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Abstract 

It is hypothesized that a mapping of the biochemical properties of genetic nucleotides 

into the three dimensional ℝ3 Clifford algebra will yield a novel and meaningful evolutionary 

distance measure. The nucleotides A,T,C,G are mapped according to three biochemical 

properties (amino/keto, purine/pyrimidine, weak/strong), resulting in four base-vectors. A 

weighted linear combination of the base-vectors as codon triplets results in a "Tetrahedral 

Genetic Code" (TGC), where all 64 codons map to 64 unique codon-vectors in the space. Phase 

distance θ is measured as the angle between sequentially neighboring codon-vectors, and a 

sequence of codons is measured as the total path length in radians of the vector as it traverses the 

TGC. Angular difference Δθ is computed as the absolute value of the difference in phase θ 

between sequences, at homologous loci. The Genetic Phase Angle Distance (GPAD) is computed 

as the Δθ mean.  GPAD is computed on a sample sequence matrix for 11 different species and 

compared side by side to the Equal-input distance and phylogenetic tree computed on that same 

species matrix. 
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I. Introduction 

There has been a growing discontent in the fringes of the Biosciences concerning the 

erroneous emphasis of its methodologies upon the discrete information contained within the 

genome.  There is call for a more explicit study of the different kinds of representations that can 

exist in biology vis-a-vis complex dynamical systems.  Beyond the observables known from 

physics, there is a need for new observables in biology that will increase its intelligibility and 

facilitate the quantification of collective biological organization. (Bailly & Longo, 2009; Longo, 

Miquel, Sonnenschein, & Soto, 2012; Rocha & Hordijk; Simeonov, 2010)  In this paper I will 

present a novel method of deriving molecular evolutionary distances via a three dimensional 

representation of the genetic code, and argue the validity of a unique subjective ontology which 

might be observed at the level of molecular biology.  

Over the past decade, a number of new methods of genomic analysis have been introduced.  The 

fractal properties of DNA (Cattani, 2010), the ability to generate linguistic statements from its 

codons (Lee et al., 2011), and the application of quantum algorithms to the genetic code 

(Patel, 2001; Rieper, Anders, & Vedral, 2010) emphasize the interactions between molecules, 

rather than treating a single base as an individual unit of information.  Current evidence 

indicates that genomes are complex landscapes defined by physical structures and forces of 

extremely long range which can appropriately be considered another level of genetic coding. 

(Mauger, Siegfried, & Weeks, 2013; Melkikh, 2013)  In particular, genomic signal processing 

(Chheda, 2012) involves a reconceptualization of biological information, as much as it offers 

new and interesting methods of accessing its content.  The signal analytic genomic model and 

measure presented in this work are called the Tetrahedral Genetic Code (TGC) and Genetic 

Phase Angle Distance (GPAD), respectively. 
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II. An Imaginary Science  

To begin, it must be acknowledged that the established methods of molecular biology, 

and specifically the genetic code, are practically irrefutable.  Nevertheless, while the triplet 

genetic code is the most common lookup table used to decode genomic information, the elegance 

of the three letter genetic code has often focused analysis of the human genome on the sequence 

of nucleotides, neglecting the possibility of additional codes in the genome both within and 

outside the coding regions. (Parker & Tullius, 2011; Robins, Krasnitz, & Levine, 2008)  This can 

be compared to the dangerously misleading ball-and-stick models of chemistry, with which we 

tend to assume that the actual bonding phenomenon is concentrated along those very lines.  A 

molecule is not a hard and rigid object, but rather, a dense bundle of energy characterized by 

smoothness and dynamics. (Hyde, 1997)  Similarly, the cell is not a computer, indifferent to the 

sequence data it processes.  The genome is fundamentally different:  its states depend upon its 

knowledge content. (Stern, 2000) 

A simple and effective way to gain insight into the collective nature of biological 

information is to extend it metaphorically into more recent models of physics and the 

mathematics of complexity.  Whereas in physics we may wonder, “can one hear the shape of a 

drum?” (Kac, 1966), in biology we might ask if the cell can “hear” the shape of a protein.  In 

(Brown, 1972), we are reminded that a mathematical description of cellular activity might be 

compared with a practical art form like cookery, in which the taste of a cake (protein shape), 

although literally indescribable, can be conveyed to a reader in the form of a set of injunctions 

called a recipe (an amino acid sequence).  In both cases, we arrive at a qualitative, rather than 

quantitative, description which is characteristic of systems thinking – from objects to 

relationships. (Capra, 1996) 
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The drum metaphor is of particular interest as an introduction to, and justification of, the 

signal processing techniques used in computation of the TGC and GPAD.  In Figure 1 we see a 

comparison of the re-creation of the form of a drum in the mind of a listener, to the generation of 

a functional enzyme from its discrete sequence.  The physical drum is composed of many 

elements which can be taken apart and analyzed reductively.  One can also analyze the collection 

of all the parts as a single unit and attempt to infer, laboriously, the role that each part contributes 

to the overall tonal quality of the drum.  Or, as a better alternative, we may just strike the drum 

and take a listen.  By permitting a relationship between the observer and the observed, we can at 

once, and with little effort, extrapolate the component parts such as the material of construction 

and the tautness of the head; more importantly, we can assign a sonic function to the drum, as if 

it were a member of an orchestra. 

Figure 1:  Biological information is mediated through the immediate ontological experience of the observer with the observed. 
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Considering these two methods of drum analysis, we can see immediately that an attempt 

to understand the function of the drum from a reductionist point of view is futile.  Even if we 

manage, by some major effort, to model the drum as a collection (of parts), we will gain very 

little knowledge of its timbre.  Likewise, it is common knowledge that the derivation of protein 

shape via amino acid sequence is nearly intractable.  It is tempting to consider that there might 

exist some mediator of protein from form to function as a direct, subjective, sensational 

experience.  That the cellular environment and molecular structures are capable of supporting 

this type of behavior through a quantum interpretation of biology is becoming increasingly 

supported in the literature. (Plankar, Brežan, & Jerman, 2013; Rieper et al., 2010; Rowlands, 

2007)  How to mold the measure of a molecular “experience” into the form of a science is the 

central question in the transition from bioinformatics to biosemiotics. 

III. The Mathematics of Complex Signals  

The mathematics of complexity is one of relationships and patterns.  Complexity in the 

natural world is manifested through implicit and explicit order. The implicit order can be 

encoded in ‘hidden variables’ that enable semantic enfolding and unfolding in the formal world. 

(Bohm, 1952)  Looking again at Figure 1, the physical drum is explicit, its mental recreation is 

implicit, and the “encoded hidden variables” are represented by the complex waveform that lies 

between them. 

In terms of genomics, the distinguishing biochemical properties of DNA nucleotides can 

encode three overlapping modes of discrete computation simultaneously:  each nucleotide can be 

described as a purine or pyrimidine, as containing an amino or keto group, and by having either 

two or three hydrogen bond pairings with its complimentary base. Thus the explicit order, a 

single structural change within a DNA strand, can be described by three different characteristics 
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at once.  It is through the formal superposition of these variables in an abstract mathematical 

space called a "phase space", that we hope to find, in the experiment to follow, an implicit order 

of the genetic sequences.  The three nucleotide characteristics are represented by independent 

coordinates in three dimensions of the phase space.  Thus, a single point in the space describes 

the simultaneous state (“taste”) of the entire system. (Capra, 1996)  In this way, we transform the 

genetic sequence into a signal like unto the complex sonic waveform of the drum.  From there, 

we may treat the waveform via a plethora of computational techniques which have already been 

used extensively and with significant success in bioinformatics, including such tools as hidden 

Markov models and neural networks, the discrete Fourier transform (DFT), FIR digital filtering, 

wavelets, and spectrograms. (Anastassiou, 2001)  The techniques used in the computation of the 

TGC and GPAD are founded upon the work of (Cristea, 2005).  Similar analytical methods can 

be found in (Brodzik & Peters, 2005), the dyadic and Hadamard genomatrices of (Petoukhov, 

2010), and in (Rowlands, 2007) genetic formulation of the Dirac nilpotent algebra. 

IV. Computational Framework  

The tetrahedral genetic code (TGC) was computed and rendered using the Mathematica 

package 'clifford.m' which implements general operations of a Clifford algebra on the language 

of the computer algebra program Mathematica, and has been enriched with functions to draw 

multivectors in ℝ3. (Aragon-Camarasa, Aragon-Gonzalez, Aragon, & Rodriguez-Andrade, 2008)  

The package 'clifford.m', a user guide, a palette with the most common predefined functions, the 

notebook with the calculations by (Zhang, Zhu, Peng, & Chen, 2006), as well as the explicit 

Mathematica code for all calculations in this experiment are available for download (see 

Appendix B). 
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A vector has a length (scalar value) and direction, which we can represent as a directed 

line segment in 3D; it can stem from the origin of a Euclidean coordinates system and move to a 

point in three dimensions.  Geometric algebra has four basic computing elements in 3D physical 

space: scalar, vector, bivector, and trivector.  Linear compositions of geometric algebra’s basic 

computing elements are called multivectors, and are denoted by uppercase Latin letters, such as 

A, B, and C.  We use the term k-vector to denote a k-dimensional subspace, which is formed 

from the outer product of vectors.  For any k-vector Ak, when k = 0, 1, 2, or 3, Ak represents a 

scalar, vector, bivector, or trivector, respectively. (Zhang et al., 2006)   

Nucleotide and Codon Mappings 

All elements of the TGC will be represented by 1-vectors:  A1 , T1 , G1 , C1;  where each 

symbol is the first letter of the respective genetic nucleotide Adenine, Thymine, Guanine, or 

Cytosine.  In Mathematica code, we denote the j-th basis vector as ej.  Accordingly, the ℝ3 

geometric algebra basis vectors are e1, e2, and e3.  The four nucleotides are mapped as: 

A1 =  e1 +e2 +e3  
T1 =    e1 −e2 −e3 
G1 =  −e1 −e2 +e3 
C1 =   −e1 +e2−e3 

Figure 2:  Nucleotides are mapped into a complex vector space, as represented in Mathematica using ‘clifford.m’ (Aragon, 2008). 
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 The sign values play the important role of distinguishing the three specific biochemical 

characteristics (one on each axis) associated with each nucleotide.  For e1, a positive sign 

indicates that the base has a ‘weak’ 2-hydrogen bond pairing with its compliment in the opposite 

strand; a negative sign indicates a ‘strong’ 3-hydrogen bond pairing.  Similarly along e2, positive 

values indicate a nucleotide with an amino group and negative values give a nucleotide with a 

keto group.  Finally, in e3 the positive and negative signs represent the purines and pyrimidines, 

respectively.  The nucleotide 3-D mappings are visualized in Figure 2.   

