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Abstract // Streszczenie

This article contains my Diophantine equations solutions. | am presenting this mathematical work
mainly to attract attention to my proof that special relativity is false that you can find on vixra.org
under title “Proof that special relativity is false”.

| have worked on diophantine solutions for more than two years. | can prove that my work is
completely independent from the work of others and that two years ago | had solution to (as | call it)
general case for solutions without little Fermat theorem and simple case with little Fermat theorem,
which is much more than others achieved, but | didn’t want to publish it until it would be complete. |
sent it to the Polish profesors of mathematics and to myself so | really can prove and document that |
had it two years ago. | sent it for example on 10/26/2011 to polish full professor PhD. Edmund
Puczylowski (http://www.mimuw.edu.pl/wydzial/organizacja/pracownicy/edmund.puczylowski.xml)

from Univeristy of Warsaw and | can prove it with my correspondence with him (I gave full content of
this document that | sent to him in Appendix 1). | sent also some diophantine solutions (the simplest
case with use of little Fermat theorem) to full professor PhD. Jerzy Tiuryn from Univeristy of Warsaw
(http://www.mimuw.edu.pl/wydzial/organizacja/pracownicy/jerzy.tiuryn.xml) on 02/23/2011 and |

can prove it too.
I've searched the Internet and found very little work on this matter:

1.) Wolfram — nothing.

2.) Wikipedia: Fermat Last Theorem/Diophantine equations — single special case;

3.) http://cp4space.files.wordpress.com/2012/10/moda-ch12.pdf — that does not define all
solutions

But what I've seen is that:

1.) There is given really very little solutions in comparison to my solutions,

2.) There are not all solutions of (as | call it) “general” or at least “simple” case of presented
equations for the cases like for example: ua* + wb? = vc?

3.) There is not proof that presented solutions are all such (wich I call “complex not derived”)
solutions for any case, like for example: ua* + wbY = vc?,

4.) There is not proof when there exist such (complex not derived) solutions,

5.) There are not solutions for simultaneous equations,

6.) There are not solutions for rational exponents,

7.) As | know work of others contains only case of solution when

n n txlem(x)+1
C; . Ci o,
) qa = b= (ZE”?‘>
i=1 i=1

. Ntrlem(x)+1
orevenonly Y1, a;' = b*= (Y1 1}")

which is very little. And does not show how to solve equation without solving gz =t *
lem(x) + 1, so this algorithm to solve equation has not complexity O(1) while my has
o(1).

8.) There is no solution given for any case (especially for general case) to equations that has
coefficient not equal to 1 on the right side.

Which all and much more I’'ve done in this article.



If my Diophantine equation solutions are not enough | also give a inverse function to Li(n) function. |
think it should be enough.

| named this kind of Diophantine equation that I've described in this article after my surname,
because | need to refere to them in this article.

Finally | can present part of my work. Thanks for reading. | have more and | will publish it in my book
that should come out next year.

Please, give me an endorsement on arxiv (on physics, math), If you can. My

username on arxiv: Zbigniew_Plotnicki

(and let me know at my e-mail address: Zbigniew.Plotnicki.proofs@hotmail.com)

If you find any error, let me know too.
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Important note

Where there is not stated otherwise, there variables with the same name but different indexes
are different variables. Often for example a is a set of variables q; for every i or set of variables
a; j for every i, j, but only in these cases when it is stated so. Sometimes there is used a variable
with name x; where there is comma after i, which means that it is set of x; ; for every j. The
same is for case x; where comma is before i, which means that it is set of x; ; for every j. And that

is all - there is no other rules in variable names reading and identification. You will see that it is
very clear notation when it will comes to more complicated cases.




A - Plotnicki’s equations - part I




Theorem 1 - Plotnicki's equation with use of little Fermat theorem - the
simplest case

Theorem: There is infinitely many solutions for equation like this:

where ged(J[L1x;,2) =1
where for every i: c;, a;, b are rationals and n, x;, z are integers.

Proof

First of all we can use little Fermat’s theorem:

When z is prime and gcd ([T}% x;, z) = 1 then we can use little Fermat’s theorem:

(p(ri * lem(xyq, ...,xn))z_1 mod Z) = p,gcd(r; *lem(xyq, ..., x,),z) =1 , then 2z divides
(qz — k) (ry * lem(xy, ., %)) + k

So we have infinitely many solutions in form:

.
>l
i=1 \

(qz—k) (r*lcm(xl Xn))2 1 \

(=) ‘)

(qz—k)(rxlem(xq,...x2))* 1+k

1
—d Y cli\k
d

For any integer r such that gcd(r, z) = 1.
For any rationals ¢;, d, [;.
And for any integer k, g such thatk < gzandk is prime or 1 and }}}-, cilf" = dn” then this

equation could be solved the same way for k > 1 and could be any [; for k =

In general we have rational solutions above and when

21'1—1 Cilj.ci
%and for every i: [; are integers,

then we have integer solutions.
QED.
Example:
wa* + vbY = c?

We have:




(@z=0@y* %y \* (qz—k) (xy)*~?x Y
w| wl* + vm?Y) k 1] + v|Wl*+vmY) k *m

1y (@z=K)(xy)*1
= (wl* +vm?) ((wl" + vmy)F)

N 1y (@z—K)(xy)* ™t
= ((Wlx + vmy)F) ((Wlx + vmy)f)

1y (@z=K)(xy)* "1 +k 1\P\?
= ((Wlx + vmy)f) = (((Wlx + me)E) )

Forw=v =1:

(qz—k)(xy)? 2y x (qz—k)(xy)*2%x Y
(I* +m?Y) k L] + [ (F+mY) k *xm

_ ((lx N m¥)%) (qz=R)ey)* "t + k _ <((lx .\ my)%)p>z

Example

212 +3m3 =11

2 (11603, 9)" 4 5(116-D@D D2 4 2)" = 116-DEDT (1) = 11464
— 115185 — (111037)5




Theorem 2 - Plotnicki’s equation with use of little Fermat theorem - simple
case
Theorem : there is infinitely many solutions for equation like this:

Z c;a;' = db?

i=1
where gcd(J[L1x;,2) =1
where for every i: c;, a;, d, b are rationals and n, x;, z are integers.

for every i: for every rational [; and for every j: for every rational p;, t and every integer q;, f
that suffices equation:

n

m
Z clit =dv Z p;.lj
=1

i=1
where f could be 0, for every j: gcd(qj, Z) = 1, we have infinitely many solutions:

z-1 Xi
n m (Tj*lcm(xlz---,xn))

(tjz-q;) % lcm(xlj,c.... Xq,Z)
¢ P; *y i * 1 =

i=1 j=1
n m z—-1
i (tjz—qj)*(rjxlem(xq,...xn)
— z Cili i Hpj ( ) % ylcm(x,z)
i=1 j=1
m z-1
— dtf*z * 1_[p(t]'Z—CIj)*(rj*lcm(Xlr---,xn)) +q; *ylcm(x,z) — dCZ
]
j=1

Where y is any rational.
Where for every j: gcd(r}-,z) = 1.
Where ¢;, d, [; are any rationals and for every j: q; < t;z, where g}, t; are any integers.

n . X
i=1Cily

i
In general we have rational solutions above, and when and for everyi: l;,y,t, p; are

integers, then we have integer solutions.
Example

4x5 + 2y3 = x?
Forly =1,1, = 2:

4%x154+2%23=4+4+2%x8=20=22%2%5




(15)2~1 (15)2-1 5 (15)2~1 (15)2~1 3
4 <(22)(2—1)* = (5)(2*2—1)* 5 " 1) +2 <(22)(2—1)* 3 (5)(4—1)* 3 " 2)

— (22)(2—1)*(15)2‘1(5)(4—1)*(15)2‘1(4 %15 4+ 2 % 23) — (22)15+1(5)3*15+1 — ((22)8(5)23)2




Theorem 3 - Plotnicki’'s equation with use of little Fermat theorem -
general case

Theorem : there is infinitely many solutions for equation like this:

n m;

mo

Xij _ | | zj

Zci a;; =d b].
j=1

i=1  j=1
m; mo —
where gcd( ta [y % ]_[].:12]-) =1
where for every i, j: ¢;, a;j, d, bj are rationals and n, m; x; ;, z; are integers.

for every i, j: for every rational [; ; and every rational p; ;, t; and every integer q; ;, f; that suffices
equation:

n
ZQHW“JFIWﬂTW’
i=1

where for every i: f; could be 0, for every i, j: gcd(qi,j, Zl-) = 1, we have infinitely many solutions:

zg—1 Xi,j
n I. (rs_k*lcm(x)) lem(x, zs)
(tS,kZS_qS,k)*T X

Z G | | Psk * | | Vs k Lij
i=1 j= KES;js k€T js

_ fi*z; (tljzl qi,j)* (r”*lcm(x)) ""Zi,j lem(x,z;)

=d t; Yij

j=1
Wi lem(x,zp)

dﬂfﬁ% [In

Where for every i, j: y; ; is any rational.

Where for every i, j: gcd(ri,j,zi) =1.

Where for every i, s: U;-n:il Sijs =L ., v}, U;-n:il Tijs = {1, ...,w},

foreveryi,j, k,s wherej # k:S; ;s N S;ips =0,T;js NTiks =9,

x isasetofall x; ;, z is a set of all z;.

Where c¢;,d, [; are any rationals and for every s, k: g5 < tgyzs, where gy, ts i are any integers.

n m; X j
S e 1

In general we have rational solutions above and when and for everyi,j:

li j»yij, ti, pi j are integers, then we have integer solutions.




More generally:

n m; u w *lcm(x) lem(x,zs) *ij
i,j,sk Xij X
Z Ci 1_[ ps,k * 1_[ ys,k * li,f
i=1 j=1 \ s=1 keU;js KETjs
u Vi Z:i—1 wi
_ fixz; (t1j2i=aij)*(rij#lem@) " " +ay, lem(x,z;)
=a| [{ ] [, [ [54
i=1 j=1 j=1

. Zj
Wi lem(x,zp) ¢

u Vi
f' hi,j Z:
TT( LT T
i=1 Jj=1 j=1

forevery i,s:U;2y Upjs = {1, .., v} U2y Ty js = {1,...,ws},

foreveryi,j, k,s wherej # k:T; ;s NT;ps =0,
for every i, j: z;| ((ti,jzi - qi,j) * lem(x)?7 1 + qi,j) {little Fermat theorem]},
xisasetofallx; ;, zis aset of all z;.

. -1
Where for every i, s, k:Z;’:l Ujjsk = (tsizs — qsk) * (rs_k)zs * lem(x)?s™2




B - Plotnicki’s equations - part II




Theorem 1 - useful theorem
Theorem: ab = t[[iL;c; + x, has integer solution for every a for given c;,
and given x, where gcd(a,[[i~, ¢;) = 1.

