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PREFACE 
 
 
 
 
 
In this book authors introduce the new notion of constructing 
non associative algebraic structures using subsets of a groupoid. 
Thus subset groupoids are constructed using groupoids or loops. 
Even if we use subsets of loops still the algebraic structure we 
get with it is only a groupoid. However we can get a proper 
subset of it to be a subset loop which will be isomorphic with 
the loop which was used in the construction of the subset 
groupoid.  

To the best of the authors’ knowledge this is the first time 
non associative algebraic structures are constructed using 
subsets. 

We get a large class of finite subset groupoids as well as a 
large class of infinite subset groupoids. Here we find the 
conditions under which these subset groupoids satisfy special 
identities like Bol identity, Moufang identity, right alternative 
identity and so on. In fact it is a open problem to find subset 
groupoids to satisfy special identities even if the groupoids over 
which they are defined do not satisfy any of the special 
identities. 

We define the notion of Smarandache strong Bol subset 
groupoids or Smarandache Bol groupoids if the respective 
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subset groupoids are strong Bol groupoids or Bol groupoids 
respectively. 

On similar lines we define Smarandache subset strong 
Moufang groupoid and Smarandache subset Moufang groupoid, 
Smarandache strong subset P-groupoids and Smarandache 
subset P-groupoids and so on. We have illustrated this by 
several examples. However we see we are yet to construct 
Smarandache strong subset Moufang groupoids (Bol groupoids 
or P-groupoids and so on) using Z the integers or Q the rationals 
or the reals R. 

This book has three chapters. The first chapter is 
introductory in nature. In second chapter we introduce the 
notion of subset groupoids using groupoids. In chapter three we 
build subset groupoids using the loops. Several innovative 
results are developed and described in this book.  

We thank Dr. K.Kandasamy for proof reading and being 
extremely supportive. 
 
 

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

 



 
 
 
 
Chapter One 
 
 

 
 
INTRODUCTION 
 
 
 
 
 
In this chapter we recall most of the important definitions and 
properties that are used in this book.  This is mainly done to 
keep this book as self contained as possible. 
 
 We first recall the definition of a groupoid and give 
examples of various types of groupoids. 
 
DEFINITION 1.1:  Let G be a non empty set with a binary 
operation * defined on G.  That is for all a, b  G; 
 
 a * b  G and * in general is non associative on G.  We 
define (G, *) to be a groupoid. 
 
 We may have groupoids of infinite or finite order. 
 
Example 1.1:  Let G = {a0, a1, a2, a3, a4} be the groupoid given 
by the following table: 
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0 1 2 3 4

0 0 4 3 2 1

1 1 0 4 3 2

2 2 1 0 4 3

3 3 2 1 0 4

4 4 3 2 1 0

* a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 

 
Example 1.2:  Let (G, *) be the groupoid given by the following 
table: 
 

1 2 3

1 1 3 2

2 2 1 3

3 3 2 1

* a a a

a a a a

a a a a

a a a a

 

 
Example 1.3:  Let (G, *) be the groupoid given by the following 
table: 
 
 

0 1 2 3 4 5 6 7 8 9

0 0 2 4 6 8 0 2 4 6 8

1 1 3 5 7 9 1 3 5 7 9

2 2 4 6 8 0 2 4 6 8 0

3 3 5 7 9 1 3 5 7 9 1

4 4 6 8 0 2 4 6 8 0 2

5 5 7 9 1 3 5 7 9 1 3

6 6 8 0 2 4 6 8 0 2 4

7 7 9 1 3 5 7 9 1 3 5

8

* a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a

a a8 0 2 4 6 8 0 2 4 6

9 9 1 3 5 7 9 1 3 5 7

a a a a a a a a a

a a a a a a a a a a a

 

 
 
 Clearly (G, *) is a grouped of order 10. 
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Example 1.4:  Let G = (Z, *, (3, –1)) be a groupoid.  If a, b  Z; 
a * b = 3a + b(–1) = 3a – b; that is if 8, 0  Z then  
8 * 0 = 3  8 + 0 (–1) = 24.   
 

For 5, 10  Z, 5 * 10 = 3  5 – 10 * 1 = 15 – 10 = 5. 
 