The mapping of a codon from the standard genetic code into the vector space is 

accomplished as a weighted, linear combination of its three vector nucleotide components, 

resulting in a composite vector.  Given a protein-coding sequence, each codon is decomposed 

into its first, second and third elements; the first nucleotide is denoted by α, the second by β, and 

the third by γ.  Following, each vector is given a multiplicative weighting factor according to its 

relative importance (due to degeneracy) in determining the codon’s resultant amino acid.  Given 

a sequence containing N number of codon triplets, the codon-vector sequence is defined as 

δn({{αn,βn,γn},{…},{αN,βN,γN}})  {{4αn + 2βn + γn},{…},{4αN + 2βN + γN}}, 

(n = 1, 2, …., N; α, β, γ ∈ {A1 ,T1 ,G1 ,C1}) 

 An ordered mapping of all 64 genetic codons into the vector space yields 64 unique 

vectors, and is visualized as tetrahedral in shape. Taken all at once, the genetic code, mapped as 

the TGC, is shown in Figure 3.  The tetrahedral representation expresses the symmetry and 

degeneration of the genetic code; generates mappings of nucleotide, codon and amino acid 

sequences into genomic signals; and translates multiple modes of biochemical properties into a 

single, simultaneous, signal property.  Codons corresponding to the same amino acid are mapped 

to neighboring points within the tetrahedron, i.e., related codons are clustered.  The complex 
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mappings cluster the multiple 

representations of the same amino acid in 

contiguous regions of the space. (Cristea, 

2003) 

Genetic Phase Angle Distance 

For any two consecutive codon-

vectors, δi ({αi, βi, γi}) and δj ({αj, βj, γj}), 

let θ(𝑖 ,𝑗) be the angle between them.  For 

N=64 unique elements of the TGC, there 

exist 64
2

2
 possible θ(𝑖 ,𝑗).  The two-

dimensional matrix of all ordered 

combinations between pairs of codon-vectors is 

a finite field of θ(NxN).  If each position of the 

resulting matrix is assigned a color and intensity 

requisite to the value of its measured angle, a 

fractal-like pattern with interesting symmetries 

emerges (Figure 4).   

Any given protein-coding sequence can 

be plotted linearly as a path within the finite 

θ(NxN) matrix; or more simply, a genetic 

sequence mapped into the TGC is the smooth 

path on the surface of a sphere which is drawn 

Figure 3:  64 codons map to 64 unique vector positions resulting in a 
tetrahedral genetic code. 

Figure 4:  A matrix of all possible values of θ (small 
θlight, large θdark). 
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as a result of a vector traversing the sequential codon-vector positions.  This sequential path of 

angles is then transferred to a Cartesian plot with phase angle (in radians) on the y-axis and time 

(in arbitrary units) on the x-axis.  The θ sequence paths of the first exon of the β-globin gene for 

the two species Human and Gallus is shown in Figure 5.  Also shown in the figure is the 

immediate precursor of the Genetic 

Phase Angle Distance (GPAD) 

measure, Δθ, defined as the absolute 

value of the difference between the 

two sequence paths.  This measure 

will be used in the following section 

in an attempt to derive evolutionary 

distances between a number of 

distantly related species. 

V. Experimental Setup and Results 

An initial test of the validity of the GPAD was conducted by taking the measure over a 

sample set of genetic sequences, and making a direct comparison to an established distance 

measure over that same sample set.  The sequences for the β-subunit of hemoglobin for eleven 

different species were located using (Jafarzadeh & Iranmanesh, 2013), and confirmed by BLAST 

(Altschul, 1997).  The curated sequences were then imported into the MEGA5 software (Tamura 

et al., 2011) and an alignment was performed using the MUSCLE algorithm (Edgar, 2004).  It 

should be noted that a major drawback of the current GPAD computational framework is the 

inability to properly handle indel mutations.  Because the framework is set up as a direct 

mapping from pairs of codon-vectors to their corresponding angle measure, any gap-containing 

 

Figure 5:  θ and Δθ sequence plots of the first exon of the β-globin gene for 
Human and Gallus. 
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alignment (example: {A,-,G}) will not receive coordinates in the vector space.  Rather, gap-

containing triplets are mapped to the origin (zero).  For this reason, the sequence and alignment 

parameters were selected with the primary goal of limiting the effect of indel mutations.  Table 1 

(Appendix A) gives the eleven aligned β-globin sequences under examination.  

The procedure for transformation of the eleven genetic sequences into TGC θ and Δθ 

sequence paths was performed as outlined in the previous section, resulting in an (ixjxk) matrix 

where i and j represent the ordered combinations of all species in the sample set, and k is the Δθ 

sequence between the ith and jth species.  The (ixjxk) matrix is then reduced to (ixj) by taking the 

mean angular distance within each Δθ path, resulting in a single value at every position of the 

square matrix.  This final procedure is formalized, and an example given, in Figure 6.   

The GPAD matrix was compared to a set of sixteen standardized distance measures by 

taking the difference of matrices 𝟐
𝑵𝟐

∑∑ �𝒂(𝒊,𝒋)−𝒃(𝒊,𝒋)�, resulting in a measure of variance between 

them.  Table 2 gives the results of this similarity test, revealing a significant match between 

GPAD and the ‘Equal-input’ model (Tamura et al., 2011).  The GPAD matrix for all eleven 

species, along with a representation of 

its values according to relative color 

and intensity, is shown in the upper 

section of Figure 7.  For direct 

comparison, a second matrix was 

constructed with the same aligned 

sequences using the Equal input model, 

shown in the lower half of the figure. 

Figure 6:  GPAD is calculated as the normalized mean Δθ between two 
homologous protein-coding sequences. 
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A second experiment was conducted in order to 

further explore the similarity between the GPAD and 

Equal-input models.  The mean θ sequence path between 

all eleven species, and the Δθ and GPAD of each species 

sequence against that mean were computed.  A 

phylogenetic tree, rooted to Gallus, was computed on the 

species matrix using the following settings:  UPGMA, 

Equal-input model, neighbor-joining, bootstrap 

replications: 500, uniform rates among sites.  These 

additional GPAD-distance-from-mean values and 

phylogenetic analysis are shown in Figure 8. 

  

Figure 7:  Side by side comparison of sequences from Table XX using distance measures:  GPAD (upper) and Equal input model (lower). 

Table 2:  difference of matrices between GPAD 
and sixteen standardized distance 
measures. 
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VI. Discussion/Conclusion 

The Tetrahedral Genetic Code is a projection of multiple modes of nucleotide 

biochemical information into a complex phase space, represented by the ℝ3 Clifford geometric 

algebra.  A genetic sequence of triplet codons mapped into this space can be thought of as the 

path on the surface of a sphere correlating to the motion of angular transitions between 

consecutive codon-vectors.  Any two homologous coding sequences can plotted as a function of 

angular distance (radians) in time, and the positive difference between their paths is interpreted 

as a distance of molecular evolution.  The GPAD is the mean score of this difference. 

It is difficult to quantify the accuracy and utility of the GPAD due to the small size of the 

experimental sample set and sequence length.  Nevertheless, even a quick subjective assessment 

of the results leaves little doubt that GPAD is at least as effective a measure of evolutionary 

distance as many of the distance measures currently in regular use.  The figure with the colored 

matrices shows quite plainly that the two data sets follow the same overall trend; and closer 

inspection of the numerical values reveals that in many cases, those values are in the same 

neighborhood.  As noted in Table 2, the average variance between the two matrices in the figure 

is 0.1, meaning that the two measures are indeed quite similar.  Also of note in that table is the 

segregation of amino-acid and nucleotide substitution models, with amino-acid substitution 

faring better in all cases.  It is supposed that this is due to the fact that GPAD is also based to 

some degree on amino-acid substitution. 

The phylogenetic analysis in Figure 8 shows the peculiar correspondence of the Equal-

input lineage to the increasing order of species GPAD-distance-from-mean scores.  As shown in 

better detail in Figure 9 (Appendix A), the mean θ path most closely resembles the most recent 

sequence, human, while the most distant sequence, opossum, has the widest variation from the 
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mean.  Other than the interchange of the goat/bovine and mouse/rat branches, the two lists fall 

into an identical ordering.  This additional information lends support to the similarity of GPAD 

to the Equal-input model.  However, because the distance-from-mean approach is an atypical 

assessment of inheritance, it is unclear if the similarity in ordering is coincidental, if it is also 

observed in the standard models, or if it is detecting some central tendency or attraction via the 

mechanisms of evolution toward some ‘optimal’ amino-acid sequence, represented by the mean 

θ path.  It will be interesting to see, in future study, if the GPAD-distance-from-mean continues 

to exhibit this unexpected property. 

  

Figure 8:  A table of GPAD-distance-from-mean scores, compared to phylogenetic analysis (boostrap consensus values at branch points). 
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What is particularly interesting about the mean θ path is that it does not represent some 

explicit genetic sequence, but rather, it represents a relative configuration of the relationships 

between codons.  In other words, for any given path, there exist many codon sequences that will 

satisfy its angular distance relationships.  There is no stipulation in the GPAD for origination or 

direction of travel through the three dimensional vector space:  its only measure is angle.  It is 

noted, however, that the vector magnitude and direction of travel are possible avenues for further 

study.  It may also be interesting to assess the θ and Δθ paths in comparison to protein domains, 

to perhaps uncover new clues about the nature of protein folding. 