You can use Chinese remainder theorem to get proof of the this problem, so there is
always infinitely many solutions for:

{ ([T

i=1
w = 0(mod a)

Where ged([TL,¢i,a) = 1.
So every solution have to be in formwy; =w +k *[[[;c; =w+Ilxae k*[[[-ic; =1*a

Soas gcd([i, c;,a) = 1 then:

n n

w—x
Wk=w+k*a*1_[ci=< e +k*a>*1_[ci+x
i=1Ci

i=1 i=1

And that will be used in almost every Plotnicki’s equation without use of a little Fermat theorem.




The simplest Diophantine equation and how to deal with d (partI)
wa* = vbY

Where gcd(x,y) = 1.

First of all we can divide equation by gcd(w, v), so we can assume gcd(w,v) = 1
lem(x,y)\ % lemxy)\ Y
W(v”*wk*u x ) =v|wlsvlsu ¥

Now we can solve qy = xk + 1,px = yl + 1 {see Theorem 1}

qy-1  lem(xy\* px-1  lem(xy)\”
w(vp*wx *UuU X ) =viwlxv Y xu Y

And these are all solutions when w and v are primes.

All solutions for:

m
w = nwiqi
i=1
m
v= Hvlpi
i=1
( m lcm(p,px) m lcm(qlqy) G lemay)\
w 1_[ nw *uT>
i=1 i=1

m lcm(qlqy) m o lem@ipX)Pi lem(xy)\”
=v | |w | |vi y xu ¥

i=1 i=1

For three (where gcd(x, y) = gcd(x,z) = ged(y, z) = 1):

qy-1 lem(x,y,2)\* px—1 lem(x,y,2)\ Y
W(Up*frl*wx * U x ) =7 Wq*frZ*vy * U y

qy px T1x—1 lem(x,y,2)\ 2
f (W Z %Pz f zZ  xU z )

lem(x, lem(x,
RY=rx=r = h#,rz = h%

lem(x,2) Flcm(x,y) q*lem(y,z)—1 lem(x,y,2)\*
w(vp X o+ fx xw x *uU  x )

lem(y,z) Plcm(x,y) pxlem(x,z)—1 lem(x,y,2)\ Y
=vlw y * f Ty * y * U y

lem(y,z) Ilem(x,z) hxlem(x,y)—1 lem(x,y,2)\ ?
= f (Wq z * vp z f z * U z )

And there is solution for general case (where for every different i, j: gcd(xi, xj) =1):




c1a;' = = cpay”
k=1 lem(xq,...%i—1,Xi41,m%n) lem(xq,...Xi—1,Xi11,+%n) prrlem(xq, .. Xk_1,Xk41,-9Xn) =1
c Cpl Xk Cpl Xk «cC Xk
k i i k
i=1 i=k+1
lem(xq,...%5) T
*U Xk
And all solutions for:
m;
foreveryi:c;=| |V
y g S l,]
j=1
k-1 mi lcm(p,,p,],xk) lem(xy, . Xim1 Xip o) T T lem(pipijXi) lem(g, . Xio1,Xi41,%n)
Xk Xk Xk
Cr Cij Cij
i=1 j=1 i=k+1 j=1
Xk
lem(pr.prjXk)
———————2+lem(x1,... Xk—1,Xk+1,-+Xn) —Pkj
X 1 k-1Xk+1 n) Pk, lem(xq,.nxy)
* | | C, . Tk * U X
k,j
j=1
So first of all when x or y is odd we can solve:
wr{ +vry =0
So we can solve for every f and gcd(k, 1) = 1:
w(gk)* +v(gl)’ = fc*
X X
Using analogous method we can solve for every d and gcd (]'[J 1 13’ H] | 22]’) =1
2 m; Mo
Xij Zj
2cl| |ai‘j —d| |bj
i=1 j=1 j=1
And we can easily find infinitely many solutions for:
n
x.
E c;ia;' =ndb?*
i=1
n m; n
x.
] Zi
E cja, E m;db
i=1 j=1 i=1

And for example:




2n

n
Xi _ Xi

i=1 i=n+1

So we can find infinitely many solutions if at least half of factors of sum of equation has odd
power or negative coefficient.

As you can see the simplest Diopantine equations allow to solve not only
equations when gcd(x, z) = 1, where x is a set of exponents of variables a; ; on the left

side of the equation and z is a set of exponents of variavbles b; on the right side of the
equation. To solve equation it is enough for example to pair factors of the equation such a
way that for every factor on the left side ciaf" there is corresponding factor on the right

side cjafj for which gcd(xi, xj) =1, so thanks to this we can solve every such pair

X; Xi .
ca;' = ¢ja, 7, so we can solve whole equation.

This method is really good also for more complex examples where you for

example firstly solve equations like this Y7, ¢; ]_[;-n:i1 af;.'j =d ]_[;.n:"1 bjzj , to solve whole

equation portion by portion. Here is very simple example:
al+b3+c3=x5+y°>+2°

a®+ b3 =z°

Then:
aAB+b3—25=x5+y"-c3=0=>a+b3+c3=x"+y°>+2°

Whats more in such a case we can solve:

2n

Xi _

i=1

So we can solve for any d and gcd(l, ..., l,,) = 1:

So equation:




that has at least half of factors with odd power or negative coefficient, can be solved always:

a.) When it has even number of factors of sum, then it can be solved with:

n 2n

Xp@) _ P[]
Zcp(i)ap(i) = Z () Ap(iy
i=1 i=n+1

where p is some permutation of 1 ...n.
b.) When it has odd number of factors of sum, then it can be solved firstly with:

2n
X
i=1
and then:

n 2n

Xp) _ Xp(i)
Zcp(i)rp(i) = Z )
i=1 i=n+1

where p is some permutation of 1 ...n.

There is of course also a generalization:

ny ny

X1, _ _ ky
| | Wiy = = | | Viiby
i=1 i=1

So all that is said above applies also for general case of Plotnicki’s equation.

So for example it can be used to solve for every d and gcd(l) = 1:

m; Mo
Xij _ Zj
Ci | | a;; =d| |b
j=1 =1

j_

2
i=1
but it is not for this article. I will probably write about it in my book that will come out next year.

And that all is not all. The same easy we can find solutions for:

mq mg

X1,i __ _ Xki __ X1 _ _ Xn
Z dl.ibl,i - Z dk.ibk,i = €10, == 0pay
i=1 i=1

Where:

forevery i,l where i # [: gcd (]_[;-n:i1 xi,j;l_[;'n:l1 xl,j) =1

m;

for every i,l: gcd (l_[j=1 xi_j:xl) =1.

for everyi,j where i # j:gcd(xl-,xj) =1.




To find solutions it is enough to treat value of every Zl 1 d] 1l] i for every [;; for anyi,j as a

coefficient in equation. Then we have from equation above simply the same kind of equation for any
lij forany i, j:

l l
Cm(xl)Zdll xll R Cm(xk)dell k,i — C]_ail — eee — cnarxln

The same is possible for general case of Plotnicki’s equations.




Theorem 2 - Plotnicki’s equation - simple case
Theorem: there is infinitely many solutions for equation like this:

s

c;a;' = db?

where ged(J[L,x;,2) =1

where for every i: ¢;, a;, d, b are rationals and n, x;, z are integers.

for every i: for every rational [; and for every j: for every rational p;, t and every integer q;, f
that suffices equation:

n m
Z Ciljiri — dtf*z 1_[ p;h
i=1 j=1

where f could be 0, for every j: gcd(qj, Z) = 1, we have infinitely many solutions:

X
rixlem(xy,... %p) t

n

(t]+f]*z)# lem(xy,... . Xp,2)
Z Ci | | t * Y Xi * li =
i=

n m
_ Z Cll 1_[ p}(t jHf jrz)r prlem(xy, ... Xn) N ylcm(x1,---,xn.2)
i=1 j=1
m
= dtf*? « 1_[p](.tj+fj*z)*rj*lcm(x1,--.,xn)+CIj *ylcm(xl.....xn,z) = dc?
j=1

Where y is any rational.
Where for every i: 1; is any integer such that gcd(1;,z) = 1

Where for every j: t; is any integer such that Zl(tj *7;x lem(xq, .., xp) + qj) {for details see:
Theorem 1}

Where for every j: f; is any integer.

x;
Z?=1 Cili !
da

In general we have rational solutions above and when , and for everyj: L, y, pj,t are

integers we have integer solutions.

And these are the only solutions for gcd(a) > 1 for most cases, where a is set of variables,
which is proved later in this docoument for example for case clafl +c, b;z = db”~.

So for every [; we have as much subclasses of solutions as much “images of divisibility” of given

n l Xi . . .
i=1 l;' existsin form:




m
f*z qj
t | |p].
j=1

So for given ged(ay, ..., an) = t/[[2yp tllcm(xl +Xn)
there is only one image of divisibility ¢/*[TjZ, p;.lj for which are constant numbers of [; such

that Y1 lx' =tf*z [Tj24 p;.lj , which has only above solutions.

i= 1 d
And if equation has one solution : 3it. f; I;'* = b? then it has infinitely many solutions:
n : n
lcm(x X z) X 2
zﬁ —x zc_ i gt-lem(ey,xnz) — (b " gt*—lcm(xlz' ,xn,z)>
d y d'i
i= i=

for every gt

And those are all solutions that can be derived from Y[~ n lfc‘ = b%

Derivation also works when gcd(z, [Ti-; x;) > 1.
Definitons:

When gcd(ay, ...,a, ) = 1 then itis not complex solution.
When gcd(ay, ..., a, ) > 1 then itis complex solution.
Where a is variables set.

And those are all solutions (derived from all not complex solutions) when there are not complex
not derived solutions (when ged([Tf% x;,z) > 1).

So putting both together, when we know all not complex solutions (that the amount of is
constant number or zero and such a is small), we know all solutions of Diophantine equation.




Theorem 3 - Plotnicki’s equation - general case
Theorem: there is infinitely many solutions for equation like this:

n m;

mo
E Xij _ | | zj
Ci a; = d b].

. ; j=1

i=1  j=1
where gcd( L1 ]-"fl xi,j'H;nol 1) =1

where for every i, j: c;, a;j, db j are rationals and n, m; Xij) Z

;j are integers.

for every i, j: for every rational [; ; and every rational p; ;, t; and every integer q; ;, f; that suffices
equation:

Zcﬂl"” -d]] tf'*’ﬂp"”

where for every i: f; could be 0, for every i, j: gcd(qi,j, Zi) = 1, we have infinitely many solutions:

Xi1
n m; u rsk*rlem(x) lem(x,zs) b
(ts+f s,k*Zs)*T X l
Ci Ps i * Vs k ¥l
i=1 j=1 \s=1 kESL'jS keT;js
wi
fi*z; (tl]+fL]*Zl)*rlj*lcm(x)+qL] lem(x,z;)
=d t; Vi
j=1

Wi 1em(x, lem(x,z;)

u
e nn [T
i=1

Where

for every i, j: y; j is any rational,

for every i, s: U Sijs = {1, ..., v}, Um‘ Tijs = {1, .., ws},
foreveryi,j, k,s wherej # k:S; ;s NS;jps =0, T;js NTis =0,

for everyij:t;;is any integer such that: z]| ((ti_j) #7135 % lem(x) + qi_j) {for details see:
Theorem 13},

for every i, j: f; j is any integer,
for every i, j: r; j is any integer such that gcd(ri,j, Zi) =1,

xisasetofallx; ;, zis aset of all z;.




