no role in this 

effect. 

In this respect http://en.wikipedia.org/wiki/Common_inte-

grals_in_quantum_field_theory may show interesting. 

10.8 Spurious elements 

Qtargets need not be generated in coherent distributions as is the 

case with Qpatterns. Coherent distributions correspond to potential 

functions that are constructed dynamically in a large series of steps. 

In extreme cases the distribution consists of a single element that 

pops up and disappears in a single progression step. During its exist-

ence the element still produces a tsunami-like signal in the form of a 

                                                           
52 See Inertia 

http://en.wikipedia.org/wiki/Common_integrals_in_quantum_field_theory
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wave front53 that travels in the embedding continuum. Again this 

wave front causes a local curvature. In large numbers these spurious 

elements may cause a noticeable effect. 

10.9 The tasks of the correlation vehicle 

The primary task of the element generator is the generation of 

Qtargets that are part of Qpatterns. After the generation and vanish-

ing of the Qtarget the correlation vehicle takes care of the transmis-

sion of the information about the generation incident over the em-

bedding continuum in which the Qtarget was produced. This is done 

in the form of the described tsunami-like wave fronts. This is the 

second task of the correlation vehicle. When the generator stops gen-

erating Qtargets for the current Qpattern, then it does not transmit 

new information but the correlation mechanism keeps supporting the 

existing flow of information. This means that a third task of the cor-

relation mechanism is the care for the survival of the embedding con-

tinuum when the Qtargets vanish. 

 

The transmission of incident information causes space curvature. 

The sharp part of the allocation function describes the strength of the 

local space curvature. It does this via its differential which specifies 

a local metric. 

Apart from describing the curvature, the correlation mechanism 

also recreates at every progression step the corresponding embed-

ding continuum. For that purpose it uses the Huygens principle. 

                                                           
53 For anisotropic Qtargets the message is transmitted by an ani-

sotropic wave. 
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11 Geometrics 

Geometrics enters the model as soon as numerical enumerators 

are applied. These enumerators are taken from the eigenspaces of 

operators. This can happen in Hilbert logic and in the Hilbert space 

and its Gelfand triple. 

 

The geometric model applies the quaternionic Hilbert space 

model. From now on the complex Hilbert space model and the real 

Hilbert space model are considered to be abstractions of the quater-

nionic model. It means that the special features of the quaternionic 

model bubble down to the complex and real models. For example 

both lower dimensional enumeration spaces will show blur at small 

enumeration scales. Further, both models will show a simulation of 

the discrete symmetry sets that quaternionic systems and functions 

possess. This can be achieved with spinors and Dirac matrices or 

with the combination of Clifford algebras, Grassmann algebras and 

Jordan algebras54. 

The real and complex models suit in situations where multidimen-

sional phenomena can be decoupled from the dimensions in which 

they appear. 

 

At large scales the model can properly be described by the com-

plex Hilbert space model. After a sufficient number of progression 

steps, at very large scales the quaternionic model is quasi isotropic. 

We will place the reference Hilbert space at zero progression 

value. This reference Hilbert space can be a subspace of a much 

larger Hilbert space. However, in the reference Hilbert subspace a 

state of densest packaging must reside. 

                                                           
54 See: http://math.ucr.edu/home/baez/rch.pdf 
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Quaternionic numbers exist in 16 discrete symmetry sets. When 

used as enumerators, half of this set corresponds with negative pro-

gression and will not be used in this geometric model. 

As a consequence we will call the Hilbert space at zero progres-

sion value the start of the model.  

This model does not start with a Big Bang. Instead it starts in a 

state that is characterized by densest packaging of the Qpatches. This 

reference sub-model is well-ordered. 

12 Distribitions of quaternions 

12.1 Continuous quaternionic distributions 

Quaternionic distributions consist of a real scalar distribution and 

an imaginary 3D vector distribution. 

It is the sum of a symmetric distribution and an asymmetric dis-

tribution. 

The complex Fourier transform of a symmetric (complex) func-

tion is a cosine transform. It is a real function. 

The complex Fourier transform of an anti-symmetric (complex) 

function is a sine transform. It is an imaginary function. 

This cannot directly be translated to quaternionic functions. The 

simplest solution is to consider the symmetric parts and asymmetric 

parts separately. An asymmetric quaternionic function is always an-

isotropic. A symmetric function can be isotropic. 

As shown before the continuous quaternionic distributions can be 

interpreted as descriptors of the density distribution of a coherent 

distribution of discrete objects. However the potential functions that 

can be derived from coherent distributions of discrete objects are also 

quaternionic functions. In the HBM these associated potentials can 

be considered to be generated dynamically. 



12.2 RQE’s 

In principle the base vectors of the Hilbert space can be enumer-

ated by members of a countable affine space. Here we concentrate 

on a huge subspace in which the base vectors are enumerated by 

rational quaternions. The huge subspace is covered by a large num-

ber of small dedicated subspaces that all are identified by a Qpatch 

region.  

The ordering and the corresponding origin of space become rele-

vant when an observer object considers one or more observed ob-

jects. The real parts of the enumerators define progression. In con-

ventional physics progression conforms to proper time. In the HBM 

all proper time clocks are synchronized. As a consequence according 

to our model, the equivalent of proper time steps with a fixed step.  

RQE stands for Rational Quaternionic Enumerator. This lowest 

geometrical level is formed by the enumerators of a selected base of 

a selected member of the sequence of Hilbert spaces. The selected 

base vectors represent atoms of the Hilbert logic system. In this level, 

the embedding continuum plays a secondary role. The sequence 

number corresponds with the progression value in the real part of the 

value of the RQE. In principle the enumerators enumerate a previ-

ously unordered set.  

The dedicated subspaces are spanned by eigenvectors whose ei-

genvalues form the elements of Qpatterns. Qpatterns are identified 

by a Qpatch, which is the weighted center and by a Qtarget, which 

is the currently actual element. All other elements of the Qpattern 

and all other vectors of the dedicated subspace are virtual. Virtual 

means: “reserved, but currently not in use”. 

 

Two types of RQE’s exist.  



 The first type of RQE plays the role the parameter 

that via the continuous part of the allocation func-

tion determine the origins of planned Qpatterns. 

We will call these RQE’s “parameter RQE”. 

 The second type of RQE is defined relative to 

these origin RQE’s. We will call these RQE’s “rela-

tive RQE” 
 

The relative RQE’s are targets of the stochastic function that de-

fines the relative locations of the elements of the natal Qpattern. The 

relative RQE’s can be considered to be the target values of the sepa-

rate stochastic part of the allocation function. They define a natal 

Qpattern. 

 

The actual Qtarget is the image produced by the total allocation 

function of the parameter RQE. The total allocation function is the 

convolution of the continuous part of the allocation function and the 

stochastic part of the allocation function. It maps a parameter RQE 

onto a selected embedding continuum. For the reference Hilbert 

space its Gelfand triple delivers the reference continuum as embed-

ding continuum. For later Hilbert spaces the role of the embedding 

continuum is taken over by the superposition of one type of the po-

tentials. That potential type is the gravitation potential. 

12.2.1 Reference Hilbert space 

A zero value of the real part of an RQE indicates its role in the 

reference Hilbert space. In the reference Hilbert space the parameter 

RQE’s are well ordered and embedded in a reference continuum that 

is taken from the eigenspace of a reference operator that resides in 

the Gelfand triple of that reference Hilbert space.  



The considered huge subspace of the selected reference member 

of the sequence of Hilbert spaces represents a state of densest pack-

aging of the parameter RQE’s. This means that in this subspace of 

the selected Hilbert space a normal allocation operator exists whose 

discrete and countable eigenspace has eigenvalues that are parameter 

RQE’s, while in the Gelfand triple of this Hilbert space an allocation 

operator exists whose continuous eigenspace embeds the values of 

these parameter RQE’s in a well ordered and relative dense way. The 

relative density is limited by a lowest size of rational quaternions. 

Due to this restriction the parameter RQE-space is not afflicted 

with splits and ramifications55.  

Thus, both the parameter RQE’s and the reference continuum are 

taken from the eigenspace of a corresponding normal allocation op-

erator. These operators will be called reference operators.  

 

In the reference Hilbert space the continuous part of the allocation 

function is a unity map. The Qpatches in the reference Hilbert space 

are linear combinations of a coherent set of relative RQE’s that to-

gether with the parameter RQE of that set correspond to eigenvec-

tors, which together span the dedicated subspace. This dedicated sub-

space corresponds to a building block.  

In the reference Hilbert space the notion of an absolute RQE 

makes sense. It is the sum of a parameter RQE and a relative RQE. 

The Qpatch is the average value of all absolute RQE’s that belong to 

the building block. 

12.2.2 Later Hilbert spaces 

In each Hilbert space the planned Qpattern has its own local 

origin. In later Hilbert spaces the embedding continuum is no longer 

                                                           
55 http://en.wikipedia.org/wiki/Quaternion_algebra#Quater-

nion_algebras_over_the_rational_numbers 



flat as it is in the reference Hilbert space. Also the parameter RQE 

may have another location (has another imaginary value) than it had 

in the reference Hilbert space. With other words the parameter 

RQE’s may move.  

Still, the actual Qpatch is the average value of all target RQE’s 

that belong to the corresponding building block. The continuous part 

of the allocation function images the current parameter RQE on a 

temporary target. This temporary target is taken as the parameter of 

the stochastic part of the allocation function. This second part pro-

duces the Qtarget as a location in the selected embedding continuum. 

 

Here the selected embedding continuum is formed by superposed 

potentials and is represented by the eigenspace of a dedicated opera-

tor that resides in the Gelfand triple. The corresponding potential is 

a special type. It is the gravitation potential. 

Relative RQE’s act as target vales for elements of actual Qpat-

terns. They are target values for a corresponding parameter RQE of 

the complete allocation function. The Qpatch of the actual building 

block will become the expectation value of the Qtargets. Thus, at 

higher progression values, it no longer corresponds to the average 

value of the undistorted absolute RQE’s that characterize the natal 

Qpattern. 

 

In general, Qtargets are locations in a curved space. Only in the 

reference Hilbert space, that space is flat. 

 

HYPOTHESIS 3: At the start of the life of the considered huge 

subspace the HBM used only one discrete symmetry set for its lowest 

level of geometrical objects. This discrete symmetry set is the same 

set that characterizes the reference continuum. This situation stays 

throughout the history of the model. This set corresponds with the set 



of eigenvalues of an RQE allocation operator that resides in the ref-

erence quaternionic Hilbert space model. 

 

For each building block, in the reference Hilbert space one of the 

relative RQE’s becomes the actual element and will be called Qtar-

get. In each subsequent Hilbert space another relative RQE will be 

selected whose image becomes the Qtarget. The selection of the rel-

ative RQE occurs via a random process. 

In subsequent Hilbert spaces a new eigenvalue of the reference 

allocation operator becomes the parameter RQE of the new Qtarget 

of the building block. This goes together with the selection of a new 

relative RQE. The relative RQE will differ in a random way from the 

original relative RQE. Thus Qtargets are for a part a continuous func-

tions (℘) of the corresponding parameter RQE’s and for another  part 

the function result is blurred by a random generator function (𝒮). The 

convolution (𝒫) of the continuous function and the random generator 

function (𝒮) determines the location of the current Qtarget.  

 

𝒫 = ℘ ∘ 𝒮 

 

(𝒮) stands for stochastic spatial spread function. The assignment 

of the value of the random function (𝒮) occurs according to a given 

plan. The natal (undisturbed) result of (𝒮) is a natal Qpattern that is 

described by a quaternionic probability amplitude distribution 

(QPAD) 𝜓. A significant difference may exist between the planned 

building block and the actually realized building block. 

12.3 Potentials 

Relative RQE’s are the (relative) identifiers of the elements of a 

Qpattern. Parameter RQE’s are parameters of Qtargets. Qpatterns 

exist during a series of subsequent Hilbert spaces. They represent 

nature’s building blocks. The absolute RQE’s reside in the reference 

(1) 



Hilbert space, which occurred in the past. The real part of the RQE’s 

reflect the current progression value. The parameter RQE’s reside in 

each of the subsequent Hilbert spaces. Qpatches are linear combina-

tions of the values of elements of a Qpattern. They represent the ex-

pectation values of the Qtargets. The elements of the Qpatterns cor-

respond to base vectors of dedicated Hilbert subspaces. The Qtargets 

emit contributions to the potentials of the Qpatterns. 

 

Potentials depend on their Green’s function. Apart from that, two 

kinds of potentials exist: scalar potentials and vector potentials. Po-

tentials of the same type superpose. The potentials that possess suf-

ficient reach may together add up to huge local potentials56. Locally 

the superposition of scalar potentials constitute a curved continuum 

that can be used to embed localizable objects. This continuum in-

stalls inertia for the embedded Qpatterns. 

 

For all continuous quaternionic functions and for each discrete 

symmetry set of its parameter space, the function exists in 16 differ-

ent discrete symmetry sets for its function values. In the HBM the 

discrete symmetry set of the parameter RQE’s is fixed. The quater-

nionic potentials are continuous functions. Their superpositions con-

stitute embedding continuums. This means that for vector potentials 

also 16 different embedding continuums exist.  

Also the allocation function exists in 16 different discrete sym-

metry sets for its function values. The sharp continuous part of the 

allocation function describes an embedding continuum. The alloca-

tion function keeps its discrete symmetry set throughout its life.  

Discrete symmetry sets do not influence the scalar potentials that 

are connected to object density distributions. Thus the superposition 

of these scalar potentials constitutes a special embedding continuum. 

                                                           
56 See Inertia 



This continuum characterizes the Palestra. It is described by the 

gravitation potential field. This does not say that in the realm of the 

Palestra no other potentials play their role. 

12.4 Palestra 

The second geometric level is a curved space, called Palestra. As 

ingredients, it consists of an embedding continuum, the embedded 

Qtarget set and a sharp continuous quaternionic allocation function. 

The local curvature is defined via the differential of the continuous 

(sharp) quaternionic allocation function. The parameter space of the 

allocation function embeds the parameter RQE-set. Thus since the 

parameter RQE-set is countable, the Palestra contains a countable set 

of images of the sharp allocation function. We have called these im-

ages “local origins” of Qpatterns. The Qpatches represent the expec-

tation values of the corresponding Qtarget values. The allocation 

function exists in 16 versions. The version determines the discrete 

symmetry set of the Qpattern and of the corresponding Qtargets. 

The allocation function may include an isotropic scaling function. 

The differential of the allocation function defines an infinitesimal 

quaternionic step. In physical terms the length of this step is the in-

finitesimal coordinate time interval. The differential is a linear com-

bination of sixteen partial derivatives. It defines a quaternionic met-

ric57. The enumeration process adds a coordinate system. The 

selection of the coordinate system is arbitrary. The origin and the 

axes of this coordinate system only become relevant when the dis-

tance between locations must be handled. The origin is taken at the 

location of the current observer. The underlying space is an affine 

space. It does not have a unique origin. We only consider an enumer-

ated compartment of the affine space. 

                                                           
57 See the paragraph on the spacetime metric. 



12.5 Qpatch regions 

The third level of geometrical objects consists of a countable set 

of space patches that occupy the Palestra. We already called them 

Qpatch regions. Qpatches are expectation values of the Qtarget im-

ages of the parameter RQE’s that house in the first geometric object 

level. The set of parameter RQE’s is used for the part of the alloca-

tion function that produces the local Qpattern origins. Apart from the 

rational quaternionic value of the corresponding local origin, the dis-

crete symmetry set of that origin will be shared by all elements of the 

corresponding Qpattern. The curvature of the second level space re-

lates to the density distribution of the local origins of the Qpatterns 

and to the total energy of the corresponding Qpattern. The Qpatches 

represent the weighted centers of the locations of the regions58 where 

next level objects can be detected. The name Qpatch stands for space 

patches with a quaternionic value. The charge of the Qpatches can 

be named Qsymm, Qsymm stands for discrete symmetry set of a qua-

ternion. However, we already established that the value of the enu-

merator is also contained in the property set that forms the Qsymm 

charge. 

The enumeration problems that come with the quaternionic Hil-

bert space model indicate that the Qpatches are in fact centers of a 

fuzzy environment that houses the potential locations where the ac-

tual parameter RQE images (the Qtargets) can be found. The subse-

quent Qtargets form a micro-path. 

12.6 QPAD’s and Qtargets 

The fuzziness in the sampling of the enumerators and their images 

in the embedding continuum is described by a quaternionic proba-

bility amplitude distribution (QPAD). The squared modulus of the 

complex probability amplitude distribution (CPAD) represents the 

                                                           
58 Not the exact locations. 



probability that an image of a parameter RQE will be detected on the 

exact location that is specified by the value of the target of the blurred 

allocation function. In the QPAD this location probability is repre-

sented by the real part of the QPAD. The imaginary part describes a 

corresponding displacement probability. The real part is an object 

density distribution and the imaginary part is the associated current 

density distribution. The real part is a scalar function and the imagi-

nary part is a 3D vector function.  

 

Both a CPAD and a QPAD can describe a Qpattern. A QPAD 

gives a more complete description. 

 

A natal Qpattern is generated in a rate of one element per progres-

sions step. Thus the generator function (𝒮) is a stochastic function of 

progression. Its anchor point is the image by the continuous part (℘) 

of the allocation function (𝒫) of the selected parameter RQE. Its tar-

get domain is an embedding continuum. The natal Qtarget is one of 

the function values. Usually, the actual Qtarget is displaced with re-

spect to the natal Qtarget. 

 

A natal Qpattern is generated via a fixed statistical plan and is not 

disturbed by space curvature or a moving local origin. Since a Qpat-

tern is generated by a stochastic process, the same natal QPAD can 

correspond to different natal Qpatterns. The QPAD’s that describe 

natal Qpatterns have a flat target space in the form of a quaterni-

onic continuum.  

This natal QPAD describes the planned blur (𝜓) to the image of 

the sharp allocation function (℘). The blurred allocation function 

(𝒫) is formed by the convolution of the sharp allocation function 

(℘) with stochastic generator function (𝒮). The results of this gener-

ator function are described by the natal QPAD (𝜓) that on its turn 

describes the natal Qpattern. In this way the local form of the actually 



realized QPAD describes a deformed Qpattern. The adaptation con-

cerns the form factor and the gradual displacement of the deformed 

QPAD. The form factor may differ in each direction. It is determined 

by the local differential (𝑑℘) of the sharp allocation function (℘). 

The image of a parameter RQE that is produced by the blurred 

allocation function (𝒫) is a Qtarget. Qtargets only live during a sin-

gle progression step. Qtargets mark the location where (higher level) 

objects may be detected. In this way QPAD’s exist in two types. The 

natal QPAD type describes the undisturbed natal Qpattern. It de-

scribes a fixed plan. The second QPAD type describes the potential 

Qtargets that at a rate of one element per progression step are or will 

be59 locally generated by the blurred allocation function. That is why 

this second QPAD type is also called an actual local QPAD. 

The natal Qpattern can also be described by a function (𝒮) that 

produces a stochastic spatial location at every subsequent progres-

sion interval. That natal Qpattern describes a natal micro-path. 

The fact that Qtargets only exist during a single progression step 

means that on the instant of an event the generation of the Qpattern 

might stop or might proceed in a different mode. Only if the Qpattern 

stays untouched, a rather complete Qpattern will be generated at that 

location. When the Qpatch moves, then the corresponding actual 

Qpattern smears out. With other words the natal QPAD is a plan ra-

ther than reality. 

An event means that a Qpattern stops being generated or is gen-

erated in a different mode. Being generated means that it is coupled 

to an embedding continuum. The generator will create a relatively 

small pattern in that continuum. Coupling means that the generated 

Qpattern is coupled via its Qpatch to a mirror Qpattern that houses 

                                                           
59 Adding to the QPAD Qtargets that still have to be generated can 

be considered as an odd decision. 



in the embedding continuum. This is reflected in the coupling equa-

tion60. 

The parameter space of the blurred allocation function (𝒫) is a flat 

quaternionic continuum. The parameter RQE’s form points in that 

continuum.  

Local QPAD’s are quaternionic distributions that contain a scalar 

density distribution in their real part that describes a density distri-

bution of potential Qtargets. Further they contain a 3D vector func-

tion in their imaginary part that describes the associated current den-

sity distribution of these potential Qtargets.  

 

Continuous quaternionic distributions exist in sixteen different 

discrete spatial symmetry sets. However, the QPAD’s inherit the dis-

crete symmetry of their connected sharp allocation function. The 

Qpatterns may mingle and then the QPAD’s will superpose. How-

ever the spatial extent of Qpatterns is quite moderate. In contrast, the 

potentials of their Qtargets reach very far. Quite probably these po-

tentials will superpose. Together the potentials of distant building 

blocks form a background potential. Depending on the Green’s func-

tions, the local QPAD’s correspond to several types of quaternionic 

potential functions. These quaternionic potential functions combine 

a scalar potential and a vector potential. 

 

The QPAD’s are continuous functions. The objects that are de-

scribed by these distributions form coherent countable discrete sets. 

A Qtarget is an actually existing object. A Qpattern is a mostly 

virtual object. A natal Qpattern conforms to a plan. A QPAD may 

describe a Qpattern. In that case it describes a mostly virtual object. 

A natal QPAD describes a plan. 

                                                           
60 See coupling equation. 



12.6.1 Inner products of QPAD’s and their Qpatches 

(this section needs editing)  

Each Qpattern is a representative of a Hilbert subspace and indi-

rectly the Qpattern represents a quantum logic proposition. The cor-

responding Qpatch is represented by a linear combination of Hilbert 

base vectors and is represented by a Hilbert proposition. These base 

vectors are eigenvectors of the location operator. The coefficients are 

determined by the values of the real part of the QPAD. The Qpatch 

vector may represent the QPAD. 

Two QPAD’s 𝑎 and 𝑏 have an inner product defined by  

〈𝑎|𝑏〉 = ∫𝑎 𝑏 𝑑𝑉
𝑉

 

Since the Fourier transform ℱ preserves inner products, the Par-

seval equation holds for the inner product: 

〈𝑎|𝑏〉 = 〈ℱ𝑎|ℱ𝑏〉 = 〈𝑎̃|𝑏̃〉 = ∫ 𝑎̃ 𝑏̃ 𝑑𝑉̃
𝑉

 

QPAD’s have a norm 

|𝑎| = √〈𝑎|𝑎〉 

12.7 Blurred allocation functions 

The blurred allocation function 𝒫 has a flat parameter space that 

is formed by rational quaternions. It is the convolution of the sharp 

allocation function ℘ with a stochastic spatial spread function 𝒮 that 

generates a blur that is represented by a planned natal Qpattern and 

is described by QPAD 𝜓. The sharp allocation function ℘ has a flat 

parameter space that is formed by real quaternions. 𝜓 has rational 

quaternionic parameters. 

𝒫 = ℘ ∘ 𝒮 

℘ describes the long range variation and 𝜓 describes the short 

range variation. Due to this separation it is possible to describe the 

effect of the convolution on the actual local QPAD as a deformed 

natal QPAD that on its turn describes a natal Qpattern, where the 

(1) 

(2) 

(3) 

(1) 



form factor is controlled by the differential 𝑑℘ of the sharp alloca-

tion function. The sharp part of the allocation function specifies the 

current embedding continuum. In fact this function defines the ei-

genspace of a corresponding operator that resides in the Gelfand tri-

ple of the current Hilbert space. 

 

The planned Qpattern is the result of a Poisson process that is cou-

pled to a binomial process, while the binomial process is imple-

mented by a 3D spread function. This second part 𝒮 of the allocation 

function 𝒫 influences the local curvature. The differential 𝑑℘ of the 

first part ℘defines a quaternionic metric that describes the local spa-

tial curvature. This means that the two parts must be in concordance 

with each other. 

Fourier transforms cannot be defined properly for functions with 

a curved parameter space, however, the blurred allocation function 

𝒫 has a well-defined Fourier transform 𝒫̃, which is the product of 

the Fourier transform  ℘̃ of the sharp allocation function and the Fou-

rier transform 𝒮̃ of the stochastic spatial spread function 𝒮. 

𝒫̃ = ℘̃ × 𝒮̃ 

This corresponds to a Fourier transform 𝜓̃ of the actual local 

QPAD 𝜓 .The Fourier transform pairs and the corresponding canon-

ical conjugated parameter spaces form a double-hierarchy model. 

The Fourier transform 𝒫̃ of the blurred allocation function 𝒫 

equals the product of the Fourier transform ℘̃ of the sharp allocation 

function ℘ and the Fourier transform 𝒮̃ of the generator function 𝒮. 

16 blurred allocation functions exist that together cover all 

Qpatches. One of the 16 blurred allocation functions acts as refer-

ence. The corresponding sharp allocation function and thus the cor-

responding actual QPAD 𝜓 have the same discrete symmetry set as 

the lowest level space.  

(2) 



The fact that the blur 𝜓 mainly has a local effect makes it possible 

to treat ℘ and 𝜓 seperately61. 

12.8 Local QPAD’s and their superpositions 

The model uses Qpatterns in order to implement the fuzziness of 

the local interspacing. After adaptation of the form factor to the dif-

ferential of the sharp allocation function a local QPAD is generated. 

The non-deformed natal QPAD describes a natal Qpattern. Each 

Qpattern possess a private inertial reference frame62.  

 

The superposition of neighboring deformed local QPAD’s, even-

tually including neighboring (deformed) descriptors of the higher 

generations of the Qpatterns, forms a new QPAD. Each of the 16 

blurred allocation functions may correspond to such QPAD superpo-

sitions. 

 

Each of the natal Qpatterns extends over a restricted part of the 

embedding continuum. The probability amplitude of the elements of 

these Qpatterns quickly diminishes with the distance from their cen-

ter point63.  

 

The gravitation potential of a Qpattern extends over the whole 

embedding continuum. As a consequence superpositions of such po-

tentials may cover the whole embedding continuum. 

                                                           
61 𝜓 concerns quantum physics. ℘ concerns general relativaty. 
62 See the paragraph on inertial reference frames. 
63 See the paragraph on the enumeration process. 



12.9 Generations 

Photons and gluons correspond to a special kind of fields. They 

differ in temporal frequency from the fields that constitute the poten-

tials of particles. They can be interpreted as amplitude modulations 

of the potential generating fields. Two photon types and six64 gluon 

types exist65. 

For fermions, three generations of Qpatterns exist that have non-

zero extension and that differ in their basic form factor. This paper 

does not explain these generations.  

The generator of enumerators is for a part a random number gen-

erator. That part is implemented by a Poisson process and a subse-

quent binomial process. Generations correspond to different charac-

teristics of the enumerator generator.  

All generated Qpatterns may differ in their quasi-oscillations and 

quasi-rotations. 

  

                                                           
64 In the Standard Model gluons appear as eight superpositions of 

the six base gluons. 
65 Bertrand’s theorem indicates that under some conditions, pho-

tons and gluons might be described as radial harmonic oscillators. 



13 Coupling 

According to the coupling equation, coupling may occur because 

the two QPAD’s that constitute the coupling take the same location. 

Several reasons can be given for this coupling. The strongest reason 

is that the Qpattern generator produces two patterns that subse-

quently are coupled.  

Other reasons are: 

Coupling between Qpatterns can be achieved by coupling to each 

other’s potential functions.  

 Coupling may occur between the local Qpattern and 

the potentials of very distant Qpatterns. This kind of 

coupling causes inertia. These coupling products ap-

pear to be fermions. 

 Coupling may occur between the local Qpattern and 

the potentials of locally situated Qpatterns. These 

coupling products appear to be bosons. 
The fermion coupling uses the gravitation potential, which is a 

scalar potential. On itself this does not enforce a discrete symmetry. 

(Suggestion: That symmetry can be enforced/induced by involving 

the discrete symmetry of the parameter space and/or the discrete 

symmetry of the virgin Qpattern). 

Coupling can also occur via induced quasi oscillations and or in-

duced quasi rotations. These quasi-oscillations and quasi-rotations 

occur in the micro-paths of the Qpatterns. Because they differ in their 

discrete symmetry they may take part in a local oscillation where an 

outbound move is followed by an inbound move and vice versa66.  

For fermions coupling also occurs with the parameter RQE and 

with the historic Qpattern that belongs to this RQE. 

                                                           
66 See: Coupling Qpatterns. 



13.1 Background potential 

We use the ideas of Denis Sciama676869. 

The superposition of all real parts of potentials of distant Qpat-

terns that emit potential contributions in the form of spherical waves 

produces a uniform background potential. At a somewhat larger dis-

tance 𝑟 these individual scalar potentials diminish in their amplitude 

as 1/𝑟. However, the number of involved Qpatterns increases with 

the covered volume. Further, on average the distribution of the Qpat-

terns is isotropic and uniform. The result is a huge (real) local poten-

tial 𝛷 

𝛷 =  − ∫
𝜌̅0

𝑟
𝑑𝑉

𝑉

=  −𝜌̅0 ∫
𝑑𝑉

𝑟𝑉

= 2𝜋 𝑅2𝜌̅0 

𝜌̅ =  𝜌̅0;  𝝆̅ =  𝟎 
Apart from its dependence on the average value of 𝜌̅0, 𝛷 is a huge 

constant. Sciama relates 𝛷 to the gravitational constant 𝐺. 