Because of the ambiguous, non-directional, property of the θ path, a useful metaphor is 

that the path is like unto a musical melody, wherein the relative frequencies between neighboring 

notes is important, but not the absolute values of the frequencies of individual notes:  the melody 

is recognized irrespective of the key in which it is reproduced. (Petoukhov, 2010)  The process of 

“recognition” of an in-tune or out-of-tune molecular sequence or conformation is a good 

candidate for the emergence of the “self” in self-replication, via the coarse-graining of phase 

space. (England, 2012)  Indeed, the Tetrahedral Genetic Code and Genetic Phase Angle Distance 

could be an important step in the development of a statistical method reminiscent of quantum 

mechanics, helping to uncover why nonsynonymous sequences can assume very similar 

functional shapes and domains (Parker, 2011), and why changing the nucleotides in the third 

position of codons in regulatory elements increases the rate of transcription of these elements 

many fold (Robins et al., 2008; Subramaniam, Pan, & Cluzel, 2013), among the many 

outstanding problems of molecular biology. 
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Appendix A – Additional Figures 
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Appendix B – Explicit Mathematica computational code 

This code is also available as a Mathematica notebook file in the supplemental materials located at: 
https://docs.google.com/file/d/0Bzgyyvz44CkRUkx1aVRqNTZxVTA/edit?usp=sharing 

 
 (* !!! push 'shift-enter' to execute the notebook !!! *) 
 
(*import the clifford algebra package clifford.m; available for download 
http://www.fata.unam.mx/aragon/software*) 
<<clifford.m 
 
(*computation:  map nucleotides into 3D vector space*) 
{a=Distribute[e[1]+e[2]+e[3]],c=Distribute[-e[1]+e[2]-e[3]],g=Distribute[-e[1]-
e[2]+e[3]],t=Distribute[e[1]-e[2]-e[3]]}; 
 
(*graphic:  vector-codons*) 
{"A",GADraw[a],"T",GADraw[t],"G",GADraw[g],"C",GADraw[c]} 
 
(*graphic:  3D plot of Tetrahedral Genetic Code*) 
{{AAA=Distribute[Simplify[4a+2a+a]],AAT=AAT=Distribute[Simplify[4a+2a]]+t,AAC=Distribute[Simplify
[4a+2a+c]],AAG=Distribute[Simplify[4a+2a+g]]},{ATA=Distribute[Simplify[4a+a]]+Distribute[2t],ATT=
Distribute[Simplify[4a+2t+t]],ATC=Distribute[Simplify[4a+2t+c]],ATG=Distribute[Simplify[4a+2t+g]]
},{ACA=Distribute[Simplify[4a+2c+a]],ACT=Distribute[Simplify[4a+2c+t]],ACC=Distribute[Simplify[4a
+2c+c]],ACG=Distribute[Simplify[4a+2c+g]]},{AGA=Distribute[Simplify[4a+2g+a]],AGT=Distribute[Simp
lify[4a+2g+t]],AGC=Distribute[Simplify[4a+2g+c]],AGG=Distribute[Simplify[4a+2g+g]]},{TAA=Distribu
te[Simplify[4t+2a+a]],TAT=Distribute[4t]+Distribute[2a]+Distribute[t],TAC=Distribute[Simplify[4t+
2a+c]],TAG=Distribute[Simplify[4t+2a+g]]},{TTA=Distribute[4t]+Distribute[2t]+Distribute[a],TTT=Di
stribute[Simplify[4t+2t+t]],TTC=Distribute[Simplify[4t+2t+c]],TTG=Distribute[Simplify[4t+2t+g]]},
{TCA=Distribute[Simplify[4t+2c+a]],TCT=Distribute[Simplify[4t+2c+t]],TCC=Distribute[Simplify[4t+2
c+c]],TCG=Distribute[Simplify[4t+2c+g]]},{TGA=Distribute[Simplify[4t+2g+a]],TGT=Distribute[Simpli
fy[4t+2g+t]],TGC=Distribute[Simplify[4t+2g+c]],TGG=Distribute[Simplify[4t+2g+g]]},{CAA=Distribute
[Simplify[4c+2a+a]],CAT=Distribute[Simplify[4c+2a+t]],CAC=Distribute[Simplify[4c+2a+c]],CAG=Distr
ibute[Simplify[4c+2a+g]]},{CTA=Distribute[Simplify[4c+2t+a]],CTT=Distribute[Simplify[4c+2t+t]],CT
C=Distribute[Simplify[4c+2t+c]],CTG=Distribute[Simplify[4c+2t+g]]}, 
{CCA=Distribute[Simplify[4c+2c+a]],CCT=Distribute[Simplify[4c+2c+t]],CCC=Distribute[Simplify[4c+2
c+c]],CCG=Distribute[Simplify[4c+2c+g]]}, 
{CGA=Distribute[Simplify[4c+2g+a]],CGT=Distribute[Simplify[4c+2g+t]],CGC=Distribute[Simplify[4c+2
g+c]],CGG=Distribute[Simplify[4c+2g+g]]}, 
{GAA=Distribute[Simplify[4g+2a+a]],GAT=Distribute[Simplify[4g+2a+t]],GAC=Distribute[Simplify[4g+2
a+c]],GAG=Distribute[Simplify[4g+2a+g]]}, 
{GTA=Distribute[Simplify[4g+2t+a]],GTT=Distribute[Simplify[4g+2t+t]],GTC=Distribute[Simplify[4g+2
t+c]],GTG=Distribute[Simplify[4g+2t+g]]}, 
{GCA=Distribute[Simplify[4g+2c+a]],GCT=Distribute[Simplify[4g+2c+t]],GCC=Distribute[Simplify[4g+2
c+c]],GCG=Distribute[Simplify[4g+2c+g]]}, 
{GGA=Distribute[Simplify[4g+2g+a]],GGT=Distribute[Simplify[4g+2g+t]],GGC=Distribute[Simplify[4g+2
g+c]],GGG=Distribute[Simplify[4g+2g+g]]},drawcode={drawcodeA={AAAd=GADraw[AAA],AATd=GADraw[AAT],A
ACd=GADraw[AAC],AAGd=GADraw[AAG],ATAd=GADraw[ATA],ATTd=GADraw[ATT],ATCd=GADraw[ATC],ATGd=GADraw[A
TG],ACAd=GADraw[ACA],ACTd=GADraw[ACT],ACCd=GADraw[ACC],ACGd=GADraw[ACG],AGAd=GADraw[AGA],AGTd=GAD
raw[AGT],AGCd=GADraw[AGC],AGGd=GADraw[AGG]},drawcodeT={TAAd=GADraw[TAA],TATd=GADraw[TAT],TACd=GAD
raw[TAC],TAGd=GADraw[TAG],TTAd=GADraw[TTA],TTTd=GADraw[TTT],TTCd=GADraw[TTC],TTGd=GADraw[TTG],TCA
d=GADraw[TCA],TCTd=GADraw[TCT],TCCd=GADraw[TCC],TCGd=GADraw[TCG],TGAd=GADraw[TGA],TGTd=GADraw[TGT
],TGCd=GADraw[TGC],TGGd=GADraw[TGG]},drawcodeC={CAAd=GADraw[CAA],CATd=GADraw[CAT],CACd=GADraw[CAC
],CAGd=GADraw[CAG],CTAd=GADraw[CTA],CTTd=GADraw[CTT],CTCd=GADraw[CTC],CTGd=GADraw[CTG],CCAd=GADra
w[CCA],CCTd=GADraw[CCT],CCCd=GADraw[CCC],CCGd=GADraw[CCG],CGAd=GADraw[CGA],CGTd=GADraw[CGT],CGCd=
GADraw[CGC],CGGd=GADraw[CGG]},drawcodeG={GAAd=GADraw[GAA],GATd=GADraw[GAT],GACd=GADraw[GAC],GAGd=
GADraw[GAG],GTAd=GADraw[GTA],GTTd=GADraw[GTT],GTCd=GADraw[GTC],GTGd=GADraw[GTG],GCAd=GADraw[GCA],
GCTd=GADraw[GCT],GCCd=GADraw[GCC],GCGd=GADraw[GCG],GGAd=GADraw[GGA],GGTd=GADraw[GGT],GGCd=GADraw[
GGC],GGGd=GADraw[GGG]}}}; 
Show[drawcode] 
 