.Xi i
n e )
L'=1CLH' L

In general we have rational solutions above and when /=2 and for everyi,j: lij,
Yij» Pij, t; are integers we have integer solutions.
More generally:
n m; u lem(x) lem(x,z;) *ij
Uijsk* xi
C; Yok L * [ ;
i Psk Vs k Lj
i=1 j=1 \s=1 kEUijS keT;js
wi
=d tfl*zl (tl]+fL]*Zl)*rlj*lcm(x)+qL] lem(x,z;)
= Yij
j=1
Wi lem(x,zi)

dﬂ f"ﬂn [In

for every i, j: y; ; is any rational integer,

for every i, s: U}njl Upjs ={1,...,v5}, Uml Tijs = {1, .., ws},

foreveryi,j, k,s wherej # k:T; ;s N Tj s = @,

for every i, j: z;| ((ti‘j) *1j * lem(x) + qi’j) {for details see: Theorem 1},

for everyi,j:¢;;is any integer such that: z| ((ti,j) #1735 % lem(x) + qi,j) {for details see:
Theorem 13},

for every i, j: f; j is any integer (f; is completely other integer with other meaning),
for every i, j: r; j is any integer such that gcd(ri_j, ZL-) =1,

x is asetofall x; ;, z is a set of all z;.

Where for every i, s, k: Z;.n:"l Ujsk = (ts_k + for * ZS) *Tsk

ZL1 ll_[]]_l]
d

In general we have rational solutions above and when , and for every i,j: c;, 1 j,

Yij» Pij, t; are integers we have integer solutions.
Example 1
a* + bYc? = d¥,wheregcd(xyz,w) =1
K* + 1Ym? = plt * .ok pim o« tS*W

(ti+f; (Ei+fixz)*ry _

Any divisor p, *2*Ti helow can be divided between variables b and c like this: D;

u;+u uq
p; ' 2, wherep;*isfor band pl- is for c, where u, or u, can be 0. For example:




k lem(x,y,z,w)

S Eanat

i=1
rixlem(x,y,z) lcm(x Y, z) lem(x,y,z,w)

y

lEP1 lEQ1

Ti* lcm(x ¥,Z)

1_[ (ti+firz)st—"r=2

Ti* lcm(x ¥,Z) lem(x,y,zw)

l_[ (ti+firz)timo b2l l_[ y, * £ M
iEP; i€Q2
B (ti"‘fi*z)*W;M"ﬂi Few lem(x,y,zw) _ w
_ L. x tSW s Y, =d
iE(P1+Py) 1€(Q1+Q2)

And simplier:

Ti* lcm(x Y,Z)

x
(ti+firz)v—t——0D==d lem(x,y,z,w)
(1_[ * (¥1Y2) X * ke

1—[ (ti+fi *Z)*Tl*lcm(xy ,Z) lem(x,y,z,w)

y

A NG Y

iep,
z
(t: +fl*z)*r‘ lcm(xyz) lem(x,y,2,w)
(1T T
iEP,
rixlem(x,y,z

_ i(ti+fi*z)*%(y)+lh' N tf*w % (ylyz)lcm(x,y,z,w) = qv

iE(P1+Py)

Where P, + P, ={1,..,m},Q; +Q, ={1,..,k},P, NP, =0,0,NQ, =0
For example:
a’ + b3c5 = d’
224+ 23%25= 260 = 26%10
t1+*(2+3+5)+1 = 7q1
t2x(2+3*x5)+1 = 7q2
tl = 3,t2=3+4+7 =10
So:

(263*3*5 % 1010*3*5 * 2)2 + (263*2*3 % 2)3 * (1010*2*3 % 2)5 — (26)3*30+1 % 1010*30+1
— (2613 % 1043)7

For d" it will give all complex solutions.

Example 2




bYc# can be calculated as f¥*Z, but it will not give all possible solutions, but there still is a way
to calculate them:

d¥ - a* = bYc? wheregcd(wx,yz) =1
kW - 1% = plt s x pdmos eV w97
So p; have to be selected such a way to contruct b¥c?.
For example :
d’ - a? = b3c°
27- 22 =124 = 2%2x31
2x7xtl+2 = 3q1
2*x7xt24+1= 5qg2

tl =2,t2 =1

((611*2 * 22*2) * 2)7 _ ((611*7 * 22*7) * 2)2 — (27 _ 22) * (214 * 6114)
— (22 * 61) * (228 * 6114) — 230 * 6115 — (210)3 * (613)5

The same is for derivation:

w X

lem(x,y,z,w) lem(x,y,z,w) lem(x,y,z,w) lem(x,y,z,w)
( t1 . B2 ) ) _ ( ty B2 i . )
) g

w X

. lem(y.zw) y plemGoy.zw) #
= k¥ - 19g" *(hl* : )

And the same is for combinations when there exist partial solved solution:
d7 _ a3 — b3C5
27-2% = 120 = 23 % (3x5)

There is always infinitely many complex not derived solutions only when gcd(x,z) = 1, where x
is multiplication of all powers except those that are at some position (z); or there exists
combination (there exist partially solved solution, eg.:d’ - a® = b3c¢5,27 - 23 = 120 = 23«
(3 % 5), where the condition should be sufficed only for those x; ; that are not solved; of course
for example ford!! - a? = b3c® even for partially solved solution (23) = (141!) divisibilities
could be exchanged 3 - 5,1 — 3); and there exist always infinitely many complex derived
solutions if there exist at least one solution - proved.

So in general this is the way to calculate all rational complex solutiuons of. Diophantine
equations where there exist such j that gcd(x,z) = 1, where z is a multiplication of powers at
some position in equation, eg.: 2x3 + 3y°v3 = 5z7w?, etc.







How to deal with d - partII - the most important part
When we have solution for:

1=
N
8
N
I
X

i=1
Where for every i: gcd(x;,z) = 1.

Then we can multiply both sides for example by dP?*1 = d+lem®),

n
dq*lcm(x) Z c:a
i=1

Where x is a set of x; for every i.

lcm(x) Xi
cl< a,-) = dP?*1p? = d(dPb)?

"M=

For every i: for every rational [; and for every j: for every rational p;,d;,t and every integer
4,V uj,f that suffices equation:

o m ()
z ol = H d;.]j tf*z Hp;.'j ,where d = H d;.l"
j=1 j=1 j=1

i=1

S

where f could be 0, for every j: gcd(qj, Z) = 1, we have infinitely many solutions:

* Xi
n (t1+fl*z)*w 0 s]-lcn;& lem(xq,...,Xn,2)
i=1 j=1 j=1
n m o
— z Cll Hp (tj+f jrz)*r jxlem(xy, .. Xn) * 1_[ djsj*lcm(x) " ylcm(xl,...,xn.Z)
i=1 j=1 j=1
o [
_ ndv] tf*z " 1_[p(tj+fj*z)*rj*lcm(x1,...,xn)+qj N nd‘_ﬂj*z-'—(uj_vj)
J J j
j=1 j=1 j=1
% ylcm(xl,...,xn,z) = dc?
Where y is any rational.
Where for every i: r; is any integer such that gcd(r;,z) = 1
Where for every j: ¢; is any integer such that z|(tj *75x lem(xq, .., xp) + qj) {for details see:

Theorem 1}

Where for every j: w; is any integer such thats; x lem(x) = w; * z + (w; — v)) {for details see:
Theorem 1}

Where for every j: f; is any integer.

In general we have rational solutions above and when for every j: [;, pj, t;, d;, y are integers we




have integer solutions.
And for n = 2 that are all complex not derived solutions.
The same is for Ptotnicki’s equation with use of little Fermat theorem.
The same is for:

m;

n
Cl
i=1  j=1

my
Xij Zj
a.’ =d | | b.
Lj J
j=1

Where we have simply just more possible places to place d7*lcm®*)

Using Chinese remainder theorem we could also find solutions for:

NgE

Xi Z Z
Ciail = dlbll = e = dkbkk
i=1

Where for every i, j: ged(x;, zj) = 1.

For everyi: for every rational [; and for everyj: for every rational p;,d; and every integer
4,V uj,f that suffices equation:

o m ()
alit = 1_[ d;.]" np;.'j ,where d = Hd;.l"
j=1 j=1

i=1 j=1

n

we have infinitely many solutions:
We have to find solution of:
foreveryi=1,..,k,j=1,.., m:
Q; = —q;(mod z;)
Qj = O(mod lcm(x))
foreveryi=1,..,k,j=1,..,0:
Vi = u;j — vj(mod z;)
Vi = O(mod lcm(x))

Then we have solutions in form:



Xi

n j lem(x,z) n m 0 V.
ch 1_[ del * Y xi *li ==ZC xL l_[p]]* dj] *ylcm(x,z)

i=1 i=1 j=1 j=1
an]‘HIJ ndV]+U]+(u] u]) *ylcm(xz)
m
1_[ it ndVJ (uj-vj)+u; *ylcm(xz) =d, bZ1 = dkb;k
j=1 j=1

Where x is a set of x; for every j.
Where z is a set of z; for every j.
Analogous solutions exist of course also for general case of Plotnicki’s equations.

Of course | could use Chinese remainder theorem everywhere, but in general case of Plotnicki’s
equation this is not enough to give all solutions or it would be necessary to divide every such solution
in two parts, which would not be elegant. So | decided not to use this theorem, especially from that
reason that everywhere else it is enough to use single equation, so Chinese theorem is not needed.
Of course results are the same.

There is also a way to find solutions for:

mq my

X1i __ _ Xki __ z __ _ Zm
Z €1iy; = = z Cri@y; = diby = =dpyby
i=1 i=1

when we have:

my mg

X1i __ Xki _ pZ1 _ .. _ RZm
ch,iau = chlakl = by = =by
i=1 i=1

That | will probably describe in details in my coming next year book.

Here is simplified example for simple case of Plotnicki’s equation:

lem(x,z)
dp121+1 _ q1* Zq
1 - "M
*lcm(x,z)
PmZm+1l __ m Zm
dPmimtl = g

Where x is a set of x; ; for every i, j.

Where z is a set of z; for every i.