 Clearly G is an infinite groupoid.  That is o(G) = . 
 
Example 1.5:  Let (Q, *, (7/3, 2)) = G be a groupoid.  o(G) = .  
Let x = 3 and y = –2  Q then  
3 * (–2) = 3  7/3 – 2  2 = 7 – 4 = 3. 
 

Example 1.6:  Let G = (R, *, ( 3 , 0)) be a groupoid.  o(G) = .   
 

Let x = 8, y = 5 2   R. 

  x * y = 8 * ( 5 2 ) = 8  3  – 0  ( 5 2 ) 

     = 8 3   R. 
 
 Clearly o(G) = . 
 
Example 1.7:  Let G = {C, *, (3–i, 4 + 5i)} be a groupoid of 
infinite order. 
 
 a * b = a (3 – i) + b (4 + 5i) for a, b  C.   
 

Take a = –3i and  b = 2 + i  C.   
a * b  = –3i  (3–i) + 2 + i) (4 + 5i)  

     = –9i – 3 + 8 + 4i + 10i – 5 
     = 5i  C. 
 
 o(G) =  so G is of infinite order. 
 
 Now if (G, *) is a groupoid.  Let H be a subset of G, if  
(H, *) is a groupoid then we define (H, *) to be a subgroupoid 
of G. 
 
 We will illustrate this situation by some examples. 
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Example 1.8:  Let G be a groupoid given by the following: 
 
 

0 1 2 3

0 0 2 0 2

1 3 1 3 1

2 2 0 2 0

3 1 3 1 3

* a a a a

a a a a a

a a a a a

a a a a a

a a a a a

 

 
 

Take P = {a0, a2}  G   and  
 
Q = {a1, a3}  G be subsets of G.   
 
Both P and Q are subgroupoids. 

 
 
 
Example 1.9:  Let (G, *) be a groupoid; 
 

0 1 2 3 4 5

0 0 4 2 0 4 2

1 2 0 4 2 0 4

2 4 2 0 4 2 0

3 0 4 2 0 4 2

4 2 0 4 2 2 4

5 4 2 0 4 2 0

* a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

 

 
 
Consider P = {a0, a2, a4}  G, P is a subgroupoid. 
 
 
Example 1.10:  Let (G, *) be a groupoid which is as follows: 
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0 1 2 3 4 5 6 7 8 9 10 11

0 0 3 6 9 0 3 6 9 0 3 6 9

1 1 4 7 10 1 4 7 10 1 4 7 10

2 2 5 8 11 2 5 8 11 2 5 8 11

3 3 6 9 0 3 6 9 0 3 6 9 0

4 4 7 10 1 4 7 10 1 4 7 10 1

5 5 8 11 2 5 8 11 2 5 8 11 2

6 6

* a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a9 0 3 6 9 0 3 6 9 0 3

7 7 10 1 4 7 10 1 4 7 10 1 4

8 8 11 2 5 8 11 2 5 8 11 2 5

9 9 0 3 6 9 0 3 6 9 0 3 6

10 10 1 4 7 10 1 4 7 10 1 4 7

11 11 2 5 8 11 2 5 8 11 2 5 8

a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a

 

 
 Take K = {a0, a3, a6, a9}  G and H = {a2, a5, a8, a11}  G.  
Both K and H are subgroupoids of G. 
 
 We can define ideal in a groupoid G. 
 
 Let G be a groupoid.  P a non empty proper subset of G.  P 
is said to be a left ideal of the groupoid G if 
 

(i) P is a subgroupoid of G. 
(ii) For all x  G and a  P; xa  P. 

 
On similar line we define right ideal of G. If both P is a 

right or a left ideal then P is an ideal of G. 
 
We will give some examples of ideals of a groupoid. 