𝐺 = (−𝑐2) ⁄ 𝛷 
If a local Qpattern moves relative to the universe with a uniform 

speed 𝒗, then a vector potential 𝑨 is generated.  

𝑨   = − ∫
𝒗 𝜌̅0

𝑐 𝑟
𝑑𝑉

𝑉

 

Both 𝜌̅0 and v are independent of r. The product 𝒗 𝜌̅0 represents 

a current. Together with the constant c they can be taken out of the 

integral. Thus 

𝑨 =  𝛷
𝒗

𝑐
 

Field theory learns: 

𝕰 =  −𝜵𝜱 −
𝟏

𝒄
· 𝑨̇  

If we exclude the first term because it is negligible small, we get: 

                                                           
67 http://arxiv.org/abs/physics/0609026v4.pdf  
68 http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 
69http://rmp.aps.org/abstract/RMP/v36/i1/p463_1   
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𝕰 =  −
𝛷

𝑐2
 𝒗̇ = 𝐺 𝒗̇ 

The fields 𝛷 and 𝑨 together form a quaternionic potential. How-

ever, this time the fields 𝛷 and 𝑨 do not represent the potential of a 

Qpattern. 

13.2 Interpretation 

As soon as an acceleration of a local Qpattern occurs, an extra 

component 𝑨̇ of field 𝕰 appears that corresponds to acceleration 𝒗̇.70  

In our setting the component 𝜵𝛷 of the field 𝕰 is negligible. With 

respect to this component the items compensate each other’s influ-

ence. This means that if the influenced subject moves with uniform 

speed 𝒗, then 𝕰 ≈ 0. However, a vector potential 𝑨 is present due to 

the movement of the considered local Qpattern. Any acceleration of 

the considered local item goes together with an extra non-zero 𝕰 

field. In this way the universe of particles causes inertia in the form 

of a force that acts upon the scalar potential of the accelerating item.  

The amplitude of 𝛷 says something about the number of coupled 

Qpatterns of the selected generation that exist in universe. If it is 

constant and the average interspacing grows with progression, then 

the universe dilutes with increasing progression. Also the volume of 

the reference continuum over which the integration must be done 

will increase with progression. The total energy of these coupled 

Qpatterns that is contained in universe equals: 

 

 𝐸𝑡𝑜𝑡𝑎𝑙 = √∫ |
𝜌̅0

𝑟
|

2

𝑑𝑉
𝑉

 

 

                                                           
70 See: Inertia from the coupling equation. 

(7) 
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The background potential 𝛷 is the superposition of the contribu-

tions of waves that are emitted by distant particles. The emission oc-

curred with ultra-high frequency. This is the highest frequency that 

exists in the HBM. The background potential constitutes an embed-

ding continuum.  

The enumerator generator uses the background potential as the 

embedding continuum for its embedded products. The allocation 

function describes this embedding continuum and takes care of its 

permanence. 

Fields that oscillate with a lower frequency, such as photons, are 

generated by oscillating sources and can be considered as amplitude 

modulations of the ultra-high frequency (potential) field. 

13.3 Isotropic vector potential 

The scalar background potential may be accompanied by a similar 

background vector potential that is caused by the fact that the con-

sidered volume that was investigated in order to calculate the scalar 

background potential is enveloped by a surface that delivers a non-

zero surface integral. The isotropic background potential corre-

sponds to an isotropic scaling factor. This factor was already intro-

duced in the first phases of the model. 

13.4 Quantum fluid dynamics 

13.4.1 Quaternionic nabla 

The quaternionic nabla stands for  

 

𝛻 ≝ {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} 

 

𝜓 ≝ 𝜓0 + 𝝍 

 

(1) 

(2) 



Here τ stands for the progression parameter. 
 

𝜙 = 𝛻𝜓 

 

𝜙0 = ∇0𝜓0 − 〈𝛁, 𝝍〉 
 

𝝓 = ∇0𝝍 + 𝛁𝜓0 + 𝛁 × 𝝍  

 

Is the differential equation for continuous quaternionic distribu-

tions. Rearranging shows: 

 

𝛻𝜓 = 𝜙 

 

This is the differential continuity equation. It holds for QPAD’s 

13.4.2 The differential and integral continuity equations 

Let us approach the balance equation from the integral variety of 

the balance equation. Balance equation is another name for continu-

ity equation. 

We replace 𝜓 by 𝜌,  𝜓0 by 𝜌0 and 𝝍 by 𝝆 =  𝜌0𝒗/𝑐. 

 

𝜌 ≝ 𝜌0 + 𝝆 

When 𝜌0 is interpreted as a charge density distribution, then the 

conservation of the corresponding charge71 is given by the continuity 

equation: 

 

Total change within V = flow into V + production inside V 

 

In formula this means: 

 

                                                           
71 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem 

(3a) 

(3b) 

(3c) 

(4) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Noether%27s_theorem


𝑑

𝑑𝜏
∫  𝜌0 𝑑𝑉

𝑉

= ∮ 𝒏̂𝜌0

𝒗

𝑐
 𝑑𝑆

𝑆

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

∫ ∇0𝜌0 𝑑𝑉

𝑉

= ∫〈𝛁, 𝝆〉 𝑑𝑉

𝑉

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

The conversion from formula (2) to formula (3) uses the Gauss 

theorem72. Here 𝒏̂ is the normal vector pointing outward the sur-

rounding surface S, 𝒗(𝜏, 𝒒) is the velocity at which the charge den-

sity 𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the source density inside V. 

In the above formula 𝝆 stands for 

𝝆 =  𝜌0𝒗/𝑐  
It is the flux (flow per unit area and unit time) of 𝜌0 . 

The combination of 𝜌0(𝑞) and 𝝆(𝑞) is a quaternionic skew field 

𝜌(𝑞) and can be seen as a probability amplitude distribution 

(QPAD). 𝜌 is a function of 𝑞. 

𝑞 ≝ 𝑞0 + 𝒒; 𝑞0 =  𝜏 

𝜌(𝑞)𝜌∗(𝑞) can be seen as an overall probability density distribu-

tion of the presence of the carrier of the charge. 𝜌0(𝑞) is a charge 

density distribution. 𝝆(𝑞) is the current density distribution. 

This results in the law of charge conservation:  

𝑠0(𝑞) = ∇0𝜌0(𝑞) ∓ 〈𝛁, (𝜌0(𝑞)𝒗(𝑞) + 𝛁 × 𝒂(𝑞))〉 

= ∇0𝜌0(𝑞) ∓ 〈𝛁, 𝝆(𝑞) + 𝑨(𝑞)〉 
= ∇0𝜌0(𝑞) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝑞)〉

∓ 〈𝛁, 𝒗(𝑞)〉 𝜌0(𝑞)
∓ 〈𝛁, 𝑨(𝑞)〉 

The blue colored ± indicates quaternionic sign selection through 

conjugation of the field 𝜌(𝑞). The field 𝒂(𝑞) is an arbitrary differen-

tiable vector function. 

                                                           
72 http://en.wikipedia.org/wiki/Divergence_theorem  

(3) 

(4) 

(4b) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem


〈𝛁, 𝛁 × 𝒂(𝑞)〉 = 0 

𝑨(𝑞) ≝  𝛁 × 𝒂(𝑞) is always divergence free. In the following we 

will neglect 𝑨(𝑞). 

Equation (6) represents a balance equation for charge density. 

What this charge actually is, will be left in the middle. It can be one 

of the properties of the carrier or it can represent the full ensemble 

of the properties of the carrier. 

Up to this point the investigation only treats the real part of the 

full equation. The full continuity equation runs: 

𝑠(𝑞) = ∇𝜌(𝑞) = 𝑠0(𝑞) + 𝒔(𝑞) 

=  ∇0𝜌0(𝑞) ∓ 〈𝛁, 𝝆(𝑞)〉 ± ∇0𝝆(𝜏, 𝒒)

+  𝛁𝜌0(𝜏, 𝒒) ± (±𝛁 × 𝝆(𝜏, 𝒒)) 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝑞)〉
∓ 〈𝛁, 𝒗𝒒〉 𝜌0(𝑞)   

±∇0𝒗(𝑞) + ∇0𝜌0(𝑞) +  𝛁𝜌0(𝑞) 

±(±(𝜌0(𝑞) 𝛁 × 𝒗(𝑞) − 𝒗(𝑞)

× 𝛁𝜌0(𝑞)) 

𝑠0(𝑞) = 2∇0𝜌0(𝑞) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝑞)〉 ∓ 〈𝛁, 𝒗(𝑞)〉 𝜌0(𝑞) 

𝒔(𝑞) = ±∇0𝒗(𝑞) ±  𝛁𝜌0(𝑞) 

± (±(𝜌0(𝑞) 𝛁 × 𝒗(𝑞) − 𝒗(𝑞) × 𝛁𝜌0(𝑞))) 

The red sign selection indicates a change of handedness by chang-

ing the sign of one of the imaginary base vectors. Conjugation also 

causes a switch of handedness. It changes the sign of all three imag-

inary base vectors. 

In its simplest form the full continuity equation runs: 

𝑠(𝑞) = ∇𝜌(𝑞) 

Thus the full continuity equation specifies a quaternionic distri-

bution 𝑠 as a flat differential ∇𝜌. 

When we go back to the integral balance equation, then holds for 

the imaginary parts: 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 



𝑑

𝑑𝜏
∫ 𝝆 𝑑𝑉

𝑉

= − ∮𝒏̂𝜌0 𝑑𝑆
𝑆

− ∮𝒏̂ × 𝝆 𝑑𝑆
𝑆

+ ∫ 𝒔 𝑑𝑉

𝑉

 

∫ ∇0 𝝆 𝑑𝑉

𝑉

= − ∫ 𝛁𝜌0 𝑑𝑉

𝑉

− ∫ 𝛁 × 𝝆 𝑑𝑉

𝑉

+ ∫ 𝒔 𝑑𝑉

𝑉

 

For the full integral equation holds: 
𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮𝒏̂𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

Here 𝒏̂ is the normal vector pointing outward the surrounding sur-

face S, 𝒗(𝑞) is the velocity at which the charge density 𝜌0(𝑞) enters 

volume V and 𝑠0 is the source density inside V. In the above formula 

𝜌 stands for 

𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

It is the flux (flow per unit of area and per unit of progression) of 

𝜌0 . 𝜏 stands for progression (not coordinate time).  

(13) 

(14) 

(15) 

(16) 



13.5 The coupling equation 

The coupling equation is a special form of the continuity equation. 

𝜓 is a normalized quaternionic distribution. 

〈𝜓|𝜓〉 = ∫|𝜓|2 𝑑𝑉 =
𝑉

1 

𝛻𝜓 = 𝜙 

We also normalize 𝜙 by dividing a by a real factor m 

𝜙 = 𝑚 𝜑 

〈𝜑|𝜑〉 = ∫ |𝜑|2 𝑑𝑉 = 1
𝑉

 

This results in the coupling equation, which holds for coupled 

field pairs {𝜓, 𝜑} 

〈𝜙|𝜙〉 = ∫ |𝜙|2 𝑑𝑉 =
𝑉

𝑚2 

〈𝛻𝜓|𝛻𝜓〉 = ∫|𝛻𝜓|2 𝑑𝑉 =
𝑉

𝑚2 

This equation does not depend on 𝜑, thus it also holds for com-

posites. The coupling equation reads: 

𝛻𝜓 = 𝑚 𝜑 

The quaternionic format of the Dirac equation for the electron is 

a special form of the coupling equation. 

𝛻𝜓 = 𝑚 𝜓∗ 

The coupling equation appears to hold for elementary particles 

and simple composite particles. For anti-particles hold. 

(𝛻𝜓)∗ = 𝑚 𝜑∗ 

Due to the fact that the parameter space is not conjugated, equa-

tion (9) differs from equation (7). 

The quaternionic format of the Dirac equation for the positron is 

a special form of the coupling equation for anti-particles. 

(𝛻𝜓)∗ = 𝑚 𝜓 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(11) 



13.6 Energy 

This makes |𝜙| to the distribution of the local energy and 𝑚 to 

the total energy of the quantum state function. The coupling equation 

can be split in a real equation and an imaginary equation.  

𝛻0𝜓0 − 〈𝜵, 𝝍〉  = 𝑚 𝜑0 
𝛻0𝝍 + 𝜵𝜓0  + 𝜵 × 𝝍 = 𝑚 𝝋 

Bold characters indicate imaginary quaternionic distributions and 

operators. Zero subscripts indicate real distributions and operators.  

The quantum state function of a particle moving with uniform 

speed 𝒗 is given by 

𝜓 =  𝜒 +  𝜒0 𝒗 

 𝜒0 =  𝜓0  
Here 𝜒 stands for quantum state function of the particle at rest.  

We introduce new symbols. In order to indicate the difference 

with Maxwell’s equations we use Gotic capitals: 

𝕰 = 𝛻0𝝍 +  𝜵𝜓0 

𝕭 = 𝜵 × 𝝍 

The local field energy 𝐸 is given by: 

𝐸 = |𝜙| = √𝜙0𝜙0 + 〈𝝓, 𝝓〉  

= √𝜙0𝜙0 + 〈𝕰, 𝕰〉 + 〈𝕭, 𝕭〉 + 𝟐〈𝕰, 𝕭〉 
The total energy is given by the volume integral 

𝐸𝑡𝑜𝑡𝑎𝑙 = √∫|𝜙|2 𝑑𝑉
𝑉

 

In a static situation the local energy 𝐸 reduces to 

𝐸𝑠𝑡𝑎𝑡𝑖𝑐 = √〈𝜵, 𝝍〉2 + 〈𝕰, 𝕰〉 + 〈𝕭, 𝕭〉 

13.6.1 Fourier transform 

In a region of little or no space curvature the Fourier transform of 

the local QPAD can be taken. 

𝛻𝜓 = 𝜙 = 𝑚 𝜑 

(1 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(1) 



ℳ𝜓̃ = 𝜙̃ = 𝑚 𝜑̃ 

〈𝜓̃|ℳ𝜓̃〉 =  𝑚 〈𝜓̃|𝜑̃〉 
ℳ = ℳ0 + 𝞛  

ℳ0𝜓̃0 − 〈𝞛, 𝝍̃〉  = 𝑚 𝜑̃0 

ℳ0𝝍 + 𝞛𝜓̃0  + 𝞛 × 𝝍̃  = 𝑚 𝝋̃ 

∫𝜙̃2 𝑑𝑉̃ =
𝑉

∫(ℳ𝜓̃)
2

 𝑑𝑉̃ =
𝑉

𝑚2 

In general |𝜓̃〉 is not an eigenfunction of operator ℳ. That is only 

true when |𝜓̃〉 and |𝜑̃〉 are equal. For elementary particles they are 

equal apart from their difference in discrete symmetry. 

  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



14 Elementary particles 

Elementary particles are constituted by the coupling of two 

QPAD’s that belong to the same generation. One of the QPAD’s is 

the quantum state function of the particle. The other QPAD can be 

interpreted to implement inertia. Apart from their sign flavors these 

constituting QPAD’s form the same quaternionic distribution. How-

ever, the sign flavor may differ and their progression must have the 

same direction. It means that the density distribution is the same, but 

the signs of the flows of the concerned objects differ between the two 

distributions. The second QPAD only simulates a Qpattern. It repre-

sents the coupling of the quantum state function to the embedding 

continuum, which is used in constructing the potentials of the parti-

cle. Coupling of elementary particles is governed by a special cou-

pling equation  

The quantum state function is a mostly virtual distribution. Only 

one element is actual. The second QPAD is completely virtual. 

The coupling uses pairs {𝜓𝑥 , 𝜓𝑦} of two sign flavors of the same 

basic Qpattern and its corresponding QPAD, which is indicated by 

𝜓⓪. The special coupling equation runs: 

𝛻𝜓𝑥 = 𝑚 𝜓𝑦  
Corresponding anti-particles obey 

(𝛻𝜓𝑥)∗ = 𝑚 (𝜓𝑦)∗ 
As claimed above, coupling (also) occurs by embedding the mes-

sage waves in the potential(s) of other particles. 

In this specification the form of the quaternionic Dirac equations 

play a significant, but at the same time a very peculiar role. The fact 

that 𝜓𝑥 and 𝜓𝑦  must be equal apart from a discrete symmetry differ-

ence is very strange and it is highly improbable that this strong rela-

tion is constituted by accident. On the other hand it is known that the 

step stones couple to the embedding continuum. Two different types 

(1) 

(2) 



of this embedding continuum exists. The first embedding continuum 

is formed by the superposition of the potentials of distant particles. 

This type of binding produces fermions. The second embedding con-

tinuum is formed by the superposition of the potentials of local par-

ticles. This type of binding produces bosons. 

It appears as if the correlation mechanism creates two rather than 

one distribution of step stones in which the descriptor of the first one 

plays the role of the quantum state function, while the descriptor of 

the second one plays the role of a mirror that has the sign flavor of 

the embedding continuum. 

If the first Qpattern oscillates, then the second Qpattern oscillates 

asynchronous or partly in synchrony. This situation may differ per 

dimension. This results in 64 elementary particle types and 64 anti-

particle types. Besides of that exist 8 oscillating potential types.  

The coupling has a small set of observable properties:  

 coupling strength,  

 electric charge,  

 color charge and  

 spin.  
Due to the fact that the enumerator creation occurs in configura-

tion space, the coupling affects the local curvature of the involved 

Palestras.  

Qpattern QPAD’s that belong to the same generation have the 

same shape. This is explained in the paragraph on the enumeration 

process. The difference between the coupling partners resides in the 

discrete symmetry sets. Thus, the properties of the coupled pair are 

completely determined by the sign flavors of the partners. 

HYPOTHESIS 4: If the quaternionic quantum state function of 

an elementary particle couples to an embedding continuum that is 

formed by distant particles, then the particle is a fermion, otherwise 



it is a boson. The quantum state functions of anti-particles are cou-

pled to canonical conjugates of the corresponding embedding con-

tinuums.  

 

The fact that for fermions both the reference continuum and the 

reference enumerator set play a crucial role may indicate that the 

Pauli principle is based on this fact. 

This paper does not give an explanation for the influence on the 

spin by the fact that the quantum state function is connected to an 

isotropic or an anisotropic Qpattern.  

Photons and gluons are not coupled. They modulate the ultra-

high frequency fields that constitute particle potentials. 

In the standard model the eight gluons are constructed from su-

perpositions of the six base gluons. 

14.1 Reference frames 

Each Qpattern possesses a reference frame that represents its cur-

rent location, its orientation and its discrete symmetry. The reference 

frame corresponds with a Cartesian coordinate system that has a 

well-defined origin. Reference frames of different Qpatterns have a 

relative position. A Qpattern does not move with respect to its own 

reference frame. However, reference frames of different Qpatterns 

may move relative to each other. The reference frames reside in an 

affine space. Interaction can take place between reference frames 

that reside in different HBM pages and that are within the range of 

the interaction speed. Within the same HBM page no interaction is 

possible. Interaction runs from a reference frame to a frame that lays 

in the future of the sender. 

Coupling into elementary particles puts the origins of the refer-

ence frames of the coupled Qpatterns at the same location. At the 

same location reference frames are parallel. That does not mean that 

the axes have the same sign. 



14.2 Coupling Qpatterns 

This section uses the fact that coupling is caused by interfering 

with the embedding continuum. Fermions couple to the embedding 

continuum that is formed by the superposition of the potentials of 

distant particles. Bosons couple to the embedding continuum that is 

formed by the superposition of the potentials of local particles. 

The coupling is represented by pairs {𝜓𝑥 , 𝜓𝑦} of two sign flavors 

of the same basic QPAD 𝜓⓪. Thus the corresponding coupling 

equation runs: 

𝛻𝜓𝑥 = 𝜓𝑦  

The corresponding anti-particles obey 

(𝛻𝜓𝑥)∗ = 𝑚 (𝜓𝑦)∗ 
The partial anti-phase couplings must use different sign flavors.  

 

The coupling and its effect on local curvature is treated in the sec-

tion on the enumeration process. 

  

(1) 

(2) 



In the figure below 𝜓⓪ and color N act as the reference sign fla-

vor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.3 Elementary particle properties 

Elementary particles retain their discrete properties when they are 

contained in composite particles. 

 
Figure 2: Sign flavors 

 

 

Eight sign flavors  

(discrete symmetries) 

Colors N, R, G, B, R̅, G̅, B̅, W 

Right or Left handedness R,L 



14.3.1 Spin 

HYPOTHESIS 5: The size of the spin relates to the fact whether 

the coupled Qpattern is the reference Qpattern. The reference Qpat-

tern QPAD has the reference sign flavor 𝜓⓪. 

 

Each generation has its own reference Qpattern. Fermions couple 

to the reference Qpattern. Fermions have half integer spin. Bosons 

have integer spin.  

The spin of a composite equals the sum of the spins of its compo-

nents. 

14.3.2 Electric charge 

HYPOTHESIS 6: Electric charge depends on the difference and 

direction of the imaginary base vectors for the Qpattern pair. Each 

sign difference stands for one third of a full electric charge. Further 

it depends on the fact whether the handedness differs. If the handed-

ness differs then the sign of the count is changed as well.  

 

The electric charge of a composite is the sum of the electric charge 

of its components. 

14.3.3 Color charge 

HYPOTHESIS 7: Color charge is related to the direction of the 

anisotropy of the considered Qpattern with respect to the reference 

Qpattern. The anisotropy lays in the discrete symmetry of the imag-

inary part. The color charge of the reference Qpattern is white. The 

corresponding anti-color is black. The color charge of the coupled 

pair is determined by the colors of its members.  

 



All composite particles are black or white. The neutral colors 

black and white correspond to Qpatterns that are isotropic with re-

spect to the reference sign flavor. 

Currently, color charge cannot be measured. In the Standard 

Model the existence of color charge is derived via the Pauli principle. 

14.3.4 Mass 

Mass is related to the internal energy of the Qpattern. More pre-

cisely stated, mass is related to the square root of the volume integral 

of the square of the local field energy 𝐸2 = |𝛻𝜓|2. Any internal ki-

netic energy is included in 𝐸.  

𝑚2 = 〈𝛻𝜓|𝛻𝜓〉 = ∫|𝛻𝜓|2 𝑑𝑉
𝑉

 

The same mass rule holds for composite particles. The fields of 

the composite particles are dynamic superpositions of the fields of 

their components. 

  

(1) 



14.4 Elementary object samples 

With these ingredients we can look for agreements with the stand-

ard model. It appears that the coverage is (over)complete. The larger 

diversity of this HBM table appears to be not (yet) measurable. 

For the same generation, the real parts of the QPAD’s (that con-

tain the scalar density distribution) are all born the same way! In this 

way the Qpatterns become micro states.  

Elementary particles are represented by couplings of two QPAD’s 

that may differ in their discrete symmetries. The differences between 

the discrete symmetries determine the discrete properties of the par-

ticle. 

14.4.1 Photons and gluons 

Photons and gluons modulate the ultra-high frequency fields that 

constitute particle potentials. Once emitted, they flow freely. When 

the potential emitting particle oscillates, the photons or particle. 

When the potential emitting potentials annihilate, then the potentials 

keep spreading and flee from their original source. In that way spe-

cial kinds of photons and gluons are created. 

In the standard model the eight gluons are constructed from su-

perpositions of the six HBM base gluons. 

type s-type e-

charge 

c-

charge 

Hand-

edness 

SM 

Name 

{𝜓⑦} boson 0 N R pho-

ton 

{𝜓⓪} boson 0 W L pho-

ton 

{𝜓⑥} boson 0 R̅ R gluon 

{𝜓①} boson 0 R L gluon 

{𝜓⑤} boson 0 G̅ R gluon 

{𝜓②} boson 0 G L gluon 



{𝜓④} boson 0 B̅ R gluon 

{𝜓③} boson 0 B L gluon 

 

Only at the instant of their generation or annihilation photons and 

gluons couple to the emitter or absorber.  

Two types of photons exist. One fades away from its point of gen-

eration. The other concentrates until it reaches the absorber.  

The act of interaction can be interpreted as a Fourier transform. 

The Fourier transforms converts a distribution in configuration space 

into a distribution in its canonical conjugated space or vice versa. 

For gluons similar things occur. 

  



14.4.2 Leptons and quarks 

According to the Standard Model both leptons and quarks com-

prise three generations. They form 22 particles. Neutrinos will be 

treated separately. 

14.4.2.1 Leptons 

Pair s-

type 

e-

charge 

c-

charge 

Hand-

edness 

SM 

Name 

{𝜓⑦ , 𝜓⓪} fer-

mion 

-1 N LR elec-

tron 

{𝜓⓪ , 𝜓⑦} Anti-

fermion 

+1 W RL posi-

tron 

The generations contain the muon and tau generations of the elec-

trons. The Qpatterns quasi-oscillate asynchronous in three dimen-

sions. 

14.4.2.2 Quarks 

Pair s-

type 

e-

charge 

c-

charg

e 

Hand

edness 

SM 

Name 

{𝜓① , 𝜓⓪} fer-

mion 

-1/3 R LR down

-quark 

{𝜓⑥ , 𝜓⑦} Anti

-fer-

mion 

+1/

3 

R̅ RL Anti-

down-

quark 

{𝜓② , 𝜓⓪} fer-

mion 

-1/3 G LR down

-quark 

{𝜓⑤ , 𝜓⑦} Anti

-fer-

mion 

+1/

3 

G̅ RL Anti-

down-

quark 



{𝜓③ , 𝜓⓪} fer-

mion 

-1/3 B LR down

-quark 

{𝜓④ , 𝜓⑦} Anti

-fer-

mion 

+1/

3 

B̅ RL Anti-

down-

quark 

{𝜓④ , 𝜓⓪} fer-

mion 

+2/

3 

B̅ RR up-

quark 

{𝜓③ , 𝜓⑦} Anti

-fer-

mion 

-2/3 B LL Anti-

up-quark 

{𝜓⑤ , 𝜓⓪} fer-

mion 

+2/

3 

G̅ RR up-

quark 

{𝜓② , 𝜓⑦} Anti

-fer-

mion 

-2/3 G LL Anti-

up-quark 

{𝜓⑥ , 𝜓⓪} fer-

mion 

+2/

3 

R̅ RR up-

quark 

{𝜓① , 𝜓⑦} Anti

-fer-

mion 

-2/3 R LL Anti-

up-quark 

The generations contain the charm and top versions of the up-

quark and the strange and bottom versions of the down-quark. The 

Qpatterns quasi-oscillate asynchronous in one or two dimensions. 

14.4.2.3 Reverse quarks 

Pair s-

type 

e-

charge 

c-

charg

e 

Hand

edness 

SM 

Name 

{𝜓⓪ , 𝜓①} fer-

mion 

+1/

3 

R RL down

-r-quark 



{𝜓⑦ , 𝜓⑥} Anti

-fer-

mion 

-1/3 R̅ LR Anti-

down-r-

quark 

{𝜓⓪ , 𝜓②} fer-

mion 

+1/

3 

G RL down

-r-quark 

{𝜓⑦ , 𝜓⑤} Anti

-fer-

mion 

-1/3 G̅ LR Anti-

down-r-

quark 

{𝜓⓪ , 𝜓③} fer-

mion 

+1/

3 

B RL down

-r-quark 

{𝜓⑦ , 𝜓④} Anti

-fer-

mion 

-1/3 B̅ LR Anti-

down-

r_quark 

{𝜓⓪ , 𝜓④} fer-

mion 

-2/3 B̅ RR up-r-

quark 

{𝜓⑦ , 𝜓③} Anti

-fer-

mion 

+2/

3 

B LL Anti-

up-r-

quark 

{𝜓⓪ , 𝜓⑤} fer-

mion 

-2/3 G̅ RR up-r-

quark 

{𝜓⑦ , 𝜓②} Anti

-fer-

mion 

+2/

3 

G LL Anti-

up-r-

quark 

{𝜓⓪ , 𝜓⑥} fer-

mion 

-2/3 R̅ RR up-r-

quark 

{𝜓⑦ , 𝜓①} Anti

-fer-

mion 

+2/

3 

R LL Anti-

up-r-

quark 

The generations contain the charm and top versions of the up-r-

quark and the strange and bottom versions of the down-r-quark. The 

Qpatterns oscillate asynchronous in one or two dimensions. 