(*computation:  map codons into Tetrahedral Genetic Code*) 
{AAA=ToVector[Distribute[Simplify[Simplify[4a+2a+a]]]],AAT=ToVector[Distribute[Simplify[4a+2a+t]]
],AAC=ToVector[Distribute[Simplify[4a+2a+c]]],AAG=ToVector[Distribute[Simplify[4a+2a+g]]],ATA=ToV
ector[Distribute[Simplify[Simplify[4a+2t+a]]]],ATT=ToVector[Distribute[Simplify[4a+2t+t]]],ATC=To
Vector[Distribute[Simplify[4a+2t+c]]],ATG=ToVector[Distribute[Simplify[4a+2t+g]]],ACA=ToVector[Di
stribute[Simplify[Simplify[4a+2c+a]]]],ACT=ToVector[Distribute[Simplify[4a+2c+t]]],ACC=ToVector[D
istribute[Simplify[4a+2c+c]]],ACG=ToVector[Distribute[Simplify[4a+2c+g]]],AGA=ToVector[Distribute
[Simplify[Simplify[4a+2g+a]]]],AGT=ToVector[Distribute[Simplify[4a+2g+t]]],AGC=ToVector[Distribut
e[Simplify[4a+2g+c]]],AGG=ToVector[Distribute[Simplify[4a+2g+g]]],TAA=ToVector[Distribute[Simplif
y[Simplify[4t+2a+a]]]],TAT=ToVector[Distribute[Simplify[4t+2a+t]]],TAC=ToVector[Distribute[Simpli
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fy[4t+2a+c]]],TAG=ToVector[Distribute[Simplify[4t+2a+g]]],TTA=ToVector[Distribute[Simplify[Simpli
fy[4t+2t+a]]]],TTT=ToVector[Distribute[Simplify[4t+2t+t]]],TTC=ToVector[Distribute[Simplify[4t+2t
+c]]],TTG=ToVector[Distribute[Simplify[4t+2t+g]]],TCA=ToVector[Distribute[Simplify[Simplify[4t+2c
+a]]]],TCT=ToVector[Distribute[Simplify[4t+2c+t]]],TCC=ToVector[Distribute[Simplify[4t+2c+c]]],TC
G=ToVector[Distribute[Simplify[4t+2c+g]]],TGA=ToVector[Distribute[Simplify[Simplify[4t+2g+a]]]],T
GT=ToVector[Distribute[Simplify[4t+2g+t]]],TGC=ToVector[Distribute[Simplify[4t+2g+c]]],TGG=ToVect
or[Distribute[Simplify[4t+2g+g]]],CAA=ToVector[Distribute[Simplify[Simplify[4c+2a+a]]]],CAT=ToVec
tor[Distribute[Simplify[4c+2a+t]]],CAC=ToVector[Distribute[Simplify[4c+2a+c]]],CAG=ToVector[Distr
ibute[Simplify[4c+2a+g]]],CTA=ToVector[Distribute[Simplify[Simplify[4c+2t+a]]]],CTT=ToVector[Dist
ribute[Simplify[4c+2t+t]]],CTC=ToVector[Distribute[Simplify[4c+2t+c]]],CTG=ToVector[Distribute[Si
mplify[4c+2t+g]]],CCA=ToVector[Distribute[Simplify[Simplify[4c+2c+a]]]],CCT=ToVector[Distribute[S
implify[4c+2c+t]]],CCC=ToVector[Distribute[Simplify[4c+2c+c]]],CCG=ToVector[Distribute[Simplify[4
c+2c+g]]],CGA=ToVector[Distribute[Simplify[Simplify[4c+2g+a]]]],CGT=ToVector[Distribute[Simplify[
4c+2g+t]]],CGC=ToVector[Distribute[Simplify[4c+2g+c]]],CGG=ToVector[Distribute[Simplify[4c+2g+g]]
],GAA=ToVector[Distribute[Simplify[Simplify[4g+2a+a]]]],GAT=ToVector[Distribute[Simplify[4g+2a+t]
]],GAC=ToVector[Distribute[Simplify[4g+2a+c]]],GAG=ToVector[Distribute[Simplify[4g+2a+g]]],GTA=To
Vector[Distribute[Simplify[Simplify[4g+2t+a]]]],GTT=ToVector[Distribute[Simplify[4g+2t+t]]],GTC=T
oVector[Distribute[Simplify[4g+2t+c]]],GTG=ToVector[Distribute[Simplify[4g+2t+g]]],GCA=ToVector[D
istribute[Simplify[Simplify[4g+2c+a]]]],GCT=ToVector[Distribute[Simplify[4g+2c+t]]],GCC=ToVector[
Distribute[Simplify[4g+2c+c]]],GCG=ToVector[Distribute[Simplify[4g+2c+g]]],GGA=ToVector[Distribut
e[Simplify[Simplify[4g+2g+a]]]],GGT=ToVector[Distribute[Simplify[4g+2g+t]]],GGC=ToVector[Distribu
te[Simplify[4g+2g+c]]],GGG=ToVector[Distribute[Simplify[4g+2g+g]]]}; 
 
(*graphic:  colored matrix of full set of \[Theta] between neighboring vector-codons*) 
{codons={AAA,AAT,AAC,AAG,ATA,ATT,ATC,ATG,ACA,ACT,ACC,ACG,AGA,AGT,AGC,AGG,TAA,TAT,TAC,TAG,TTA,TTT,
TTC,TTG,TCA,TCT,TCC,TCG,TGA,TGT,TGC,TGG,CAA,CAT,CAC,CAG,CTA,CTT,CTC,CTG,CCA,CCT,CCC,CCG,CGA,CGT,C
GC,CGG,GAA,GAT,GAC,GAG,GTA,GTT,GTC,GTG,GCA,GCT,GCC,GCG,GGA,GGT,GGC,GGG}, 
{c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19,c20,c21,c22,c23,c24,c25,c26,c
27,c28,c29,c30,c31,c32,c33,c34,c35,c36,c37,c38,c39,c40,c41,c42,c43,c44,c45,c46,c47,c48,c49,c50,c5
1,c52,c53,c54,c55,c56,c57,c58,c59,c60,c61,c62,c63,c64}=Thread[ConstantArray[codons,64]], 
{r1=N[MapThread[VectorAngle,{codons,c1}]],r2=N[MapThread[VectorAngle,{codons,c2}]],r3=N[MapThread
[VectorAngle,{codons,c3}]],r4=N[MapThread[VectorAngle,{codons,c4}]],r5=N[MapThread[VectorAngle,{c
odons,c5}]],r6=N[MapThread[VectorAngle,{codons,c6}]],r7=N[MapThread[VectorAngle,{codons,c7}]],r8=
N[MapThread[VectorAngle,{codons,c8}]],r9=N[MapThread[VectorAngle,{codons,c9}]],r10=N[MapThread[Ve
ctorAngle,{codons,c10}]],r11=N[MapThread[VectorAngle,{codons,c11}]],r12=N[MapThread[VectorAngle,{
codons,c12}]],r13=N[MapThread[VectorAngle,{codons,c13}]],r14=N[MapThread[VectorAngle,{codons,c14}
]],r15=N[MapThread[VectorAngle,{codons,c15}]],r16=N[MapThread[VectorAngle,{codons,c16}]],r17=N[Ma
pThread[VectorAngle,{codons,c17}]],r18=N[MapThread[VectorAngle,{codons,c18}]],r19=N[MapThread[Vec
torAngle,{codons,c19}]],r20=N[MapThread[VectorAngle,{codons,c20}]],r21=N[MapThread[VectorAngle,{c
odons,c21}]],r22=N[MapThread[VectorAngle,{codons,c22}]],r23=N[MapThread[VectorAngle,{codons,c23}]
],r24=N[MapThread[VectorAngle,{codons,c24}]],r25=N[MapThread[VectorAngle,{codons,c25}]],r26=N[Map
Thread[VectorAngle,{codons,c26}]],r27=N[MapThread[VectorAngle,{codons,c27}]],r28=N[MapThread[Vect
orAngle,{codons,c28}]],r29=N[MapThread[VectorAngle,{codons,c29}]],r30=N[MapThread[VectorAngle,{co
dons,c30}]],r31=N[MapThread[VectorAngle,{codons,c31}]],r32=N[MapThread[VectorAngle,{codons,c32}]]
,r33=N[MapThread[VectorAngle,{codons,c33}]],r34=N[MapThread[VectorAngle,{codons,c34}]],r35=N[MapT
hread[VectorAngle,{codons,c35}]],r36=N[MapThread[VectorAngle,{codons,c36}]],r37=N[MapThread[Vecto
rAngle,{codons,c37}]],r38=N[MapThread[VectorAngle,{codons,c38}]],r39=N[MapThread[VectorAngle,{cod
ons,c39}]],r40=N[MapThread[VectorAngle,{codons,c40}]],r41=N[MapThread[VectorAngle,{codons,c41}]],
r42=N[MapThread[VectorAngle,{codons,c42}]],r43=N[MapThread[VectorAngle,{codons,c43}]],r44=N[MapTh
read[VectorAngle,{codons,c44}]],r45=N[MapThread[VectorAngle,{codons,c45}]],r46=N[MapThread[Vector
Angle,{codons,c46}]],r47=N[MapThread[VectorAngle,{codons,c47}]],r48=N[MapThread[VectorAngle,{codo
ns,c48}]],r49=N[MapThread[VectorAngle,{codons,c49}]],r50=N[MapThread[VectorAngle,{codons,c50}]],r
51=N[MapThread[VectorAngle,{codons,c51}]],r52=N[MapThread[VectorAngle,{codons,c52}]],r53=N[MapThr
ead[VectorAngle,{codons,c53}]],r54=N[MapThread[VectorAngle,{codons,c54}]],r55=N[MapThread[VectorA
ngle,{codons,c55}]],r56=N[MapThread[VectorAngle,{codons,c56}]],r57=N[MapThread[VectorAngle,{codon
s,c57}]],r58=N[MapThread[VectorAngle,{codons,c58}]],r59=N[MapThread[VectorAngle,{codons,c59}]],r6
0=N[MapThread[VectorAngle,{codons,c60}]],r61=N[MapThread[VectorAngle,{codons,c61}]],r62=N[MapThre
ad[VectorAngle,{codons,c62}]],r63=N[MapThread[VectorAngle,{codons,c63}]],r64=N[MapThread[VectorAn
gle,{codons,c64}]]},codonmatrix={r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r
19,r20,r21,r22,r23,r24,r25,r26,r27,r28,r29,r30,r31,r32,r33,r34,r35,r36,r37,r38,r39,r40,r41,r42,r4
3,r44,r45,r46,r47,r48,r49,r50,r51,r52,r53,r54,r55,r56,r57,r58,r59,r60,r61,r62,r63,r64}}; 
MatrixPlot[codonmatrix,ColorFunction->"GreenPinkTones",ColorFunctionScaling->True] 
 