X1,i

Xk,i

Z1

m q JLem(x,2) my mi m ; lem(x,2)
t z X1 X1,jZj
| | d, €1iy; = ) C1i l d 1
i=1 i=1 i=1 j=1
m lem(x,z) Mk Mg m _lem(x,2)
L7 k,i U Xk jZj
- di Cridy; = Cr,i d]. ki
i=1 i=1 i=1 j=1
lem(x,z) lem(x,z)

— dplzl"'l 1_[ d‘h zi bzl d1 dpl 1_[ d‘h Z1Z; b1

lcm(x z) m-1 lem(x,z)

— dplzl"'l l_Id z; bil — dm dpm d. ZmZ;

Zm

bm




How to deal with d - partIII

N
n m; my
Xij _ Zj
cl||ai’j —d||bj
i=1 j=1 j=1

n ml mO —_
where gcd( i=1 l_[jzl Xijr Hj:l Zf) =1
For this example
2x* + 3y5v® = 577w?

it is enough to find such 2k® + 31°m3 that is divisible by 5, which in this example is really very
simple (eg:k =1 =m = 1) or solve in rational numbers without such a requirement. When
€] = = Cp=zx = cand at least half ofx; are odd it is simple to find such [; that d divides

2l=n o (duy + (—1)900) ™

In genral infinitely many complex not derived solution exist when Y, ¢; ]'[;.';"1 ri’;_i'j =0has a

solution (which can be solved often with the same method and so on). Because then for any k; ;
for every i and j: d divides Y[-, ¢; ]_[;-Zil(dki,j + ri,j)xi'j

Imagine that we have for example equation Y, prime;a;P"™¢ = prime,,,,bPTMen+1

Then we need to solve

prime;a;P"™Mmei =0

n
=1

L

So for:

n-1

2 iaiprimei — i(_an)primen

i=1
We use the same method and so on...
Then we go to the equation:
2x2 + 3v3 + 52° = 7(—w)’
Where we need to solve
2x* + 3v3 = 5(-2)°
And here we need to solve (see The simplest Diophantine equation):

22 + 3B =020 =3(-1,)*©2(2%3%2xk3)?=312+3*k?)}




LL=0Gx*l+2x32xk3),l,=(5*15—2x3%k?)
Fork=1,11 =11, =2:
2(18 +5)2 +3(10 — 6)3 = 1058 + 192 = 1250 = 5 = 250
As we have [, 1, we can solve:
2x% + 3v3 = 5(-2)°
When we solve this, we can solve:
2x? + 3v3 + 52° = 7w’

And so on... to the equation:

n
2 prime;a;P"""¢ = prime, 1 bP " n+1

i=1
That we can solve now.

The last method is to select all [; ; divisible by d or select some subset of [; ; to be divisible by d
and calculate rest with this method that is showed above, for example for:

2x% + 3v2 + 523 = 7w’
you could put 7k to L, and find solution to
3r2+ 513 =0
Of course it is very simple (see The simplest Diophantine equation).

To find all solutions use a computer. Complexity of such an algorithm is 0 (d™").




Theorem 4 - how equations can be simplified
Theorem: every equation that can be simplified using:

Q(x) * R(x) = q * R(x)
R(x) R(x)
Q(x) q

R(x)°® = R(x)

where R(X) is acceptable polynomial and Q(x) is every function that could
give rational (in first and second rule) or integer (in third rule) result,

to the form of acceptable polynomial:

n m; mo
| | Xij | | Zj
C; a’ =d b.
L ij J
i=1  j=1 j=1
n m; my _ . .
where gcd( im1 j=1xi,]"l_[j=12j) = 1, has infinitely many complex not

derived solutions.

So there are two simple rules in a formulation of Plotnicki equation:

1. Use every variable always in the same power or in expression where it could be
simplified to the constance.

2. Reduce, if you want, everything that does not introduce alone standing constance to
expression.

So acceptable equation suffices mainly three conditions:

a.) does not evaluate to expression that have some variable two times with different
expontents or this variable can have set the same value in all places
b.) does not evaluate to expression that have alone standing constance.

c.) ng( =1 H;n:il Xij ,H;n:()l Zj) =1
So for example you may think that there is no such solution to the:
a®+b5c" =d’
But you would be wrong, because you can put any number to ¢ and get for example:
a3+ 128b° = d’

Other example is:

1
i T (a¥ + (bz)cz‘d3) =¥




Which can be simplified for example to (x = 3,¢ = 3,d = 2):
2a” + 2b% = e
You can also solve equation like this:
a* + bY(c*+dV) = e¥,wheregcd(xyzw,v) =1

So any x¥ can occur any number of time but under condition that all those occurances can be
simplified to x¥Q, where Q is every acceptable polynomial that haven’t got x and any variable
from outer expression or this variable can be set to the same value.

And by the way there is a simple rule that every QR can be always simplified, when Q or R is
acceptable polynomial, by putting any number to every variable that R use (when Q is acceptable
polynomial) or Q use (when R is acceptable polynomial). Then simply x¥Q = gxY, where q is a
constant or xYQ = pQ, where p is a constant. So for example:

a*(c?—=d") + bY(c*+d") = eV
Could be very easily solved:
p(cZ—d%) + q(cZ+d%Y) = eV
Or:
pa*® + qbY = ev
The same is for % where Q is acceptable polynomial:

a* + bY c? av

@ — %) @+ ") (e~ fM)(ed + f7)

v

e

Could be easily solved:
qa® + gb¥ + pc? — pqe’ = d%
There is of course a possiblity to solve using the same metod equation like this:
(xa +ybz¢)(wh —ve) = pTq*
or:
(6 +yPz)(w = v) = ")(¢")

or:

And that is not all, because you can solve equations like this:

(xa + bec _ prqs)(wd — p€ _|_f.9) =0




Etc.
In the end you could think that you can not solve equation like this:

x4+ 9%+ 2 +w +v3+h2=0
Because there is not such power f that gcd (10*9*?&,]{) = 1, but you would be wrong,
because you can solve it for example this way:

x10+97+ 28 +ws+v3+h2=0

—wS =y + 26
—p3 = x10 4 2
O +z0+wS) + (@ +v3+h?)=04+0=0
The same easy you can solve:
7\x3 +y° =277

For example like this:

49(x3 + y°) = 4714




Proof that there are not other complex not derived solutions
Proof for the case:

// Polish: Dowdd dla przypadku

wa* +vbY = fc?

w(gPk)* +v(g?D)Y = f(g"m)*

Of course we can assume that gcd(wk*, vl¥,wk* + vl”) = s = 1, because when we align power
of divisors of s to z then equation can be divided by these divisors which does not applies for
other divisors of wk* + vl”.

Secondly, when we assume that gcd(f,wk* + vl¥) = gcd(w, fm? —vl¥) = gcd (v, fm? —
wk*) = 1, then coefficients w, v, f can be always choosed, because they do not depend on the
k,l,m.

As you will notice, if gcd(a, b, c) = g > 1, gcd(wk, vl) = 1, then at least two factors of sum must
have g in the same power, so they must be aligned. In addition, you must ensure that all divisors
of wk* + vl” had the power divisible by z at the right side of the equation. If some prime factor
of g is aligned for the sum of the two factors and will be in power z for the third, then another
prime factor can not be aligned for another pair of factors of sum in the equation, because it will
lost alignment of this firstly aligned prime factor. What leads to the template solution presented
in this document.

If we align divisors for concrete two factors of sum in eqation then we assume some [ and k,
which implicates what we need to align on the right side, so before we align some of them, there
is no (we don't know any) m for fc?, and so the alignment of two other factors of the sum in
equation is not possible. If we tried to define in some moment such m on the basis of aligned to z
dividers of wk* + vl”, then if we wanted to keep the gcd(m, k") = gcd (m,1') = 1, then it means
that:

1’ when m has all prime divisors of wk* + vl?:

1A k ! l
k =gka'l =glt_l

lem(x,y)
Where ¢t is eventually divisor ofk, g; is eventually divisor ofg x , and g;is eventually
lem(x,y)
divisorofg ¥

lem(x,y) x lem(x,y) x
) ()
— +X

lem(x,y) x

lem@xy) (kX +u1Y W(g —x

g Wk +vl¥) _ — =t g - o gr(Wk* + vl?) =
k

fmZty, but gcd(wk* +vl”,fti) =1, so ftip = gi, but then p(Wk* + vl¥) = m?, and that
means that m has all divisors of ¢ aligned, so m divides ¢, what is possible only at the end, when
all divisors of c are aligned to z, so there is nothing to be aligned.

Then

2’ when m has not all prime divisors of wk* + vl”:




k l
k' = gksk— ' = glsl ,gcd(sk,tkm) = gcd(s;, tym) =1

Where t; is eventually divisor of k, w'is eventually divisor of w, gi is eventually divisor of
lem(x,y) lem(x,y)
g * ,and g;is eventually divisorofg ¥ ,sy,s; are divisble at most by these prime divisors

of wk* 4+ vl” (in some powers), that does not divide m.

lem(x,y) x lem(x,y)
X k) <g X

x
lem(x,y) x y wig k x lem(x,y)
g Wk*+v1Y) ( — kg x y z
7 == T & gi'sfg(Wk* + vl¥) = fm?tf , but
gkska

gcd(Wk* +vl7, fti) = 1, so ftip = gisi, thenp(Wk* + vl¥) =m? somhas all divisors of
wk* + vl”. Contradicition.

Proof for the case:
// Dowad dla:

Secondly, when we assume that:

gcd dEclnlx” = gcd cl,dl_[lb —czl_[lx“
_ng Cz,d —[lb] —Cll_[lxll =

then coefficients ¢y, ¢,, d can be always choosed, because they do not depend on the [; ;, lb]

2

mo
Sl et = o7
j=1

i=1

If we align divisors for concrete two factors of sum in equation then we assume some [; ;, which
implicates what we need to align on the right side, so before we align some of them, there is no
(we don't know any) m; for d H 0 b “J and so the alignment of two other factors of the sum in
equation is not possible. If we tried to define in some moment such m; on the basis of aligned to
zj dividers 0f21‘2=1 C; ]_[;n‘1 lL;’ then if we wanted to keep the gcd(mj, l{_j) =1, then it means
that:

1’ m; has not all prime divisors ¥.7_ ¢; ]_[;n‘1 lf}” .Then

l: .
r_ L]
lij=9ujSiiy

1)

ng(Si,j, ti,jm) =1




i xi,- i xi,- i xi_- i xi,-
glcm(x)zgzl ¢ H;'rlzlli_j] ~ Ciglcm(x) HT:l(li,j) j ~ glcm(x) HT:l(li,j) j H;_flzl ti'j] glcm(x)

my _ Zj ™ (g \¥id - LAY ™ (< \Yi
dll;2m, Ci Hj:l(li,j) 17 (g; s 12 Hj:l(gwsl,])
]:1 oL tl,]
m; Xij @2 mp gXij\ _ pymi pXij my  Zj
(:)Hj=1(gi.jsi,j) i=1 (Ci Hj=1 li,j ) - Hj=1 ti,j dl_[j=1mj ) but
2 m; gXij mp (Xij\ _ mp JXij o ™ Xi,j
ged (Zi:1 (Ci Hj:l li,j ).dl_[j=1 ti’j ) =1, SO de=1 ti,j b= Hj=1(gi,j5i,j) ,  then
X 7z o . X L.
p ( 2, (cl- ]_[;-n:‘1 lijl.") ) = ]‘[;-n:"1 m;”, so m; has all divisors of Y2, (ci ]_[;-n:‘1 li;."). Contradiction.
So for every j: m; has all prime divisors of ¥2_, ¢ ]'[;n:‘1 li,}'] .
) . s i 1 Xij
2" m; has all prime divisors of ¥7_ ¢; ]_[;-n:‘1 l;; - Then
L
J
l{ . — B —
ij = Yij i
and:
lem(x) v2 B s AR lem(x) TTMi Xij lem(x) TyMi Xij m;  Xij _lem(x)
g 2i=1Ci Hj:1 li_j _ Gig ( )Hj=1(li,j) _ g ( )Hj=1(li,j) _ Hj:1 ti_j 9
my  Zj - m; (1 \¥ij - I \NY m; X )
Il m, VEACH) (e 2t M2 (9:)
j=1\"ti gy,
m; 2 mi m; Mo
Xij Xij _ Xij Zj
‘:’l |(gi.j) Zcil |li,j _| |ti,j dl |mj
j=1 i=1 j=1 j=1 j=1

5 mp X m X\ mi Xij o ymi Xij
but ng( izlcinj;lli,;] ,deglti,}’)—l , SO deglti’;’p—ngl(gi_j) , but then

pPYZ.c H}njl lf;’ = ]‘[;."=°1 mjzj . That means that for every j: m; has all divisors of bjzj aligned, so
m; divides bj, what is possible only at the end, when all divisors of bj are aligned to Zj, SO there is

nothing to be aligned.