14.4.2.4 Neutrinos 

Neutrinos are fermions and have zero electric charge. They are 

leptons, but they seem to belong to a separate low-weight family of 

(three) generations. Their quantum state function couples to a QPAD 

that has the same sign-flavor. The lowest generation has a very small 

rest mass. 

type s-type e-

charge 

c-

charge 

Hand-

edness 

SM 

Name 

{𝜓⑦ , 𝜓⑦} fer-

mion 

0 NN RR neu-

trino 

{𝜓⓪ , 𝜓⓪} Anti-

fermion 

0 WW LL neu-

trino 

{𝜓⑥ , 𝜓⑥} boson? 0 R̅R̅ RR neu-

trino 

{𝜓① , 𝜓①} Anti- 

boson? 

0 RR LL neu-

trino 

{𝜓⑤ , 𝜓⑤} boson? 0 G̅G̅ RR neu-

trino 

{𝜓② , 𝜓②} Anti- 

boson? 

0 GG LL neu-

trino 

{𝜓④ , 𝜓④} boson? 0 B̅B̅ RR neu-

trino 

{𝜓③ , 𝜓③} Anti- 

boson? 

0 BB LL neu-

trino 

  



14.4.3 W-particles 

The 18 W-particles have indiscernible color mix. 𝑊+and 𝑊− are 

each other’s anti-particle. 

Pair s-type e-

charge 

c-

charge 

Hand-

edness 

SM 

Name 

{𝜓⑥, 𝜓①} boson -1 R̅R RL 𝑊− 

{𝜓①, 𝜓⑥} Anti-

boson 

+1 RR̅ LR 𝑊+ 

{𝜓⑥, 𝜓②} boson -1 R̅G RL 𝑊− 

{𝜓②, 𝜓⑥} Anti-

boson 

+1 GR̅ LR 𝑊+ 

{𝜓⑥, 𝜓③} boson -1 R̅B RL 𝑊− 

{𝜓③, 𝜓⑥} Anti-

boson 

+1 BR̅ LR 𝑊+ 

{𝜓⑤, 𝜓①} boson -1 G̅G RL 𝑊− 

{𝜓①, 𝜓⑤} Anti-

boson 

+1 GG̅ LR 𝑊+ 

{𝜓⑤, 𝜓②} boson -1 G̅G RL 𝑊− 

{𝜓②, 𝜓⑤} Anti-

boson 

+1 GG̅ LR 𝑊+ 

{𝜓⑤, 𝜓③} boson -1 G̅B RL 𝑊− 

{𝜓③, 𝜓⑤} Anti-

boson 

+1 BG̅ LR 𝑊+ 

{𝜓④, 𝜓①} boson -1 B̅R RL 𝑊− 

{𝜓①, 𝜓④} Anti-

boson 

+1 RB̅ LR 𝑊+ 

{𝜓④, 𝜓②} boson -1 B̅G RL 𝑊− 

{𝜓②, 𝜓④} Anti-

boson 

+1 GB̅ LR 𝑊+ 



{𝜓④, 𝜓③} boson -1 B̅B RL 𝑊− 

{𝜓③, 𝜓④} Anti-

boson 

+1 BB̅ LR 𝑊+ 

The Qpatterns oscillate differently in multiple dimensions. 

14.4.4 Z-candidates 

The 12 Z-particles have indiscernible color mix. 

Pair s-type e-

charge 

c-

charge 

Hand-

edness 

SM 

Name 

{𝜓②, 𝜓①} boson 0 GR LL Z 

{𝜓⑤, 𝜓⑥} Anti-

boson 

0 G̅R̅ RR Z 

{𝜓③, 𝜓①} boson 0 BR LL Z 

{𝜓④, 𝜓⑥} Anti-

boson 

0 R̅B̅ RR Z 

{𝜓③, 𝜓②} boson 0 BR LL Z 

{𝜓④, 𝜓⑤} Anti-

boson 

0 R̅B̅ RR Z 

{𝜓①, 𝜓②} boson 0 RG LL Z 

{𝜓⑥, 𝜓⑤} Anti-

boson 

0 R̅G̅ RR Z 

{𝜓①, 𝜓③} boson 0 RB LL Z 

{𝜓⑥, 𝜓④} Anti-

boson 

0 R̅B̅ RR Z 

{𝜓②, 𝜓③} boson 0 RB LL Z 

{𝜓⑤, 𝜓④} Anti-

boson 

0 R̅B̅ RR Z 

The Qpatterns oscillate differently in multiple dimensions. 

  



  



15 Fields 

15.1 Physical fields 

Elementary particles conserve their properties in higher level 

bindings. These properties are sources to fields that are exposed as 

dedicated potentials. Examples are the gravitational potential field 

and the electrostatic potential field. As soon as they leave the parti-

cle, the corresponding waves start their own life and keep flowing 

away from their source. These waves feature a fixed ultra-high fre-

quency. If the particle oscillates or annihilates, then their amplitude 

can be modulated. We know these amplitude modulations as photons 

and gluons.  

If the source stays at rest, then the waves superpose as a static 

potential. If the source oscillates, then the emitted stream oscillates 

as well. The corresponding amplitude modulation has a lower fre-

quency. 

If in a certain region a coherent distribution of property carriers 

exist, then that distribution can again be described by a QPAD. These 

fields are secondary fields. These new fields can be described by 

quaternionic distributions and when they cover large numbers of par-

ticles they can be described with quaternionic distributions that con-

tain a scalar potential and a vector potential like the QPAD's that 

describe elementary particles. 

Besides the photons and the gluons these secondary fields are the 

physical fields that we know.  

15.2 Gravitation field 

One of the physical fields, the gravitation field describes the local 

curvature of the reference Palestra. It equals the scalar potential field 

that corresponds to the real part of the quantum state function. 

Now let 𝜙 represent the quaternionic potential of a set of massive 

particles. It is a superposition of single charge potentials.  



𝜙 = 𝜙0 + 𝝓 =  ∑ 𝜙𝑖

𝑖

=  ∑ 𝑚𝑖  𝜑𝑖

𝑖

 

The particles may represent composites. In that case the mass 𝑚𝑖 

includes the internal kinetic energy of the corresponding particle. All 

massive particles attract each other. In superpositions, gravitational 

fields tend to enforce each other. 

15.3 Electromagnetic fields 

The electric charge 𝑒𝑖 is represented similarly as 𝑚𝑖, but where 

𝑚𝑖 is always positive, the electric charge 𝑒𝑖 can be either positive or 

negative. Equal signs repel, opposite signs attract each other. Super-

position of the fields must include the sign. In superpositions, arbi-

trary electronic fields tend to neutralize each other. Moving electric 

charges correspond to a vector potential and the curl of this vector 

potential corresponds to a magnetic field. 

𝜙 = 𝜙0 + 𝝓 = ∑ 𝑒𝑖  𝜑𝑖

𝑖

 

Here 𝜙 is the quaternionic electro potential. It is a superposition 

of single charge potentials 𝜙𝑖. 𝜙0 is the scalar potential. 𝝓 is the 

vector potential. The values of the electric charge sources 𝑒𝑖 are in-

cluded in 𝜙. 

𝑬 = 𝛻0𝝓 +  𝜵𝜙0 

𝑩 = 𝜵 × 𝝓 

15.4 Photons and gluons 

Photons and gluons can be described by quaternionic functions. 

In configuration space they obey 

𝛻𝜓 = 0 

𝛻2𝜓 = 0 

Ensembles of photons and/or gluons are better considered as 

QPAD’s in the canonical conjugated space of the configuration 

space. 

(1) 

(1) 

(2) 

(3) 

(1) 

(2) 



15.5 Anisotropic potentials 

15.5.1 Huygens principle for odd and even number of 
spatial dimension 

The following is taken from http://www.math-

pages.com/home/kmath242/kmath242.htm  

 

The spherically symmetrical wave equation in n spatial dimen-

sions can be written as 

 

𝜕2𝜓

𝜕𝑟2
+

𝑛 − 1

𝑟

𝜕𝜓

𝜕𝑟
=

𝜕2𝜓

𝜕𝑡2
 

 

Now suppose we define a new scalar field ϕ by the relation 

 

𝜙(𝑟, 𝑡) = 𝑟(n−1)/2𝜓(𝑟, 𝑡) 

 

This leads to 

 

𝜕2𝜙

𝜕𝑟2
+

(𝑛 − 1)(𝑛 − 3)

4𝑟2
𝜙 =

𝜕2𝜙

𝜕𝑡2
 

 

If n equals 1, meaning that we have just a single space dimension, 

then the second term on the left hand side vanishes, leaving us with 

a one-dimensional wave equation, with has the well-known general 

solution 

 

𝜓(𝑟, 𝑡) = 𝑓(𝑟 − 𝑡) + 𝑔(𝑟 + 𝑡) 

 

for arbitrary functions f and g. 

 

(1) 

(2) 

(3) 

(4) 

http://www.mathpages.com/home/kmath242/kmath242.htm
http://www.mathpages.com/home/kmath242/kmath242.htm


if n equals 3, i.e., in the case of three spatial dimensions, the spher-

ically symmetrical wave equation reduces again to a one-parametric 

wave equation, in the modified wave function 𝜙 =  𝑟𝜓. Hence the 

general solution in three space dimensions is 

 

𝜓(𝑟, 𝑡) =
𝑓(𝑟 − 𝑡)

𝑟
+

𝑔(𝑟 + 𝑡)

𝑟
 

 

The fact that this solution is divided by 𝑟 signifies that the mag-

nitude of the wave tends to drop as r increases (unlike the one-di-

mensional case, in which a wave would theoretical propagate forever 

with undiminished strength). Focusing on just the "retarded" compo-

nent of the wave, 𝑓(𝑟 − 𝑡)/𝑟, the fact that the time parameter 𝑡 ap-

pears only in the difference 𝑟 − 𝑡 implies that the (attenuated) wave 

propagates in time with a phase velocity of precisely 1, because for 

any fixed phase 𝛽 we have 𝑟 − 𝑡 = 𝛽 and so 𝑑𝑟/𝑑𝑡 for this phase 

point is 1. Consequently if 𝑓 is a single pulse, it will propagate out-

ward in a spherical shell at precisely the speed 1, i.e., on the light 

cone. Conversely, it can be shown that the wave function at any point 

in space and time is fully determined by the values and derivatives 

of that function on the past light cone of the point. 

 

Any wave equation for which this is true (i.e., for which disturb-

ances propagate at a single precise speed) is said to satisfy Huygens' 

Principle. The connection with Huygens' original statement about 

secondary wavelets is that each wavelet - with the same speed as the 

original wave - represents a tiny light cone at that point, and Huy-

gens' principle asserts that light is confined to those light cones. 

 

For n equals 2 the extra term in equation (3) does not vanish. We 

can still solve the wave equation, but the solution is not just a simple 

spherical wave propagating with unit velocity. Instead, we find that 

(5) 



there are effectively infinitely many velocities, in the sense that a 

single pulse disturbance at the origin will propagate outward on infi-

nitely many "light cones" (and sub-cones) with speeds ranging from 

the maximum down to zero. Hence if we lived in a universe with two 

spatial dimensions (instead of three), an observer at a fixed location 

from the origin of a single pulse would "see" an initial flash but then 

the disturbance "afterglow" would persist, becoming less and less in-

tense, but continuing forever, as slower and slower subsidiary 

branches arrive. 

15.5.2 The case of even spatial dimensions 

Now again start from equation (1) and try a solution in the form: 

 

𝜓(𝑟, 𝑡) = 𝑓(𝑟)𝑔(𝑡) 

 

Inserting this into the wave equation and expanding the deriva-

tives by the product rule gives 

 

𝑔
𝜕2𝑓

𝜕𝑟2
+

𝑛 − 1

𝑟
𝑔

𝜕𝑓

𝜕𝑟
= 𝑓

𝜕2𝑔

𝜕𝑡2
 

 

Dividing through by 𝑓𝑔 gives 

 

1

𝑓

𝜕2𝑓

𝜕𝑟2
+

𝑛 − 1

𝑓 𝑟

𝜕𝑓

𝜕𝑟
=

1

𝑔

𝜕2𝑔

𝜕𝑡2
 

 

This decouples into two equations 

 

𝜕2𝑓

𝜕𝑟2
+

𝑛 − 1

𝑟

𝜕𝑓

𝜕𝑟
= 𝑘 𝑓 

 

And 

(1) 

(2) 

(3) 

(3) 



 

𝜕2𝑔

𝜕𝑡2
= 𝑘 𝑔 

 

If 𝑘 is positive or zero the right hand equation gives “run-away” 

solutions for 𝑔(𝑡), whereas if 𝑘is negative we can choose scaling so 

that 𝑘 =  −1 and then 𝑔(𝑡) satisfies the simple harmonic equation, 

whose solutions include functions of the form 𝑠𝑖𝑛(𝑐𝑡) and 𝑐𝑜𝑠(𝑐𝑡). 

In that case equation (9) can be re-written in the form 

 

𝑟
𝜕2𝑓

𝜕𝑟2
+ (𝑛 − 1)

𝜕𝑓

𝜕𝑟
+ 𝑟 𝑓 = 0 

 

This is the form of a Bessel’s equation. In fact for n=2 the solution 

is the zero order Bessel function 𝐽0(𝑟).  

 

𝐽0(𝑟) =
2

𝜋
∫ sin(cosh(𝜃) 𝑟) 𝑑𝜃

∞

0

 

 

A plot of 𝐽0(𝑟) is shown below. 

  

(4) 

(5) 

(6) 



 
 

 

Inserting 𝑔(𝑡)  =  𝑠𝑖𝑛(𝑐𝑡) gives 

 

𝜓(𝑟, 𝑡) =
1

𝜋
∫ [cos(cosh(𝜃) 𝑟 − 𝑐𝑡)

∞

0

− cos(cosh(𝜃) 𝑟 + 𝑐𝑡)]𝑑𝜃 

 

Hence, instead of the solution being purely a function of 𝑟 ±  𝑐𝑡 

as in the case of odd dimensions, we find that it is an integral of 

functions of 𝑐𝑜𝑠ℎ(𝜃)𝑟 ±  𝑐𝑡. Each value of 𝜃 corresponds to a prop-

agation speed of 𝑐/𝑐𝑜𝑠ℎ(𝜃), so the speeds vary from 𝑐 down to zero. 

This signifies that the wave function at any event is correlated not 

(7) 



just with the wave function on its “light cone”, but with the wave 

function at every event inside its light cone. 

 

In two dimensions the Huygens principle corresponds to a cen-

tripetal force73 with potential 

 

𝑉 = −
ℏ

8𝑀𝑟2. 

15.5.3 Huygens principle applied 

HYPOTHESIS 8: Particles transmit waves in dimensions where 

the discrete symmetry of the quantum state function differs from the 

discrete symmetry of the embedding background.  

 

The correlation mechanism uses the Huygens principle in order to 

restore the potentials at each progression step. The Huygens princi-

ple works differently depending on the number of dimensions in 

which the waves are transmitted. 

 

The characteristics of the potentials that are emitted or absorbed 

by elementary particles are determined by the differences between 

the symmetry set of the quantum state function of the particle and 

the symmetry set of the coupled QPAD that represents the embed-

ding continuum. This difference determines whether the potentials 

act in 1, 2 or 3 dimensions. In odd dimensions the persistance of the 

potentials can be explained by the common interpretation of the Huy-

gens principle. This common interpretation is that at every point of 

each wave front new waves are generated. This does not work for 

particles that send their waves in two dimensions. This includes 

quarks, W-particles and Z-particles. The corresponding messengers 

                                                           
73 http://cds.cern.ch/record/514621/files/0108083.pdf 

(8) 

http://cds.cern.ch/record/514621/files/0108083.pdf


are gluons. For these objects the potentials also act in two dimen-

sions. In even dimensions the Huygens principle does not act in its 

normal way. 

The same conditions that determine whether waves are emitted in 

1, 2, or 3 dimensions also determine whether the particle has 1/3, 2/3 

or 3/3 integer electric charge. 

The re-emitted waves consist out of a retarded component and an 

advanced component. These components correspond to outbound in-

teractions and inbound interactions.  

15.6 Discussion 

This particular behavior of the Huygens principle for potential 

contributions that cover even dimensions might explain the excep-

tional strength of the corresponding strong force mechanism. 

 

It appears that leptons with electric charges of ±n/3 e produce n 

dimensional waves that contribute to their electrostatic potential.  

For n=3 the Green’s function is of form 1/r. 

For n=2 the Green’s function is a zero order Bessel function. 

For n=1 the Green’s function is a constant. 

 

The gravitation potential is not influenced by the discrete symme-

tries. The corresponding potential contributions are always transmit-

ted isotropic in three dimensions.  

 

The electric potential is controlled by the discrete symmetry sets. 

Depending on the resulting electric charge of the particle the electric 

potential contributions are transmitted in 1, 2 or 3 dimensions.  

 

The correlation mechanism applies the Huygens principle for the 

recreation in each progression step of the corresponding potentials. 

  



16 Inertia 
We use the ideas of Denis Sciama747576. 

16.1 Inertia from coupling equation 

In order to discuss inertia we must reformulate the coupling equa-

tion. 

𝛻𝜓 = 𝑚 𝜑 

𝛻0𝜓0 − 〈𝛻, 𝜓〉  = 𝑚 𝜑0 
𝛻0𝜓 + 𝛻𝜓0  + 𝛻 × 𝜓 = 𝕰 + 𝕭 = 𝑚 𝜑 

We will write 𝜓 as a superposition 

𝜓 =  𝜒 + 𝜒0 𝒗 

𝜓0 =  𝜒0 

𝝍 =  𝝌 + 𝜒0 𝒗 

𝜒 represents the rest state of the object. With respect to progres-

sion, it is a constant.  

𝛻0𝜒 = 0 

For the elementary particles the coupled distributions { 𝜓 , 𝜑 } 

have the same real part. 

𝜓0 =  𝜑0 

𝛻0𝝍 =  𝜒0 𝒗̇ 

Remember 

𝕰 = 𝛻0𝝍 +  𝜵𝜓0 

𝜒0 𝒗̇ = 𝕰 − 𝜵𝜓0 

In static conditions 𝒗 represents a uniform speed of linear move-

ment. However, if the uniform speed turns into acceleration 𝒗̇ ≠ 𝟎, 

then an extra field of size 𝜒0𝒗̇ is generated that counteracts the ac-

celeration. The Qpattern does not change, thus 𝜵𝜓0 does not change. 

                                                           
74 http://arxiv.org/abs/physics/0609026v4.pdf  
75 http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 
76http://rmp.aps.org/abstract/RMP/v36/i1/p463_1   

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

http://arxiv.org/abs/physics/0609026v4.pdf
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://rmp.aps.org/abstract/RMP/v36/i1/p463_1


Also 𝕭 does not change. This means that the acceleration of the par-

ticle corresponds to an extra 𝕰 field that counteracts the acceleration. 

On its turn it corresponds with a change of the coupling partner 𝜑. 

That change involves the coupling strength 𝑚. The counteraction is 

felt as inertia. 

16.2 Information horizon 

The terms in the integral continuity equation  

𝛷 = ∫ ∇𝜓 𝑑𝑉

𝑉

= ∫ 𝜙 𝑑𝑉

𝑉

 

can be interpreted as representing the influence of a local object 

onto the rest of the universe or as the influence of the rest of the 

universe onto a local object. In the second case the influence dimin-

ishes with distance and the number of influencers increases such that 

the most distant contributors together poses the largest influence. 

These influencers sit at the information horizon. In the history of the 

model they are part of the birth state of the current episode of the 

universe. This was a state of densest packaging. 

The local Qpattern that is described by 𝜓 couples to the historic 

Qpattern 𝜑 for which the RQE acts as a Qpatch and as a Qtarget. 

This historic Qpattern resided in the reference page of the HBM. 

  

(1) 



17 Gravitation as a descriptor 
The gravitation field describes the local curvature. The sharp al-

location function can act as the base of a quaternionic gravitation 

theory. The sharp allocation function has sixteen partial derivatives 

that combine in a differential. 

17.1 Palestra 

All quantum state functions share their parameter space as affine 

spaces. Due to the fact that the coupling of Qpatterns affects this pa-

rameter space, the Palestra is curved. The curvature is not static. 

With other words the Qpatches in the parameter space move and den-

sities in the distribution of these patches change. For potential ob-

servers, the Palestra is the place where everything classically hap-

pens. The Palestra comprises the whole universe. 

17.1.1 Spacetime metric 

The Palestra is defined with respect to a flat parameter space, 

which is spanned by the rational quaternions77. We already intro-

duced the existence of a smallest rational number, which is used to 

arrange interspace freedom. The specification of the set of Qpatches 

is performed by a continuous quaternionic distribution ℘(𝑥) that acts 

as a (partial) allocation function. This allocation function defines a 

quaternionic infinitesimal interval 𝑑𝑠. On its turn this definition de-

fines a metric78. 

 

                                                           
77 http://en.wikipedia.org/wiki/Quaternion_algebra#Quater-

nion_algebras_over_the_rational_numbers 
78 The intervals that are constituted by the smallest rational num-

bers represent the infinitesimal steps. Probably the hair of mathema-

ticians are raised when we treat the interspacing as an infinitesimal 

steps. I apologize for that. 



𝑑𝑠(𝑥)  = 𝑑𝑠𝜈(𝑥)𝑒𝜈 = 𝑑℘ = ∑
𝜕℘

𝜕𝑥𝜇

𝑑𝑥𝜇

𝜇=0…3

=  𝑞𝜇(𝑥)𝑑𝑥𝜇  

= ∑ ∑ 𝑒𝜈

𝜕℘𝜈

𝜕𝑥𝜇

𝑑𝑥𝜇

𝜈=0,…3

𝜇=0…3

= ∑ ∑ 𝑒𝜈𝑞𝜈
𝜇

𝑑𝑥𝜇

𝜈=0,…3

𝜇=0…3

 

 

The base 𝑒𝜈 and the coordinates 𝑥𝜇 are taken from the flat param-

eter space of ℘(𝑥). That parameter space is spanned by the quater-

nions. The definition of the quaternionic metric uses a full deriva-

tive 𝑑℘ of the (partial) allocation function ℘(𝑥). This full derivative 

differs from the quaternionic nabla 𝛻, which ignores the curvature of 

the parameter space. On its turn 𝑑℘ ignores the blur of 𝒫. 

The allocation function ℘(𝑥) may include an isotropic scaling 

function 𝑎(𝜏) that only depends on progression 𝜏. It defines the ex-

pansion/compression of the Palestra. 

𝑑𝑠 is the infinitesimal quaternionic step that results from the com-

bined real valued infinitesimal 𝑑𝑥𝜇 steps that are taken along the 𝑒𝜇 

base axes in the (flat) parameter space of ℘(𝑥). 

𝑑𝑥0 = 𝑐 𝑑𝜏 plays the role of the infinitesimal space time interval 

d𝑠𝑠𝑡
79. It is a physical invariant. 𝑑𝜏 plays the role of the proper time 

                                                           
79 Notice the difference between the quaternionic interval 𝑑𝑠 and 

the spacetime interval 𝑑𝑠𝑠𝑡 

(1) 



interval and it equals the infinitesimal progression interval. The pro-

gression step is an HBM invariant. Without curvature, 𝑑𝑡 in ‖𝑑𝑠‖  =
 𝑐 𝑑𝑡 plays the role of the infinitesimal coordinate time interval. 

𝑐2 𝑑𝑡2 =  𝑑𝑠 𝑑𝑠∗ = 𝑑𝑥0
2 + 𝑑𝑥1

2+𝑑𝑥2
2+𝑑𝑥3

2 

 

𝑑𝑥0
2 = 𝑑𝑠𝑠𝑡

2 = 𝑐2 𝑑𝑡2 − 𝑑𝑥1
2−𝑑𝑥2

2−𝑑𝑥3
2 

 

𝑑𝑥0
2 is used to define the local spacetime metric tensor. With that 

metric the Palestra is a pseudo-Riemannian manifold that has a Min-

kowski signature. When the metric is based on 𝑑𝑠2, then the Palestra 

is a Riemannian manifold with a Euclidean signature. The Palestra 

comprises the whole universe. It is the arena where everything hap-

pens. 

For the (partial) allocation function holds 

𝜕2℘

𝜕𝑥𝜇𝜕𝑥𝜈

=
𝜕2℘

𝜕𝑥𝜈𝜕𝑥𝜇

 

And similarly for higher-order derivatives. Due to the spatial con-

tinuity of the allocation function ℘(𝑥), the quaternionic metric as it 

is defined above is far more restrictive than the metric tensor that that 

is used in General Relativity: 

𝑑𝑠2 = 𝑔𝑖𝑘  𝑑𝑥𝑖  𝑑𝑥𝑘 

Still 

𝑔𝑖𝑘 = 𝑔𝑘𝑖 

17.1.2 The Palestra step 

When nature steps with universe (Palestra) wide steps dur-
ing a progression step ∆x0, then in the Palestra a quaternionic 
step ∆s℘ will be taken that differs from the corresponding flat 

step ∆𝑠𝑓 

∆𝑠𝑓 = ∆𝑥0 + 𝒊 ∆𝑥1 + 𝒋 ∆𝑥2 + 𝒌 ∆𝑥3 

∆𝑠℘ = 𝑞0∆𝑥0 + 𝑞1 ∆𝑥1 + 𝑞2 ∆𝑥2 + 𝑞3 ∆𝑥3 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 



The coefficients qμ are quaternions. The ∆xμ are steps taken in 

the (flat) parameter space of the (partial) allocation function ℘(x). 

17.1.3 Pacific space and black regions. 

If we treat the Palestra as a continuum, then the parameter space 

of the allocation function is a flat space that it is spanned by the num-

ber system of the quaternions. This parameter space gets the name 

“Pacific space”. This is the space where the RQE’s live. If in a cer-

tain region of the Palestra no matter is present, then in that region the 

Palestra is hardly curved. It means that in this region the Palestra is 

nearly equal to the parameter space of the allocation function.  

The Pacific space has the advantage that when distributions are 

converted to this parameter space the Fourier transform of the con-

verted distributions is not affected by curvature. 

In a region where the curvature is high, the Palestra step comes 

close to zero. At the end where the Palestra step reaches the smallest 

rational value, an information horizon is established. For a distant 

observer, nothing can pass that horizon. The information horizon en-

closes a black region. Inside that region the quantum state functions 

are so densely packed that they lose their identity. However, they do 

not lose their sign flavor. The result is the formation of a single quan-

tum state function that consists of the superposition of all contrib-

uting quantum state functions. The resulting black body has mass, 

electric charge and angular momentum. The quantum state function 

of a black region is quantized. Due to the fact that no information 

can escape through the information horizon, the inside of the horizon 

is obscure. No experiment can reveal its content. It does not contain 

a singularity at its center. All characteristics of the black region are 

contained in its quantum state function80. 

                                                           
80 See Cosmological hstory 



The (partial) allocation function ℘(𝑥) is a continuous quaterni-

onic distribution. Like all continuous quaternionic distributions it 

contains two fields. It is NOT a QPAD. It does not contain density 

distributions. 

17.1.4 Start of the universe. 

At the start of the universe the package density was so high that 

also in that condition only one mixed QPAD can exist. That QPAD 

was a superposition of QPAD’s that have different sign flavors. Only 

when the universe expands enough, multiple individual Qpatterns 

may have been generated. In the beginning, these QPAD’s where 

uncoupled. 



18 Modularization 
A very powerful influencer is modularization. Together with the 

corresponding encapsulation it has a very healthy influence on the 

relational complexity of the ensemble of objects on which modular-

ization works. The encapsulation takes care of the fact that most re-

lations are kept internal to the module. When relations between mod-

ules are reduced to a few types, then the module becomes reusable. 

The most Influential kind of modularization is achieved when mod-

ules can be configured from lower order modules. 

Elementary particles can be considered as the lowest level of 

modules. All composites are higher level modules. 

When sufficient resources in the form of reusable modules are 

present, then modularization can reach enormous heights. On earth 

it was capable to generate intelligent species. 

18.1 Complexity 

Potential complexity of a set of objects is a measure that is 
defined by the number of potential relations that exist be-
tween the members of that set.  

If there are n elements in the set, then there exist n*(n-1) potential 

relations. 

Actual complexity of a set of objects is a measure that is de-
fined by the number of relevant relations that exist between 
the members of the set.  
 
In human affairs and with intelligent design it takes time and 
other resources to determine whether a relation is relevant 
or not. Only an expert has the knowledge that a given rela-



tion is relevant. Thus it is advantageous to have as little irrel-
evant potential relations as is possible, such that mainly rele-
vant and preferably usable relations result.  
 
Physics is based on relations. Quantum logic is a set of axi-
oms that restrict the relations that exist between quantum 
logical propositions. Via its isomorphism with Hilbert spaces 
quantum logic forms a fundament for quantum physics. 
Classical logic is a similar set of restrictions that define how 
we can communicate logically. Like classical logic, quantum 
logic only describes static relations. Traditional quantum 
logic does not treat physical fields and it does not touch dy-
namics. However, the model that is based on traditional 
quantum logic can be extended such that physical fields are 
included as well and by assuming that dynamics is the travel 
along subsequent versions of extended quantum logics, also 
dynamics will be treated. The set of propositions of tradi-
tional quantum logic is isomorphic with the set of closed 
subspaces of a Hilbert space. This is a mathematical con-
struct in which quantum physicists do their investigations 
and calculations. In this way fundamental physics can be 
constructed. Here holds very strongly that only relevant rela-
tions have significance. 