(*computation:  the following function will be used to import and format genetic sequences *) 
dnamap[x_List]:=Module[{x1=x,x2,x3,x4,bb,cc},bb=Append[Drop[x,1],A];cc=Append[Drop[bb,1],A];x2=Pa
rtition[x,3]/.{A,A,A}->AAA/.{A,A,T}->AAT/.{A,A,C}->AAC/.{A,A,G}->AAG/.{A,T,A}->ATA/.{A,T,T}-
>ATT/.{A,T,C}->ATC/.{A,T,G}->ATG/.{A,C,A}->ACA/.{A,C,T}->ACT/.{A,C,C}->ACC/.{A,C,G}-
>ACG/.{A,G,A}->AGA/.{A,G,T}->AGT/.{A,G,C}->AGC/.{A,G,G}->AGG/.{T,A,A}->TAA/.{T,A,T}-
>TAT/.{T,A,C}->TAC/.{T,A,G}->TAG/.{T,T,A}->TTA/.{T,T,T}->TTT/.{T,T,C}->TTC/.{T,T,G}-
>TTG/.{T,C,A}->TCA/.{T,C,T}->TCT/.{T,C,C}->TCC/.{T,C,G}->TCG/.{T,G,A}->TGA/.{T,G,T}-
>TGT/.{T,G,C}->TGC/.{T,G,G}->TGG/.{C,A,A}->CAA/.{C,A,T}->CAT/.{C,A,C}->CAC/.{C,A,G}-
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>CAG/.{C,T,A}->CTA/.{C,T,T}->CTT/.{C,T,C}->CTC/.{C,T,G}->CTG/.{C,C,A}->CCA/.{C,C,T}-
>CCT/.{C,C,C}->CCC/.{C,C,G}->CCG/.{C,G,A}->CGA/.{C,G,T}->CGT/.{C,G,C}->CGC/.{C,G,G}-
>CGG/.{G,A,A}->GAA/.{G,A,T}->GAT/.{G,A,C}->GAC/.{G,A,G}->GAG/.{G,T,A}->GTA/.{G,T,T}-
>GTT/.{G,T,C}->GTC/.{G,T,G}->GTG/.{G,C,A}->GCA/.{G,C,T}->GCT/.{G,C,C}->GCC/.{G,C,G}-
>GCG/.{G,G,A}->GGA/.{G,G,T}->GGT/.{G,G,C}->GGC/.{G,G,G}->GGG/.A->0/.T->0/.G->0/.C->0;Return[x2]]; 
 
(*computation:  enter aligned protein-coding sequences here; sequences must be of the form: 
{A,T,G,G,T,0,0,0,....}; note that indel gaps must be indicated by '0' *) 
a1=Human={A,T,G,G,T,G,C,A,C,C,T,G,A,C,T,C,C,T,G,A,G,G,A,G,A,A,G,T,C,T,G,C,C,G,T,T,A,C,T,G,C,C,C,T
,G,T,G,G,G,G,C,A,A,G,G,T,G,A,A,C,G,T,G,G,A,T,G,A,A,G,T,T,G,G,T,G,G,T,G,A,G,G,C,C,C,T,G,G,G,C,A,G}
; 
b1=Chimpanzee={A,T,G,G,T,G,C,A,C,C,T,G,A,C,T,C,C,T,G,A,G,G,A,G,A,A,G,T,C,T,G,C,C,G,T,T,A,C,T,G,C,
C,C,T,G,T,G,G,G,G,C,A,A,G,G,T,G,A,A,C,G,T,G,G,A,T,G,A,A,G,T,T,G,G,T,G,G,T,G,A,G,G,G,C,C,C,T,G,G,G
,C,A}; 
c1=Goat={A,T,G,0,0,0,0,0,0,C,T,G,A,C,T,G,C,T,G,A,G,G,A,G,A,A,G,G,C,T,G,C,C,G,T,G,A,C,C,G,G,C,T,T,
C,T,G,G,G,G,C,A,A,G,G,T,G,A,A,A,G,T,G,G,A,T,G,A,A,G,T,T,G,G,T,G,C,T,G,A,G,G,C,C,C,T,G,G,G,C,A,G}; 
d1=Bovine={A,T,G,0,0,0,0,0,0,C,T,G,A,C,T,G,C,T,G,A,G,G,A,G,A,A,G,G,C,T,G,C,C,G,T,C,A,C,C,G,C,C,T,
T,T,T,G,G,G,G,C,A,A,G,G,T,G,A,A,A,G,T,G,G,A,T,G,A,A,G,T,T,G,G,T,G,G,T,G,A,G,G,C,C,C,T,G,G,G,C,A,G
}; 
e1=Gallus={A,T,G,G,T,G,C,A,C,T,G,G,A,C,T,G,C,T,G,A,G,G,A,G,A,A,G,C,A,G,C,T,C,A,T,C,A,C,C,G,G,C,C,
T,C,T,G,G,G,G,C,A,A,G,G,T,C,A,A,T,G,T,G,G,C,C,G,A,A,T,G,T,G,G,G,G,C,C,G,A,A,G,C,C,C,T,G,G,C,C,0,0
}; 
f1=Mouse={A,T,G,G,T,G,C,A,C,C,T,G,A,C,T,G,A,T,G,C,T,G,A,G,A,A,G,G,C,T,G,C,T,G,T,C,T,C,T,T,G,C,C,T
,G,T,G,G,G,G,A,A,A,G,G,T,G,A,A,C,T,C,C,G,A,T,G,A,A,G,T,T,G,G,T,G,G,T,G,A,G,G,C,C,C,T,G,G,G,C,A,G}
; 
g1=Rat={A,T,G,G,T,G,C,A,C,C,T,A,A,C,T,G,A,T,G,C,T,G,A,G,A,A,G,G,C,T,A,C,T,G,T,T,A,G,T,G,G,C,C,T,G
,T,G,G,G,G,A,A,A,G,G,T,G,A,A,C,C,C,T,G,A,T,A,A,T,G,T,T,G,G,C,G,C,T,G,A,G,G,C,C,C,T,G,G,G,C,0,0}; 
h1= 
Gorilla={A,T,G,G,T,G,C,A,C,C,T,G,A,C,T,C,C,T,G,A,G,G,A,G,A,A,G,T,C,T,G,C,C,G,T,T,A,C,T,G,C,C,C,T,
G,T,G,G,G,G,C,A,A,G,G,T,G,A,A,C,G,T,G,G,A,T,G,A,A,G,T,T,G,G,T,G,G,T,G,A,G,G,C,C,C,T,G,G,G,C,A,G}; 
i1= 
Rabbit={A,T,G,G,T,G,C,A,T,C,T,G,T,C,C,A,G,T,G,A,G,G,A,G,A,A,G,T,C,T,G,C,G,G,T,C,A,C,T,G,C,C,C,T,G
,T,G,G,G,G,C,A,A,G,G,T,G,A,A,T,G,T,G,G,A,A,G,A,A,G,T,T,G,G,T,G,G,T,G,A,G,G,C,C,C,T,G,G,G,C,0,0}; 
j1= 
Opossum={A,T,G,G,T,G,C,A,C,T,T,G,A,C,T,T,C,T,G,A,G,G,A,G,A,A,G,A,A,C,T,G,C,A,T,C,A,C,T,A,C,C,A,T,
C,T,G,G,T,C,T,A,A,G,G,T,G,C,A,G,G,T,T,G,A,C,C,A,G,A,C,T,G,G,T,G,G,T,G,A,G,G,C,C,C,T,T,G,G,C,A,G}; 
k1= 
Lemur={A,T,G,A,C,T,T,T,G,C,T,G,A,G,T,G,C,T,G,A,G,G,A,G,A,A,T,G,C,T,C,A,T,G,T,C,A,C,C,T,C,T,C,T,G,
T,G,G,G,G,C,A,A,G,G,T,G,G,A,T,G,T,A,G,A,G,A,A,A,G,T,T,G,G,T,G,G,C,G,A,G,G,C,C,T,T,G,G,G,C,A,G}; 
 
(*computation:  this section generates the \[Theta] path, vector angles between neighboring sets 
of codon-vectors, for each of the sequences above*) 
{aa1=dnamap[a1],aa2=Append[Drop[aa1,1],{0,0,0}],aa3=N[Thread[VectorAngle[aa1,aa2]]]/.Indeterminat
e->0}; 
{bb1=dnamap[b1],bb2=Append[Drop[bb1,1],{0,0,0}],bb3=N[Thread[VectorAngle[bb1,bb2]]]/.Indeterminat
e->0}; 
{cc1=dnamap[c1],cc2=Append[Drop[cc1,1],{0,0,0}],cc3=N[Thread[VectorAngle[cc1,cc2]]]/.Indeterminat
e->0}; 
{dd1=dnamap[d1],dd2=Append[Drop[dd1,1],{0,0,0}],dd3=N[Thread[VectorAngle[dd1,dd2]]]/.Indeterminat
e->0}; 
{ee1=dnamap[e1],ee2=Append[Drop[ee1,1],{0,0,0}],ee3=N[Thread[VectorAngle[ee1,ee2]]]/.Indeterminat
e->0}; 
{ff1=dnamap[f1],ff2=Append[Drop[ff1,1],{0,0,0}],ff3=N[Thread[VectorAngle[ff1,ff2]]]/.Indeterminat
e->0}; 
{gg1=dnamap[g1],gg2=Append[Drop[gg1,1],{0,0,0}],gg3=N[Thread[VectorAngle[gg1,gg2]]]/.Indeterminat
e->0}; 
{hh1=dnamap[h1],hh2=Append[Drop[hh1,1],{0,0,0}],hh3=N[Thread[VectorAngle[hh1,hh2]]]/.Indeterminat
e->0}; 
{ii1=dnamap[i1],ii2=Append[Drop[ii1,1],{0,0,0}],ii3=N[Thread[VectorAngle[ii1,ii2]]]/.Indeterminat
e->0}; 
{jj1=dnamap[j1],jj2=Append[Drop[jj1,1],{0,0,0}],jj3=N[Thread[VectorAngle[jj1,jj2]]]/.Indeterminat
e->0}; 
{kk1=dnamap[k1],kk2=Append[Drop[kk1,1],{0,0,0}],kk3=N[Thread[VectorAngle[kk1,kk2]]]/.Indeterminat
e->0}; 
 