 
Example 1.11:  Let G be a groupoid given by the following 
table; 
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0 1 2 3 4 5 6

0 0 4 1 5 2 6 3

1 3 0 4 1 5 2 6

2 6 3 0 4 1 5 2

3 2 6 3 0 4 1 5

4 5 2 6 3 0 4 1

5 1 5 2 6 3 0 4

6 4 1 5 2 6 3 0

* a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

 

 
Example 1.12:  Let (G, *) be a groupoid given below: 
 

0 1 2 3

0 0 2 0 2

1 3 1 3 1

2 2 0 2 0

3 1 3 1 3

* a a a a

a a a a a

a a a a a

a a a a a

a a a a a

 

 
P = {a0, a3} is a right ideal of G.  Clearly P is not a left ideal of 
G.  Q = {a1, a3} is a right ideal of G.  Clearly Q is not a left ideal 
of G. 
 
Example 1.13:  Let (G, *) be a groupoid given by the following 
table: 
 

0 1 2 3 4 5

0 0 4 2 0 4 2

1 2 0 4 2 0 4

2 4 2 0 4 2 0

3 0 4 2 0 4 2

4 2 0 4 2 0 4

5 4 2 0 4 2 0

* a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a
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Clearly P = {a0, a2, a4} is both a right ideal and a left ideal 
of G; infact an ideal of G.  
 
 Let G be a groupoid.  A subgroupoid V of G is said to be a 
normal subgroupoid of G if  
 

aV = Va; 
     (Vx) y = V(xy) 
     y(xV) = (yx) V 

for all x, y, a  V.   
 

We see P in example 1.13 is a normal subgroupoid.   
 
We define a groupoid G to be normal if 

     aG = Ga,  
     G(xy) = (Gx) y 
     y(xG) = (yx)G for all a, x, y  G. 
 
 We are more interested mainly on groupoids built using Zn 
or C(Zn) or Zn(g) or Zn(g1, g2) or Z or Z(g) or Q or Q(g) or C. 
 
 We do not wish to build abstract groupoids using some 
elements like (a1, …, an) in G; G a groupoid. 
 
 The authors feel these are more non abstract structures built 
on known algebraic structures.   
 

We will first illustrate this situation by examples. 
 
Example 1.14:  Let G = {Z5, *, (3, 0)} be a groupoid.   
 

For 4, 2  G we see  
4 * 2  = 3  4 + 2  0 (mod 5) 

 = 2 (mod 5). 
2 * 4  = 3  2 + 4  0 (mod 5) 

= 1 (mod 5) 
 

Clearly a * b  b * a in general. 
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Example 1.15:  Let G = {Z8, *, (6, 2)} be a groupoid.   
Take 3, 4, 5  Z8. 

 
   (3 * 4) * 5  = (3  6 + 4  2) * 5 
      = 2 * 5 = 2  6 + 2  5 
      = 12 + 10 = 6. 
 
    Consider 3 * (4 * 5) 
      = 3 * [4  6 + 5  2] 
      = 3 * 10 = 3 * 2 
      = 3  6 + 2  2 
      = 18 + 4 = 22 = 6. 
  
  We see (a * b) * c = a * (b * c) for this  

a = 3, b = 4 and c = 5 
 
  Consider (1 * 3) * 7 = (6  1 + 3  2) * 7 
     = (6 + 6) * 7 
     = 4 * 7 
     = 24 + 14 = 6     I 
 
   1 * (3 * 7)   = 1 * (3  6 + 7  2) 
      = 1 * (18 + 14) 
      = 1 * 0 
      = 6       II 
 
  We see (1 * 3) * 7 = 1 * (3 * 7) 
 
  Consider (2 * 1) * 4  

= (2  6 + 1  2) * 4 
= (12 + 2) * 4  = 6 * 4 
= 6  6 + 4  2 = 4     I 

 
2 * (1 * 4) = 2 * (6 + 4  2) 

= 2 * 6 
= 6  2 + 6  2 = 0     II 

 
I and II are not equal that is (2 * 1) * 4  2 * (1 * 4).  Thus 

G is a groupoid. 
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Example 1.16:  Let G = {Z6, *, (3, 2)} be a groupoid.  Take  
5, 1, 4  Z6,  

(5 * 1) * 4  = (15 + 2) * 4 = 5 * 4 
     = 5  3 + 4  2 
     = 3 + 3 = 0      I 
 

 Consider 5 * (1 * 4) = 5 * (3 +8) = 5 * 5 
     = 3  5 + 2  5 
     = 15 + 10 = 1    II 
 
 I and II are distinct. Thus * operation on G is non 
associative. 
 