18.2 Relationalcomplexity 

We define relational complexity as the ratio of the number 
of actual relations divided by the number of potential rela-
tions. 



18.3 Interfaces 

Modules connect via interfaces. Interfaces are used by interac-

tions. Interactions run via (relevant) relations. Relations that act 

within modules are lost to the outside world of the module. Thus in-

terfaces are collections of relations that are used by interactions. In-

bound interactions come from the past. Outbound interactions go to 

the future. Two-sided interactions are cyclic. They are either oscilla-

tions or rotations of the inter-actor. 

 

Interactions are implemented by potentials. The solutions in the 

Huygens principle cover both outgoing as well as incoming waves. 

The outbound waves implement outbound interfaces of elementary 

particles. The inbound waves implement inbound interfaces of ele-

mentary particles. 

18.4 Interface types 

Apart from the fact that they are inbound, outbound or cyclic the 

interfaces can be categorized with respect to the type of relations that 

they represent. Each category corresponds to an interface type. An 

interface that possesses a type and that installs the possibility to cou-

ple the corresponding module to other modules is called a standard 

interface.  

18.5 Modular subsystems 

Modular subsystems consist of connected modules. They need not 

be modules. They become modules when they are encapsulated and 

offer standard interfaces that makes the encapsulated system a reus-

able object. 

The cyclic interactions bind the corresponding modules together. 

Like the coupling factor of elementary particles characterizes the 

binding of the pair of Qpatterns will a similar characteristic charac-

terize the binding of modules. 



This binding characteristic directly relates to the total energy of 

the constituted sub-system. Let 𝜓 represent the renormalized super-

position of the involved distributions. 

𝛻𝜓 = 𝜙 = 𝑚 𝜑 

∫|𝜓|2 𝑑𝑉 =
𝑉

∫|𝜑|2 𝑑𝑉 = 1
𝑉

 

∫|𝜙|2 𝑑𝑉 =
𝑉

𝑚2 

Here again 𝑚 represents total energy. 

The binding factor is the total energy of the sub-system minus the 

sum of the total energies of the separate constituents. 

18.6 Relational complexity indicators 

The inner product of two Hilbert vectors is a measure of the rela-

tional complexity of the combination. 

A Hilbert vector represents a linear combination of atoms. When 

all coefficients are equal, then the vector represents an assembly of 

atoms. When the coefficients are not equal, then the vector represents 

a weighted assembly of atoms. 

For two normalized vectors |𝑎⟩ and |𝑏⟩: 
 〈𝑎|𝑎〉 = 1 

 〈𝑏|𝑏〉 = 1 

 〈𝑎|𝑏〉 = 0 means |𝑎⟩ and |𝑏⟩ are not related. 
 〈𝑎|𝑏〉 ≠ 0 means |𝑎⟩ and |𝑏⟩ are related. 
 |〈𝑎|𝑏〉| = 1 means |𝑎⟩ and |𝑏⟩ are optimally related. 

18.7 Modular actions 

Subsystems that have the ability to choose their activity can 

choose to organize their actions in a modular way. As with static re-

lational modularization the modular actions reduce complexity and 

for the decision maker it eases control. 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 
(5) 



18.8 Random design versus intelligent design 

At lower levels of modularization nature design modular struc-

tures in a stochastic way. This renders the modularization process 

rather slow. It takes a huge amount of progression steps in order to 

achieve a relatively complicated structure. Still the complexity of 

that structure can be orders of magnitude less than the complexity of 

an equivalent monolith. 

As soon as more intelligent sub-systems arrive, then these systems 

can design and construct modular systems in a more intelligent way. 

They use resources efficiently. This speeds the modularization pro-

cess in an enormous way. 

  



19 Functions that are invariant under 
Fourier transformation. 

A subset of the (quaternionic) distributions have the same 

shape in configuration space and in the linear canonical conju-

gated space. 

We call them dual space distributions. It are functions that 

are invariant under Fourier transformation81. These functions are 

not eigenfunctions. 

The Qpatterns and the harmonic and spherical oscillations 

belong to this class. 

Fourier-invariant functions show iso-resolution, that is, ∆p=

∆q in the Heisenberg’s uncertainty relation. 

19.1 Natures preference 

Nature seems to have a preference for quaternionic distribu-

tions that are invariant under Fourier transformation. 

A possible explanation is the two-step generation process, 

where the first step is realized in configuration space and the 

second step is realized in canonical conjugated space. The whole 

pattern is generated two-step by two-step. 

The only way to keep coherence between a distribution and 

its Fourier transform that are both generated step by step is to 

generate them in pairs. 

                                                           
81 Q-Formulӕ contains a section about functions that are invariant 

under Fourier transformation. 



20 Events 

20.1 Generations and annihilations  

At the instant of generation or annihilation, the enumerator gen-

erator will change its mode and the Qpattern that will be generated 

changes its mode as well. 

If the number of enumerator creations per step that contributes to 

a Qpattern is left open and if this number is larger than one, then it is 

difficult to understand that at a given instant the whole Qpattern 

changes its mode. The Qpattern has no knowledge of the mode that 

its members are in. The individual members might have that 

knowledge. In that case it is part of their charge. 

So, from now on we suppose that the Qpatterns will be generated 

such that one member, the Qtarget, is generated per progression step. 

An event then indicates that the enumeration generator changes its 

generation mode. 

For example, when a particle is annihilated the generator switches 

from generating a Qpattern in configuration space to generating an 

equivalent pattern in the canonical conjugated space. The result is 

that the pattern is no longer coupled and becomes a photon or a 

gluon. Of course the reverse procedure occurs at the generation of a 

particle. 

In the original space, the object that corresponds to the Qpattern 

is annihilated while in the new space the transformed object is gen-

erated. Since the Qpattern is generated with a Qtarget at each pro-

gression step the event has immediate consequences.  

Conservation laws govern the annihilation and creation processes. 

20.2 Emissions and absorptions 

When only a part of a composite annihilates, then a similar pro-

cess can take place. A sub-module is annihilated and either the whole 

energy is emitted in the form of radiation or only part of the energy 



is emitted and the rest is used to constitute a new particle at a lower 

energy level.  

It is also possible that a complete sub-module is emitted. This can 

be done in a two-step mode, where first the sub-module or part of it 

is converted into radiation and subsequently the sub-module is re-

generated. 

Absorption is described as the reverse process. 

20.3 Oscillating interactions 

Oscillating interactions are implemented by cyclic interfaces. 

They consist of a sequence of annihilations and generations, where 

the locations alternate. 

20.4 Movements 

The fact that a particle moves, and the fact that a Qpattern is gen-

erated with only one Qtarget per progression step means that during 

a movement the Qpattern is spread along the path of movement. 

20.5 Curvature 

When the generator operates in one space and produces there a 

compact distribution then it affects the curvature of that space. It also 

has consequences in the canonical conjugated space. However, there 

the corresponding distribution will be spread out. Its effect on space 

curvature will also be spread. As a result the effect on space curva-

ture in this canonical conjugated space will be negligible.  

  



21 Entanglement 
In the Hilbert Book Model, entanglement enters the model only 

after a huge number of extension steps. It is due to the fact that na-

ture's building blocks have a set of discrete properties that can be 

observed via indirect means, while the building block may extend 

over rather large distances. So measuring the same property at nearly 

the same instant at quite different locations will give the same result. 

When the property is changed shortly before these measurements 

were performed, then it might give the impression that an instant ac-

tion at a distance occurred, because light could not bridge these lo-

cations in the period between the two measurements. The explana-

tion is that the building block at each progression instant moves to a 

different step stone and that these step stones may lay far apart. Apart 

from the property measurements, in this process no information 

transfer needs to take place. The measurements must be done without 

affecting the building block. At each arrival at a step stone the build-

ing block transmits contributions to its potentials. If the measurement 

uses these potentials, then the building block is not affected. Accord-

ing to this explanation, at least one progression step must separate 

the two measurements. 

22 Cosmology 

22.1 Cosmological view 

Even when space was fully densely packed with matter (or an-

other substance) then nothing dynamic would happen. Only when 

sufficient interspacing comes available dynamics becomes possible. 

The Hilbert Book Model exploits this possibility. It sees black re-

gions as local returns to the original condition. 



22.2 The cosmological equations 

The integral equations that describe cosmology are: 
𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮𝒏̂𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

Here 𝒏̂ is the normal vector pointing outward the surrounding sur-

face S, 𝒗(𝜏, 𝒒) is the velocity at which the charge density 𝜌0(𝜏, 𝒒) 

enters volume V and 𝑠0 is the source density inside V. In the above 

formula 𝜌 stands for 

𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

It is the flux (flow per unit of area and per unit of progression) of 

𝜌0 . 𝑡 stands for progression (not coordinate time). 

22.3 Inversion surfaces 

An inversion surface 𝑆 is characterized by: 

∮𝒏̂𝜌 𝑑𝑆
𝑆

= 0 

22.4 Cosmological history 

The inversion surfaces divide universe into compartments. Think 

that these universe pockets contain matter that is on its way back to 

its natal state. If there is enough matter in the pocket this state forms 

a black region. The rest of the pocket is cleared from its mass content. 

Still the size of the pocket may increase. This represents the expan-

sion of the universe. Inside the pocket the holographic principle gov-

erns. The black region represents the densest packaging mode of en-

tropy. 

The pockets may merge. Thus at last a very large part of the uni-

verse may return to its birth state, which is a state of densest packag-

ing of entropy. 

(1) 

(2) 

(3) 

(1) 



Then the resulting mass which is positioned at a huge distance 

will enforce a uniform attraction. This uniform attraction will install 

an isotropic extension of the central package. This will disturb the 

densest packaging quality of that package. The motor behind this is 

formed by the combination of the attraction through distant massive 

particles, which installs an isotropic expansion and the influence of 

the small scale random localization which is present even in the state 

of densest packaging. 

This describes an eternal process that takes place in and between 

the pockets of an affine space. 

22.5 Entropy 

As a whole, universe expands. Locally regions exist where con-

traction overwhelms the global expansion. These regions are sepa-

rated by inversion surfaces. The regions are characterized by their 

inversion surface. Within these regions the holographic principle re-

sides. The fact that the universe as a whole expands means that the 

average size of the encapsulated regions increases. 

The holographic principle says that the total entropy of the region 

equals the entropy of a black region that would contain all matter in 

the region. Black regions represent regions where entropy is opti-

mally packed. 

Thus entropy is directly related to the interspacing between enu-

merators. With other words, local entropy is related to local curva-

ture. 

  



23 Recapitulation 
The model starts by taking quantum logic as its foundation. Next 

quantum logic is refined to Hilbert logic. It could as well have started 

by taking an infinite dimensional separable Hilbert space as its foun-

dation. However, in that case the special role of base vectors would 

not so easily have been brought to the front. It appears that the atoms 

of the logic system and the base vectors of the Hilbert space play a 

very crucial role in the model. They represent the lowest level of ob-

jects in nature that play the theater of our observation.  

The atoms are only principally unordered at very small “dis-

tances”. They have content. The Hilbert space offers built-in enu-

merator machinery that defines the distances and that specifies the 

content of the represented atoms. The same can be achieved in a re-

fined version of quantum logic that we call Hilbert logic. 

In fact we focus on a compartment of universe, where universe is 

an affine space. The isotropic scaling factor that was assumed in the 

early phases of the model appears to relate to mass carrying particles 

that exist at huge distances. In the considered compartment an enu-

meration process establishes a kind of coordinate system. The master 

of the enumeration process is the allocation function 𝒫. This function 

has a flat parameter space. 

𝒫 = ℘ ∘ 𝒮 

At small scales this function becomes a stochastic spatial spread 

function 𝒮 that governs the quantum physics of the model. The whole 

function 𝒫 is a convolution of a sharp part ℘ and the spread function 

𝒮. The differential of ℘ delivers a local metric. The spread function 

appears to be generated by a Poisson generator which produces Qpat-

terns. 

After a myriad of progression steps the original ordering of the 

natal state of the model is disturbed so much that the natal large and 

medium scale ordering is largely lost. However, this natal ordering 

is returning in the black regions that constitute pockets that surround 

(1) 



them in universe. When the pockets merge into a huge black region, 

the history might restart enforced by the still existing low scale ran-

domization and by the isotropic expansion factor, which is the con-

sequence of the existence of massive particles at huge distances in 

the affine space. 

The model uses a first part where elementary particles are formed 

by the representatives of the atomic propositions of the logic. 

In a second part the formation of composites is described by a 

process called modularization. In that stage, in places where suffi-

cient resources are present, the modularization process is capable of 

forming intelligent species.  

This is the start of a new phase of evolution in which the intelli-

gent species get involved in the modularization process and shift the 

mode from random design to intelligent design. Intelligent design 

runs much faster and uses its resources in a more efficient and con-

scientious way. 

  



24 Conclusion  
With respect to conventional physics, this simple model contains 

extra layers of individual objects. The most interesting addition is 

formed by the RQE’s, the Qpatches, the Qtargets and the Qpatterns. 

They represent the atoms of the quantum logic sub-model. 

The model gives an acceptable explanation for the existence of an 

(average) maximum velocity of information transfer. The two prep-

ositions: 

 Atomic quantum logic fundament 

 Correlation vehicle 
Lead to the existence of fuzzy interspacing of enumerators of the 

Hilbert space base vectors and to dynamically varying space curva-

ture when compared to a flat reference continuum. 

Without the freedom that is introduced by the interspacing fuzzi-

ness and which is used by the dynamic curvature, no dynamic behav-

ior would be observable in the Palestra. 

In the generation of the model the enumeration process plays a 

crucial role, but we must keep in mind that the choice of the enumer-

ators and therefore the choice of the type of correlation vehicle is to 

a large degree arbitrary. It means that the Palestra has no natural 

origin. It is an affine space. The choice for quaternions as enumera-

tors seems to be justified by the fact that the sign flavors of the qua-

ternions explain the diversity of elementary particles. 

Physicist that base their model of physics on an equivalent of 

the Gelfand triple which lacks a mechanism that creates the free-

dom that flexible interspaces provide, are using a model in which 

no natural curvature and fuzziness can occur. Such a model can-

not feature dynamics. 

Attaching a progression parameter to that model can only create 

the illusion of dynamics. However, that model cannot give a proper 

explanation of the existence of space curvature, space expansion, 



quantum physics or even the existence of a maximum speed of infor-

mation transfer. 

Physics made its greatest misstep after the nineteen thirties when 

it turned away from the fundamental work of Garret Birkhoff and 

John von Neumann. This deviation did not prohibit pragmatic use of 

the new methodology. However, it did prevent deep understanding 

of that technology because the methodology is ill founded. 

Doing quantum physics in continuous function spaces is possible, 

but it makes it impossible to find the origins of dynamics, curvature 

and inertia. Most importantly it makes it impossible to find the rea-

son of existence of quantum physics.  

Only the acceptance of the fact that physics is fundamentally 

countable can solve this dilemma. 

Please attack the
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1 Introduction 

This compilation starts with sections on quantum logic 

and Hilbert Logic. 

Next lists of formulas for quaternionic algebra and 

quaternionic differentials will be given. These formulae 

are for a significant part derived from Bo Thidé’s book 

“Electromagnetic Field Theory”; 

http://www.plasma.uu.se/CED/Book. I have merely con-

verted the vector formula into quaternionic format.  

 

 

Two types of quaternionic differentiation exist.  

 Flat differentiation uses the quaternionic na-

bla and ignores the curvature of the param-

eter space. 

 Full differentiation uses the allocation func-

tion ℘(𝑥) that defines the curvature of the 

parameter space. 

The text focuses at applications in quantum mechanics, 

in electrodynamics and in fluid dynamics. 
 

http://www.plasma.uu.se/CED/Book


2 Quantum logic 

Elementary particles behave non-classical. They can present 

themselves either as a particle or as a wave. A measurement of the 

particle properties of the object destroys the information that was ob-

tained from an earlier measurement of the wave properties of that 

object.  

With elementary particles it becomes clear that that nature obeys 

a different logic than our old trusted classical logic. The difference 

resides in the modularity axiom. That axiom is weakened. The clas-

sical logic is congruent to an orthocomplemented modular lattice. 

The quantum logic is congruent to an orthocomplemented weakly 

modular lattice. Another name for that lattice is orthomodular lattice. 

  

2.1 Lattices 

A subset of the axioms of the logic characterizes it as a half or-

dered set. A larger subset defines it as a lattice. 

A lattice is a set of elements 𝑎, 𝑏, 𝑐, …that is closed for the con-

nections ∩ and ∪. These connections obey: 

  

 The set is partially ordered. With each pair of elements 

𝑎, 𝑏 belongs an element 𝑐, such that 𝑎 ⊂  𝑐 and 𝑏 ⊂  𝑐.  

 The set is a ∩half lattice if with each pair of elements 𝑎, 𝑏 

an element 𝑐 exists, such that 𝑐 =  𝑎 ∩  𝑏.  
 The set is a ∪half lattice if with each pair of elements 𝑎, 𝑏 

an element 𝑐 exists, such that 𝑐 =  𝑎 ∪  𝑏.  
 The set is a lattice if it is both a ∩half lattice and a ∪half 

lattice. 

 

The following relations hold in a lattice:  



 

𝑎 ∩  𝑏 =  𝑏 ∩  𝑎 
 

(𝑎 ∩  𝑏)  ∩  𝑐 =  𝑎 ∩  (𝑏 ∩  𝑐) 
 

𝑎 ∩ (𝑎 ∪  𝑏)  =  𝑎 

 

𝑎 ∪  𝑏 =  𝑏 ∪  𝑎 
 

(𝑎 ∪  𝑏)  ∪  𝑐 =  𝑎 ∪  (𝑏 ∪  𝑐) 
 

𝑎 ∪ (𝑎 ∩  𝑏)  =  𝑎 

 

The lattice has a partial order inclusion ⊂: 

 

a ⊂ b ⇔ a ⊂ b = a 

 

A complementary lattice contains two elements 𝑛 and 𝑒 with each 

element a an complementary element a’ such that: 

 

𝑎 ∩  𝑎’ =  𝑛 
 

𝑎 ∩  𝑛 =  𝑛 
 

𝑎 ∩  𝑒 =  𝑎 

 

𝑎 ∪  𝑎’ =  𝑒 
 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(1

0) 

(11) 



𝑎 ∪  𝑒 =  𝑒 
 

𝑎 ∪  𝑛 =  𝑎 

 

An orthocomplemented lattice contains two elements 𝑛 and 𝑒 and 

with each element 𝑎 an element 𝑎” such that: 

 

𝑎 ∪  𝑎” =  𝑒 
 

𝑎 ∩  𝑎” =  𝑛 
 

(𝑎”)” =  𝑎 
 

𝑎 ⊂  𝑏 ⟺  𝑏” ⊂  𝑎” 

 

𝑒 is the unity element; 𝑛 is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

𝑎 ∩ (𝑏 ∪  𝑐)  =  (𝑎 ∩  𝑏)  ∪  ( 𝑎 ∩  𝑐) 
 

𝑎 ∪ (𝑏 ∩  𝑐)  =  (𝑎 ∪  𝑏)  ∩  (𝑎 ∪  𝑐) 

 

A modular lattice supports: 

 

(𝑎 ∩  𝑏)  ∪ (𝑎 ∩  𝑐)  
=  𝑎 ∩  (𝑏 ∪ (𝑎 ∩  𝑐)) 

 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 



A weak modular lattice supports instead: 

 

There exists an element 𝑑 such that 

 

𝑎 ⊂  𝑐 ⇔  (𝑎 ∪  𝑏) ∩  𝑐 

 =  𝑎 ∪ (𝑏 ∩  𝑐)  ∪ (𝑑 ∩  𝑐) 

 

where 𝑑 obeys: 

 

(𝑎 ∪  𝑏)  ∩  𝑑 =  𝑑 
 

𝑎 ∩  𝑑 =  𝑛 
 

𝑏 ∩  𝑑 =  𝑛 
 

[(𝑎 ⊂  𝑔) 𝑎𝑛𝑑 (𝑏 ⊂  𝑔)  ⇔  𝑑 ⊂  𝑔 

 

In an atomic lattice holds  

 

∃𝑝 𝜖 𝐿 ∀𝑥 𝜖 𝐿 {𝑥 ⊂  𝑝 ⇒  𝑥 =  𝑛} 

 

∀𝑎 𝜖 𝐿 ∀𝑥 𝜖 𝐿 {(𝑎 <  𝑥 <  𝑎 ∩  𝑝) 

 

 ⇒  (𝑥 =  𝑎 𝑜𝑟 𝑥 =  𝑎 ∩  𝑝)} 
 
𝑝 is an atom 

 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 



Both the set of propositions of quantum logic and the set of sub-

spaces of a separable Hilbert space Ң have the structure of an ortho-

modular lattice. In this respect these sets are congruent. 

In Hilbert space, an atom is a pure state (a ray spanned by a single 

vector). 

 

Classical logic has the structure of an orthocomplemented distrib-

utive modular and atomic lattice. 

Quantum logic has the structure of an orthomodular lattice. That 

is an orthocomplented weakly modular and atomic lattice. The set of 

closed subspaces of a Hilbert space also has that structure.  

2.2 Proposition 

In Aristotelian logic a proposition is a particular kind of sentence, 

one which affirms or denies a predicate of a subject. Propositions 

have binary values. They are either true or they are false. 

Propositions take forms like "This is a particle or a 

wave". In quantum logic "This is a particle." is not a 

proposition. 

In mathematical logic, propositions, also called 

"propositional formulas" or "statement forms", are 

statements that do not contain quantifiers. They 

are composed of well-formed formulas consisting 

entirely of atomic formulas, the five logical connec-

tives82, and symbols of grouping (parentheses etc.). 
                                                           

82 http://en.wikipedia.org/wiki/Logical_connective  

http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective


Propositional logic is one of the few areas of math-

ematics that is totally solved, in the sense that it 

has been proven internally consistent, every theo-

rem is true, and every true statement can be 

proved. Predicate logic is an extension of proposi-

tional logic, which adds variables and quantifiers. 

In Hilbert space a vector is either inside or not in-

side a closed subspace. A proper quantum logical 

proposition is “Vector |f> is inside state s”. 

In Hilbert space, an atomic predicate corresponds 

with a subspace that is spanned be a single vector. 

Predicates may accept attributes and quantifiers. 

The predicate logic is also called first order logic. A 

dynamic logic can handle the fact that predicates 

may influence each other when atomic predicates 

are exchanged. 

2.3 Observation 

In physics, particularly in quantum physics, a system observable 

is a property of the system state that can be determined by some se-

quence of physical operations. An observable can exist without being 

observed. This paper distinguishes between measurement data and 

observables. 



 

 The state is considered as a linear combination of ei-

genvectors of an observable. The value of an observ-

able returns the statistical expectation value of the ei-

genvalue of the observable.  

 A measurement transforms the observed state to one 

of the eigenvectors of the observable. What happens 

depends on the characteristics of the measuring 

equipment. The measurement results in one or more 

measurement data. 
 

A particle can reveal its existence in the form of potentials. Meas-

uring a potential does not affect the state of the particle. In general, 

measuring an eigenvalue will alter the state of the particle. This can 

go as far as the annihilation of the particle.  



3 Hilbert logic 

The set of propositions of traditional quantum logic is lattice iso-

morphic  with the set of closed subspaces of a separable Hilbert 

space. However there exist still significant differences between this 

logic system and the Hilbert space. This gap can be closed by a small 

expansion of the quantum logic system.  

Step 1: Require that linear combinations of atomic propositions 

also belong to the logic system. Call such propositions linear prop-

ositions. 

Step 2: introduce the notion of relational coupling between two 

linear propositions. This measure has properties that are similar to 

the inner product of Hilbert space vectors. 

Step 3: Close the subsets of the new logic system with respect to 

this relational coupling measure. 

The relational coupling measure can have values that are taken 

from a suitable division ring. The resulting logic system will be 

called Hilbert logic.  

The Hilbert logic is lattice isomorphic as well topological isomor-

phic with the corresponding Hilbert space. 

Due to this similarity the Hilbert logic will also feature opera-

tors83. 

In a Hilbert logic linear operators can be defined that have linear 

atoms as their eigen-propositions. The eigenspace of these operators 

is countable. 

Linear propositions are the equivalents of Hilbert vectors. General 

quantum logic propositions are the equivalents of (closed) subspaces 

of a Hilbert space.  

                                                           
83 The Hilbert logic does not feature dynamic operators. 



The measure of the relational coupling between two linear prop-

ositions is the equivalent of the inner product between two Hilbert 

vectors.  

In a Hilbert logic system the superposition principle holds. A lin-

ear combination of linear proposition is again a linear proposition. 

4 Hilbert space isomorphism 

The set of propositions in a quantum logic system is lattice iso-

morphic with the set of closed subspaces of an infinite dimensional 

separable Hilbert space. 

The set of Hilbert propositions in a Hilbert logic system is iso-

morphic with the set of Hilbert vectors of an infinite dimensional 

separable Hilbert space. 

The set of eigenvectors of a normal operator in Hilbert space is 

isomorphic to the set of eigen-atoms of a corresponding operator in 

the Hilbert logic system. 

A coherent distribution of objects that is represented by a QPAD 

corresponds to a set of Hilbert logic propositions that are eigen-at-

oms of a normal operator that resides in the Hilbert logic. In this way 

it also corresponds to a set of Hilbert space base vectors that are ei-

genvectors of a normal operator that resides in the Hilbert space. The 

coherent distribution corresponds to a closed subspace of the Hilbert 

space. It also corresponds to a quantum logic proposition. That quan-

tum logic proposition concerns a building block.  

The atomic Hilbert propositions that span this quantum logic 

proposition form the constituents of the building block. In this way 

it also corresponds to a set of Hilbert space base vectors that are ei-

genvectors of a normal operator that resides in the Hilbert space. The 

coherent distribution corresponds to a closed subspace of the Hilbert 

space. It also corresponds to a quantum logic proposition. That quan-

tum logic proposition concerns a building block.  



5 About quaternions 

5.1 Notation 

Let x be the position vector (radius vector, coordi-
nate vector) from the origin of the Euclidean space 

ℝ3 coordinate system to the coordinate point 

(𝑥1;  𝑥2;  𝑥3) in the same system and let |𝑥| denote 

the magnitude (‘length’) of 𝑥. Let further 
𝛼(𝒙), 𝛽(𝒙), 𝛾(𝒙), …, be arbitrary scalar fields, 
𝒂(𝒙), 𝒃(𝒙), 𝒄(𝒙), …, arbitrary vector fields, and 

𝑨(𝒙), 𝑩(𝒙), 𝑪(𝒙), …,arbitrary rank two tensor fields in 
this space.  

 

Let 𝑞 be the position relative to the origin of the 
space ℍ that is spanned by the quaternions and that 
is given by the coordinate point (𝑞0;  𝑞1;  𝑞2;  𝑞3)) and 

let |𝑞| denote the norm of 𝑞.  
 
Let * denote complex or quaternionic conjugate 

and † denote Hermitian conjugate (transposition 
and, where applicable, complex or quaternionic 
conjugation). 

5.2 Cayley-Dickson construction 

The Cayley-Dickson construction formula enable the generation 

of a quaternion from two complex numbers: 

 

p = a0 + a1k + i(b0 + b1k) 

 

(1) 



q = c0 + c1k + i(d0 + d1k) 

 

 (a, b) (c, d) = (ac – db*; a*d + cb) 

 

r = pq 

 

r0= a0c0 – a1c1 – b0d0 – b1d1 

 

rk= a0c1 – a1c0 – b0d1+ b1d0 

 

ri= a0d0 + a1d1 + b0c0 – b1c1 

 

rj= –a1d0 + a0d1 + b0c1+ b1c0 

 

5.3 Warren Smith’s numbers 

All hyper-complex numbers are based on real numbers. Two main 

construction formulas for hyper-complex numbers exist. The Cay-

ley-Dickson construction is the most widely known. The Warren-

Smith construction gives best algorithmic properties at higher di-

mensions. Until the octonions both construction formulas deliver the 

same results. 

The quaternions are the highest dimensional hyper-complex num-

bers that deliver a division ring. 

5.3.1 2n-on construction 

The 2n-ons use the following doubling formula 

 

(𝑎, 𝑏)(𝑐, 𝑑)  = (𝑎 𝑐 – (𝑏 𝑑∗)∗, (𝑏∗𝑐∗)∗

+ (𝑏∗(𝑎∗((𝑏−1)∗𝑑∗)∗)∗)∗) 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 



Up until the 16-ons the formula can be simplified to 

 
(𝑎, 𝑏)(𝑐, 𝑑)  =  (𝑎 𝑐 –  𝑏 𝑑∗, 𝑐 𝑏 + (𝑎∗ 𝑏−1) (𝑏 𝑑)) 

 
Up to the octonions the Cayley Dickson construction delivers the 

same as the 2n-on construction. From n>3 the 2n-ons are ‘nicer’. 