(*computation:  build the \[Theta] paths as rows and columns in the species NxN matrix;  please 
note that this process is HARD CODED for 11 species:  additional species must be added manually 
according the form given*) 
{row={aa3,bb3,cc3,dd3,ee3,ff3,gg3,hh3,ii3,jj3,kk3}}; 
{column1=ConstantArray[aa3,11],column2=ConstantArray[bb3,11],column3=ConstantArray[cc3,11],column
4=ConstantArray[dd3,11],column5=ConstantArray[ee3,11],column6=ConstantArray[ff3,11],column7=Const
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antArray[gg3,11],column8=ConstantArray[hh3,11],column9=ConstantArray[ii3,11],column10=ConstantArr
ay[jj3,11],column11=ConstantArray[kk3,11]}; 
 
(*computation:  number of codons in sequence -> n *) 
{n=Length[aa3]}; 
 
(*computation:  compute the \[CapitalDelta]\[Theta] from \[Theta] paths *) 
{\[CapitalDelta]\[Theta]1=Abs[row-column1],\[CapitalDelta]\[Theta]2=Abs[row-
column2],\[CapitalDelta]\[Theta]3=Abs[row-column3],\[CapitalDelta]\[Theta]4=Abs[row-
column4],\[CapitalDelta]\[Theta]5=Abs[row-column5],\[CapitalDelta]\[Theta]6=Abs[row-
column6],\[CapitalDelta]\[Theta]7=Abs[row-column7],\[CapitalDelta]\[Theta]8=Abs[row-
column8],\[CapitalDelta]\[Theta]9=Abs[row-column9],\[CapitalDelta]\[Theta]10=Abs[row-
column10],\[CapitalDelta]\[Theta]11=Abs[row-column11]}; 
 
(*computation:  compute the mean score of \[CapitalDelta]\[Theta], the GPAD distance, for each 
position in the matrix*) 
GPAD1={Total[Part[\[CapitalDelta]\[Theta]1,1]]/n,Total[Part[\[CapitalDelta]\[Theta]1,2]]/n,Total[
Part[\[CapitalDelta]\[Theta]1,3]]/n,Total[Part[\[CapitalDelta]\[Theta]1,4]]/n,Total[Part[\[Capita
lDelta]\[Theta]1,5]]/n,Total[Part[\[CapitalDelta]\[Theta]1,6]]/n,Total[Part[\[CapitalDelta]\[Thet
a]1,7]]/n,Total[Part[\[CapitalDelta]\[Theta]1,8]]/n,Total[Part[\[CapitalDelta]\[Theta]1,9]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]1,10]]/n,Total[Part[\[CapitalDelta]\[Theta]1,11]]/n}; 
GPAD2={Total[Part[\[CapitalDelta]\[Theta]2,1]]/n,Total[Part[\[CapitalDelta]\[Theta]2,2]]/n,Total[
Part[\[CapitalDelta]\[Theta]2,3]]/n,Total[Part[\[CapitalDelta]\[Theta]2,4]]/n,Total[Part[\[Capita
lDelta]\[Theta]2,5]]/n,Total[Part[\[CapitalDelta]\[Theta]2,6]]/n,Total[Part[\[CapitalDelta]\[Thet
a]2,7]]/n,Total[Part[\[CapitalDelta]\[Theta]2,8]]/n,Total[Part[\[CapitalDelta]\[Theta]2,9]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]2,10]]/n,Total[Part[\[CapitalDelta]\[Theta]2,11]]/n}; 
GPAD3={Total[Part[\[CapitalDelta]\[Theta]3,1]]/n,Total[Part[\[CapitalDelta]\[Theta]3,2]]/n,Total[
Part[\[CapitalDelta]\[Theta]3,3]]/n,Total[Part[\[CapitalDelta]\[Theta]3,4]]/n,Total[Part[\[Capita
lDelta]\[Theta]3,5]]/n,Total[Part[\[CapitalDelta]\[Theta]3,6]]/n,Total[Part[\[CapitalDelta]\[Thet
a]3,7]]/n,Total[Part[\[CapitalDelta]\[Theta]3,8]]/n,Total[Part[\[CapitalDelta]\[Theta]3,9]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]3,10]]/n,Total[Part[\[CapitalDelta]\[Theta]3,11]]/n}; 
GPAD4={Total[Part[\[CapitalDelta]\[Theta]4,1]]/n,Total[Part[\[CapitalDelta]\[Theta]4,2]]/n,Total[
Part[\[CapitalDelta]\[Theta]4,3]]/n,Total[Part[\[CapitalDelta]\[Theta]4,4]]/n,Total[Part[\[Capita
lDelta]\[Theta]4,5]]/n,Total[Part[\[CapitalDelta]\[Theta]4,6]]/n,Total[Part[\[CapitalDelta]\[Thet
a]4,7]]/n,Total[Part[\[CapitalDelta]\[Theta]4,8]]/n,Total[Part[\[CapitalDelta]\[Theta]4,9]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]4,10]]/n,Total[Part[\[CapitalDelta]\[Theta]4,11]]/n}; 
GPAD5={Total[Part[\[CapitalDelta]\[Theta]5,1]]/n,Total[Part[\[CapitalDelta]\[Theta]5,2]]/n,Total[
Part[\[CapitalDelta]\[Theta]5,3]]/n,Total[Part[\[CapitalDelta]\[Theta]5,4]]/n,Total[Part[\[Capita
lDelta]\[Theta]5,5]]/n,Total[Part[\[CapitalDelta]\[Theta]5,6]]/n,Total[Part[\[CapitalDelta]\[Thet
a]5,7]]/n,Total[Part[\[CapitalDelta]\[Theta]5,8]]/n,Total[Part[\[CapitalDelta]\[Theta]5,9]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]5,10]]/n,Total[Part[\[CapitalDelta]\[Theta]5,11]]/n}; 
GPAD6={Total[Part[\[CapitalDelta]\[Theta]6,1]]/n,Total[Part[\[CapitalDelta]\[Theta]6,2]]/n,Total[
Part[\[CapitalDelta]\[Theta]6,3]]/n,Total[Part[\[CapitalDelta]\[Theta]6,4]]/n,Total[Part[\[Capita
lDelta]\[Theta]6,5]]/n,Total[Part[\[CapitalDelta]\[Theta]6,6]]/n,Total[Part[\[CapitalDelta]\[Thet
a]6,7]]/n,Total[Part[\[CapitalDelta]\[Theta]6,8]]/n,Total[Part[\[CapitalDelta]\[Theta]6,9]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]6,10]]/n,Total[Part[\[CapitalDelta]\[Theta]6,11]]/n}; 
GPAD7={Total[Part[\[CapitalDelta]\[Theta]7,1]]/n,Total[Part[\[CapitalDelta]\[Theta]7,2]]/n,Total[
Part[\[CapitalDelta]\[Theta]7,3]]/n,Total[Part[\[CapitalDelta]\[Theta]7,4]]/n,Total[Part[\[Capita
lDelta]\[Theta]7,5]]/n,Total[Part[\[CapitalDelta]\[Theta]7,6]]/n,Total[Part[\[CapitalDelta]\[Thet
a]7,7]]/n,Total[Part[\[CapitalDelta]\[Theta]7,8]]/n,Total[Part[\[CapitalDelta]\[Theta]7,9]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]7,10]]/n,Total[Part[\[CapitalDelta]\[Theta]7,11]]/n}; 
GPAD8={Total[Part[\[CapitalDelta]\[Theta]8,1]]/n,Total[Part[\[CapitalDelta]\[Theta]8,2]]/n,Total[
Part[\[CapitalDelta]\[Theta]8,3]]/n,Total[Part[\[CapitalDelta]\[Theta]8,4]]/n,Total[Part[\[Capita
lDelta]\[Theta]8,5]]/n,Total[Part[\[CapitalDelta]\[Theta]8,6]]/n,Total[Part[\[CapitalDelta]\[Thet
a]8,7]]/n,Total[Part[\[CapitalDelta]\[Theta]8,8]]/n,Total[Part[\[CapitalDelta]\[Theta]8,9]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]8,10]]/n,Total[Part[\[CapitalDelta]\[Theta]8,11]]/n}; 
GPAD9={Total[Part[\[CapitalDelta]\[Theta]9,1]]/n,Total[Part[\[CapitalDelta]\[Theta]9,2]]/n,Total[
Part[\[CapitalDelta]\[Theta]9,3]]/n,Total[Part[\[CapitalDelta]\[Theta]9,4]]/n,Total[Part[\[Capita
lDelta]\[Theta]9,5]]/n,Total[Part[\[CapitalDelta]\[Theta]9,6]]/n,Total[Part[\[CapitalDelta]\[Thet
a]9,7]]/n,Total[Part[\[CapitalDelta]\[Theta]9,8]]/n,Total[Part[\[CapitalDelta]\[Theta]9,9]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]9,10]]/n,Total[Part[\[CapitalDelta]\[Theta]9,11]]/n}; 
GPAD10={Total[Part[\[CapitalDelta]\[Theta]10,1]]/n,Total[Part[\[CapitalDelta]\[Theta]10,2]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]10,3]]/n,Total[Part[\[CapitalDelta]\[Theta]10,4]]/n,Total[Part[\[C
apitalDelta]\[Theta]10,5]]/n,Total[Part[\[CapitalDelta]\[Theta]10,6]]/n,Total[Part[\[CapitalDelta
]\[Theta]10,7]]/n,Total[Part[\[CapitalDelta]\[Theta]10,8]]/n,Total[Part[\[CapitalDelta]\[Theta]10
,9]]/n,Total[Part[\[CapitalDelta]\[Theta]10,10]]/n,Total[Part[\[CapitalDelta]\[Theta]10,11]]/n}; 
GPAD11={Total[Part[\[CapitalDelta]\[Theta]11,1]]/n,Total[Part[\[CapitalDelta]\[Theta]11,2]]/n,Tot
al[Part[\[CapitalDelta]\[Theta]11,3]]/n,Total[Part[\[CapitalDelta]\[Theta]11,4]]/n,Total[Part[\[C
apitalDelta]\[Theta]11,5]]/n,Total[Part[\[CapitalDelta]\[Theta]11,6]]/n,Total[Part[\[CapitalDelta
]\[Theta]11,7]]/n,Total[Part[\[CapitalDelta]\[Theta]11,8]]/n,Total[Part[\[CapitalDelta]\[Theta]11
,9]]/n,Total[Part[\[CapitalDelta]\[Theta]11,10]]/n,Total[Part[\[CapitalDelta]\[Theta]11,11]]/n}; 