It can be probably proved also for more complex equations, but it is much more complicated.
Probably for most, if not all, equations presented solutions are all solutions for gcd (a) > 1.

// Polish:

Po drugie, kiedy zatozymy, ze gcd(f, wk* + vl”) = gcd(w, fm? — vl¥) = gcd (v, fm? —wk*) =
1, wtedy wspétczynniki w, v, f moga by¢ zawsze dobrane, poniewaz nie zaleza od k, [, m.

Jak tatwo zauwazyé¢, jesli gcd(a,b,c) = g > 1,gcd(wk,vl) = 1, to przynajmniej dwa czynniki
sumy musz3a mie¢ g w tej samej potedze, czyli musza by¢ wyréwnane. Dodatkowo trzeba zadba¢
o to, zeby wszystkie podzielniki wk* + vl miaty potege podzielng przez z po prawej stronie
réwnania. Jesli jaki§ czynnik pierwszy g zostanie wyréwnany dla danych dwoéch czynnikéw
sumy i bedzie w potedze z dla trzeciego czynnika, to inny czynnik pierwszy g nie moze by¢
wyrownany dla innej pary czynnikow sumy réwnania, bo zostanie utracone wyréwnanie do z
tego pierwszego czynnika. Co juz prowadzi wprost do szablonu rozwigzania przedstawionego w
tym dokumencie.




Jesli wyréwnujemy podzielniki dla dwoéch czynnikow dodawania w wyrazeniu to zaktadamy
jakie$ i k, z ktorych wynika jakie podzielniki musimy wyréwnac¢ do z po prawej stronie, a wiec
zanim nie wyréwnamy pewnych podzielnikdw nie istnieje Zadne (nie znamy zadnego) m dla
fc?, a wiec wyréwnanie dwoch innych czynnikéw réwnania nie jest mozliwe. GdybySmy
prébowali okresli¢c w pewym momencie takie m na podstawie wyréwnanych do z podzielnikéw
wk* + vl”, to gdybysmy chcieli zachowa¢ gcd(m, k') = gcd(m, ") = 1, to okazatoby sie, ze:

1’ m ma wszystkie pierwsze podzielniki wk* + vl

! k ! l
k =gka»l =gzt—l

Gdzie t; to ewentualny podzielnik k¥, a g, i g; to ewentualne podzielniki

lem(xy)  lem(xy)
odpowiedniog = ,g ¥

lem(x,y) x lem(x,y) x
k g x k
L lem(x,y) wkX+vlY W(g x ) < > tx lem(x,y)
i 7e2 ( — ) = — = L = kI — & gr(wk* + vlY) = fm?tf, ale
fm wk (Qki) P
tx

gcd(wk* + vl fty) = 1, wiec ftip = gi, ale wtedy p(wk* + vl¥) = m?, co by oznaczato, ze m
ma wszystkie wyréwnane podzielniki c?, wiec m dzieli c, co jest mozliwe tylko na samym koncu,
gdy wszystkie podzielniki c s3 juz wyréwnane do z, wiec nie ma co wyréwnywac.

2’ m nie ma wszystkich podzielnikow wk* + vl

k l
k' = gksk A= gisiy »ng(Sk»fkm) = ged(s;, tym) =1

Gdzie t; to ewentualny podzielnikk, aw'to ewentualny podzielnikw, g, i g; to ewentualne
lem(xy)  lem(xy)
podzielniki odpowiedniog x ,g ¥ , a s jest podzielne tylko conajwyzej przez te

podzielniki pierwsze wk* 4+ vl¥ (w pewnych potegach), przez ktére nie jest podzielne m.

lem(x,y) x lem(x,y) x
k k
glcm(x,y)(wkx+vly) _ W(g x ) B <.9 x > _ tlﬁccglcm(x,y)

z - "nx - x X X
fm w(k") (kak%) ISk

S grsi Wk* +vl?) = fm?ty , ale

gcd(wWk* +vl?, fty) = 1, wiec ftip = gi sy, wtedy p(wk* + vl¥) = m?, wiec m ma wszystkie
podzielniki wk* + vlY. Sprzecznos¢.

Proof for the case:
// Dowad dla:

Po drugie, jesli zatozymy, Ze:

gcd dEclnlx” = gcd cl,dl_[lb —czl_[lx“
=gcd| ¢y, d —[lb —cll_[lxll =




wtedy wspotczynniki ¢y, ¢;, d can moga by¢ zawsze dobrane, poniewaz nie zaleza od [; j, lbj.

2 m; my
Xij _ Zj
Z (o a; = d | | b].
i=1 j=1 j=1

Jesli wyréwnujemy podzielniki dla dwoéch czynnikow dodawania w wyrazeniu to zaktadamy
jakie$ [; j, z ktorych wynika jakie podzielniki musimy wyréwnac do z; po prawej stronie, a wiec
zanim nie wyréwnamy pewnych podzielnikdw nie istnieje Zadne (nie znamy zadnego) m dla
d ]_[;-n:"1 bjzj , a wiec wyréwnanie dwoch innych czynnikéw réwnania nie jest mozliwe. GdybysSmy
probowali okresli¢ w pewym momencie takie m na podstawie wyréwnanych do z; podzielnikéw

Y2 ¢ ]'[;n:"1 le;’ , to gdybysmy chcieli zachowa¢ gcd(m, I j) = 1, to okazatoby sie, Ze:

m; lxi.}'

) . . . s O 2
1’ m; ma wszystkie pierwsze podzielniki }.;_; c; ]'[j=1 1]

l; i
J
. = gii—
L L]

’ tij

ize:
1 2 m; 1%ij 1 m; Xi j 1 m; Xij m; ,Xij 1
glm yz_ ¢ ML, g cm() M2 ()™ g cm(x) M2 ()™ M2t g cm(x)
m zj - m; Xij - CAXij m; Xij
de:°1 m; Ci Hj:l1(l£,j) ™. (g iy l_[j=L1 9ij)
AN

m; 2 m; m; Mo
Xij Xij _ Xij Zj
& | |(gi_j) Z o | | Ly =dc | | ;) m;
j=1 =1 j=1 j=1 j=1

2 m; 1%ij m; ,Xij\ _ . m; JXij_ _ mi Xi,j
ale gcd( f1C ]_[j:‘1 li_j ,d]_[j:‘1 t; ) =1, wiec d]_[j:‘1 t,;p= l_[j:L1(gi,j) , ale wtedy
pPYZ.c H}njl lf;’ = ]‘[;."=°1 mjzj , €o by oznaczato, ze m; ma wszystkie wyroéwnane podzielniki bjzj ,
wiec m; dzieli bj, co jest mozliwe tylko na samym koncu, gdy wszystkie podzielniki b; s3 juz
wyrownane do z;, wigc nie ma co wyrownywac.
mi lxi,j

) 0 . . . 7 2
2" m; nie ma wszystkich podzielnikow Yi_, ¢; 1,2, Yy

I .
o L]
lij = 9ijSij

L]

ng(si,j' tl-_jm) =1

d H;'n=o1 ijj Ci H;nil(l{,j)m'j l—[mz ( li,j)

. g .S . —=
j=1\JLPi

i xi,- i xi,- i xi'- i xi,-
glcm(x) 212:1 ¢ H;n=1 li,j] _ Ciglcm(x) H;n:1(li,j) J ~ glcm(x) H;n:1(li,j) J H;n=1 ti,j] glcm(x)

) H;'rgl(gi,jsi,j)xi'j

xl.,j




m; 2 m; m; mo
xi,]- xi,]- _ xi_j Z]'
(=4 | |(gi,jsi,j) z C; | | li,j = dCi | | ti,j m}
j=1 i=1 j=1 j=1 j=1

i 1%ij i LXij : i LXij i Xi,j
ale gcd (212=1 (ci H}l‘l li’j’) ,d ]'[;."=1 ti’j’) =1, wiec d l_[;."=1 ti,j’ p= H?Ll(gi,jsi,j) 7, wtedy
p (Z§=1 (ci ]_[;-n:i1 lzcj”) ) = ]‘[;.n:"1 mjzj , wiec m; ma wszystkie podzielniki P (ci ]_[;-n:i1 lzcj”) .

Sprzecznos¢.

Dowdd da sie prawdopodobnie przeprowadzi¢ takze dla bardziej ztozonych rownan, jednak jest
to o wiele bardziej skomplikowane. Prawdodpobonie dla wiekszosci, jesli nie wszystkich,
rownan przedstawione rozwigzania sg wszystkimi rozwigzaniami dla gcd(a) > 1.




Proof - when there are complex not derived solutions
There are complex not derived solutions only when

o [1[ T [ ]

i=1 j=
Proof for the case:
wa* +vbY = fc?

If for eachw = xoryorz: gcd (7 w) > 1, it is impossible to align the powers by this

method, so the only possible alignment is:

// Jesli dla kazdegow = x lub y lub z: gcd (%,W) > 1, to nie da sie wyréwnaé¢ poteg ta

metoda, wiec jedyne mozliwe wyréwnanie to:

lem(x,y,z) \* lem(xy.2) \Y lem(x,y.2)
W(g x k)+vg y o =f(g z m)

w ( lcm(x,y,z)k Xy ( lcm(x,y,Z)l>y lem(xy.2)\? /w . v W Z
=19 x ) + — g y = (g z ) (— + - ) =C
f f f f

Z

Then, as can be seen?kx + )Ecly = m?, so we have a solution. Hence the equation has complex

not derived solution then and only then when for somew = x or y or z: gcd (%, W) = 1,and

has an infinite number of them.

// Wtedy jak Widaé¥k’“ + )Ecly = m?, czyli mamy rozwiazanie pochodne. Stad réwnanie to ma
ztozone niepochodne rozwigzania wtedy i tylko wtedy gdy dla pewnegow = x lub y lub z:

XyZ . . . , . .
cd L, w ) = 1,1 ma ich nieskonczenie wiele.
w

More general proof
2. w klcm (x,2) c s lem(u) Zi m
i L, Xi,j 4 Xi f Zi _ zj
ST ) =(Sa o ) =11
i=1 k=1 j=1
Where for every i, k: Z;nzil Ujjk = Py
Then: Y2, . ]_[;n‘1 ll]xl ]_[;n"1 BJ so we have derived solution. So equation has complex not

derived solutions then and only then when for some z = x; or ....or x,:gcd(x, z) = 1.