Example 1.17:  Let G = {Z3, *, (0, 1)} be a groupoid of order 
three.   
 

It is interesting and important to keep on record that for a 
given Zn we can have several groupoids which is impossible in 
case of semigroups.  Take Z3, we see G1 = {Z3, *, (1, 0)},  
G2 = {Z3, *, (0, 1)}, G3 = {Z3, *, (2, 0)}, G4 = {Z3, *, (0, 2)},  
G5 = {Z3, *, (1, 2)} and G6 = {Z3, *, (2, 1)} are six distinct 
groupoids.   
 

We test what happens in case G7 = (Z3, *, (2, 2)). 
 

    Take x = 2 and y = 1 
    x * y = 2  2 + 2  1 = 0 
    (x * y) * 1 = 2       I 
   

    x * (y * 1) = 2 * (2 + 2) 
    = 2 * 1 = 4 * 2 
    = 0           II 

 

I and II are distinct.  Thus we have seven distinct groupoids 
of order three.   
 

It is important to mention that as we increase n, that is Zn 
for larger n we have more number of distinct groupoids.  

 
Thus by defining in this way we get more number of 

groupoids.   
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Now if we take Zn find the number of groupoids constructed 
in general using Zn for a fixed n.  Now we can find groupoids of 
dual numbers. 
 
Example 1.18:  Let G = {Z5(g), *, (2, g) | g2 = 0} be a dual 
number groupoid of order 25. 
 
Example 1.19:  Let G = {C(Z5), *, (iF, 0)} be the complex finite 
modulo integer groupoid of order 25. 
 
Example 1.20:  Let P = {C(Z90), *, (48, 49iF)} be a finite 
complex modulo integer groupoid of finite order. 
 
Example 1.21:  Let G = {Z9(g, g1), *, (g, g1) | 2

1g  = g1 and  
g2 = 0, g1g = gg1 = 0} be a groupoid of finite order.  G is a 
mixed dual number groupoid. 
 
Example 1.22:  Let G = {C(Z10) (g), *, (5g, 5), g2 = 0} be a 
finite groupoid of dual finite complex modulo integer. 
 
Example 1.23: Let G = {C(Z7), *, (3, 2iF)} be a complex finite 
modulo integer groupoid. 
 
 We say a groupoid G to be Smarandache groupoid if G 
contains a non empty proper subset H such that H under the 
operations of G is a semigroup.    
 

We will give some examples of a Smarandache groupoid. 
 
Example 1.24:  Let G be a groupoid given by the table: 
 

* 0 1 2 3 4

0 0 4 3 2 1

1 2 1 0 4 3

2 4 3 2 1 0

3 1 0 4 3 2

4 3 2 1 0 4
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{1}, {0}, {2}, {3} and {4} are subsets of G which are 
semigroups so G is a Smarandache groupoid. 
 
Example 1.25:  Let G = {Z6(g) | g2 = 0, *, (2g, g)} be a 
groupoid.  G is a Smarandache groupoid. 
 
 For more about Smarandache groupoids please refer [4].   
 

We define the concept of Moufang groupoid. If the 
groupoid G satisfies the identity  
(x * y) * (z * x) = (x * (y * z)) * x for all x, y, z in G then we 
define G to be a Moufang groupoid. 
 
 If in a groupoid G; ((x * y) * z) * y = x * ((y * z) * y) for all 
x, y, z  G we define G to be a Bol groupoid. 
 
Example 1.26:  The groupoid G given by the following table is 
a Bol groupoid: 
 

0 1 2 3 4 5

0 0 3 0 3 0 3

1 2 5 2 5 2 5

2 4 1 4 1 4 1

3 0 3 0 3 0 3

4 2 5 2 5 2 5

5 4 1 4 1 4 1

* a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

 

 
A groupoid (G, *) is said to be a P-groupoid if for all x, y  G,  
we have (x * y) * x = x * (y * x). 
 