P a g e  | 23 
 
 
(*computation:  compile the final GPAD species NxN matrix*) 
{GPAD={GPAD1,GPAD2,GPAD3,GPAD4,GPAD5,GPAD6,GPAD7,GPAD8,GPAD9,GPAD10,GPAD11},G1=LowerTriangularize
[GPAD];}; 
 
(*graphic:  line plots of \[Theta] and \[CapitalDelta]\[Theta] sequences*) 
ListLinePlot[{aa3,ee3,Abs[aa3-ee3]},AxesLabel->{"Time","\[Theta]"},LabelStyle-
>Directive[Large],PlotStyle->{Thin, Thick, DotDashed},PlotLegends->{"Human","Gallus", 
"\[CapitalDelta]\[Theta]"}, Filling->{3->Axis}] 
ListPlot[{aa3,bb3,cc3,dd3,ee3,ff3,gg3,hh3,ii3,jj3,kk3},Joined->True] 
 
(*graphic:  colored distance matrices and numerical values*) 
"GPAD distance model" 
{MatrixPlot[10*GPAD],Grid[LowerTriangularize[Round[GPAD,.001]]]} 
"aa Equal input model" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.074,0,0,0,0,0,0,0,0,0,0},{0.241,0.336,0,0,0,0,0,0,0,0,0},{0.156,0
.245,0.074,0,0,0,0,0,0,0,0},{0.455,0.581,0.398,0.518,0,0,0,0,0,0,0},{0.245,0.343,0.344,0.293,0.65
1,0,0,0,0,0,0},{0.397,0.515,0.344,0.455,0.58,0.199,0,0,0,0,0},{0,0.074,0.245,0.156,0.455,0.245,0.
397,0,0,0,0},{0.114,0.199,0.345,0.245,0.517,0.344,0.516,0.114,0,0,0},{0.453,0.578,0.514,0.453,0.6
47,0.646,0.721,0.453,0.514,0,0},{0.398,0.516,0.398,0.344,0.651,0.516,0.581,0.398,0.293,0.647,0}},
ss1=Total[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss],"avg. variance from GPAD:",Total[Total[Abs[G1-
ss]]]/(Length[GPAD1]^2/2)} 
 
(*graphic and computation:  the following are computations for variance among species 
\[CapitalDelta]\[Theta] sequences*) 
"mean \[CapitalDelta]\[Theta] path (blue), max variance (Gallus-red), min variance (Human-green)" 
{\[Theta]lists={aa3,bb3,cc3,dd3,ee3,ff3,gg3,hh3,ii3,jj3,kk3},mean=Total[\[Theta]lists]/11}; 
{Q1=ListLinePlot[aa3,Joined->True, PlotStyle->{Green,Thick,Dashed},LabelStyle-
>Directive[Medium]],Q2=ListLinePlot[jj3,Joined->True,PlotStyle->{Thick,Red,Dotted},PlotRange-
>All,LabelStyle->Directive[Large]],Q3=ListLinePlot[mean,Joined->True,PlotStyle->{Thick},Filling-
>Axis,LabelStyle->Directive[Large]]}; 
Show[Q1,Q2,Q3] 
"species \[CapitalDelta]\[Theta] sample variance" 
Insert[Grid[{{human,chimpanzee,goat, bovine, gallus, mouse, rat 
,gorilla,rabbit,opossum,lemur},Round[GPADdfm={Total[Abs[mean-aa3]]/n,Total[Abs[mean-
bb3]]/n,Total[Abs[mean-cc3]]/n,Total[Abs[mean-dd3]]/n,Total[Abs[mean-ee3]]/n,Total[Abs[mean-
ff3]]/n,Total[Abs[mean-gg3]]/n,Total[Abs[mean-hh3]]/n,Total[Abs[mean-ii3]]/n,Total[Abs[mean-
jj3]]/n,Total[Abs[mean-kk3]]/n},.001]},ItemStyle->Bold],{Background-
>{None,{GrayLevel[0.7`],{White}}},Dividers->{Black,{2->Black}},Frame->True,Spacings-
>{2,{2,{0.7`},2}}},2] 
Insert[Grid[{{human,gorilla,chimpanzee,rabbit,mouse,rat,bovine,goat,lemur,gallus,opossum},mscore=
Round[{ma=0.23284501764755344`,mh=0.23284501764755344`,mb=0.26520825221347477`,mi=0.2801537785626
766`,mf=0.3366484379469853`,mg=0.34801275899539164`,md=0.3865115704383374`,mc=0.3907329410343434`
,mk=0.41245681795049266`,me=0.4198599439243205`,mj=0.524309630621361`},.001]},ItemStyle-
>Bold],{Background->{None,{GrayLevel[0.7`],{White}}},Dividers->{Black,{2->Black}},Frame-
>True,Spacings->{2,{2,{0.7`},2}}},2] 
 
(*computation:  set of 16 standardized distance measures for comparison to GPAD*) 
"avgerage variance from GPAD for 16 standardized distance measures:" 
 
"aa p-distance" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.071,0,0,0,0,0,0,0,0,0,0},{0.214,0.286,0,0,0,0,0,0,0,0,0},{0.143,0
.214,0.071,0,0,0,0,0,0,0,0},{0.357,0.429,0.321,0.393,0,0,0,0,0,0,0},{0.214,0.286,0.286,0.25,0.464
,0,0,0,0,0,0},{0.321,0.393,0.286,0.357,0.429,0.179,0,0,0,0,0},{0,0.071,0.214,0.143,0.357,0.214,0.
321,0,0,0,0},{0.107,0.179,0.286,0.214,0.393,0.286,0.393,0.107,0,0,0},{0.357,0.429,0.393,0.357,0.4
64,0.464,0.5,0.357,0.393,0,0},{0.321,0.393,0.321,0.286,0.464,0.393,0.429,0.321,0.25,0.464,0}},ss1
=Total[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"aa Equal input model" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.074,0,0,0,0,0,0,0,0,0,0},{0.241,0.336,0,0,0,0,0,0,0,0,0},{0.156,0
.245,0.074,0,0,0,0,0,0,0,0},{0.455,0.581,0.398,0.518,0,0,0,0,0,0,0},{0.245,0.343,0.344,0.293,0.65
1,0,0,0,0,0,0},{0.397,0.515,0.344,0.455,0.58,0.199,0,0,0,0,0},{0,0.074,0.245,0.156,0.455,0.245,0.
397,0,0,0,0},{0.114,0.199,0.345,0.245,0.517,0.344,0.516,0.114,0,0,0},{0.453,0.578,0.514,0.453,0.6
47,0.646,0.721,0.453,0.514,0,0},{0.398,0.516,0.398,0.344,0.651,0.516,0.581,0.398,0.293,0.647,0}},
ss1=Total[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"aa Poisson model" 
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{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.074,0,0,0,0,0,0,0,0,0,0},{0.241,0.336,0,0,0,0,0,0,0,0,0},{0.154,0
.241,0.074,0,0,0,0,0,0,0,0},{0.442,0.56,0.388,0.499,0,0,0,0,0,0,0},{0.241,0.336,0.336,0.288,0.624
,0,0,0,0,0,0},{0.388,0.499,0.336,0.442,0.56,0.197,0,0,0,0,0},{0,0.074,0.241,0.154,0.442,0.241,0.3
88,0,0,0,0},{0.113,0.197,0.336,0.241,0.499,0.336,0.499,0.113,0,0,0},{0.442,0.56,0.499,0.442,0.624
,0.624,0.693,0.442,0.499,0,0},{0.388,0.499,0.388,0.336,0.624,0.499,0.56,0.388,0.288,0.624,0}},ss1
=Total[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
 
"aa Dayhoff model" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.073,0,0,0,0,0,0,0,0,0,0},{0.234,0.33,0,0,0,0,0,0,0,0,0},{0.15,0.2
38,0.074,0,0,0,0,0,0,0,0},{0.463,0.593,0.404,0.517,0,0,0,0,0,0,0},{0.275,0.384,0.377,0.313,0.73,0
,0,0,0,0,0},{0.419,0.541,0.354,0.46,0.628,0.211,0,0,0,0,0},{0,0.073,0.234,0.15,0.463,0.275,0.419,
0,0,0,0},{0.107,0.187,0.315,0.228,0.5,0.355,0.5,0.107,0,0,0},{0.435,0.554,0.519,0.44,0.753,0.713,
0.81,0.435,0.469,0,0},{0.386,0.5,0.405,0.353,0.62,0.534,0.56,0.386,0.287,0.602,0}},ss1=Total[Tota
l[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"aa Jones-Taylor-Thornton (JTT) model" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.076,0,0,0,0,0,0,0,0,0,0},{0.243,0.341,0,0,0,0,0,0,0,0,0},{0.156,0
.245,0.076,0,0,0,0,0,0,0,0},{0.493,0.629,0.425,0.546,0,0,0,0,0,0,0},{0.283,0.396,0.369,0.32,0.752
,0,0,0,0,0,0},{0.458,0.587,0.381,0.496,0.699,0.211,0,0,0,0,0},{0,0.076,0.243,0.156,0.493,0.283,0.
458,0,0,0,0},{0.112,0.196,0.329,0.237,0.538,0.375,0.554,0.112,0,0,0},{0.455,0.576,0.562,0.475,0.7
44,0.762,0.886,0.455,0.498,0,0},{0.402,0.518,0.427,0.371,0.645,0.553,0.601,0.402,0.299,0.655,0}},
ss1=Total[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
 