— —_ n
Where x; = HJ 1%, x = [lizq x;.




Simultanous Plotnicki’s equations

m; lxk:}'
J=1"k,j
then (because otherwise b; # b;) simultaneous equation has infinitely many solutions:

And if there is a solution for: ¥3_;(c;x — cj,k)l'[ = 0, and gcd(a) > 1 then and only

n m; *kj _ pz
Y=t ik 2y (Pej * bej) ™ = b
where ¢; j are rationals.

So for two equations there is always a solution when there is at least one such x; that
gcd(x without xi, x;) = 1, because then it is Plotnicki’s equation.

Example 1

{x2+y3=z5
5

2x2-3y3 =12z

2
There is the smallest [; such that I +13 =202 -313 & (%1) =B:,=2x3=2l,=x%=

1,12 +13 =5,s0:

t; =4>5|2*3xt; +1)

{ (53*4 * 2)2 + (52*4 * 1)3 — (22 + 13) x 524 = 5§ 4 524 — 5§25 — (55)5
2(5%3* % 2)2 —3(5%"* % 1) = (2% 22 = 3% 13) 52 = 5% 52* = (55)°

So probably the smallest complex solution is:

(x,y,2) = (53" * 2,52** x 1,55) = (244140625,390625,3125)

Example 2
x? +y3 =225
x2 —y3 =75
X2y
Z 42— 4,5
27277
x2—y3 =75

2 3 2
There is the smallest];such that2+2 =12 —3 &2 =313:, =9x*=9,l, =3x2 =3, +
2 2 2

15 81+27
T2

= 54, so:
54 =2=x33

t; =2=5|2t; +1

t, =4=5|1t, +1

(332 x 234 4 9)2 . (322 % 22*4  3)3 _ (92 + 39) .

5 > 5 224*318:2*33*224*312:225*315=(25*33)5
(33*2 * 23*4 % 9)2 _ (32*2 * 22*4 % 3)3 =2 % 33 * 224- * 312 — (25 * 33)5

N



So probably the smallest complex solution is:
(x’ y, Z) — (33*2 % 23*4 * 9’ 32*2 % 22*4 * 3’ (25 % 33)5)
Example 3

{sz —y2=w’
x2+z2=w’

12 — I — 12 = 0 then we have pitagorean triple (1,1, 1) = (p* — 4% 2pq,p* + q%)
The smallest pitagorean triple is (3,4,5):
2212 =242 =25+9=34=2x%17

2(23 %173 x5)2 — (23 %173 % 4)2 =26 %175+ (50 — 16) = 26 176 (2 x17) = (2% 17)7
(23 %173 %5)2 4+ (23%173%3)2 =26%17 %« (25+9) =26 % 17%% (2% 17) = (2% 17)

So probably the smallest complex solutuion is:
(x,y,2z,w) = (343 % 5,343 x 4,343 x 3,34) = (39304 = 5,39304 * 4,39304 * 3,34)
Example 4

{Zx4 —y2=w’
xt+z2=w’

I — I — 12 = 0 then we have pitagorean triple (1,1, 12) = (p* — 4% 2pq,p* + q%)
The smallest L, will be from pitagorean triple (3,4,5): 12 = 32 + 42 = 25
20— 2 =14 +12=5+(3+5)% =850 =25 17
t,=5=7|4xt; +1)
t,=327|(4+t, +2)

2(25 %53 % 17% + 5)* — (25*2 % 532 x 1752 « 5 x 4)? = 220 x 512 x 1720 % (850) = (23 % 52 x 173)7
{ (25 % 5% % 17° x 5)* 4 (252 + 532 % 1752 x 5 % 3)% = 220 x 512 % 1720 + (850) = (23 * 5% x 17%)7

So probably the smallest complex solutuion is:
(x,y,z,w)
= (25%53 % 17°% 5,252 % 53*2 x 1752 x 5% 4,252 « 53*2 x 1752 x 5% 3,23 % 52 x 173)

= (28397140000,645118048143680000000,483838536107760000000,982600)




Theorem 5 - complex solutions with alone standing constance
There is complex solution for equation like this:

n m; mo
Xij _ | | Zj
Z (of a; + C=d b].
i=1  j=1 j=1
n m; my _ .
where gcd( i=111j=1 xi,j,]_[jzlzj) = 1, then and only then when there is
sufficed condition
u Vi Wi
_ fixzi (tij+fijrzs)sriplem(x) lem(x,z;)
¢= | | ti Pij Yij *Le
i=1 j=1 j=1
n m; u Vi
Xij — fi*zi ij
Zcil |1i,]. +lc—| | t | |pl.J.
i=1  j=1 i=1 j=1

where [, could be 1.

So alone standing constance have to be treated like new variable with exponent 1. And that is all.
And then and only then when there is such solution that new variable is equal to C, there is
complex not derived solution for the equation.

Example 1

x> +25=y%
Forl.=1,l, = 2:

t=1=3|2xt+1
(511 x2)24+52 = (224 1) x(5%) =5%2*1 =53

So solution is (x, y) = (10, 5).
Example 2

x> +123 =y3

123 =3+%41
So: I, could be 1 or 3 or 41
1. =1

Thenl2 +1 =341 =123 = [, = V122, so there is no solutions.




2'l. =3

Then [2 + 3 = 41 = I, = 21/7, so there is no solutions.
3. =41

Then l,zc + 41 > 41 = 3, so there is no solutions.

Conclusion: There is not solutions of this equation for gcd(x,y) > 1.




C - Plotnicki’s equations - part I1I




Theorem 1 - useful theorem II

Theorem: %q = t[[j-, c; + x, has integer solution for every a for given c;,
and x (1.), where gcd(a,b) = 1, gcd(a,[]j=, ¢c;) = 1.

It is enough to see that

n n

a
Eq=t1_[ci+x(:>a|(t1_[ci + x)

So this is classical example of Chinese remainder theorem:
n
w=x (mod 1_[ Ci>

i=1
w = 0(mod a)

Example
3
§q=2t+1<:)3r=2t+1

t=1+3kr=1+2k,q=(1+2k)*5




Theorem 2 - Plotnicki’'s equation with use of little Fermat theorem -
general case - rational exponents
Theorem : there is infinitely many solutions for equation like this:

n m; o xij my Z],
al|l |7 =a| [p7
t ij J

i=1 j=1 j=1

where gcd( L1 ].";"1 Xij, ]_[].";"1 zj) =1

where for everyi,j: c;, a;j, d, bj are rationals and n, m;, x;j, y,-,j,zj,z]’- are

integers.

for every i, j: for every rational [; ; and every rational p; ;, t; and every integer q; ;, f; that suffices

equation:

m; x”

S i =[] oy

where for every i: f; could be 0, for every i, j: gcd(qi_j, ZL-) = 1, we have infinitely many solutions:

1 Xij
Zg—
n l (rslk*lcm(x)) lem(x,25) YVij
| l (ts,kZS_QS,k)*J/i,j*T yi'jT
2 Ci ps,k * | | gS,k % li,j
i=1 ] kESl]S kETi’]"S
- wi
=d firzi (tuzl aij)* (Tu*lcm(x)) +qi'1' lem(x,z;)
i 9i
j=1
Z_;'
u vi Wi lem(x,z)) Z
= fi hij Z
B dl l b bi; 9;
i=1 J:]_ ]=1
Where for every i, j: ng(ri,iji) =1.
Where for every i,s: UT% S i s = {1, ..., v;}, Um‘ Ty o= {1, .., w;)
y re j=1 L],S L 115 y ey Wiy,

foreveryi,j, k,s wherej # k:S;js NS =0,T;js N Tixs =9,
x isasetofall x; ;, z is a set of all z;.
Where c¢;, d, [; are any rationals and for every s, k: g5 < tgyzs, where gy, ts  are any integers.

Foreveryi,j: g;; is any rational.




xi]'

LI 2
. . i=1% 1
In general we have rational solutions above and when + , and for
i,j: i j, i, ti, pi,j are intergers, we have integer solutions.
More generally:
Xi]'
n m; u lem(x lem(x,z Vi
ui.j,S,k*yi,j* xlg ) yl,]# ij
Z Ci | | ps,k * | | gs,k * li.j
i=1  j=1 \s=1 \k€Ujjs k€T s
u Vi zi—1 wi
—d (fiezi (t1jzi=a0))*(rijriem@) " +ay; lem(x,z;)
= i P j 9i;
i=1 j=1 j=1

Zj
z

7
i

e

lcm(x Zi)

. w;
hi,
=d tf‘ pl']’ Hg
J j=

for every i, s: U Upjs ={1,...,v5}, Uml Tijs = {1, ..., ws},

-~

1l
[
g.

foreveryi,j, k,s wherej # k:T; ;s NT;ps =0,

for every i, j: z;| ((ti,jzi - qi_j) * lem(x)?"1 + qi,j) {little Fermat theorem},
x isasetofall x; j, z is a set of all z;.

Where for every i, s, k: Z;.n:"l Ujjsk = (ts,st - qs,k) * (rs,k)zs_l * lem(x)?s™2

Foreveryi,j: g;; is any integer.

every




Theorem 3 - Plotnicki’s equation - general case - rational exponents
Theorem: there is infinitely many solutions for equation like this:

n m; o xij my Z],
al|l |7 =al [p7
t ij J

i=1 j=1 j=1

where gcd( =1 jniil xi,i'n;nol l) =1

where for everyi,j: c;, a;j, d, b]- are rationals and n, m;, x; j, y,-,j,zj,z]’- are

integers.

for every i, j: for every rational [; ; and every rational p; ;, t; and every integer q; ;, f; that suffices
equation:

mp  x;;

S i =[] oy

where for every i: f; could be 0, for every i, j: gcd(qi_j, ZL-) = 1, we have infinitely many solutions:

xi']’
n mi u Tsk*yij*lem(x) lem(x,z Vij
(tsk+fsk*zs) *% Yi,j*# v
Z ¢ | | Ps * | | Is i *lij
i=1 j=1 \s=1 kesijs keT;js
wi
fi*zi (tL]+fl]*zl)*rl]*lcm(x)+ql] lem(x,z;)
=d t; 9i;
j=1
zi
7z
Wi em(x, lem(x,z) t
— fi Zj
=d | | t; pl gl J
Where
. m; m;
forevery i,s:U;2; Sijs ={L ., v}, U2y Tyjs = {1,...,w},

foreveryi,j, k,s wherej # k:S; ;s NS;ips =0, T;js NTips =0,

for every i, j: t; j is such integer that: Zil(ti_j *1j % lem(x) + qi,j), {for details see: Theorem 1},
for every i, j: f; j is any integer,

for every i, j: r; j is any integer such that gcd(ri_j, ZL-) =1,

xisasetofallx; ;, zis aset of all z;.