5.3.1.1 2n-ons 

Table of properties of the 2n­ons.  

See http://www.scorevoting.net/WarrenSmithPages/homepage/nce2.pdf.  

Type name Lose 

1­ons Reals.    

2­ons Complex 

numbers 

z* = z (the * denotes conjugating);   

the ordering properties that both {z > 0, -z > 

0, or z = 0}  

and {w > 0, z > 0 implies w + z > 0, wz > 

0}. 

4­ons Quaterni-

ons 

commutativity ab = ba;  

the algebraic closedness property that every 

univariate polynomial  equation has a root.   

8­ons Octo-

nions 

associativity ab · c = a · bc.  

16­ons (not Sed-

enions!) 

right­alternativity x · yy = xy · y;  

right­cancellation x = xy · y-1 ;  

flexibility x · yx = xy · x; left­linearity  (b + 

c)a = ba + ca;  

anti­automorphism ab = ba, (ab)-1 = b-1 a-1 ;  

left­linearity (b + c)a = ba + ca;  

continuity of the map x → xy;  

Moufang and Bol identities;  

diassociativity  

(2) 

file:///C:/web/NewWebSite/English/Science/scorevoting.net/WarrenSmithPages/homepage/nce2.pdf


32­ons  generalized-smoothness of the map x → xy;  

right­division properties that xa = b has (ge-

nerically) a solution x, and the uniqueness of 

such an x;  

the “fundamental theorem of algebra” that 

every polynomial having a unique “asymptoti-

cally  dominant monomial” must have a root; 

Trotter's formula: 

 lim
𝑛→∞

[𝑒𝑥/𝑛𝑒𝑦/𝑛]
𝑛

=  lim
𝑛→∞

(1 +
𝑥+𝑦

𝑛
)

𝑛

=

𝑒𝑥+𝑦  

 

Type Retain 

2n­ons Unique 2­sided multiplicative & additive identity elements 

1 & 0; 

Norm­multiplicativity |xy|2 = |x|2·|y|2 ;  

Norm-subadditivity |a + b| ≤ |a| + |b|; 

2­sided inverse a-1 = a*/|a|2 (a # 0);  

a** = a;  

(x ± y)* = x* ± y*; 

(a-1) -1 = a;  

(a*) -1 = (a-1)* ;  

|a|2 = |a|2 = a*a;  

Left­alternativity yy · x = y · yx;  

Left­cancellation x = y-1 · yx;  

Right­linearity a(b + c) = ab + ac;  

rth power­associativity an am = an+m ;  

Scaling s · ab = sa · b = as · b = a · sb = a · bs = ab · s (s 

real); Power­distributivity  (ran + sam)b = ran b + sam b (r, s real);  

Vector product properties of the imaginary part: ab - re(ab) 

of the product for pure­imaginary 2n­ons a,b regarded as  (2n  - 

1)­vectors; 



xa,b = a,x*b, xa,xb = |x|2·a,b and 

x,y = x*,y* 

Numerous weakened associativity, commutativity, distribu-

tivity, antiautomorphism, and Moufang and Bol  properties in-

cluding 9­coordinate ``niner'' versions of most of those proper-

ties; contains 2n-1­ons as subalgebra. 

 

5.3.1.1.1 The most important properties of 2n-ons 

If a,b,x,y are 2n-ons, n ≥ 0, and s and t are scalars (i.e. all coordi-

nates are 0 except the real coordinate) then 

unit: A unique 2n-on 1 exists, with 1·x = x·1 = x. 

zero: A unique 2n-on 0 exists, with 0 + x = x + 0 = x and 0·x = 

x·0 = 0. 

additive properties: x+y = y+x, (x+y)+z = x+(y+z); 

−x exists with x + (−x) = x − x = 0. 

norm: |x|2 = xx* = x*x. 

norm-multiplicativity: |x|2·|y|2 = |x·y|2. 

scaling: s · x·y = s·x · y = x·s · y = x · s·y = x · y·s. 

weak-linearity: (x + s)·y = x·y + s·y and x·(y + s) = x·y + x·s. 

right-linearity: x·(y + z) = x·y + x·z. 

inversion: If x ≠ 0 then a unique x-1 exists, obeying x-1·x = x·x-1 

= 1. It is x-1 = x·|x|-2. 

left-alternativity: x · xy = x2·y. 

left-cancellation: x · x-1·y = y. 

effect on inner products: x·a,b = a, x*·b, x,y = x*, y*,  

x*·a, x-1·b = a,b,  

and x·a,x·b = |x|2·a,b. 

Conjugate of inverse: (x-1)* = (x*)-1. 

Near-anticommutativity of unequal basis elements: ek
2 = −1 

and ek·el
* = −el·ek

*  if k ≠ l.  



(Note: the case k; l > 0 shows that unequal pure-imaginary basis 

elements anticommute.) 

Alternative basis elements: ek·el · ek = ek · el·ek, el·ek · ek = el · 

ek·ek, and ek·ek ·el = ek · ek·el. (However, when n ≥ 4 the 2n-ons are 

not flexible i.e. it is not generally true that x·y · x = x · y·x if x and 

y are 16-ons that are not basis elements. They also are not right-al-

ternative.) 

Quadratic identity: If x is a 2n-on (over any field F with charF ≠ 

2), then x2 + |x|2 = 2·x re x 

Squares of imaginaries: If x is a 2n-on with re x = 0 (“pure im-

aginary”) then x2 = −|x|2 is nonpositive pure-real. 

Powering preserves imx direction 

5.3.1.1.2 Niners 

Niners are 2n-ons whose coordinates with index > 8 are zero. The 

index starts with 0. 

9-flexibility xp · x = x · px, px · p = p · xp. 

9-similitude unambiguity xp · x-1 = x · px-1, px · p-1 = p · xp-1. 

9-right-alternativity xp · p = x · p2, px · x = p · x2. 

9-right-cancellation xp-1 · p = x, px-1 · x = p. 

9-effect on inner products x, yp = xp, y, xp, yp = |p|2x, y. 

9-left-linearity (x + y)p = xp + yp, (p + q)x = px + qx. 

9-Jordan-identity xp · xx = x(p · xx), py · pp = p(y · pp). 

9-coordinate-distributivity ([x + y]z)0;:::;8 = (xz + yz)0;:::;8. 

9-coordinate-Jordan-identity [xy · xx]0;:::;8 = [x(y · xx)]0;:::;8. 

9-anticommutativity for orthogonal imaginary 2n-ons 

If p, x = re p = re x = 0 then px = −xp. 

9-reflection If |a| = 1 and the geometric reflection operator is de-

fined below then −(refl[a](y))0;:::;8 = (a · y*a)0;:::;8, and –
{refl[a](y)}*

0;:::;8 = (a*y · a*)0;:::;8, and 



if either a or y is a niner then −refl[a](y) = a · y*a and −refl[a](y) 

= a*y · a*. 

 

refl[𝑥⃗](𝑡) ≝   𝑡 −  
2〈𝑥⃗, 𝑡〉

|𝑥⃗|2
𝑥⃗ 

What holds for the niners, also holds for the octonions. 

5.4 Waltz details 

The 16-ons lose the continuity of the map 𝑥 ⇒  𝑥𝑦. Also, in gen-

eral holds (𝑥 𝑦)𝑥 ≠  𝑥 (𝑦 𝑥) for 16-ons. However, for all 2n-ons the 

base numbers fulfill (𝑒𝑖  𝑒𝑗) 𝑒𝑖  =  𝑒𝑖  (𝑒𝑗  𝑒𝑖). All 2n-ons feature a con-

jugate and an inverse. The inverse only exists for non-zero numbers. 

The 2n-ons support the number waltz  

 

𝑐 =  𝑎 𝑏/𝑎. 
 

Often the number waltz appears as a unitary number waltz 

 

𝑐 =  𝑢∗𝑏 𝑢 
 

where 𝑢 is a unit size number and 𝑢∗ is its conjugate 𝑢 𝑢∗ = 1. 

 

In quaternion space the quaternion waltz 𝑎 𝑏/𝑎 can be written 

as 

 

𝑎 𝑏 / 𝑎 =  𝑒𝑥𝑝(2 𝜋 ĩ 𝜑) 𝑏 𝑒𝑥𝑝(−2 𝜋 ĩ 𝜑) 
 

=  𝑏 – 𝒃⊥  +  𝑒𝑥𝑝(2 𝜋 ĩ 𝜑) 𝒃⊥ 𝑒𝑥𝑝(−2 𝜋 ĩ 𝜑) 
 

=  𝑏 – 𝒃⊥  +  𝑒𝑥𝑝(4 𝜋 ĩ 𝜑)𝒃⊥ 
 

∆𝑏 =  (𝑒𝑥𝑝(4 𝜋 ĩ 𝜑)–  1)𝒃⊥ 

(1) 

(

1) 

(

2) 

(

3) 

(

4) 



 

=  (𝑐𝑜𝑠(4 𝜋 𝜑) +  ĩ 𝑠𝑖𝑛(4 𝜋 𝜑)–  1) 𝒃⊥ 
 

=  𝑒𝑥𝑝(2 𝜋 ĩ 𝜑) 2  ĩ 𝑠𝑖𝑛 (2 𝜋 𝜑) 𝒃⊥ 
 

‖∆𝑏‖  =  ‖2 𝑠𝑖𝑛(2 𝜋 𝜑) 𝒃⊥‖ 
 

a

b||

2Φ

ab#a
-1

b

b#

aa

aτΦ

aba-1

The transform aba-1 rotates the 

imaginary part b of b around an 

axis along the imaginary part a of 

a over an angle 2Φ that is twice 

the argument Φ of a in the 

complex field spanned by a and 11

a = ||a||exp(2πiΦ)

Δb

# means perpendicular

||  means parallel 

 

 

Figure 1. The rotation of a quaternion by a second quaternion. 

 

(

5) 



Another way of specifying the difference is:  
 

∆𝑏 =  (𝑎 · 𝑏 –  𝑏 · 𝑎)/𝑎 =  2 · (𝒂 × 𝒃)/𝑎 
 

‖∆𝑏‖  = 2 ‖𝒂 × 𝒃‖/ ‖𝑎‖  
 

b#

2Φ

Δb

ab#a
-1

b#2sin2(2πΦ))

b#isin(4πΦ) 

Δb = (-2sin2(2πΦ) + isin(4πΦ))b#

 

Figure 2: The difference after rotation 

  

(

6) 

(

7) 



5.5 Spinors and matrices 

In contemporary physics complex probability amplitude distribu-

tions (CPAD’s) are used rather than quaternionic probability ampli-

tude distributions (QPAD’s). Spinors and matrices are used to simu-

late QPAD behavior for CPAD’s. 

5.5.1 Symmetries 

The quaternionic number system exists in sixteen discrete sym-

metry sets (sign flavors). When the real part is ignored, then eight 

different symmetry sets result. The values of a continuous function 

all belong to the same symmetry set. The parameter space of the 

function may belong to a different symmetry set. 

 



 

 

 

 

 

 

 

 

 

 

 
84The red blocks 

indicates sign up or down with 

respect to the base sign 

flavor. For quaternionic 

distributions the (quaternionic) 

parameter space acts as base 

sign flavor. 

Quaterni-
onic functions can be 
interpreted as the 
combination of a scalar 
function and a 3D vector function. The scalar part can be inter-
preted as the representation of an object density distribution. In 
that case the vector function can be thought to correspond to an 
associated current density distribution. The discrete symmetry 
values control the direction of the currents. This must be deter-
mined relative to a reference. 

If we ignore the real part, then only eight discrete symmetries 
result. The next table lists these symmetries in text format; 

                                                           
84 This picture has been changed! 

 
Figure 3: Sign flavors 

 

 

Eight sign flavors  

(discrete symmetries) 

Colors N, R, G, B, R̅, G̅, B̅, W 

Right or Left handedness R,L 



 
||ddd||n

||RH|| 
||udd||r||L
H|| 
||dud||g||L
H|| 
||ddu||b||L
H|| 
||duu||B||R
H|| 
||udu||G||R
H|| 
||uud||R||R
H|| 
||uuu||N||L
H|| 
 

 
u=up;d=down; 
n=neutral;r=red;g=green;b=blue; 
B=anti.blue;G=anti.green;R=anti.r

ed;N=anti-neutral 
RH=right handed; LH= left handed. 
 

 

The 3D Kronecker delta tensor 

𝛿𝒊𝒋 = {
1  if  𝑖 = 𝑗
0 if  𝑖 ≠ 𝑗

 

The fully antisymmetric Levi-Civita tensor 

∊𝒊𝒋𝒌= {

1  if  𝑖, 𝑗, 𝑘 is an even permutation of 1,2,3
0 if at least two of  𝑖, 𝑗, 𝑘  are equal

−1  if  𝑖, 𝑗, 𝑘 is an odd permutation of 1,2,3
 

5.5.2 Spinor 

We use square brackets for indicating spinors. Spinors use real 

component functions 𝜓𝑖 . . Complex component functions 𝜓𝑖would 

(1) 

(2) 



result in spinor representations of bi-quaternions. Bi-quaterni-
ons do not form a division ring85. 

A 2×2 spinor is defined by the row: 
 

[𝜓] ≡ [[𝜓0][𝜳]] 

 
[𝜓]‡ ≡ [[𝜳][𝜓0]] 

 
Where 
 

[𝜓0] ≡  [
𝛹0 0
0 𝛹0

] 

 

[𝜳] ≡  [
𝛹3 𝛹1 − 𝑖𝛹2

𝛹1 + 𝑖𝛹2 −𝛹3
] 

 

Spinors obey86 

 

[𝜳] + [𝝓] =  2[〈𝜳, 𝝓〉] 
 

[𝜳] − [𝝓] = 2 𝑖[𝜳 × 𝝓] 

5.5.2.1 Sign flavors 

The relation with the sign flavors is 

 

[𝜳] = [𝜳]⓪ = [𝝍⓪] 

 [𝜳]① = [𝝍①] 

[𝜳]② = [𝝍②] 

                                                           
85 The author uses its own notation for spinors and sign flavors 
86 http://en.wikipedia.org/wiki/Spinors_in_three_dimensions 
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[𝜳]③ = [𝝍③] 

[𝜳∗] = [𝜳∗]⓪ = [𝝍⑦] 

[𝜳∗]① = [𝝍⑥] 

[𝜳∗]② = [𝝍⑤] 

[𝜳∗]③ = [𝝍④] 

5.5.3 Dirac spinors 

The 4×4 spinors target the application in the Dirac equation. 

A general 4×4 spinor is defined by the column: 
 

[
[𝜓]

[𝜙∗]‡] ≡ [
[𝛹0] [𝜳]

[−𝝓] [𝜙0]
] 

 

A compacted spinor ]𝛹[ is a 1×4 matrix consisting of real func-

tions that represent all sixteen sign flavors of a QPAD. 

]𝛹[ ≡ [
[𝜓]

[𝜓∗]‡] = [
[𝛹0] [𝜳]

[−𝜳] [𝛹0]
] 

 

= [

𝛹0                       0   
0                  𝛹0

−𝛹3 −𝛹1 + 𝑖𝛹2

−𝛹1 − 𝑖𝛹2 +𝛹3

𝛹3 𝛹1 − 𝑖𝛹2

𝛹1 + 𝑖𝛹2 −𝛹3

𝛹0         0 
0          𝛹0

]  

5.5.4 Spinor base 

The 𝛂 and 𝛽 matrices form the base of spinor ]𝛹[ and its elements 

 

𝛼1 ≡ [
0 𝒊

−𝒊 0
] 

 

𝛼2 ≡ [
0 𝒋

−𝒋 0
] 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 

(2) 

(1) 

(2) 



 

𝛼3 ≡ [
0 𝒌

−𝒌 0
] 

 

𝛽 ≡ [
0 1
1 0

] 

 

𝒊, 𝒋 and 𝒌 represent imaginary base vectors of the simulated qua-

ternion. 𝛽 represents the conjugation action for the spinor. 

 

A relation exist between 𝛼1, 𝛼2, 𝛼3 and the Pauli87 matrices 

 𝜎1, 𝜎2, 𝜎3: 

 

𝜎1 ≡ [
0  1
1 0

] , 𝜎2 ≡ [ 
0 −𝑖
𝑖 0

] , 𝜎3 ≡ [
1 0
0 −1

]

 

1 ⟼ 𝐼, 𝒊 ⟼  𝜎1, 𝒋 ⟼  𝜎2, 𝒌 ⟼  𝜎3 

5.5.5 Gamma matrices 

This combination is usually represented in the form of gamma 

matrices. 

In Dirac representation, the four contravariant gamma matrices 

are 

 

𝛾0 ≡ [

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

] , 𝛾1 ≡ [

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

],  

 

                                                           
87 http://en.wikipedia.org/wiki/Pauli_matrices  
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http://en.wikipedia.org/wiki/Covariance_and_contravariance
http://en.wikipedia.org/wiki/Pauli_matrices


𝛾2 ≡ [

0 0 0 −𝑖
0 0 𝑖 0
0 𝑖 0 0

−𝑖 0 0 0

] , 𝛾3 ≡ [

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

]  

 

It is useful to define the product of the four gamma matrices as 

follows: 

 

𝛾5 ≡ 𝑖 𝛾0 𝛾1 𝛾2 𝛾3 = [

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

] 

 

The gamma matrices as specified here are appropriate for acting 

on Dirac spinors written in the Dirac basis; in fact, the Dirac basis is 

defined by these matrices. In the Dirac basis88: 

 

𝛾0 ≡ [
𝐼 0
0 −𝐼

] , 𝛾𝑘 = [ 0 𝜎𝑘

−𝜎𝑘 0
] ,

 𝛾5 = [
0 𝐼
𝐼 0

] 

 

This corresponds with 𝛼𝑘 = 𝛾𝑘, 𝛽 =  𝛾5. 

Apart from the Dirac basis, a Weyl basis exists 

 

𝛾0 =  𝛾𝛽 = [
0 𝐼
𝐼 0

] , 𝛾𝑘 = [ 0 𝜎𝑘

−𝜎𝑘 0
] ,

 𝛾5 = [
−𝐼 0
0 𝐼

] 

 

                                                           
88 http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis  
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The Weyl basis has the advantage that its chiral projections89 take 

a simple form: 

 

𝜓𝐿 = ½ (1 −  𝛾5)[𝜓] = [
𝐼 0
0 0

] [𝜓] 

 

𝜓𝑅 = ½ (1 +  𝛾5)[𝜓] = [
0 0
0 𝐼

] [𝜓]  

 

[𝜓∗] = [
0 1
1 0

] [𝜓] 

  

                                                           
89 http://en.wikipedia.org/wiki/Chirality_(physics)  

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Chirality_(physics)
http://en.wikipedia.org/wiki/Chirality_(physics)


6 Quaternionic differentiation 

6.1 Differentiation in flat space 

We treat quaternionic distributions as if they pos-
sess a continuous parameter space. The differential 

vector operator 𝜵 is in Cartesian coordinates given 
by 

 

𝛁 = ∑ 𝒆𝑖

3

𝑖=1

𝜕

𝜕𝑥𝑖
 

 

The flat quaternionic differential operator 𝛻 is in 
Cartesian coordinates given by 

 

∇= ∑ 𝑒𝑖

3

𝑖=0

∇𝑖= ∑ 𝑒𝑖

3

𝑖=0

𝜕

𝜕𝑥𝑖
;   𝑒 = (1, 𝒊, 𝒋, 𝒌) 

 

∇𝑓 = ∑ ∑ 𝑒𝑖𝑒𝑗

3

𝑗=0

𝜕𝑓𝑗

𝜕𝑥𝑖

3

𝑖=0

 

(1) 

(2) 

(3) 



6.2 Differentiation in curved space 

The allocation function ℘(𝑥) has a flat parameter 

space that is spanned by the rational or the real quaterni-

ons90. However, in this section we treat the E-type ℘(𝑥) 

as if it has a continuous parameter space
91

. That makes 

it possible to use regular differential calculus. The full 

quaternionic difference operator d℘ is given by 

 

d℘ = ∑ 𝑞𝜇

3

𝜇=0

𝑑𝑥𝜇 = ∑
𝜕℘

𝜕𝑥𝜇
𝑑𝑥𝜇

3

𝜇=0

= ∑ 𝑒𝜇 ∑
𝜕℘𝜈

𝜕𝑥𝜇
𝑑𝑥𝜇

3

𝜇=0

3

𝜈=0

 

 

Here the coefficients 𝑞𝜇 are quaternionic coefficients, 

which are determined by the quaternionic allocation 

function ℘(𝑥).  

℘(𝑥) defines a curved target space. This curved space 

can act as parameter space to other quaternionic distribu-

tions. 

 

                                                           
90 http://en.wikipedia.org/wiki/Quaternion_algebra#Quater-

nion_algebras_over_the_rational_numbers 
91 See section on quaternionic distributions. 
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𝑞𝜇 =
𝜕℘

𝜕𝑥𝜇
;   ℘ = ∑ 𝑒𝜈℘𝜈

3

𝜈=0

 

 
The allocation function ℘(𝑥) may include an isotropic scaling 

function 𝑎(𝜏) that only depends on progression 𝜏. It defines the ex-

pansion/compression of the curved space. 

 

The quaternionic infinitesimal interval 𝑑℘ defines the 

quaternionic metric of the curved space that is defined by 

℘(𝑥). 

 

In this way, the quaternionic function g(ζ), which has 

a curved parameter space defined by ζ = ℘(𝑥) corre-

sponds to a new function h(x)= g(℘(x)), which has a flat 

parameter space. The flattened nabla ∇̆ is defined as: 

 

∇̆𝑔 = ∑ 𝑒𝜈

𝜕𝑔(𝜁)

𝜕𝑥𝜈

3

𝜈=0

= ∑ 𝑒𝜈 ∑ 𝑒𝜆

𝜕𝑔𝜆

𝜕𝑥𝜈

3

𝜆=0

3

𝜈=0

= ∑ 𝑒𝜈 ∑ 𝑒𝜆 ∑
𝜕𝑔𝜆

𝜕𝜁𝜇
𝑒𝜇

𝜕𝜁𝜇

𝜕𝑥𝜈

3

𝜇=0

3

𝜆=0

3

𝜈=0

 

 

= ∑ ∑ ∑ 𝑒𝜈𝑒𝜆𝑒𝜇

𝜕𝑔𝜆

𝜕𝜁𝜇

𝜕℘𝜇

𝜕𝑥𝜈

3

𝜇=0

3

𝜆=0

3

𝜈=0

 

 

(3) 



  



7 Coordinate systems 

7.1 Cylindrical circular coordinates 

7.1.1 Base vectors 

7.1.2 Cartesian to cylindrical circular 

 

𝜌 = 𝑥1 𝑐𝑜𝑠( 𝜃) + 𝑥2 𝑠𝑖𝑛( 𝜃)  
 

𝜑 = −𝑥1 𝑠𝑖𝑛( 𝜃) + 𝑥2 𝑐𝑜𝑠( 𝜃) 

 

𝑧 = 𝑥3 

7.1.3 Cylindrical circular to Cartesian 

 

𝑥1 = 𝝆 𝑐𝑜𝑠( 𝜃) − 𝝋 𝑠𝑖𝑛( 𝜃)  
 

𝑥2 = 𝜌 𝑠𝑖𝑛( 𝜃) + 𝝋 𝑐𝑜𝑠( 𝜃) 

 

𝑥3 = 𝑧 

7.1.4 Directed line element 

 

𝑑𝑙 =  𝑑𝑥 
𝒙

|𝒙|
 = 𝒆𝝆𝑑𝜌 + 𝒆𝝋𝜌𝑑𝜑 + 𝒆𝒛𝑑𝑧 

7.1.5 Solid angle element 

 

𝑑Ω = sin(𝜃) 𝑑𝜃 𝑑𝜑 

(1) 

 

(3) (2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(1) 



7.1.6 Directed area element 

 

𝑑𝑺 = 𝒆𝒓 𝑟
2 𝑑𝛺 + 𝒆𝜽 𝑟 𝑠𝑖𝑛( 𝜃) 𝑑𝑟 𝑑𝜑 + 𝒆𝝋  𝑟 𝑑𝑟 𝑑𝜃  

7.1.7 Volume element 

 

𝑑𝑉 = 𝑑𝑥3 = 𝑑𝑟 𝑟2 𝑑Ω 

7.1.8 Spatial differential operators 

 

𝛼 =  𝛼(𝑟, 𝜃, 𝜑) 
𝒂 = 𝒂(𝑟, 𝜃, 𝜑) 

 
Gradient 

∇𝛼 = 𝒆𝒓 

𝜕𝛼

𝜕𝑟
+ 𝒆𝜽  

1

𝑟

𝜕𝛼

𝜕𝜃
+ 𝐞𝝋

1

𝑟 𝑠𝑖𝑛( 𝜃)

𝜕𝛼

𝜕𝜑
 

 

Divergence 

〈𝛁, 𝒂〉 =
1

 𝑟2

𝜕(𝑟2𝛼𝑟)

𝜕𝑟
+

1

𝑟 𝑠𝑖𝑛( 𝜃)

𝜕(𝑎𝜃 𝑠𝑖𝑛( 𝜃))

𝜕𝜃
+

1

𝑟 𝑠𝑖𝑛( 𝜃)

𝜕𝑎𝜑

𝜕𝜑
 

Curl 

𝛁 × 𝒂 = 𝒆𝒓 

1

𝑟 𝑠𝑖𝑛( 𝜃)
( 

𝜕(𝑎𝜑 𝑠𝑖𝑛( 𝜃))

𝜕𝜃
−

𝜕𝑎𝜑

𝜕𝜑
)

+  𝒆𝜽  
1

𝑟
 (

1

𝑠𝑖𝑛( 𝜃)

𝜕𝛼𝑟

𝜕𝜑
−

𝜕𝑎𝜑

𝜕𝑟
) 

 

+𝒆𝝋
1

𝑟
 (

𝜕𝑟 𝑎𝜑

𝜕𝑟
−

𝜕𝑎𝑟

𝜕𝜃
) 

The Laplacian 

(1) 

(1) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 



∇2𝛼 =
1

 𝑟2

𝜕

𝜕𝑟
  (𝑟2

𝜕𝛼

𝜕𝑟
) +

1

𝑟2 𝑠𝑖𝑛( 𝜃)

𝜕

𝜕𝜃
  (𝑠𝑖𝑛( 𝜃)

𝜕𝛼

𝜕𝜃
)

+
1

𝑟2 𝑠𝑖𝑛2( 𝜃)

𝜕2𝛼

𝜕𝜑2
 

7.2 Polar coordinates  

The equivalent to rectangular coordinates in quaternion space is 

(aτ, ax, ay, az) 

 

𝑎 =  𝑎𝜏  +  𝒊 𝑎𝑥  +  𝒋 𝑎𝑦  ±  𝒊 𝒋 𝑎𝑧  

 

The equivalent to polar coordinates in quaternion space is 

 

 

aτ  =  ‖a‖ cos(ψ)  
 

ax  =  ‖a‖ sin(ψ) sin(θ) cos(φ)  

 

ay  =  ‖a‖ sin(ψ) sin(θ) sin(φ)  

 

𝑎𝑧  =  ‖𝑎‖ 𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜃) 
 

𝑠𝑖𝑛(𝜓), where 𝜓 = (0, 𝜋), is known as the (imaginary) amplitude 

of the quaternion.  

Angle 𝜃 = (0, 𝜋) is the (co-)latitude and angle 𝜑 = (0,2𝜋) is the 

longitude.  

For any fixed value of 𝜓, 𝜃 and 𝜑 parameterize a 2-sphere of ra-

dius 𝑠𝑖𝑛(𝜓), except for the degenerate cases, when 𝜓 equals 0 or 𝜋, 

in which case they describe a point. 

 

This suggests the following structure of the argument 𝜦 = ĩ · 𝜓 

 

(1) 

(2) 

(3) 

(4) 

(5) 



𝑎 =  ‖𝑎‖ 𝑒𝑥𝑝(ĩ · 𝜓)  
 

=  ‖𝑎‖ (𝑐𝑜𝑠(𝜓)  +  ĩ 𝑠𝑖𝑛(𝜓)) 
 

=  𝑎𝜏 + ‖𝑎‖ ĩ 𝑠𝑖𝑛(𝜓) =  𝑎𝜏 + 𝒂 
 

The imaginary number ĩ may take any direction. This shows that 

for quaternions exponential functions only work for (local) abstrac-

tions to complex number sub-systems. It also means that the notions 

of Lie groups works in complex number systems, but not in general 

in quaternionic number systems. 