"aa DayhoffG model" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.074,0,0,0,0,0,0,0,0,0,0},{0.239,0.342,0,0,0,0,0,0,0,0,0},{0.152,0
.244,0.074,0,0,0,0,0,0,0,0},{0.493,0.641,0.427,0.552,0,0,0,0,0,0,0},{0.286,0.404,0.396,0.326,0.79
7,0,0,0,0,0,0},{0.437,0.57,0.367,0.48,0.675,0.218,0,0,0,0,0},{0,0.074,0.239,0.152,0.493,0.286,0.4
37,0,0,0,0},{0.108,0.191,0.322,0.231,0.531,0.366,0.518,0.108,0,0,0},{0.451,0.582,0.545,0.457,0.81
6,0.756,0.864,0.451,0.487,0,0},{0.397,0.521,0.423,0.366,0.664,0.558,0.586,0.397,0.295,0.63,0}},ss
1=Total[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"aa Jones-Taylor-Thornton (JTT) G" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.077,0,0,0,0,0,0,0,0,0,0},{0.249,0.352,0,0,0,0,0,0,0,0,0},{0.158,0
.251,0.076,0,0,0,0,0,0,0,0},{0.523,0.674,0.448,0.582,0,0,0,0,0,0,0},{0.295,0.416,0.384,0.332,0.81
5,0,0,0,0,0,0},{0.481,0.622,0.397,0.52,0.754,0.216,0,0,0,0,0},{0,0.077,0.249,0.158,0.523,0.295,0.
481,0,0,0,0},{0.113,0.199,0.336,0.24,0.569,0.387,0.578,0.113,0,0,0},{0.471,0.602,0.59,0.494,0.806
,0.806,0.947,0.471,0.515,0,0},{0.413,0.537,0.446,0.386,0.688,0.578,0.631,0.413,0.306,0.683,0}},ss
1=Total[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"kimura2" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.049,0,0,0,0,0,0,0,0,0,0},{0.116,0.174,0,0,0,0,0,0,0,0,0},{0.088,0
.144,0.049,0,0,0,0,0,0,0,0},{0.361,0.442,0.286,0.322,0,0,0,0,0,0,0},{0.189,0.253,0.22,0.204,0.508
,0,0,0,0,0,0},{0.252,0.322,0.27,0.305,0.558,0.16,0,0,0,0,0},{0,0.049,0.116,0.088,0.361,0.189,0.25
2,0,0,0,0},{0.102,0.158,0.189,0.144,0.399,0.236,0.342,0.102,0,0,0},{0.362,0.402,0.402,0.366,0.443
,0.508,0.583,0.362,0.42,0,0},{0.256,0.325,0.27,0.221,0.42,0.304,0.4,0.256,0.272,0.494,0}},ss1=Tot
al[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"jukes-cantor" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.049,0,0,0,0,0,0,0,0,0,0},{0.116,0.173,0,0,0,0,0,0,0,0,0},{0.088,0
.144,0.049,0,0,0,0,0,0,0,0},{0.36,0.441,0.286,0.322,0,0,0,0,0,0,0},{0.188,0.252,0.22,0.204,0.508,
0,0,0,0,0,0},{0.252,0.322,0.269,0.304,0.556,0.158,0,0,0,0,0},{0,0.049,0.116,0.088,0.36,0.188,0.25
2,0,0,0,0},{0.102,0.158,0.188,0.144,0.399,0.236,0.341,0.102,0,0,0},{0.36,0.399,0.399,0.36,0.441,0
.508,0.582,0.36,0.42,0,0},{0.252,0.322,0.269,0.22,0.42,0.304,0.399,0.252,0.269,0.485,0}},ss1=Tota
l[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"Tamura3" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.049,0,0,0,0,0,0,0,0,0,0},{0.116,0.174,0,0,0,0,0,0,0,0,0},{0.088,0
.144,0.049,0,0,0,0,0,0,0,0},{0.363,0.445,0.288,0.324,0,0,0,0,0,0,0},{0.189,0.254,0.22,0.204,0.511
,0,0,0,0,0,0},{0.253,0.323,0.27,0.306,0.562,0.160,0,0,0,0,0},{0,0.049,0.116,0.088,0.363,0.189,0.2
53,0,0,0,0},{0.102,0.159,0.189,0.144,0.402,0.236,0.343,0.102,0,0,0},{0.363,0.403,0.404,0.367,0.44
4,0.509,0.584,0.363,0.420,0,0},{0.256,0.326,0.27,0.222,0.421,0.305,0.4,0.256,0.273,0.495,0}},ss1=
Total[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
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{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"Tajima-Nei" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.05,0,0,0,0,0,0,0,0,0,0},{0.119,0.181,0,0,0,0,0,0,0,0,0},{0.091,0.
15,0.05,0,0,0,0,0,0,0,0},{0.388,0.489,0.297,0.337,0,0,0,0,0,0,0},{0.194,0.263,0.231,0.214,0.547,0
,0,0,0,0,0},{0.257,0.333,0.281,0.32,0.603,0.163,0,0,0,0,0},{0,0.05,0.119,0.091,0.388,0.194,0.257,
0,0,0,0},{0.105,0.165,0.198,0.149,0.418,0.241,0.349,0.105,0,0,0},{0.375,0.426,0.414,0.377,0.457,0
.525,0.617,0.375,0.429,0,0},{0.27,0.351,0.282,0.228,0.433,0.325,0.435,0.27,0.28,0.528,0}},ss1=Tot
al[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"Maximum Likelihood" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.05,0,0,0,0,0,0,0,0,0,0},{0.118,0.178,0,0,0,0,0,0,0,0,0},{0.088,0.
145,0.05,0,0,0,0,0,0,0,0},{0.368,0.452,0.299,0.335,0,0,0,0,0,0,0},{0.194,0.261,0.225,0.208,0.534,
0,0,0,0,0,0},{0.269,0.345,0.281,0.317,0.589,0.162,0,0,0,0,0},{0,0.05,0.118,0.088,0.368,0.194,0.26
9,0,0,0,0},{0.102,0.16,0.195,0.147,0.425,0.249,0.367,0.102,0,0,0},{0.377,0.416,0.433,0.381,0.487,
0.549,0.632,0.377,0.458,0,0},{0.257,0.329,0.281,0.227,0.468,0.315,0.411,0.257,0.284,0.503,0}},ss1
=Total[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"JC+G" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.05,0,0,0,0,0,0,0,0,0,0},{0.117,0.177,0,0,0,0,0,0,0,0,0},{0.089,0.
147,0.05,0,0,0,0,0,0,0,0},{0.377,0.468,0.298,0.336,0,0,0,0,0,0,0},{0.193,0.261,0.226,0.21,0.544,0
,0,0,0,0,0},{0.261,0.336,0.279,0.317,0.6,0.162,0,0,0,0,0},{0,0.05,0.117,0.089,0.377,0.193,0.261,0
,0,0,0},{0.103,0.162,0.193,0.147,0.421,0.243,0.357,0.103,0,0,0},{0.377,0.421,0.421,0.377,0.468,0.
544,0.629,0.377,0.444,0,0},{0.261,0.336,0.279,0.226,0.444,0.317,0.421,0.261,0.279,0.518,0}},ss1=T
otal[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"LogDet (Tamura-Kumar)" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.047,0,0,0,0,0,0,0,0,0,0},{0.118,0.181,0,0,0,0,0,0,0,0,0},{0.095,0
.156,0.05,0,0,0,0,0,0,0,0},{0.391,0.5,0.293,0.334,0,0,0,0,0,0,0},{0.2,0.273,0.253,0.232,0.539,0,0
,0,0,0,0},{0.26,0.343,0.297,0.348,0.64,0.165,0,0,0,0,0},{0,0.047,0.118,0.095,0.391,0.2,0.26,0,0,0
,0},{0.118,0.183,0.206,0.157,0.408,0.245,0.356,0.118,0,0,0},{0.379,0.454,0.401,0.368,0.425,0.549,
0.686,0.379,0.434,0,0},{0.281,0.376,0.294,0.234,0.39,0.365,0.52,0.281,0.281,0.574,0}},ss1=Total[T
otal[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 
"Tamura-Nei model" 
{ss={{0,0,0,0,0,0,0,0,0,0,0},{0.05,0,0,0,0,0,0,0,0,0,0},{0.118,0.179,0,0,0,0,0,0,0,0,0},{0.091,0.
151,0.05,0,0,0,0,0,0,0,0},{0.396,0.509,0.298,0.34,0,0,0,0,0,0,0},{0.194,0.263,0.23,0.213,0.561,0,
0,0,0,0,0},{0.254,0.328,0.278,0.318,0.622,0.162,0,0,0,0,0},{0,0.05,0.118,0.091,0.396,0.194,0.254,
0,0,0,0},{0.105,0.166,0.193,0.147,0.42,0.24,0.348,0.105,0,0,0},{0.374,0.425,0.409,0.374,0.448,0.5
27,0.611,0.374,0.428,0,0},{0.271,0.357,0.279,0.228,0.425,0.321,0.447,0.271,0.278,0.55,0}},ss1=Tot
al[Total[ss2=ss+Transpose[ss]]](*ss1 and ss2 are for matrix coloring purposes only*)}; 
{MatrixPlot[10*ss2/ss1],Grid[ss]}; 
Total[Total[Abs[G1-ss]]]/(Length[GPAD1]^2/2) 