Foreveryi,j: g;; isany integer.




n m; X j
i=1 Cll_[] 1l”

In general we have rational solutions above and when , and for everyi,j:l;;,

d
gi,j Pij, t; are integers we have integer solutions.
More generally:
n m; u lem(x lem(x,z; Vi j
ui.j,S,k*yi,j* XL'S' ) yL,]*# L]
Z Ci | | ps,k * | | gs,k * li.j
i=1 j=1 \ s=1 keU;js KET;js
u Vi Wi
—d tfi*zi (tij+fij*zs)¥rijrlem(x)+q; lem(x,z;)
= i P;j i
i=1 j=1 j=1
Zi
z!
Wi lem(xz) t
— fi Zi
=d | | t; p gl J
. m; m;
forevery i,s:U;2y Upjs = {1, .., v} U2y Ty js = {1,...,ws},

foreveryi,j, k,s wherej # k:T; ;s NT;ps =9,

for every i, j: t; j is such integer that: Zil(ti_j *1j % lem(x) + qi,j), {for details see: Theorem 1},
for every i, j: f; j is any integer (f; is completely other integer with other meaning),

for every i, j: r; j is any integer such that gcd(ri_j, ZL-) =1,

xisasetofallx; ;, zis aset of all z;.

Where for every i, s, k: Z] 1uljsk (tsk + fok *zs) *Tsk

Foreveryi,j: g;; isrational.

Example

2

2 3 S
5x3 + 3y5 = z3

2 3
5%¥13+3%15=8=23

5 =2*3*xt+3e5¢q=3*2t+1)

t=2+5k=5]3%Qt+1)

2 3 5
5x (2293 % 1)3 43 % (2225 1)5 = 212 5 (5 4 3) = 212 % 23 = 215 = (2%)° = (29)3




Proof that there are not other complex not derived solutions - rational

exponents
Is almost the same as for integer exponents, so proof is not worth to be rewritten.




D - Plotnicki’s equations - part IV - What is next? - the unlimited field
of Plotnicki’s equations.




Simple case
When we have to calculate solution for:

k l
vt =Y aw
i=1 i=1

where gcd(x,y) = 1, x is a set of x;, y is a set of y;.

First we have to solve simultaneous equation in form:

k

Z Cia;ci — plcm(y)
i=1
l
tZ dibiyi — qlcm(x)
i=1

Then we can solve it from the equation:

We have solution in form:

k lem(xy) lem(x) \% o lem(xy) lem(y) \Yi
26L< Xi q X al) 2d1< Vi p Vi bi)

i=1 i=1

For example:
wa* + vbY = uc?

Wf* +vg¥ = p?
{ ud? = qlcm(x,y)

There are given rules to solve both equations, so:
Wf* 4+ vg¥)ud? = p?ud? = gLmEND (Wf* + vg?)

So here we have complex derived solution:

lem(x,y) \* lem(xy) \Y
u(pd)Z=W(q x f) +v<q y g)

So this is the next method how to deal with “coefficient on the right side” and works always.

As we know how to solve:

K !
. .

i=1 i=1




We could solve for example:

k l
(z cajl = zgieiyi
{ i=1 i=1
m n
PXLEINT
i=1 i=1

Where gcd(x,y) = gcd(z,w) = 1.
x is a setof x;, yis aset of y;, z is a set of z;, w is a set of w;.

And from there we have:

m l
hif =) dib{ Y gl
i=1 i=1
l n
dibizi = Zgieiyi Z hifiwi
i=1 i=1

k Xi m Zi
di=16i4; _ i=14d;b;

n wi Tyl Vi
D=1 hifi i=1Yi€;

K xi 1 Vi
i=16ia;" _ Yi=19i€ '
Y dibt YR hyf

n m l
A BfM =) dibfE ) gie”
i=1 i=1 i=1
m
Ciafiiz:d bl = Zgl y‘+2hlfwl

-

Il
Y

k
Xi
ciai
=

1

k
Xi
ciai

i=1 i

i

R

Il
Y

=1 i=1
Etc.
And much more, eg.:
1k n M
x]l _ Yj,i
| | ¢jia | |Z d;ibj;
j=1 i=1 j=1 i=1

k] n m
xj,i Xji Yij,i x]l
l IZ iy + ) engi =] |, b +qu
i=1 j=1 i=1

And so on...




General simple case
k1

X
Z C1,iAq,; 1

i=1

where for every j: gcd(x without x;

We have for every j:

ky

.= . . Xn,i
= § CniQni

i=1

x)) = 1, x is a set of x;, x; is a set of x; ;.

kj
xj; _ lem(x without x;)
i =P,
i=1
And then solution in form:
k i ; X1,
1 lem(x) lem(x without x ;)
——== —
X1 1 .
i=1 J=2
i . XL
o zcm(xﬂ L lem(ewithoutz;) nm - lem(xwithoutx) ™
= X1,i XLi L
i=1 j=l+1
k Xn,i
n lem(x,y) =1 lcm(xwtthoutx])
=ch'i e | | An,i
i=1 =]_




The most general case

The same is in the most general case:

nq my;

ng my;

X1,ij __ _ Xk,ij

Z C1,i | | Arij == ch,i | | Qi
i=1 j=1 i=1 j=1

where gcd(x without x;,x;) = 1, x is a set of x;, x; is a set of x; ;.

For example:

l 0

n i n i l 0
J/L J ‘ Xij ‘ Xij ‘ Yij
Zdl Ci a ; —Ecl a;; * ) d b; ;
=1 j=1 =1 j=1 =1 j=1 =1 j=1
n m;
Xij _ _lem
zcl al 14 (yj)
=1 j=1
l 0;
d; byjl] _ qlcm(x])
=1 j=1
Or:
n m; max (0;)
Xij lem(y ;)
ch Y%ji T l l Pj
i=1 j=1 j=1
! 0; max(m;)
Yij _ tem(x5)
di] by = | | 4
i=1 j=1 j=1

This method is not so difficult, but is to difficult to be elegantly showed. You could easily see it. The
only diffference here is that you have simply more possibilities to place p; and g; for every i

So in general you can easily solve equations like this:

k; 9j,i

l j
Xjie Yiif
[ [2,6] |4z HZ bm

j=1 i=1 e=1

And from this point we can solve:

Iy kij 91ji I, knj Inji
Cri: axl,j,i,e — ... C, xn,j,i,e
1;]1" 1,j,i,e - ’]l Ij)i)e
j=1 i=1 e=1 j=1 i=1 e=1

And so on... More about it you will find in my book.







Rational exponents
The same is for rational exponents.

For example:

First we have to solve simultaneous equation in form:

(o o
!
Xi _ L lem(y)
| Gia; p
i=1
S
1Yi _ lem(x)
i=1
Then we can solve it from the equation:
K LT b7} l v
x Yi _ y
i=1 i=1 i=1
We have solution in form:
X

i
’

i=1 i=1

And so on...

k x{*lcm(x,y) x{*lcm(x) x; L yi'*lcm(x,y) yi'*lcm(y)
Zcig g Yo =Zdig Yo p  Yioob




Appendix 1 - Inverse function of Li(n)

int prime (int n)
{
typedef double real type;
const int ilogsum limit = 3;
real type* ilogsumt = new real typel[ilogsum limit];
for (int i = 0; i < ilogsum limit; ++i) ilogsumt[i] = 0.0;
for (int i 2; 1 <= n; ++1)

{

ilogsumt [0] += log(real type(i)*log(real type(i)));
for (int j = 1; j < ilogsum limit; ++3)
if (ilogsumt[j - 1] > 1.0) ilogsumt[j] += log(ilogsumt([]j - 11);
}
const int result = ilogsumt[ilogsum limit-1];
delete [] ilogsumt;
return result;

prime(n) = f,(n)
fo(n) = In(i *Ini)
2

fr(0) = 0,f () = fr(n— 1) + max(In(f,_,(n)),0)

or:
n
fu@) = ) max(in(fi1(D), 0)
i=1
Function prime(n) runs in time O(n) = 0 (ﬁ) and tends very quickly tolog(p; * ... * p,,) and

Pn, Where p; is i-th prime number. The best performance can be obtained calculating prime(n) for
all numbers in the range 1 ... n, or for a set of complexity O(n), then the complexity of calculating
each prime(i) is 0(1).

For ilogsum limit = 4 with double precision (a higher value for this type causes already
deterioration of result due to errors in floating point operations) it gets average percentage
difference less than 1% for p1¢73 (P1096 for In(p; *...* p,,) ) 8623 (8803), and one promile for p1g415
(p1ga91 for In(pq * ...* py,)), which is the prime number 205417 (206273). Probably there is no better
known approximation for p; that does not use primes and it is very possible that in general it does
not exist.

Pn
npn
i pp, gdzie p; to i-ta liczba pierwsza. Najlepsza wydajnosé¢ mozna uzyskac liczac prime(n) dla

// Polish: Funkcja prime(n) dziata w czasie 0(n) = 0 (1 ) i dazy bardzo szybko do In(p; * ... * p,)

wszystkich liczb z przedziatu 1...n, lub dla zbioru o ztozonosci 0(n), wtedy ztozono$¢ obliczenia
kazdego prime(i) jest 0(1).

Na marginesie: oczywiscie definicja liczby pierwszej powinna brzmiec: ,liczba
podzielna tylko przez samg siebie i 1”7, czyli powinna by¢ nig réwniez jedynka.




Juz dla ilogsum limit==4 przy precyzji double (wigksza wartos$¢ dla tego typu powoduje juz
pogorszenie wyniku ze wzgledu na btedy operacji zmiennoprzecinkowych) uzyskuje srednig réznice
procentowa mniejszg od 1% juz przy pi973 (P1o9e dla In(py * ... x py,)), czyli 8623 (8803), a
jednopromilowg rozinice przy pigais (Pigagq dla In(py * ... x p,)), czyli liczbie pierwszej 205417
(206273). Przy kilkumilionowej liczbie pierwszej schodzi do okoto jednomilionowej. Prawdopodobnie
nie istnieje zadne lepsze znane przyblizenie p; nie wykorzystujace liczb pierwszych i bardzo mozliwe,
ze w ogodle nie istnieje. Algorytmowi mozna réwniez bardzo fatwo podac najwiekszg znang liczbe
pierwsza p; < p,, (wystarczy do i liczy¢ wszystkie poziomy poza ostatnim, dla i podac p; na ostatnim
poziomie i kontynuowac obliczenia juz dla wszystkich poziomdéw), zwiekszajgc znacznie precyzje
obliczen. Na podstawie dwdch kolejnych liczb prime (i) mozna osiggna¢ precyzje taka, jakby zaczeto
sie obliczenia od nich i mozna rozpoczaé obliczanie od nich, bo mozna na ich podstawie obliczy¢ catg

tablice ilogsumt. Tak wiec przeznaczajagc na wczesniej obliczone pary sgsiednich liczb prime(i)
1

pamiqc’O(pfl) tak jak to ma miejsce w najlepszym algorytmie Lagarias-Miller-Odlyzko dla m(n),

Pn %
. PN P
mozna uzykaé ztozono$¢ 0 | =52 | = 0 | =2
p§ Inpy
n

tablicy i1ogsumt dla prime(n) mozna odtworzyé prime(n — c¢) i prime(n + c¢) w czasie 0(c).