7.3 3 sphere 

A 3-sphere is a compact, connected, 3-dimensional manifold 

without boundary. It is also simply-connected. What this means, 

loosely speaking, is that any loop, or circular path, on the 3-sphere 

can be continuously shrunk to a point without leaving the 3-sphere. 

The Poincaré conjecture92 proposes that the 3-sphere is the only three 

dimensional manifold with these properties (up to homeo-

morphism)93. 

The round metric on the 3-sphere in these coordinates is given by 

 

𝑑𝑠2 =  𝑑𝜓2 + 𝑠𝑖𝑛2(𝜓) (𝑑𝜃2 +  𝑠𝑖𝑛2(𝜃)𝑑𝜑2) 
 

The volume form is given by 

 

𝑑𝑉 = 𝑠𝑖𝑛2(𝜓) 𝑠𝑖𝑛(𝜃) 𝑑𝜓 ^ 𝑑𝜃 ^ 𝑑𝜑 
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The 3-dimensional volume (or hyperarea) of a 3-sphere of radius 

r is 

 

2 𝜋2 𝑟3  
 

The 4-dimensional hypervolume (the volume of the 4-dimen-

sional region bounded by the 3-sphere) is 

 

½ 𝜋2 𝑟4  

 

The 3-sphere has constant positive sectional curvature equal to 

1/𝑟2. 

The 3-sphere has a natural Lie group structure SU(2) given by 

quaternion multiplication. 

The 3-sphere admits non-vanishing vector fields (sections of its 

tangent bundle). One can even find three linearly-independent and 

non-vanishing vector fields. These may be taken to be any left-invar-

iant vector fields forming a basis for the Lie algebra of the 3-sphere. 

This implies that the 3-sphere is parallelizable. It follows that the 

tangent bundle of the 3-sphere is trivial. 

There is an interesting action of the circle group 𝕋 on 𝕊3 giving 

the 3-sphere the structure of a principal circle bundle known as the 

Hopf bundle. If one thinks of  𝕊3 as a subset of 𝑪2, the action is given 

by 

 

(𝑧1, 𝑧2) 𝜆 =  (𝑧1 𝜆, 𝑧2 𝜆) ∀𝜆  𝕋. 
 

The orbit space of this action is homeomorphic to the two-sphere 

𝕊2. Since 𝕊3 is not homeomorphic to 𝕊2 × 𝕊1, the Hopf bundle is 

nontrivial. 

(3) 

(4) 

(5) 



7.4 Hopf coordinates 

Another choice of hyperspherical coordinates, (𝜂, 𝜉1, 𝜉2), makes 

use of the embedding of 𝕊3 in 𝑪2. In complex coordinates 

(𝑧1, 𝑧2)  𝑪2 we write 

 

𝑧1 = 𝑒𝑥𝑝(ĩ 𝜉1) 𝑠𝑖𝑛(𝜂) 
 

𝑧2  =  𝑒𝑥𝑝(ĩ 𝜉2) 𝑐𝑜𝑠(𝜂) 
 

Here 𝜂 runs over the range 0 to 𝜋/2, and 𝜉1 and 𝜉2 can take any 

values between 0 and 2𝜋. These coordinates are useful in the descrip-

tion of the 3-sphere as the Hopf bundle 

 

𝕊1 →𝕊3 → 𝕊2 

 

For any fixed value of η between 0 and 𝜋/2, the coordinates 

(𝜉1, 𝜉2) parameterize a 2-dimensional torus. In the degenerate cases, 

when 𝜂 equals 0 or 𝜋/2, these coordinates describe a circle. 

The round metric on the 3-sphere in these coordinates is given by 

 

𝑑𝑠2 = 𝑑𝜂2 + 𝑠𝑖𝑛2(𝜂) (𝑑𝜁1
2 + 𝑐𝑜𝑠2(𝜂) 𝑑 𝜁2

2)  
and the volume form by 

 

𝑑𝑉 =  𝑠𝑖𝑛(𝜂) 𝑐𝑜𝑠(𝜂) 𝑑𝜂^𝑑𝜁1^𝑑𝜁2 

7.5 Group structure 

Because the set of unit quaternions is closed under multiplication, 

𝕊3 takes on the structure of a group. Moreover, since quaternionic 

multiplication is smooth, 𝕊3 can be regarded as a real Lie group. It is 

a non-abelian, compact Lie group of dimension 3. When thought of 

as a Lie group 𝕊3 is often denoted 𝑆𝑝(1) or U(1, ℍ). 

(1) 

(2) 

(3) 

(4) 

(5) 



It turns out that the only spheres which admit a Lie group structure 

are 𝕊1, thought of as the set of unit complex numbers, and 𝕊3, the set 

of unit quaternions. One might think that 𝕊7, the set of unit octo-

nions, would form a Lie group, but this fails since octonion multipli-

cation is non-associative. The octonionic structure does give 𝕊7 one 

important property: parallelizability94. It turns out that the only 

spheres which are parallelizable are 𝕊1, 𝕊3, and 𝕊7. 

By using a matrix representation of the quaternions, ℍ, one ob-

tains a matrix representation of 𝕊3. One convenient choice is given 

by the Pauli matrices: 

 

(𝑎τ  +  𝑎𝑥 · 𝐢 + 𝑎y · 𝐣 +  𝑎𝑧 · 𝐤)

= [
𝑎τ  +  ĩ · 𝑎𝑥 𝑎y  +  ĩ · 𝑎𝑧

−𝑎y  +  ĩ · 𝑎𝑧 𝑎τ  −  ĩ · 𝑎𝑥
] 

 

This map gives an injective algebra homomorphism from H to the 

set of 2×2 complex matrices. It has the property that the absolute 

value of a quaternion q is equal to the square root of the determinant 

of the matrix image of q. 

The set of unit quaternions is then given by matrices of the above 

form with unit determinant. This matrix subgroup is precisely the 

special unitary group SU(2). Thus, 𝕊3 as a Lie group is isomorphic 

to SU(2). 

Using our hyperspherical coordinates (𝜂, 𝜉1, 𝜉2) we can then write 

any element of SU(2) in the form 

 

[
exp(ĩ · ξ1) · sin(η) exp(ĩ · ξ2) · cos(η)

−exp(ĩ · ξ2) · cos(η) exp(−ĩ · ξ1) · sin(η)
] 
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Another way to state this result is if we express the matrix repre-

sentation of an element of SU(2) as a linear combination of the Pauli 

matrices. It is seen that an arbitrary element U  SU(2) can be writ-

ten as 

 

𝑈 =  𝛼𝜏 · 1 + ∑ 𝛼𝑛 𝑰𝒏

𝑛=𝑥,𝑦,𝑧

 

The condition that the determinant of U is +1 implies that the co-

efficients 𝛼𝑛  are constrained to lie on a 3-sphere. 

7.6 Versor 

Any unit quaternion 𝑢 can be written as a versor: 

 

𝑢 = 𝑒𝑥𝑝(ĩ  𝜓) = 𝑐𝑜𝑠(𝜓) +  ĩ  𝑠𝑖𝑛(𝜓) 
 

This is the quaternionic analogue of Euler's formula. Now the unit 

imaginary quaternions all lie on the unit 2-sphere in Im ℍ so any 

such ĩ can be written: 

 

ĩ =  𝒊 𝑐𝑜𝑠(𝜑) 𝑠𝑖𝑛(𝜃) +  𝒋 𝑠𝑖𝑛(𝜑) 𝑠𝑖𝑛(𝜃) +  𝒌 𝑐𝑜𝑠(𝜃)  

7.7 Symplectic decomposition 

Quaternions can be written as the combination of two complex 

numbers and an imaginary number k with unit length. 

𝑞 =  𝑎 +  𝑏𝒋; where 𝑎 =  𝑤 +  𝑥𝒊; and 𝑏 =  𝑦 +  𝑧𝒊 

 

𝑞 =  𝑤 +  𝑥𝒊 +  𝑦𝒋 +  𝑧𝒌 
  

(3) 

(1) 

(2) 



7.8 Quaternionic algebra 

𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3) = ∑ 𝑒𝜇

3

𝜇=0

a𝜇

= 𝑎0 + 𝒊 𝑎1 + 𝒋 𝑎2 + 𝒌 𝑎3 =  𝑎0 + 𝒂 
𝑎∗ = 𝑎0 − 𝒂 
𝑎∗𝑎 = 𝑎 𝑎∗ = |𝑎|2 

〈𝒂, 𝒃〉 = ∑ 𝑎𝜇

3

𝜇=1

𝑏𝜇 = 𝛿𝜇𝜈𝑎𝜇𝑏𝜈 = |𝒂||𝒃| cos (𝜃) 

𝒂 × 𝒃 = −𝒃 × 𝒂 = ±(∊𝒊𝒋𝒌  𝒆𝒊𝑎𝑗𝑏𝑘) 

𝑎 𝑏 =  𝑎0𝒃 +  𝑏0 𝒂 − 〈𝒂, 𝒃〉 ± 𝒂 × 𝒃 
The colored ± indicates the handedness of the vector 

cross product. 
𝒂 𝒃 =  −〈𝒂, 𝒃〉 ± 𝒂 × 𝒃 
𝑎 (𝑏 + 𝑐) = 𝑎 𝑏 + 𝑎 𝑐 
(𝑎 +  𝑏) 𝑐 =  𝑎 𝑐 +  𝑏 𝑐 
(𝑎 𝑏)𝑐 =  𝑎(𝑏 𝑐) 
〈𝒂, 𝒃 × 𝒄〉 =  〈𝒂 × 𝒃, 𝒄〉 
𝒂 × (𝒃 × 𝒄) = 𝒃〈𝒂, 𝒄〉 − 𝒄〈𝒂, 𝒃〉 
(𝒂 × 𝒃) × 𝒄 = 𝒃〈𝒂, 𝒄〉 − 𝒂〈𝒃, 𝒄〉 
𝒂 × (𝒃 × 𝒄) + 𝒃 × (𝒄 × 𝒂) + 𝒄 × (𝒂 × 𝒃) = 0 
〈𝒂 × 𝒃, 𝒄 × 𝒅〉 = 〈𝒂, 𝒃 × (𝒄 × 𝒅)〉

= 〈𝒂, 𝒄〉〈𝒃. 𝒅〉 − 〈𝒂, 𝒅〉〈𝒃. 𝒄〉 
(𝒂 × 𝒃) × (𝒄 × 𝒅) = 〈𝒂 × 𝒃, 𝒅〉𝒄 − 〈𝒂 × 𝒃, 𝒄〉𝒅 

  

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(1

0) (1

1) (1

2) (1

3) (1

4) (1

5) 
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8 Quaternionic distributions 

We consider four kinds of quaternionic distributions  

A. Distributions of rational quaternions with a discrete 

parameter space. That parameter space must be flat 

and it is spanned by the rational quaternions95.  The 

A-type quaternionic distribution has a countable set 

of values. 

B. Distributions of rational quaternions with a continu-

ous parameter space. That parameter space may be 

curved. The curvature is defined by a continuous 

quaternionic function. The B-type quaternionic dis-

tribution has a countable set of values. It inherits the 

sign flavor of the quaternionic function that defines 

the curvature of its parameter space. 

C. Continuous quaternionic distributions with a contin-

uous parameter space. That parameter space may be 

curved. The curvature is defined by a continuous 

quaternionic function. The C-type quaternionic dis-

tributions inherit the sign flavor of the quaternionic 

distribution that defines the curvature of their pa-

rameter space. The C-type quaternionic function can 

be split in a real scalar function and a real 3D vector 

                                                           
95 http://en.wikipedia.org/wiki/Quaternion_algebra#Quater-

nion_algebras_over_the_rational_numbers 
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function. The real scalar function can be interpreted 

as an object density distribution and the 3D vector 

function can be interpreted as the associated current 

density distribution. 

D. A convolution of a continuous quaternionic function 

with a discrete flat parameter space consisting of ra-

tional quaternions and a 3D stochastic generator of 

rational quaternionic target values. The D-type qua-

ternionic distribution has a countable set of values. It 

corresponds to a collection of coherent B-type distri-

butions, where the continuous function generates the 

curvature of the parameter space for the B-type dis-

tributions, which are generated by the stochastic pro-

cess. 

 

8.1 Basic properties of  continuous quaternionic distri-
butions  

For simplicity we confine to quaternionic distributions with flat 

parameter space. A continuous quaternionic distribution contains a 

scalar field in its real part and a vector field in its imaginary part. 

𝑓(𝑥) =  𝑓0(𝑥) + 𝒇(𝑥) 

𝑎 𝑓(𝑥) =  𝑎0𝒇(𝑥) +  𝑓0(𝑥) 𝒂 − 〈𝒂, 𝒇(𝑥)〉 ± 𝒂 × 𝒇(𝑥) 

𝑓(𝑥) 𝑏 =  𝑓0(𝑥)𝒃 +  𝑏0 𝒇(𝑥) − 〈𝒇(𝑥), 𝒃〉 ± 𝒇(𝑥) × 𝒃 

The distributions follow the rules for the quaternion algebra.  

𝑎 (𝑓(𝑥) + 𝑔(𝑥)) = 𝑎 𝑓(𝑥) + 𝑎 𝑔(𝑥) 

(𝑎 +  𝑏)𝑓(𝑥) =  𝑎 𝑓(𝑥) +  𝑏 𝑓(𝑥) 

(3) 

(2) 

(3) 

(4) 

(5) 

(6) 



𝑓(𝑥) 𝑔(𝑥) =  𝑓0(𝑥)𝒈(𝑥) +  𝑔0 (𝑥)𝒇(𝑥) − 〈𝒇(𝑥), 𝒈(𝑥)〉
± 𝒇(𝑥) × 𝒈(𝑥) 

(𝑓(𝑥)𝑔(𝑥))ℎ(𝑥)  =  𝑓(𝑥)(𝑔(𝑥) ℎ(𝑥)) 

8.1.1 Symmetries 

Continuous quaternionic distributions keep the same discrete 

symmetries (sign flavor) throughout their domain. The sign flavor of 

the parameter space acts as reference sign flavor. 

8.1.2 Differentials 

The quaternionic nabla acts similarly as a normal quaternion 

∇ (𝑓(𝑥) + 𝑔(𝑥)) = ∇ 𝑓(𝑥) + ∇ 𝑔(𝑥) 

∇ 𝑓(𝑥) =  ∇0𝒇(𝑥) +  𝛁𝑓0(𝑥)  − 〈𝛁, 𝒇(𝑥)〉 ± 𝛁 × 𝒇(𝑥) 

However 

∇(𝑏 𝑐) ≠ (∇ 𝑏)𝑐   
and 

∇(𝑏 𝑐) ≠ (∇ 𝑏)𝑐 +  𝑏 ∇ 𝑐  
Further 

〈𝛁, 𝛁〉𝛼 ≡ 𝛁𝟐𝛼 

〈𝛁 × 𝛁, 𝐚〉 = 0 

〈𝛁, 𝛁 × 𝒂〉 = 0 
𝛁 × 𝛁α = 𝟎 
𝛁 𝒃 =  −〈𝛁, 𝒃〉 ± 𝛁 × 𝒃 
𝛁 (𝛼 𝛽) = 𝛼𝛁  𝛽 +  𝛽𝛁 𝛼 
𝛁 (𝛼 𝒂) = 𝛼𝛁 ×  𝒂 − 𝛼〈𝛁, 𝒂〉 + ( 𝛁 𝛼)𝒂 
〈𝛁, 𝛼 𝒂〉 = 𝒂𝛁𝛼 + 𝛼〈𝛁, 𝒂〉 
〈𝛁, 𝒂 × 𝒃〉 =  〈𝒃, 𝛁 × 𝒂〉 − 〈𝒂, 𝛁 × 𝒃〉  
〈𝛁 𝛼, 𝛁 𝛽〉 = 〈𝛁, 𝛼𝛁 𝛽〉 − 𝜶𝛁𝟐𝛽 
〈𝛁 𝛼, 𝛁 × 𝒂〉 = −𝛁 , 𝒂 × 𝛁α 
〈𝛁 ×  𝒂, 𝛁 ×  𝒃〉 = 〈𝒃, 𝛁 × (𝛁 × 𝒂)〉 − 〈𝒂, 𝛁 × (𝛁 × 𝒃)〉 
𝛁 × (α𝐚) = 𝛼𝛁 × 𝒂 − 𝒂 × 𝛁𝛼 

(7) 
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𝛁 × (𝛼𝛁𝛽) = (𝛁𝛼) × ∇𝛽 

  
(1

8) 



9 The separable Hilbert space Ң 

We will specify the characteristics of a generalized quaternionic 

infinite dimensional  separable Hilbert space. The adjective “quater-

nionic” indicates that the inner products of vectors and the eigenval-

ues of operators are taken from the number system of the quaterni-

ons. Separable Hilbert spaces can be using real numbers, complex 

numbers or quaternions. These three number systems are division 

rings. 

9.1 Notations and naming conventions 

{fx}x means ordered set of fx . It is a way to define functions. 

The use of bras and kets differs slightly from the way Dirac uses 

them. 

  

|f> is a ket vector, f> is the same ket 

<f| is a bra vector, <f is the same bra 

  

A is an operator.  

|A is the same operator 

A† is the adjoint operator of operator A.   

A| is the same operator as A† 

| on its own, is a nil operator 

|A| is a self-adjoint (Hermitian) operator 

  

We will use capitals for operators and lower case for quaternions, 

eigenvalues, ket vectors, bra vectors and eigenvectors. Quaternions 

and eigenvalues will be indicated with italic characters. Imaginary 

and anti-Hermitian objects are often underlined and/or indicated in 

bold text. 

  

∑k means: sum over all items with index k. 



∫x means: integral over all items with parameter x. 

9.2 Quaternionic Hilbert space 

The Hilbert space is a linear space. That means for the elements 

|f>, |g> and |h> and numbers a and b: 

9.2.1 Ket vectors 

For ket vectors hold 

 

|f> + |g> = |g> + |f> = |g + f> 

 

(|f> + |g>) + |h> = |f> + (|g> + |h>) 

 

|(a + b) f > = |f>·a + |f>·b 

 

(|f> + |g>)·a = |f>·a + |g>·a 

 

|f>·0 = |0> 

 

|f>·1 = |f> 

 

Depending on the number field that the Hilbert space supports, a 

and b can be real numbers, complex numbers or (real) quaternions. 

9.2.2 Bra vectors 

The bra vectors form the dual Hilbert space Ң† of Ң . 

  

<f| + <g| = <g| + <f| = |g + f> 

 

 (<f| + <g|) + <h| = <f| + (<g| + <h|) 

 

<f (a + b)> = <f|·a + <f|·b = a*·<f| + b*·<f| 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 



 

 (<f| + <g|)·a = <f|·a + <g|·a = a*·<f| + a*·<g| 

 
0·<f| = <0| 

 

1·<f| = <f| 

9.2.3 Scalar product 

The Hilbert space contains a scalar product, also called inner 

product, <f|g> that combines Ң and Ң† in a direct product that we 

also indicate with Ң. 

For Hilbert spaces the values of inner products are restricted to 

elements of a division ring. 

The scalar product <f|g> satisfies: 

 

<f|g + h> = <f|g> + <f|h> 

 

<f|{|g>·a}g = {<f|g>}g·a 

  

With each ket vector |g> in Ң belongs a bra vector <g| in Ң† such 

that for all bra vectors <f| in Ң† 

 

<f|g> = <g|f>* 

 

<f|f> = 0 when |f> = |0> 

 

<f|a g> = <f|g>·a = <g|f>*·a = <g a|f>* = (a*·<g|f>)* = 

<f|g>·a 

 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 



In general is <f|a g> ≠ <f a|g>. However for real numbers r holds 

<f|r g> = <f r|g> 

 

Remember that when the number field consists of quaternions, 

then also <f|g> is a quaternion and a quaternion q and <f|g> do in 

general not commute. 

 

The scalar product defines a norm: 

 

||f|| = √(<f|f>) 

 

And a distance: 

 

D(f,g) = ||f – g|| 

 

The Hilbert space Ң is closed under its norm. Each converging 

row of elements of converges to an element of this space. 

9.2.4 Separable 

 In mathematics a topological space is called separable if it con-

tains a countable dense subset; that is, there exists a sequence 

{𝑥𝑛}𝑛=1
∞  of elements of the space such that every nonempty open sub-

set of the space contains at least one element of the sequence. 

Every continuous function on the separable space Ң is determined 

by its values on this countable dense subset. 

9.2.5 Base vectors 

The Hilbert space Ң is separable. That means that a countable 

row of elements {fn>} exists that spans the whole space. 

  

(6) 

(7) 
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If <fn|fm> = δ(m,n) = [1 when n = m; 0 otherwise]  

then {|fn>} forms an orthonormal base of the Hilbert space. 

A ket base {|k>}of Ң is a minimal set of ket vectors |k> that to-

gether span the Hilbert space Ң. 

Any ket vector |f> in Ң can be written as a linear combination of 

elements of {|k>}. 

  

|f> = ∑k (|k>·<k|f>) 

  

A bra base {<b|}of Ң† is a minimal set of bra vectors <b| that 

together span the Hilbert space Ң†. 

Any bra vector <f| in Ң† can be written as a linear combination of 

elements of {<b|}. 

  

<f| = ∑b (<f|b>·<b|) 

  

Usually base vectors are taken such that their norm equals 1. Such 

a base is called an othonormal base. 

 

9.2.6 Operators 

Operators act on a subset of the elements of the Hilbert space.  

9.2.6.1 Linear operators 

An operator Q is linear when for all vectors |f> and |g> for which 

Q is defined and for all quaternionic numbers a and b: 

 

|Q·a f> + |Q·b g> = |a·Q f> + |b·Q g> = |Q f>·a + |Q g>·b 

= 

  

(1) 

(2) 

(1) 



Q (|f>·a + |g>·b) = Q (|a f> + |b g>) 

 

B is colinear when for all vectors |f> for which B is defined and 

for all quaternionic numbers a there exists a quaternionic number c 

such that: 

 

|B·a f> = |a·B f> = |B f> c·a·c-1 

If |f> is an eigenvector of operator A with quaternionic eigenvalue 

a, then is |b f> an eigenvector of A with quaternionic eigenvalue 

b·a·b-1. 

A| = A† is the adjoint of the normal operator A. |A is the same as 

A. 

  

<f A| g> = <fA†|g>* 

 

A† † = A 

 

(A·B) † = B†·A† 

  

|B| is a self adjoint operator. 

| is a nil operator.  

 

The construct |f><g| acts as a linear operator. |g><f| is its adjoint 

operator. 

 

∑n {|fn>·an·<fn|}, 

 

 where a n is real and acts as a density function. 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



The set of eigenvectors of a normal operator form an orthonormal 

base of the Hilbert space. 

A self adjoint operator has real numbers as eigenvalues. 

 

{<q|f>}q is a function f(q) of parameter q.  

{<g|q>}q is a function g(q) of parameter q. 

  

When possible, we use the same letter for identifying eigenvalues, 

eigenvalues and the corresponding operator. 

So, usually |q> is an eigenvector of a normal operator Q with ei-

genvalues q.  

  

{q} is the set of eigenvalues of Q.  

{q}q is the ordered field of eigenvalues of q. 

{|q>}q  is the ordered set of eigenvectors of Q. 

{<q|f>}q is the Q view of |f>. 

9.2.6.2 Normal operators 

The most common definition of continuous operators is: 

  

A continuous operator is an operator that creates images such that 

the inverse images of open sets are open.  

  

Similarly, a continuous operator creates images such that the in-

verse images of closed sets are closed. 

If |a> is an eigenvector of normal operator A with eigenvalue a 

then  

< 𝑎|𝐴|𝑎 > = < 𝑎|𝑎|𝑎 > = < 𝑎|𝑎 >  𝑎 

indicates that the eigenvalues are taken from the same number 

system as the inner products. 

  

A normal operator is a continuous linear operator. 



A normal operator in Ң creates an image of Ң onto Ң. It transfers 

closed subspaces of Ң into closed subspaces of Ң.  

  

Normal operators represent continuous quantum logical observa-

bles.  

  

The normal operators N have the following property. 

  

N: Ң  Ң 

  

N commutes with its (Hermitian) adjoint N† 

  

N·N† = N†·N 

  

Normal operators are important because the spectral theorem 

holds for them.  

Examples of normal operators are 

  

 unitary operators: U† = U−1 , unitary operators are 

bounded; 

 Hermitian operators (i.e., self-adjoint operators): N† = N;  

 Anti-Hermitian or anti-self-adjoint operators: N† = −N;  

 Anti-unitary operators: I† = −I = I−1 , anti-unitary opera-

tors are bounded;  

 positive operators: N = MM†  

 orthogonal projection operators: N = N† = N2  

9.2.6.3 Spectral theorem 

For every compact self-adjoint operator T on a real, complex or 

quaternionic Hilbert space Ң, there exists an orthonormal basis of Ң 

consisting of eigenvectors of T. More specifically, the orthogonal 

(1) 

(2) 
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complement of the kernel (null space) of T admits, either a finite or-

thonormal basis of eigenvectors of T, or a countable infinite or-

thonormal basis {en} of eigenvectors of T, with corresponding ei-

genvalues {λn} ⊂ R, such that λn → 0. Due to the fact that Ң is 

separable the set of eigenvectors of T can be extended with a base of 

the kernel in order to form a complete orthonormal base of Ң. 

 

If T is compact on an infinite dimensional Hilbert space Ң, then 

T is not invertible, hence σ(T), the spectrum of T, always contains 0. 

The spectral theorem shows that σ(T) consists of the eigenvalues {λn} 

of T, and of 0 (if 0 is not already an eigenvalue). The set σ(T) is a 

compact subset of the real line, and the eigenvalues are dense in σ(T). 

 

 A normal operator has a set of eigenvectors that spans the whole 

Hilbert space Ң.  

In quaternionic Hilbert space a normal operator has quaternions 

as eigenvalues.  

 

The set of eigenvalues of a normal operator is NOT compact. This 

is due to the fact that Ң is separable. Therefore the set of eigenvectors 

is countable. As a consequence the set of eigenvalues is countable. 

Further, in general the eigenspace of normal operators has no finite 

diameter.  

 

A continuous bounded linear operator on Ң has a compact eigen-

space. The set of eigenvalues has a closure and it has a finite diame-

ter.  

9.2.6.4 Eigenspace 

The set of eigenvalues {q} of the operator Q form the eigenspace 

of Q 

http://en.wikipedia.org/wiki/Countable_set


9.2.6.5 Eigenvectors and eigenvalues 

For the eigenvector |q> of normal operator Q holds  

 

|Q q> = |q q> = |q>·q 

 

<q Q†| = <q q*| = q*·<q| 

 

∀|𝑓>  ∈ Ң [{< 𝑓|𝑄 𝑞 >}𝑞 =  {< 𝑓|𝑞 > 𝑞}𝑞 =  {< 𝑞 𝑄†|𝑓 >∗}𝑞

= {𝑞∗ < 𝑞|𝑓 >∗}𝑞] 

 

The eigenvalues of 2n-on normal operator are 2n-ons. For Hilbert 

spaces the eigenvalues are restricted to elements of a division ring. 

  

𝑄 =  ∑ I𝑗𝑄𝑖

𝑛−1

𝑗=0

 

 

The 𝑄𝑗  are self-adjoint operators. 
  

(1) 

(2) 

(3) 

(4) 



9.2.6.6 Generalized Trotter formula 

For bounded operators {𝐴𝑗} hold: 

 

lim
𝑛→∞

(∏ 𝑒𝐴𝑗/𝑛

𝑝

𝑗=1

)

𝑛

= exp (∑ 𝐴𝑗

𝑝

𝑗=1

)

=  lim
𝑛→∞

(1 +
∑ 𝐴𝑗

𝑝
𝑗=1

𝑛
)

𝑛

 

In general  

 

exp (∑ 𝐴𝑗

𝑝

𝑗=1

)  ≠  ∏ 𝑒𝐴𝑗

𝑝

𝑗=1

 

 

In the realm of quaternionic notion the Trotter formula is confus-

ing. 

9.2.6.7 Unitary operators 

For unitary operators holds: 

  

U† = U−1 

Thus 

  

U·U† = U†·U =1 

 

Suppose U = I + C where U is unitary and C is compact. The 

equations U U* = U*U = I and C = U − I show that C is normal. The 

spectrum of C contains 0, and possibly, a finite set or a sequence 

(1) 

(2) 

(1) 

(2) 



tending to 0. Since U = I + C, the spectrum of U is obtained by shift-

ing the spectrum of C by 1. 

The unitary transform can be expressed as: 

 

U = exp(Ĩ·Φ/ħ) 

 

ħ = h/(2·π) 

 

Φ is Hermitian. The constant h refers to the granularity of the ei-

genspace. 

Unitary operators have eigenvalues that are located in the unity 

sphere of the 2n-ons field.  