). Ponadto majac zapamietane ilogsum limit liczb z

W czasie O (ﬁ) da sie zatem oszacowaé bardzo doktadnie (i) dla wszystkich liczb z przedziatu
1..n, nie znajagc zadnej liczby pierwszej. Jest to zatem algorytm niemal tak szybki jak Lehmera

n . . n . . . .
(0 (m), 1994r.) i Meissela (O (m), 1985-1994r.), przy czym zuzywa tylko O(1) pamieci, a nie
1

n3

1 1
0 (—) lub odpowiednio O <£>, a wiec nie ma ograniczenia pamieciowego na obliczenie wielkich

Inn

wartosci n, oraz dla zbioru liczb (i) o ztozonosci O (n) ztozonos¢ obliczenia pojedynczej wartosci to
0(1).
Oto algorytm:

int pi(int n)
{
typedef double real type;

const int ilogsum limit = 3;

real type* ilogsumt = new real type[ilogsum limit];

for (int 1 = 0; i1 < ilogsum limit; ++i) ilogsumt[i] = 0.0;
for (int i = 2; 1 <= n; ++1)

{
ilogsumt [0] += log(real type(i)*log(real type(i)));

for (int j = 1; j < ilogsum limit; ++3)

if (ilogsumt[j - 1] > 1.0) ilogsumt[j] += log(ilogsumt([j - 11]);
if (ilogsumt[ilogsum limit - 1] > n)
{

delete [] ilogsumt;

return i - 2;

The accuracy of the algorithm pi(n) for ilogsum limit = 3 and double precision numbers is
basically the same as Li(n) from the table from Wikipedia: pi(107) = 664919, Li (107) =
664918, m(107) = 664579; pi(108) = 5762211, Li(108) = 5762209, m(108) = 5761455. For

N



numbers of greater precision you can probably get exactly the same result as Li(n). Therefore it
seems that the prime(n) is the inverse of the Li(n), which gives a much smaller errors from the
formula proposed in www.mathworld.wolfram.com/PrimeFormulas.html (15). It also maintains the

relation prime(n) < p,. prime(n) algorithm also has much simpler form than this proposed there.

// Doktadno$¢ algorytmu pi(n) dla ilogsum limit = 3 i liczb doktadnosci double jest w
zasadzie identyczna jak Li(n) z tabeli z wikipedii: pi(107) = 664919, Li(107) = 664918,
m(107) = 664579 ; pi(108) = 5762211, Li(108) = 5762209, m(108) = 5761455 . Dla liczb
wiekszej precyzji prawdopodobnie mozna uzyskaé¢ wynik identyczny albo nawet lepszy niz
Li(n).Wydaje sie wiec, ze prime(n) jest funkcja odwrotng do Li(n), przy czym daje o wiele

mniejsze btedy od wzoru zaproponowanego w www.mathworld.wolfram.com/PrimeFormulas.html

(15) — zachowuje takze relacje prime(n) < p,. Algorytm prime(n) ma tez o wiele prostszg postac
od zaproponowanego tam rozwiniecia. Dla n okoto 50 milionédw doktadnosé pi(n) jest rzedu czterech
pierwszych wiodacych liczb. Precyzje tego algorytmu réwniez mozna tatwo i znacznie podniesc
podajac najwiekszg znang liczbe p; < p,,.




Appendix 2
Solutions of equation:

a’ +b?=c?
If z is not divisible by 2 then we have infinitely many non coprime solutions.

If z is divisible by 2 then we have the same problem

So we always come to equation:
Z 2 2
c2 = p] q]

Where%is odd. So we always has infinitely many solutions. And that’s are all non coprime

solutions.

Additionally there is always coprime solution for:

2l =p} —qj = (pj —a;)(p; + q;)

pj—q;=e”

pjta;=f"
e’ + f4
=g
ezi—fzi
G="g

And that are not all coprime solutions to the equation:

a? — b% =¢*

Because c¢”/ can be 2p;q; where gcd(pj, qj) =1.
For:
a? + b? = ¢2
As gcd(2,2,2) > 1, so there is no possibility to align common divisors to 2z other than:
(gk)? + (g)? = (gm)?

which can be divided by g2, to get




k? +1? = m?
so all non coprime solutions are derived from coprime. Of course ¢ may be d“ above.

So putting all together we have all solutions for:
a’ —p?% =c?

And all non coprime solutions for:

And we knot that:

has no non coprime not derived solutions.

QED.




Appendix 3
Solution of equation:

a? + b? =%

As Fermat showed there is not solution for

a* + b* = c?
So the only possible solutions are:

a? + b? = %
And there of course are infinitely many solutions, because:

a? + b? = ¢?
has only solutions

a=p*>—q*b=2pqc=p°+q°

So a or ¢ could be t? that gives:

t4=C2_b2

Where

t2 = p? — g2
Or:

a?+b? =t*
Where

t2 = p? + 2
And so on.

QED.




Appendix 4 - Content of email to the full professor in University of
Warsaw Edmund Puczylowski (10/26/2011)
Copyright 2011 Zbigniew Ptotnicki, Poznan university of Technology, Poland

All rights reserved.

Theorem 1:ab = t*[[iL,c¢; + x, has integer solution for every a for given
c;, and given x, where gcd(a, [[i=, ¢;) = 1.

[
of course Chinese remainder theorem solves this problem

{ ([T

i=1
w = 0(mod a)

n n
w—x
Wk=w+k*a*| |ci=< m C+k*a>*| |ci+x
i=1 i=1

i=1 i
-]
For:
a* + bY = c? whereged(xy,z) =1
for every

d = k*+ 1Y = p19 % .+ pni™ x m/*?
where f could be 0, we have only solutions:

(pl(t1+f1*z)*y *, . % pn(tn + frxz)xy o k)x + (pl(t1+f1*z)*x * % pn(tn+fn*z)*x % l)y

— pl(t1+f1*z)*xy+q1 % m*pn(tn+fn*z)*xy+qn % mf*z = cZ

So for every k,I we have as much subclasses of solutions as much “images of divisibility” exists, in
form:

p19t « . x pni™ « m/*? of given k* + V.
So for given gcd(a, b, c) = p1t%Y x . % pnt™Y x m/*?

there is only one image of divisibility p19% * ... * pnd™ % m/*Z for which are constant numbers of k, |
pairs such that k¥ + 1Y = p19% « ...+ pn9™ x m/*?, which has only above solutions.

And if equation has one solution : k* + [¥ = m?, then it has infinitely many solutions:




V4

tzy x tzx y txy
(gfgcd(zy,x) * k) + (gfycd(zyx) * l) = (kx + ly) (gfgcd(zy,x)) , forevery g,t

fged(zy,x) could be also fged(zx,y)

where fgcd(x,y) could be every selected divisor of gcd(x,y)

And those are all solutions that can be derived from k* + 1Y = m?”.
Gced(a)=1 — not complex solutions

Gced(a)>1 — complex solutions

Where a is variables set.

And those are all solutions (derived from all not complex solutions) when there are not complex not
derived solutions (when for w=x,y,z : gcd(xyz/w,w) > 1).

So putting both together, when we know all gcd(a)=1 solutions (that the amount of is constant
number or zero), we know all solutions of Diophantine equation.

And if there is a solution for: (n[i, 1] — n[j, 1Dk* + (n[i,2] —n[j,2])!* = 0, and al=b!=c and
gcd(a,b,c)> 1 then and only then (because otherwise c[i]!=c[j]) simultaneous equation has infinitely
many solutions:

nli, 1](P1 * k)* + n[i,2](P2 = 1)¥ = c% wheren[i,j] are rationals.
There is also a solution for eg.:
a* + bYc? = d¥,wheregcd(xyz,w) =1
E* + 1Ym? = p19' % .+ pn® x m/*W
(pl(t1+f1*z)*y*z s, ok pr(En+ fre2)syez k)x

+ (subset(pl(t“fl*z)*x*z x Lk pn(tn+fn*z)*x*z) " l)y

* (gubset(pl(t1+f1*2)*x*y % ok pntn +fn*z)*x*y) . m)z

— (pl)(t1+f1*z)*xyz+q1 % ___*pn(tn+fn*z)*xyz+qn % mf*w = c?

For example:
22+ 23%25= 260 = 2610
t1+*(2+3+5)+1 = 7q1
t2%(2x3*x5)+1 = 7q2
tl = 3,t2=3+7 =10
so:

(263*3*5 % 1010*3*5 * 2)2 + (263*2*3 % 2)3 * (1010*2*3 % 2)5 — (26)3*30+1 % 1010*30+1
— (2613 % 1043)7




For dY it will give all complex solutions.

bYc% can be calculated as f¥*Z, but it will not give all possible solutions, but there still is a way to

calculate them:
dV¥ - a* = bYc? wheregcd(wx,yz) =1
kW - 1% = p19t « . x pnd™ « m/*Y & n9*2
So p, t have to be selected such a way to contruct bAyc”z.
For example :
d’ - a®> = b3c®
27-22 =124 = 22x31
2x7xtl+2 = 3q1
2+x7xt2+ 1= 5qg2

t1 =2,t2 =1

((611*2 * 22*2) * 2)7 _ ((611*7 * 22*7) * 2)2 — (27 _ 22) * (214 % 6114)
— (22 % 61) % (228 * 6114) — 230 % 6115 — (210)3 * (613)5

The same is for derivation:

tixyz t2xyz w tlyzw t2yzw x
<gfgcd(xyz,W) x hfgcd(xyzw) k) - (gfgcd(xyz.W) hfgcd(xyzw) « l)

tlxzw y t2xyw z
= (kY = %) (gfng(xyZ,W)> % <hfgcd(xyz,w)>

And the same is for combinations when there exist partial solved solution:
d7 _ aZ — b2C5
27-22 = 124 = (2%)%31

So to calucalte all solutions you need to know only not complex solutions which are few or zero.

So there always is infinitely many complex not derived solutions only when gcd (M:‘[li(]x),s[j]) =

1, where Mul(x) is multiplication of all powers, and s[j] is a multiplication of powers at position j;
or there exists combination (there exist partial solved solution, eg.:d’ - a®> = b%¢> 27 - 22 =
124 = (22) * (31)1, where the condition should be sufficed only for those x[k] that are not

N



solved; of course in this case (b%c5, (32) = (141)) divisibilities could be exchanged 2->5, 1->2) —
proved; and there exist always infinitely many complex derived solutions if there exist at least one
solution — proved.

So in general this is the way to calculate all rational complex solutiuons of Diophantine equations
Mul(x)
x[j]

TP ; .93 5.3 — £,742
position j in equation, eg.: 2x° + 3y°v° = 5z’'w*, etc.

where there exist such j that gcd( ,x[j]) = 1, where x[j] is a multiplication of powers at