The eigenvalues have the form: 

  

u = exp(i·φ/ħ) 

 

φ is real. i is a unit length imaginary number in 2n-on space. It 

represents a direction.  

u spans a sphere in 2n-on space. For constant i, u spans a circle in 

a complex subspace.  

9.2.6.7.1 Polar decomposition 
Normal operators N can be split into a real operator A and a uni-

tary operator U. U and A have the same set of eigenvectors as N. 

  

N = ||N||·U = A·U 

 

N = A·U = U·A  

 

= A· exp(Ĩ·Φ)/ħ) 

(3) 

(4) 

(5) 

(1) 

(2) 



 

= exp (Φr+ Ĩ·Φ)/ħ)  

 

Φr is a positive normal operator. 

9.2.6.8 Ladder operator 

9.2.6.8.1 General formulation 

Suppose that two operators X and N have the com-

mutation relation: 

 [N, X] = c·X 

for some scalar c. If |n> is an eigenstate of N with eigenvalue 

equation, 

 

|N n> = |n>∙n 

 

then the operator X acts on |n> in such a way as to shift the eigen-

value by c: 

 

|N·X n> = |(X·N + [N, X]) n> 

= |(X·N + c·X) n> 

= |X·N n> + |X n>·c 

= |X n>·n + |X n>·c 

= |X n>·(n+c) 

 

In other words, if |n> is an eigenstate of N with eigenvalue n then 

|X n> is an eigenstate of N with eigenvalue n + c.  

(1) 

(2) 

(3) 



The operator X is a raising operator for N if c is real and positive, 

and a lowering operator for N if c is real and negative. 

If N is a Hermitian operator then c must be real 

and the Hermitian adjoint of X obeys the commu-

tation relation: 

[N, X†] = - c·X† 

In particular, if X is a lowering operator for N then X† is a raising 

operator for N and vice-versa. 

9.2.7 Unit sphere of Ң 

The ket vectors in Ң that have their norm equal to one form to-

gether the unit sphere  of Ң. 

Base vectors are all member of the unit sphere. The eigenvectors 

of a normal operator are all member of the unit sphere.  

The end points of the eigenvectors of a normal operator form a 

grid on the unit sphere of Ң. 

9.2.8 Bra-ket in four dimensional space 

The Bra-ket formulation can also be used in transformations of 

the four dimensional curved spaces. 

The bra 〈𝑓 is then a covariant vector and the ket 𝑔〉 is a contra-

variant vector. The inner product acts as a metric.  

𝑠 = 〈𝑓|𝑔〉 

The effect of a linear transformation 𝐿 is then given by 

𝑠𝐿 = 〈𝑓|𝐿𝑔〉 
The effect of a the transpose transformation 𝐿† is then given by 

(4) 

(1) 

(2) 



〈𝑓𝐿† |𝑔〉 = 〈𝑓|𝐿𝑔〉 

For a unitary transformation 𝑈 holds: 

〈𝑈𝑓|𝑈𝑔〉 = 〈𝑓|𝑔〉 
 

These definitions work for curved spaces with a Euclidian signa-

ture as well as for curved spaces with a Minkowski signature. 

〈∇𝑓|∇𝑔〉 = 〈𝑓|∇2g〉 = 〈𝑓|⧠g〉 

9.2.9 Closure 

The closure of Ң means that converging rows of vectors converge 

to a vector of Ң. 

  

In general converging rows of eigenvalues of Q do not converge 

to an eigenvalue of Q. 

Thus, the set of eigenvalues of Q is open.  

At best the density of the coverage of the set of eigenvalues is 

comparable with the set of 2n-ons that have rational numbers as co-

ordinate values. 

With other words, compared to the set of real numbers the eigen-

value spectrum of Q has holes. 

The set of eigenvalues of operator Q includes 0. This means that 

Q does not have an inverse. 

  

The rigged Hilbert space Ħ can offer a solution, but then the direct 

relation with quantum logic is lost. 

 

9.2.10 Canonical conjugate operator P 

The existence of a canonical conjugate represents a stronger re-

quirement on the continuity of the eigenvalues of canonical eigen-

values.  

(3) 

(4) 

(5) 



Q has eigenvectors {|q>}q and eigenvalues q. 

P has eigenvectors {|p>}p and eigenvalues p. 

For each eigenvector |q> of Q we define an eigenvector |p> and 

eigenvalues p of P such that: 

  

< 𝑞|𝑝 > = < 𝑝|𝑞 >∗ =  𝑒𝑥𝑝 (ȋ · 𝑝 · 𝑞/ħ) 
 

ħ =  ℎ/(2𝜋) is a scaling factor. < 𝑞|𝑝 > is a quaternion. ȋ is a 

unit length imaginary quaternion. 

9.2.11 Displacement generators 

Variance of the scalar product gives: 

 

𝒊 ħ 𝛿 < 𝑞|𝑝 > =  −𝑝 < 𝑞|𝑝 > 𝛿𝑞 
 

𝒊 ħ 𝛿 < 𝑝|𝑞 > =  −𝑞 < 𝑝|𝑞 > 𝛿𝑝 
 

In the rigged Hilbert space Ħ the variance can be replaced by dif-

ferentiation.  

Partial differentiation of the function <q|p> gives: 

 

𝒊 ħ 𝜕/𝜕𝑞𝑠 < 𝑞|𝑝 > =  −𝑝𝑠 < 𝑞|𝑝 > 
 

𝒊 ħ
𝜕

𝜕𝑝𝑠

< 𝑝|𝑞 > =  −𝑞𝑠 < 𝑝|𝑞 > 

9.3 Quaternionic L² space 

The space of quaternionic measurable functions is a separable 

quaternionic Hilbert space. For example quaternionic probability 

amplitude distributions are measurable.96 

                                                           
96 http://en.wikipedia.org/wiki/Lp_space#Lp_spaces 

(1) 

(1) 

(2) 

(3) 

(4) 



This space is spanned by an orthonormal basis of quaternionic 

measurable functions. The shared affine versions of the parameter 

space of these functions is called Palestra97. When the Palestra is 

non-curved, then this base has a canonical conjugate, which is the 

quaternionic Fourier transform of the original base. 

As soon as curvature of the Palestra arises, this relation is dis-

turbed. 

With other words: “In advance the Palestra has a virgin state.” 

  

                                                           
97 The name Palestra is suggested by Henning Dekant’s wive Sa-

rah. It is a name from Greek antiquity. It is a public place for training 

or exercise in wrestling or athletics 

 



10 Gelfand triple 

The separable Hilbert space only supports countable orthonormal 

bases and countable eigenspaces. The rigged Hilbert space Ħ that 

belongs to a separable Hilbert space Ң is a Gelfand triple. It supports 

non-countable orthonormal bases and continuum eigenspaces. 

A rigged Hilbert space is a pair (Ң, 𝛷) with Ң a Hilbert space, 𝛷 a 

dense subspace, such that 𝛷 is given a topological vector space 

structure for which the inclusion map i is continuous. Its name is 

not correct, because it is not a Hilbert space. 

Identifying Ң with its dual space Ң*, the adjoint to i is the map 

𝑖∗: Ң = Ң∗ → 𝛷∗ 

The duality pairing between 𝛷 and 𝛷∗ has to be compatible with 

the inner product on Ң, in the sense that: 

 

〈𝑢, 𝑣〉𝛷×𝛷∗ = (𝑢, 𝑣)Ң 

 

whenever 𝑢 ∈ 𝛷 ⊂ Ң and 𝑣 ∈ Ң =  Ң∗ ⊂ 𝛷∗. 

 

The specific triple (𝛷 ⊂ Ң ⊂ 𝛷∗) is often named after 

the mathematician Israel Gelfand). 

Note that even though 𝛷 is isomorphic to 𝛷∗ if 𝛷 is a 

Hilbert space in its own right, this isomorphism is not the 

(1) 

(2) 

http://en.wikipedia.org/wiki/Topological_vector_space
http://en.wikipedia.org/wiki/Inclusion_map
http://en.wikipedia.org/wiki/Israel_Gelfand


same as the composition of the inclusion i with its adjoint 

i* 

𝑖∗𝑖: 𝛷 ⊂ Ң = Ң∗ → 𝛷∗ 

10.1 Understanding the Gelfand triple 

The Gelfand triple of a real separable Hilbert space can be under-

stood via the enumeration model of the real separable Hilbert space. 

This enumeration is obtained by taking the set of eigenvectors of a 

normal operator that has rational numbers as its eigenvalues. Let the 

smallest enumeration value of the rational enumerators approach 

zero. Even when zero is reached, then still the set of enumerators is 

countable. Now add all limits of converging rows of rational enu-

merators to the enumeration set. After this operation the enumeration 

set has become a continuum and has the same cardinality as the set 

of the real numbers. This operation converts the Hilbert space into 

its Gelfand triple and it converts the normal operator in a new oper-

ator that has the real numbers as its eigenspace. It means that the 

orthonormal base of the Gelfand triple that is formed by the eigen-

vectors of the new normal operator has the cardinality of the real 

numbers. It also means that linear operators in this Gelfand triple 

have eigenspaces that are continuums and have the cardinality of the 

real numbers98. The same reasoning holds for complex number based 

Hilbert spaces and quaternionic Hilbert spaces and their respective 

Gelfand triples. 

  

                                                           
98 This story also applies to the complex and the quaternionic Hil-

bert spaces and their Gelfand triples. 

(3) 



11 Fourier transform 

The Fourier transformation is a linear operator. This transform 

transfers functions to another parameter space. As a consequence the 

Fourier transform has no eigenvalues, but the Fourier transform 

knows functions that are invariant under Fourier transformation. 

The Fourier transform cannot cope with functions that have 

curved parameter spaces. However, it is possible to reduce the pa-

rameter space to a domain in which the Fourier transform keeps ac-

ceptable accuracy. Another possibility is that the target function is 

flattened, such that its parameter space becomes flat. 

The Fourier transform transfer a orthonormal set of base functions 

into a new a orthonormal set such that each member of the new set 

can be written as a linear combination of members of the old set such 

that none of the coefficients is zero. In fact all coefficients have the 

same norm. 

The Fourier transform converts the nabla operator into an operator 

that does not differentiate but multiplies the converted function with 

a factor. That operator will be called a momentum operator. 

The Fourier transform has an inverse. It turns the momentum op-

erator into the nabla operator. 

The Fourier transform converts convolution of two functions into 

the multiplication of the two functions and vice versa.  

In order to simplify the discussion we restrict it to the case that 

the parameter spaces of the functions are not curved.  

11.1 Fourier transform properties 

11.1.1 Linearity 

The Fourier transform is a linear operator 

ℱ(𝑔(𝑞)) =  𝑔̃(𝑝) (1) 



 
ℱ(𝑎 𝑔(𝑞) + 𝑏 ℎ(𝑞)) =  𝑎 𝑔̃(𝑝) + 𝑏 ℎ̃(𝑝) 

 

11.1.2 Differentiation 

Fourier transformation converts differentiation into multiplication 

with the canonical conjugated coordinate. 

 

g(𝑞) = ∇𝑓(𝑞) 

 

g̃(𝑝) = p𝑓(𝑝) 

 
g(𝑞) = ∇𝑓(𝑞) =  ∇0𝑓0(𝑞) ∓ 〈𝛁, 𝒇(𝑞)〉 ± ∇0𝒇(𝑞)

+  𝛁𝑓0(𝑞) ± (±𝛁 × 𝒇(𝑞)) 

 

g̃(𝑘) = k𝑓(𝑘) =  k0𝑓0̃(𝑘) ∓ 〈𝐤, 𝒇̃(𝑘)〉 ± k0𝒇̃(𝑘)

+  𝐤𝑓0(𝑘) ± (±𝐤 × 𝒇̃(𝑘)) 

 

For the imaginary parts holds: 

 

𝐠(𝑞) =  ±∇0𝒇(𝑞) +  𝛁𝑓0(𝑞) ± (±𝛁 × 𝒇(𝑞)) 

 

𝐠̃(𝑘) = ±k0𝒇̃(𝑘) +  𝐤𝑓0(𝑘) ± (±𝐤 × 𝒇̃(𝑘)) 

 

By using  

 

𝛁 × 𝛁𝑓0(𝑞) = 𝟎 

 

and 

 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



〈𝛁, 𝛁 × 𝒇(𝑞)〉 = 0 

 

It can be seen that for the static part (∇0𝑓(𝑞) = 0) holds: 

 

𝐠(𝑞) =  𝛁𝑓0(𝑞) ± (±𝛁 × 𝒇(𝑞)) 

 

𝐠̃(𝑘) =  𝐤𝑓0(𝑘) ± (±𝐤 × 𝒇̃(𝑘)) 

11.1.3 Parseval’s theorem 

Parseval’s theorem runs: 

 

∫ 𝑓∗(𝑞) ∙ 𝑔(𝑞) ∙ 𝑑𝑉𝑞 =  ∫𝑓∗(𝑝) ∙ 𝑔̃(𝑝) ∙ 𝑑𝑉𝑝 

 

This leads to 

 

∫|𝑓(𝑞)|2 ∙ 𝑑𝑉𝑞 =  ∫|𝑓(𝑝)|
2

∙ 𝑑𝑉𝑝 

11.1.4 Convolution 

Through Fourier transformation a convolution changes into a sim-

ple product and vice versa. 

 

ℱ(𝑓(𝑞) ∘ 𝑔(𝑞)) =  𝑓(𝑝) ∙ 𝑔̃(𝑝) 

11.2 Helmholtz decomposition 

The Helmholtz decomposition splits the static vector field 𝑭 in a 

(transversal) divergence free part 𝑭𝒕 and a (one dimensional longitu-

dinal) rotation free part 𝑭𝒍.  

 

𝑭 = 𝑭𝒕 + 𝑭𝒍 = 𝛁 × 𝒇 − 𝛁𝑓0 

(8) 

(9) 

(1

0) 

(1) 

(2) 

(1) 

(1) 



 

Here 𝑓0 is a scalar field and 𝒇 is a vector field. In quaternionic 

terms 𝑓0 and 𝒇 are the real and the imaginary part of a quaterni-
onic field 𝑓. 𝑭 is an imaginary quaternionic distribution. 

 

The significance of the terms “longitudinal” and “transversal” can 

be understood by computing the local three-dimensional Fourier 

transform of the vector field 𝑭, which we call 𝑭̃. Next decompose 

this field, at each point 𝒌, into two components, one of which points 

longitudinally, i.e. parallel to 𝒌, the other of which points in the 

transverse direction, i.e. perpendicular to 𝒌.  

 

𝑭̃(𝒌) = 𝑭̃𝒍(𝒌) + 𝑭̃𝒕(𝒌)  
 

〈𝒌, 𝑭̃𝒕(𝒌)〉 = 0 

 

𝒌 × 𝑭̃𝒍(𝒌) = 𝟎 

 

The Fourier transform converts gradient into multiplication and 

vice versa. Due to these properties the inverse Fourier transform 

gives: 

 

𝑭 = 𝑭𝒍 + 𝑭𝒕  
 

〈𝛁, 𝑭𝒕〉 = 0 

 

𝛁 × 𝑭𝒍 = 𝟎  

 

So, this split indeed conforms to the Helmholtz decomposition. 

 

This interpretation relies on idealized circumstance in which the 

decomposition runs along straight lines. This idealized condition is 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



not provided in a curved parameter space. In curved parameter space  

the decomposition and the interpretation via Fourier transformation 

only work locally and with reduced accuracy. 

11.2.1 Quaternionic Fourier transform split 

The longitudinal Fourier transform represents only part of the full 

quaternionic Fourier transform. It depends on the selection of a radial 

line 𝒌(𝑞) in p space that under ideal conditions runs along a straight 

line. 

 

ℱ𝐤(𝑔(𝑞)) =  ℱ(𝑔(𝑞), 𝒌(𝑞)) 

 

Or 

 

ℱ∥(𝑔(𝑞)) ≝  ℱ (𝑔∥(𝑞))  

 

It relates to the full quaternionic Fourier transform Ƒ 

 

ℱ(𝑔(𝑞)) =  𝑔̃(𝑝) 

 

The inverse Fourier transform runs: 

 

ℱ−1(𝑔̃(𝑝)) =  𝑔(𝑞) 

 

The split in longitudinal and transverse Fourier transforms corre-

sponds to a corresponding split in the multi-dimensional Dirac delta 

function. 

 

11.3 Fourier integral 

For the bra-ket inner product holds: 

(1) 

(2) 

(3) 

(4) 



 

< 𝑞|𝑃̌ 𝑓 > =  ħ · ∇𝑞< 𝑞|𝑓 > =  ħ · ∇𝑞𝑓∗(𝑞) =   g(𝑞) 

 

=   ∫ < 𝑞|𝑝 >·< 𝑝|𝑔 >

𝒑

 

 

The static imaginary part is 

 

< 𝑞|𝑷̌ 𝑓 > =  ħ · 𝛁𝑞 < 𝑞|𝑓 > =  ħ · 𝛁𝑞𝒇∗(𝑞) =   𝐠(𝑞) 

 

=  𝐼𝑚 (∫ < 𝑞|𝑝 >·< 𝑝|𝒈 >

𝒑

)

= ∫ 𝐼𝑚(< 𝑞|𝑝 >·< 𝑝|𝒈 >)

𝒑

 

 

= ∫ 𝐼𝑚(< 𝑞|𝑝 >·< 𝑝|𝒈𝒍 >)

𝒑

+ ∫ 𝐼𝑚(< 𝑞|𝑝 >·< 𝑝|𝒈𝒕

𝒑

>) 

 

= ∫ 𝐼𝑚(< 𝑞|𝑝 >· 𝒈̃𝒍(𝑝))

𝒑

+ ∫ 𝐼𝑚(< 𝑞|𝑝 >· 𝒈̃𝒕(𝑝))

𝒑

 

 

(1) 

(2) 



The left part is the longitudinal inverse Fourier transform of field 

𝒈̃(𝑝). 

The right part is the transverse inverse Fourier transform of field 

𝒈̃(𝑝). 

For the Fourier transform of 𝐠(𝑞) holds the split: 

 

𝒈̃(𝑝) =  ∫ 𝐼𝑚(< 𝑝|𝑞 >· 𝒈𝒍(𝑞))

𝒒

+ ∫ 𝐼𝑚(< 𝑝|𝑞 >· 𝒈𝒕(𝑞))

𝒑

 

 

=  ∫ 𝐼𝑚(< 𝑝|𝑞 >· 𝒈(𝑞))

𝒒

 

 

The longitudinal direction is a one dimensional (radial) space. The 

corresponding transverse direction is tangent to a sphere in 3D. Its 

direction depends on the field 𝐠(𝑞) or alternatively on the combina-

tion of field 𝑓 and the selected (ideal) coordinate system 𝑄̌. 

For a weakly curved coordinate system Ϙ̌ the formulas hold with 

a restricted accuracy and within a restricted region. 

11.3.1 Alternative formulation 

The reference S. Thangavelu99 provides an alternative specifica-

tion of the multidimensional Fourier transform . 

11.4 Functions invariant under Fourier transform 

In this section we confine to a complex part of the Hilbert space. 

See http://en.wikipedia.org/wiki/Hermite_polynomials.  

                                                           
99 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf 

(3) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
http://en.wikipedia.org/wiki/Hermite_polynomials


There exist two types of Hermite polynomials: 

 

1. The probalist’s Hermite polynomials: 

 

𝐻𝑛
𝑝𝑟𝑜𝑏(𝑧) = (−1)𝑛 exp(½𝑧2) 

𝑑𝑛

𝑑𝑧𝑛  exp(−½𝑧2). 

  

 

2. The physicist’s Hermite polynomials 

 

𝐻𝑛
𝑝ℎ𝑦𝑠(𝑧) = (−1)𝑛 exp(𝑧2)

𝑑𝑛

 𝑑𝑥𝑛
 exp(−𝑧2)

= exp(½𝑧2) (𝑧 −
𝑑

𝑑𝑧
)  exp(−½𝑧2) 

 

These two definitions are not exactly equivalent; either is a rescal-

ing of the other: 

 

𝐻𝑛
𝑝ℎ𝑦𝑠(𝑧) = 2𝑛/2 𝐻𝑛

𝑝𝑟𝑜𝑏
(𝑧√2) 

 

In the following we focus on the physicist’s Hermite polynomials. 

 

The Gaussian function φ(z) defined by  

 

𝜑(𝑥)  =  𝑒𝑥𝑝(−𝜋 𝑧2) 
 

is an eigenfunction of F. It means that its Fourier transform has 

the same form. 

As ℱ4 =  I  any λ in its spectrum 𝜎 (ℱ)  satisfies λ4 = 1: Hence,  

 

𝜎 (ℱ)  =  {1; −1;  𝑖; −𝑖}.  

(1, 

2) 

𝐻𝑛
𝑝ℎ𝑦𝑠(𝑧)

= 2𝑛/2 𝐻𝑛
𝑝𝑟𝑜𝑏

(𝑧√2) 

(3) 

(4) 

(5) 



We take the Fourier transform of the expansion: 

𝑒𝑥𝑝(−½ 𝑧2 +  2 𝑧 𝑐 – 𝑐2)  

=   ∑ 𝑒𝑥𝑝(−½ 𝑧2) 𝐻𝑛(𝑧) 𝑐𝑛

∞

𝑛=0

/𝑛! 

First we take the Fourier transform of the left hand side: 

 
1

√2𝜋
 ∫ 𝑒𝑥𝑝(−𝒌 𝑧 𝑝𝑧) 𝑒𝑥𝑝(−½ 𝑧2  +  2 𝑧 𝑐 – 𝑐2)

∞

𝑧=−∞

 𝑑𝑧 

=  𝑒𝑥𝑝(−½ 𝑝𝑧
2  −  2 𝒌 𝑝𝑧 𝑐 
+  𝑐2) 

=   ∑ 𝑒𝑥𝑝(−½ 𝑝𝑧
2) 𝐻𝑛(𝑝𝑧) (−𝒌 𝑐)𝑛/𝑛!

∞

𝑛=0

 

The Fourier transform of the right hand side is 

given by 

1

√2𝜋
 ∑  ∫ 𝑒𝑥𝑝(−𝒌 𝑧 𝑝𝑧)

∞

𝑧=−∞

∞

𝑛=0

· 𝑒𝑥𝑝(−½ 𝑧2) 𝐻𝑛(𝑧) 𝑐𝑛/𝑛!  𝑑𝑧 

(6) 

(7) 

(8) 



Equating like powers of c in the transformed ver-

sions of the left- and right-hand sides gives 

1

√2𝜋
 ∫ exp(−𝒌 𝑧 𝑝𝑧) ·

∞

𝑧=−∞

𝑒𝑥𝑝(−½ 𝑧2) 𝐻𝑛(𝑧) 𝑐𝑛/𝑛!  𝑑𝑧  

=  (−𝒌)𝑛

· exp(−½ 𝑝𝑧
2) 𝐻𝑛(𝑝𝑧) 

𝑐𝑛

𝑛!
 

Let us define the Hermite functions 𝜓𝑛(𝑧) 

 

𝜓𝑛(𝑧)  ≝   < 𝑧|𝜓𝑛 > = c𝑛 exp(−½ 𝑧2) 𝐻𝑛(𝑧)  
 

|ℱ 𝜓𝑛 > =  |𝜓𝑛 >  (−𝒌)𝑛 

 

with suitably chosen cn so as to make 

 

‖𝜓𝑛‖2  =  1  

 

c𝑛 =
1

√2𝑛𝑛! √𝜋
 

 

The importance of the Hermite functions lie in the following the-

orem. 

 

“The Hermite functions ψn; n  N form an orthonormal ba-

sis for L2(R)” 

(9) 

(10) 

(11) 

(12) 

(13) 



 

Consider the operator  

 

𝐻 =  −½
𝑑2

𝑑𝑧2 +  ½ 𝑧2  

 

Apply this to ψn(z): 

 

𝐻 · 𝜓𝑛(𝑧) =  (½ +  𝑛) 𝜓𝑛(𝑧)  
 

Thus, ψn is an eigenfunction of H. 

 

Let f =  ψ4k+j be any of the Hermite functions. Then we have 

 

 ∑ 𝑓(𝑦 +  𝑛) · exp(−2 𝜋 𝒌 𝑥 (𝑦 + 𝑛))

∞

𝑛=−∞

 

 

=  (−𝒌)𝑗   ∑ 𝑓(𝑥 +  𝑛) 𝑒𝑥𝑝(2 𝜋 𝒌 𝑛 𝑦)

∞

𝑛=−∞

 

 

 

The vectors |ψn> are eigenvectors of the Fourier transform opera-

tor with eigenvalues (-k)n. The eigenfunctions ψn(x) represent eigen-

vectors |ψn> that span the complex Hilbert space Ңk. 

For higher n the central parts of 𝜓𝑛(𝑥) and |𝜓𝑛(𝑥)|2 become a 

sinusoidal form. 

 

(14) 

(15) 

(16) 



 
Figure 4 

A coherent state100 is a specific kind of state101 of the quantum 

harmonic oscillator whose dynamics most closely resemble the os-

cillating behavior of a classical harmonic oscillator system. The 

ground state is a squeezed coherent state102. 

  

                                                           
100 http://en.wikipedia.org/wiki/Coherent_state  
101 States 
102 Canonical conjugate: Heisenberg’s uncertainty 

http://en.wikipedia.org/wiki/Coherent_state
http://en.wikipedia.org/wiki/Coherent_state


11.5 Special Fourier transform pairs 

Functions that keep the same form through Fourier transformation 

are: 

 

𝑓(𝑞) = exp (−|𝑞|2) 

 

𝑓(𝑞) =  
1

|𝑞|
 

 

𝑓(𝑞) = 𝑐𝑜𝑚𝑏(𝑞)  

 

The comb function consists of a set of equidistant Dirac delta 

functions. 

 

Other examples of functions that are invariant under Fourier 

transformation are the linear and spherical harmonic oscillators and 

the solutions of the Laplace equation. 

11.6 Complex Fourier transform invariance properties 

Each even function 𝑓(𝑞)  ⟺  𝑓(𝑝) induces a Fourier invariant: 

 

ℎ(𝑞) = √2𝜋 𝑓(𝑞) +  𝑓(𝑞). 

 

ℎ̃(𝑞) =  √2𝜋 ℎ(𝑞)  

 

Each odd function 𝑓(𝑞)  ⟺  𝑓(𝑝) induces a Fourier invariant: 

 

ℎ(𝑞) = √2𝜋 𝑓(𝑞) −  𝑓(𝑞). 

 

A function 𝑓(𝑞) is invariant under Fourier transformation if and 

only if the function 𝑓 satisfies the differential equation  

 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 



𝜕2𝑓(𝑞)

𝜕𝑞2 − 𝑡2𝑓(𝑞) = 𝛼 𝑓(𝑞), for some scalar 𝛼 ∈ 𝐶. 

 

The Fourier transform invariant functions are fixed apart from a 

scale factor. That scale factor can be 1, k, -1 or –k. k is an imaginary 

base number in the longitudinal direction. 

 

Fourier-invariant functions show iso-resolution, that is, ∆p= ∆q 

in the Heisenberg’s uncertainty relation. 

 

For proves see: http://www2.ee.ufpe.br/codec/isoresolu-

tion_vf.pdf.  

  

(4) 

http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf
http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf


12 Quaternionic probability amplitude 
distributions 

Continuous quaternionic distributions contain a scalar field in 

their real part and an associated vector field in their imaginary part. 

In a quaternionic probability amplitude distribution (QPAD), the 

scalar field can be interpreted as a distribution of the density of prop-

erty carriers. The associated vector field can be interpreted as a dis-

tribution of the current density of these carriers. The squared modu-

lus of the value of the QPAD can be interpreted as the probability 

density of the presence of the carrier of the charge at the location that 

is specified by the parameter. The charge can be any property of the 

carrier or it stands for the ensemble of the properties of the carrier. 

The QPAD inherits the sign flavor of the quaternionic distribution 

that defines the curvature of its parameter space. 

If a QPAD is an E-type quaternionic distribution, then a continu-

ous quaternionic function defines the curvature of the parameter 

space of the QPAD. The carriers can be interpreted as the function 

values of this allocation function. In this case the carriers are tiny 

patches of the parameter space of the QPAD. Their charge is formed 

by the discrete symmetry set (sign flavor) of the QPAD. This type of 

QPAD is suitable for application in quantum fluid dynamics. 

If a QPAD is a D-type quaternionic distribution, then a continuous 

quaternionic function defines the curvature of the parameter space of 

the QPAD. The carriers can be interpreted as elements of a medium 

like a gas or a fluid. This type of QPAD is suitable for application in 

conventional fluid dynamics. 

12.1 Potential functions 

Each charge carrier corresponds to a potential function. In com-

bination the charge carriers correspond to an integral potential.  If 



the charge carrier distribution is sufficiently localized, then the inte-

gral potential function approaches the form of the single carrier po-

tential function. 

12.2 Dynamic potential 

If the charge carrier distribution is generated in a rate of one tem-

porary element per progression step, then the potential of the single 

carriers is transmitted at that same rate. This transmission is per-

formed by spherical waves that extend in the embedding continuum. 

The waves slightly fold the continuum. An integration of these ef-

fects over a series of progression steps will then show the static inte-

gral potential function. 

 

12.3 Differential equation 

For QPAD’s the equation for the differential can be interpreted as 

a differential continuity equation. Another name for continuity equa-

tion is balance equation. The differential continuity equation is 

paired by an integral continuity equation. The differential equation 

runs: 

 

𝑔(𝑞) = 𝑔0(𝑞) + 𝒈(𝑞) = ∇𝑓(𝑞) 

 

= ∇0𝑓0(𝑞) ∓ 〈𝛁, 𝒇(𝑞)〉 
 

±∇0𝒇(𝑞) +  𝛁𝑓0(𝑞)

± (±𝛁

× 𝒇(𝑞)) 

12.4 Continuity equation 

Let us approach the balance equation from the integral variety of 

the balance equation. 



When 𝜌0(𝑞) is interpreted as a charge density distribution, then 

the conservation of the corresponding charge103 is given by the con-

tinuity equation: 

 

Total change within V = flow into V + production in-

side V 

In formula this means: 
𝑑

𝑑𝜏
∫  𝜌0 𝑑𝑉

𝑉

= ∮ 𝒏̂𝜌0

𝒗

𝑐
 𝑑𝑆

𝑆

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

∫ ∇0𝜌0 𝑑𝑉

𝑉

= ∫〈𝛁, 𝝆〉 𝑑𝑉

𝑉

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

The conversion from formula (2) to formula (3) uses the Gauss 

theorem104. Here 𝒏̂ is the normal vector pointing outward the sur-

rounding surface S, 𝒗(𝜏, 𝒒) is the velocity at which the charge den-

sity 𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the source density inside V. 

In the above formula 𝝆 stands for 

𝝆 =  𝜌0𝒗/𝑐  
 

It is the flux (flow per unit area and unit time) of 𝜌0 . 

 

The combination of 𝜌0(𝜏, 𝒒) and 𝝆(𝜏, 𝒒) is a quaternionic skew 

field 𝜌(𝜏, 𝒒) and can be seen as a probability amplitude distribution 

(QPAD). 

 

𝜌 ≝ 𝜌0 + 𝝆 

 

                                                           
103 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem 
104 http://en.wikipedia.org/wiki/Divergence_theorem  

(1) 

 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Divergence_theorem


𝜌(𝜏, 𝒒)𝜌∗(𝜏, 𝒒) can be seen as an overall probability density dis-

tribution of the presence of the carrier of the charge. 𝜌0(𝜏, 𝒒) is a 

charge density distribution. 𝝆(𝜏, 𝒒) is the current density distribu-

tion. 

This results in the law of charge conservation:  

 

𝑠0(𝜏, 𝒒) = ∇0𝜌0(𝜏, 𝒒)

∓ 〈𝛁, (𝜌0(𝜏, 𝒒)𝒗(𝜏, 𝒒) + 𝛁 × 𝒂(𝜏, 𝒒))〉 

 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝛁, 𝝆(𝜏, 𝒒) + 𝑨(𝜏, 𝒒)〉 
 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝜏, 𝒒), 𝛁𝜌0(𝜏, 𝒒)〉
∓ 〈𝛁, 𝒗(𝜏, 𝒒)〉 𝜌0(𝜏, 𝒒) 

 

∓〈𝛁, 𝑨(𝜏, 𝒒)〉 
 

The blue colored ± indicates quaternionic sign selection through 

conjugation of the field 𝜌(𝜏, 𝒒). The field 𝒂(𝜏, 𝒒) is an arbitrary dif-

ferentiable vector function. 

 

〈𝛁, 𝛁 × 𝒂(𝜏, 𝒒)〉 = 0 

 

𝑨(𝜏, 𝒒) ≝  𝛁 × 𝒂(𝜏, 𝒒) is always divergence free. In the follow-

ing we will neglect 𝑨(𝜏, 𝒒). 

 

Equation (6) represents a balance equation for charge density. 

What this charge actually is, will be left in the middle. It can be one 

of the properties of the carrier or it can represent the full ensemble 

of the properties of the carrier. 

 

Up to this point the investigation only treats the real part of the 

full equation. The full continuity equation runs: 

(6) 

(7) 



 

𝑠(𝜏, 𝒒) = ∇𝜌(𝜏, 𝒒) = 𝑠0(𝜏, 𝒒) + 𝒔(𝜏, 𝒒) 

 

=  ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝛁, 𝝆(𝜏, 𝒒)〉 ± ∇0𝝆(𝜏, 𝒒)
+  𝛁𝜌0(𝜏, 𝒒)

± (±𝛁 × 𝝆(𝜏, 𝒒)) 

 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝜏, 𝒒), 𝛁𝜌0(𝜏, 𝒒)〉
∓ 〈𝛁, 𝒗(𝜏, 𝒒)〉 𝜌0(𝜏, 𝒒)  

 

±∇0𝒗(𝜏, 𝒒) + ∇0𝜌0(𝜏, 𝒒)
+  𝛁𝜌0(𝜏, 𝒒) 

 

±(±(𝜌0(𝜏, 𝒒) 𝛁 × 𝒗(𝜏, 𝒒)

− 𝒗(𝜏, 𝒒)

× 𝛁𝜌0(𝜏, 𝒒)) 

 

𝑠0(𝜏, 𝒒) = 2∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝜏, 𝒒)〉
∓ 〈𝛁, 𝒗(𝜏, 𝒒)〉 𝜌0(𝜏, 𝒒) 

 

𝒔(𝜏, 𝒒) = ±∇0𝒗(𝜏, 𝒒) ±  𝛁𝜌0(𝜏, 𝒒) 

 

± (±(𝜌0(𝜏, 𝒒) 𝛁 × 𝒗(𝜏, 𝒒) − 𝒗(𝜏, 𝒒)

× 𝛁𝜌0(𝜏, 𝒒))) 

 

The red sign selection indicates a change of handedness by chang-

ing the sign of one of the imaginary base vectors. Conjugation also 

causes a switch of handedness. It changes the sign of all three imag-

inary base vectors. 

In its simplest form the full continuity equation runs: 

(8) 

(9) 

(1

0) 



 

𝑠(𝒒, 𝜏) = ∇𝜌(𝒒, 𝜏) 

 

Thus the full continuity equation specifies a quaternionic distri-

bution 𝑠 as a flat differential ∇𝜌. 

 

When we go back to the integral balance equation, then holds for 

the imaginary parts: 

 
𝑑

𝑑𝜏
∫ 𝝆 𝑑𝑉

𝑉

= − ∮𝒏̂𝜌0 𝑑𝑆
𝑆

− ∮𝒏̂ × 𝝆 𝑑𝑆
𝑆

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

∫ ∇0 𝝆 𝑑𝑉

𝑉

= − ∫ 𝛁𝜌0 𝑑𝑉

𝑉

− ∫ 𝛁 × 𝝆 𝑑𝑉

𝑉

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

For the full integral equation holds: 

 
𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮𝒏̂𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

Here 𝒏̂ is the normal vector pointing outward the surrounding sur-

face S, 𝒗(𝜏, 𝒒) is the velocity at which the charge density 𝜌0(𝜏, 𝒒) 

enters volume V and 𝑠0 is the source density inside V. In the above 

formula 𝜌 stands for 

𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

 

(4) 

(5) 

(6) 

(7) 

(8) 



It is the flux (flow per unit of area and per unit of progression) of 

𝜌0 . 𝑡 stands for progression (not coordinate time). 

  



12.5 Fluid dynamics 

The quaternionic continuity equation is the foundation of quater-

nionic fluid dynamics. Depending on the nature of the streaming me-

dium, this branch of physics exists in two forms. 

 In conventional fluid dynamics the streaming charge 

carriers are elements of a gas or a liquid. 

 In quantum fluid dynamics the streaming charge car-

riers are tiny patches of the parameter space of the 

QPAD. They correspond to the target values of an E-

type quaternionic allocation function ℘(𝑥). This 

function has a flat parameter space that is spanned 

by the rational quaternions. 

It means that in quantum fluid dynamics the coupling of 

QPAD’s can affect the local curvature. 

12.5.1 Coupling equation 

In its simplest form the continuity equation runs: 

 

𝛻𝜓 = 𝜑 

 

The continuity equation couples the local distribution ψ to a 

source φ. 

The coupling strength can be made explicit. This results in the 

coupling equation. 

 

𝛻𝜓 = 𝑚 𝜙 

 

Here 𝑚 is the coupling factor and 𝜙 is the adapted source. 



  



13 Conservation laws 

The following holds for all QPAD’s!!! 

Only the interpretation tells whether the QPAD concerns a quan-

tum state function, a photon, a gluon or the field of a single charge, 

a field of a set of charges or a field corresponding to the density dis-

tribution of eventually moving charge carriers. 

13.1 Differential potential equations 

Let 𝜙(𝑞) define a quaternionic potential. The potential corre-

sponds to a charge density distribution 𝜙0(𝑞) and a current density 

distribution 𝝓(𝑞).  

Note: This means that the following holds for any QPAD! 

 

𝜙(𝑞) = 𝜌0(𝑞) + 𝝆(𝑞) = 𝜌0(𝑞) + 𝜌0(𝑞)𝒗(𝑞) 

 

The gradient and curl of ϕ(q) are related. In configuration space 

holds: 

 

𝔉(𝑞) ≝ ∇𝜙(𝑞) =  ∇0𝜙0(𝑞) ∓ 〈𝛁, 𝝓(𝑞)〉 ± ∇0𝝓(𝑞)

±  𝛁𝜙0(𝑞) ± (±𝛁 × 𝝓(𝑞)) 

 

𝕰(𝑞) ≝  −𝛁𝜙0(𝑞) 

 

𝕭(𝑞)  ≝  𝛁 × 𝜙(𝑞) 

 

𝔉(𝑞) ≝ ∇𝜙(𝑞) =  𝔉0(𝑞) + 𝕱(𝑞) 

 

𝔉0(𝑞) =  ∇0𝜙0(𝑞) ∓ 〈𝛁, 𝝓(𝑞)〉 

 

𝕱(𝑞) =  ∓𝕰(𝑞) ±  𝕭(𝑞) ± ∇0𝝓(𝑞) 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



Note: When the velocity 𝒗 in 𝝓 changes, then an extra term 

∇0𝝓(𝑞) is added to equation (7). 

13.1.1 Maxwell 

In Maxwell equations, the electric field 𝑬(𝒓, 𝑡) is defined as: 

 

𝑬(𝒓, 𝑡) ≡  −𝛁𝜙0(𝒓, 𝑡) −
𝜕𝝓(𝒓, 𝑡)

𝜕𝑡
= 𝕰(𝒓, 𝑡) −

𝜕𝝓(𝒓, 𝑡)

𝜕𝑡
 

 

This is a remarkable decision, because 𝝓̇ can have components 

along 𝕰 and components along 𝕭, while 𝕰 and 𝕭 are mutually per-

pendicular. 

Further: 

 

〈𝛁, 𝑬(𝒓, 𝑡)〉 =  −𝛁2𝜙0(𝒓, 𝑡) −
𝜕〈𝛁, 𝝓(𝒓, 𝑡)〉

𝜕𝑡
 

 

=
𝜌0(𝒓, 𝑡)

𝜀0

−
𝜕〈𝛁, 𝝓(𝒓, 𝑡)〉

𝜕𝑡
 

 

In Maxwell equations, B(r) is defined as: 

 
𝑩(𝒓, 𝑡) ≡  𝛁 × 𝝓(𝒓, 𝑡) = 𝕭(𝒓, 𝑡) 

 

Further: 

 

𝛁 × 𝑬(𝒓, 𝑡) = − 
𝜕𝑩(𝒓, 𝑡)

𝜕𝑡
 

 

〈𝛁, 𝑩(𝒓, 𝑡)〉 = 0 

 

(1) 

(2) 

(3) 

(4) 

(5) 



𝛁 × 𝑩(𝒓, 𝑡) =  𝜇0(𝝆 + 𝜀0
𝜕𝑬

𝜕𝑡
) 

13.2 Gravity and electrostatics 

Gravity and electrostatics can be treated by the same equations. 

Description Gravity Electrostat-

ics 
Field 𝒈 = −𝛁 φ 𝑬 = −𝛁 φ 

Force 𝑭 = 𝑚𝒈 𝑭 = 𝑄𝑬 

Gauss law 〈𝛁, g〉 = −4𝜋𝐺𝜌 〈𝛁, E〉 =
𝜌

𝜀
 

Poisson law 
∆𝜑 = 〈 𝜵, 𝜵𝜑〉 

∆𝜑 = 4𝜋𝐺𝜌 ∆𝜑 = −
𝜌

𝜀
 

Greens func-

tion 

−1

|𝒓|
 

1

|𝒓|
 

Single charge 

potential 
𝜑 = −

4𝜋𝐺𝑚

|𝒓|
 𝜑 =

𝑄

4𝜋𝜀|𝒓|
 

Single charge 

field 
𝑔 = −

4𝜋𝐺𝑚

|𝒓|2
𝒓 𝑬 =

𝑄

4𝜋𝜀|𝒓|2
𝒓 

Two charge 

force 
𝑭 = −

4𝜋𝐺𝑚1𝑚2

|𝒓|3
𝒓 𝑭 =

𝑄1𝑄2

4𝜋𝜀|𝒓|3
𝒓 

Mode attracting repelling 

13.3 Flux vector 

The longitudinal direction k of field 𝕰(𝑞) and the direction i of 

field 𝕭(𝑞) fix two mutual perpendicular directions. This generates 

curiosity to the significance of the direction 𝐤 × 𝐢. With other words 

what happens with 𝕰(𝑞) × 𝕭(𝑞).   
 

The flux vector  𝕾(𝑞) is defined as: 

 

 𝕾(𝑞) ≝  𝕰(𝑞) × 𝕭(𝑞) 

(6) 

(1) 



 

13.4 Conservation of energy 

 

〈𝛁, 𝕾(𝑞)〉 = 〈𝕭(𝑞), 𝛁 × 𝕰(𝑞)〉 − 〈𝕰(𝑞), 𝛁 × 𝕭(𝑞)〉 
 

= −〈𝕭(𝑞), ∇0𝕭(𝑞)〉 − 〈𝕰(𝑞), 𝝓(𝑞)〉
− 〈𝕰(𝑞), ∇0𝕭(𝑞)〉 

 

= −½∇0(〈𝕭(𝑞), 𝕭(𝑞)〉 + 〈𝕰(𝑞), 𝕰(𝑞)〉)
− 〈𝕰(𝑞), 𝝓(𝑞)〉 

 

The field energy density is defined as: 

 

𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) = ½(〈𝕭(𝑞), 𝕭(𝑞)〉 + 〈𝕰(𝑞), 𝕰(𝑞)〉)

=  𝑢𝕭(𝑞) + 𝑢𝕰(𝑞) 

 

𝕾(𝑞) can be interpreted as the field energy current density. 

The continuity equation for field energy density is given by: 

 

∇0𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) + 〈𝛁, 𝕾(𝑞)〉 =  −〈𝕰(𝑞), 𝝓(𝑞)〉

=  −𝜙0(𝑞)〈𝕰(𝑞), 𝒗(𝑞)〉 
 

This means that 〈𝕰(𝑞), 𝝓(𝑞)〉 can be interpreted as a source term. 

13.4.1 Interpretation in physics  

Despite the fact that the above equations hold for any QPAD, we 

give here the physical interpretations when 𝕰 is the electric field and 

𝕭 is the magnetic field. 

𝜙0(𝑞)𝕰(𝑞) represents force per unit volume. 

𝜙0(𝑞)〈𝕰(𝑞), 𝒗(𝑞)〉 represents work per unit volume, or, in 

other words, the power density. It is known as the Lorentz power 

(1) 

(2) 

(3) 



density and is equivalent to the time rate of change of the mechanical 

energy density of the charged particles that form the current 𝝓(𝑞). 

 

∇0𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) + 〈𝛁, 𝕾(𝑞)〉 = −∇0𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) 

 

∇0𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 〈𝕰(𝑞), 𝝓(𝑞)〉 = 𝜙0(𝑞)〈𝕰(𝑞), 𝒗(𝑞)〉 

 

∇0 ( 𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) + 𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞)) = −〈𝛁, 𝕾(𝑞)〉 

 

Total change within V = flow into V + production in-

side V 

 

𝑢(𝑞) = 𝑢𝑓𝑖𝑒𝑙𝑑(𝑞) + 𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞)

= 𝑢𝐵(𝑞) + 𝑢𝐸(𝑞) + 𝑢𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) 

 

𝑈 = 𝑈𝑓𝑖𝑒𝑙𝑑 + 𝑈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 𝑈𝐵 + 𝑈𝐸 + 𝑈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙

= ∫ 𝑢 𝑑𝑉

𝑉

 

 
𝑑

𝑑𝑡
∫ 𝑢 𝑑𝑉

𝑉

= ∮〈𝒏̂, 𝕾〉𝑑𝑆
𝑆

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

Here the source s0 is zero. 

13.4.2 How to interpret Umechanical 

𝑈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙  is the energy of the private field (state function) of 

the involved particle(s). 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(1

0) 



13.5 Conservation of linear momentum 

𝕾(𝑞) can also be interpreted as the field linear momentum den-

sity. The time rate change of the field linear momentum density is: 

 

∇0𝕾(𝑞) = 𝒈𝑓𝑖𝑒𝑙𝑑(𝑞) = ∇0 𝕰(𝑞) × 𝕭(𝑞) + 𝕰(𝑞)

× ∇0𝕭(𝑞) 

 

= (𝛁 × 𝕭(𝑞) − 𝝆(𝑞)) ×  𝕭(𝑞) − 𝕰(𝑞) × 𝛁

× 𝕰(𝑞) 

 

𝑮(𝕰) = 𝕰 × (𝛁 ×  𝕰) = 〈𝛁𝕰 , 𝕰〉 − 〈𝕰, 𝕰〉
= ½𝛁〈𝕰 , 𝕰〉 − 〈𝕰, 𝕰〉 

 

= −𝛁(𝕰𝕰) + ½𝛁〈𝕰 , 𝕰〉 + 〈𝛁 , 𝕰〉𝕰 

 

= −𝛁(𝕰𝕰 + ½𝟏𝟑〈𝕰 , 𝕰〉) + 〈𝛁 , 𝕰〉𝕰 

 

𝑮(𝕭) = 𝕭 × (𝛁 ×  𝕭)
= −𝛁(𝕭𝕭 + ½𝟏𝟑〈𝕭 , 𝕭〉) + 〈𝛁 , 𝕭〉𝕭 

 

𝑯(𝕭) =  −𝛁(𝕭𝕭 + ½𝟏𝟑〈𝕭 , 𝕭〉) 

 

∇0𝕾(𝑞) = 𝑮(𝕭) + 𝑮(𝕰) − 𝝆(𝑞) ×  𝕭(𝑞) 

 

= 𝑯(𝕰) + 𝑯(𝕭) − 𝝆(𝑞) × 𝕭(𝑞) + 〈𝛁 , 𝕭〉𝕭
+ 〈𝛁 , 𝕰〉𝕰 

 

= 𝑯(𝕰) + 𝑯(𝕭) − 𝝆(𝑞) ×  𝕭(𝑞)
− 𝜌0(𝑞) 𝕰(𝑞) 

 

= 𝑯(𝕰) + 𝑯(𝕰) − 𝒇(𝑞) = 𝓣(𝑞) − 𝒇(𝑞) 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 



𝒯(q) is the linear momentum flux tensor. 

The linear momentum of the field contained in volume V sur-

rounded by surface S is: 

 

𝑷𝑓𝑖𝑒𝑙𝑑 = ∫ 𝒈𝑓𝑖𝑒𝑙𝑑  𝑑𝑉

𝑉

= ∫  𝜌0𝝓 𝑑𝑉

𝑉

+ ∫  〈∇𝝓, 𝕰〉 𝑑𝑉 + ∮〈𝒏̂, 𝕰𝑨〉𝑑𝑆
𝑆

𝑉

 

 

𝒇(𝑞) = 𝝆(𝑞) ×  𝕭(𝑞) + 𝜌0(𝑞) 𝕰(𝑞) 

 

Physically, 𝒇(𝑞) is the Lorentz force density. It equals the time 

rate change of the mechanical linear momentum density 𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 . 

 

𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) =  𝜌0𝑚(𝑞)𝒗(𝑞) 

 

The force acted upon a single particle that is contained in a vol-

ume V is: 

 

𝑭 = ∫ 𝒇 𝑑𝑉
𝑉

= ∫ (𝝆 ×  𝕭 + 𝜌0 𝕰) 𝑑𝑉
𝑉

 

 

Brought together this gives: 

 

∇0 (𝒈𝑓𝑖𝑒𝑙𝑑(𝑞) + 𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞)) =  −〈𝛁, 𝓣(𝑞)〉 

 

This is the continuity equation for linear momentum. 

(7) 

(8) 

(9) 

(1

0) 

(1

1) 



The component 𝒯ij is the linear momentum in the i-th direction 

that passes a surface element in the j-th direction per unit time, per 

unit area. 

 

Total change within V = flow into V + production in-

side V 

 

𝒈(𝑞) = 𝒈𝑓𝑖𝑒𝑙𝑑(𝑞) + 𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) 

 

𝑷 = 𝑷𝑓𝑖𝑒𝑙𝑑 + 𝑷𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = ∫ 𝒈 𝑑𝑉

𝑉

 

 
𝑑

𝑑𝑡
∫ 𝒈 𝑑𝑉

𝑉

= ∮〈𝒏̂, 𝓣〉𝑑𝑆
𝑆

+ ∫ 𝒔𝒈 𝑑𝑉

𝑉

 

 

Here the source sg = 0. 

13.6 Conservation of angular momentum 

13.6.1 Field angular momentum 

The angular momentum relates to the linear momentum. 

 

𝒉(𝒒𝑐) = (𝒒 − 𝒒𝑐) × 𝒈(𝑞) 

 

𝒉𝑓𝑖𝑒𝑙𝑑(𝒒𝑐) = (𝒒 − 𝒒𝑐) × 𝒈𝑓𝑖𝑒𝑙𝑑(𝑞) 

 

𝒉𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) = (𝒒 − 𝒒𝑐) × 𝒈𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝑞) 

 

𝓚(𝒒𝑐) = (𝒒 − 𝒒𝑐) × 𝓣(q) 

 

(1

2) 

(1

3) 

(1

4) 

(1

5) 

(1) 

(2) 

(3) 

(4) 



This enables the balance equation for angular momentum: 

 

∇0 (𝒉𝑓𝑖𝑒𝑙𝑑(𝒒𝑐) + 𝒉𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙(𝒒𝑐)) =  −〈𝛁, 𝓚(𝒒𝑐)〉 

 

Total change within V = flow into V + production in-

side V 

 

𝑱 = 𝑱𝑓𝑖𝑒𝑙𝑑 + 𝑱𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = ∫ 𝒉 𝑑𝑉

𝑉

 

 
𝑑

𝑑𝑡
∫ 𝒉 𝑑𝑉

𝑉

= ∮〈𝒏̂, 𝓚〉𝑑𝑆
𝑆

+ ∫ 𝒔𝒉 𝑑𝑉

𝑉

 

 

Here the source sh = 0. 

 

For a localized charge density contained within a volume V holds 

for the mechanical torsion: 

 

𝜏(𝒒𝑐) = ∫(𝒒′ − 𝒒𝑐) × 𝒇(𝑞′)𝑑𝑉

𝑉

 

 

= ∫(𝒒′ − 𝒒𝑐) × (ρ0(𝑞′)𝕰(𝑞′) +  𝒋(𝑞′)  

𝑉

×  𝕭(𝑞′))𝑑𝑉 

 

= 𝑄(𝒒 − 𝒒𝑐) × (𝕰(𝑞) +  𝒗(𝑞)  ×  𝕭(𝑞)) 

 

𝑱𝑓𝑖𝑒𝑙𝑑(𝒒𝑐) = 𝑱𝑓𝑖𝑒𝑙𝑑(𝟎) + 𝒒𝑐 × 𝑷(𝑞) 

 

(5) 

(6) 

(7) 

(8) 

(9) 



Using 

 

〈𝛁𝒂, 𝒃〉 = 𝒏𝜈

𝜕𝑎𝜇

𝜕𝑞𝜈

𝑏𝜇 

 

〈𝒃, 𝛁𝒂〉 = 𝒏𝜇

𝜕𝑎𝜇

𝜕𝑞𝜈

𝑏𝜇 

 

holds 

 

𝑱𝑓𝑖𝑒𝑙𝑑(𝟎) = ∫ 𝒒′ × 𝕾(𝑞′)𝑑𝑉

𝑉

= ∫ 𝒒′ × 𝕰(𝑞′) × 𝛁 × 𝝓(𝑞′) 𝑑𝑉

𝑉

 

 

= ∫(𝒒′ × 〈(𝛁𝝓), 𝕰〉 − 〈𝒒′ × 𝕰, (𝛁𝝓)〉) 𝑑𝑉

𝑉

 

 

= ∫𝒒′ × 〈(𝛁𝝓), 𝕰〉𝑑𝑉
𝑉

 

 

+ ∫ 𝕰 × 𝝓 𝑑𝑉

𝑉

− ∫〈𝛁, 𝕰𝒒′
𝑉

× 𝝓〉𝑑𝑉

+ ∫ (𝒒′
𝑉

× 𝝓)〈𝛁, 𝕰〉𝑑𝑉 

13.6.2 Spin 

Define the non-local spin term, which does not depend on qʹ as: 

(1

0) 

(1

1) 

(1

2) 



 

𝜮𝑓𝑖𝑒𝑙𝑑 = ∫ 𝕰(𝑞) × 𝝓(𝑞)𝑑𝑉

𝑉

 

 

Notice 

 

𝝓(𝑞) × 𝛁𝜙0(𝑞) = 𝜙0𝛁 × 𝝓(𝑞) + 𝛁 × (𝜙0(𝑞)𝝓(𝑞)) 

 

And 

 

𝑳𝑓𝑖𝑒𝑙𝑑(𝟎) = ∫𝒒′ × 〈(𝛁𝝓), 𝕰〉𝑑𝑉
𝑉

+ ∫𝒒′ × 𝜌0𝝓𝑑𝑉
𝑉

 

 

Using Gauss: 

 

∫〈𝛁, 𝒂〉𝑑𝑉 =
𝑉

∮〈𝒏̂, 𝒂〉𝑑𝑆
𝑆

 

And 

 

𝜌0 = 〈𝛁, 𝕰〉 
 

Leads to: 

𝑱𝑓𝑖𝑒𝑙𝑑(𝟎) = 𝜮𝑓𝑖𝑒𝑙𝑑 + 𝑳𝑓𝑖𝑒𝑙𝑑(𝟎) + ∮〈𝒏̂, 𝕰𝒒′ × 𝝓〉𝑑𝑆
𝑆

 

13.6.3 Spin discussion 

The spin term is defined by: 

 

𝜮𝑓𝑖𝑒𝑙𝑑 = ∫ 𝕰(𝑞) × 𝝓(𝑞)𝑑𝑉

𝑉

 

(1

3) 

(1

4) 

(1

5) 

(1

6) 

(1

7) 
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In free space the charge density ρ0 vanishes and the scalar poten-

tial ϕ0 shows no variance. Only the vector potential ϕ may vary 
with q0. Thus: 

 
𝕰 = 𝛁𝜙0 − ∇0𝝓 ≈ −∇0𝝓 

 

𝜮𝑓𝑖𝑒𝑙𝑑 ≈ ∫(∇0𝝓(𝑞)) × 𝝓(𝑞)𝑑𝑉

𝑉

 

 

Depending on the selected field Σfield has two versions that dif-
fer in their sign. These versions can be combined in a single op-
erator: 

 

𝜮𝑓𝑖𝑒𝑙𝑑 =  [
𝜮+

𝑓𝑖𝑒𝑙𝑑

𝜮−
𝑓𝑖𝑒𝑙𝑑

] 

 

If 
𝝓(𝑞)

|𝝓(𝑞)|
 can be interpreted as tantrix (𝑞0) ) and 

∇0𝝓(𝑞)

|∇0𝝓(𝑞)|
 can be 

interpreted as the principle normal 𝑵(𝑞0), then 
(∇0𝝓(𝑞))×𝝓(𝑞)

|(∇0𝝓(𝑞))×𝝓(𝑞)|
 can 

be interpreted as the binormal 𝕭(𝑞0).  
From these quantities the curvature and the torsion105 can be 

derived. 
 

[

𝑻̇(𝑡)

𝑵̇(𝑡)

𝑩̇(𝑡)

] =  [

0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0
] [

𝑻(𝑡)
𝑵(𝑡)

𝑩(𝑡)
] 

                                                           
105Path characteristics  

(2) 

(3) 

(4) 

(5
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