 A groupoid G is said to be a right alternative groupoid if  
(x * y) * y = x * (y * y) for all x, y  G.  G is said to be a left 
alternative groupoid if (x * x) * y = x * (x * y) for all x, y  G. 
 
 A groupoid G is said to be an alternative groupoid if it is 
both left and right alternative simultaneously.  We define a 
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proper subset H of a groupoid G to be a subgroupoid if H is a 
groupoid under the operations of G. 
 
 We call a groupoid G to be an idempotent groupoid if  
x * x = x for all x  g.  We can have zero divisors in a groupoid 
(G, *); we say x, y  G is a zero divisor of G if x * y = 0 and  
y * x = 0. 
 
 We can in case of a groupoid G have x * y = 0 and y * x  0 
then we define x to be a right zero divisor. If y * x = 0 we define 
y to be a left zero divisor. 
 
 We define centre of a groupoid C(G) of G to be  
{x  G | x * a = a * x for all a  G}.   
 

We say a, b  G to be a conjugate pair if a = b * x  (or x * a 
= b) and b * y = a * y (or y * a for some y  G). 
 
 We have the concept of infinite groupoids also.  Finally we 
can define the notion of Smarandache strong Bol groupoid [4]. 
 
 If G is a groupoid we can define Smarandache Moufang 
groupoid and Smarandache strong Moufang groupoid.  
 
 On similar lines we have defined the notion of Smarandache 
P-groupoid and Smarandache strong P-groupoid [4]. 
 
 Likewise we define Smarandache right alternative (left 
alternative) groupoid and Smarandache strong right alternative 
(left alternative) groupoid.  Finally the notion of  Smarandache 
alternative groupoid and Smarandache strong alternative 
groupoid.   
 

We wish to state that if the reader is familier with these 
notions then only he/she can study these concepts in case of 
subset groupoids with ease.  

 
 Next we proceed onto describe the properties of loops.  
Mainly we study the special class of loops Ln(m)  Ln; for we 
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see abstract definition of loop makes only the concept more 
complicated.  However the natural new class of loops happens 
to be nice is not that abstract and one easily sees that how under 
non associative operation this structure behaves. 
 
 We just call a non empty set L to be a loop if in L is defined 
a closed binary operation * such that we have a unique element 
e in L with e * a = a * e = a for all a  L called the identity 
element of L with respect to the operation *.  For every ordered 
pair (a, b)  L  L there exist a unique pair (x, y)  L with  
ax = b and ya = b. 
 
 We work only with finite loops and finite subset loop 
groupoids of these finite loops or more precisely we only work 
with the new class of loops in Ln. 
 
 A loop is said to be a Moufang loop if it satisfies any one of 
the following identities. 
 
     x (y (xz)) = ((xy) x) z 
     ((xy)z) y = x (y (zy)) 
     (xy) (zx) = (x (yz)) x  for all x, y, z  L. 
 
 A loop L is called a Bruck loop if x (yx) z = x (y(xz)) and  
(xy)–1 = x–1 y–1 for all x, y, z  L. 
 
 A loop L is a Bol loop if ((xy)z)y = x((yz)y) for all  
x, y, z  L. 
 
 A loop L is right alternative if (xy) y = x (yy) and left 
alternative if (xx)y = x (xy) for all x, y  L and alternative if L 
is both left and right alternative simultaneously.  We say a loop 
L satisfies the weak inverse property if (x * y) * z = e imply 
 
   x * (y * z) = e for all x, y, z  in L. 
 
 A non empty subset H of a loop L is a subloop of L if H 
itself is a loop under the operations of L. 
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 A subloop H of L is said to be normal if  
 

(i)  xH = Hx;  
(ii) (Hx)y = H(xy) 

     (iii) y (xH) = (yx) H for all x, y  L. 
 
 A loop is simple if L has no normal subloops. 
 
 We say for x, y  L; the commutator (x, y) is defined by  
xy = (yx) (x, y).   
 

We use the classical theorems of finite groups in case of 
finite loops [5]. 
 
 Let (L, *) be a finite loop.  For   L; define a right 
multiplication  R as a permutation of the loop (L, *) as follows: 
     R : x    x * . 
 
 We will call the set {R |   L} the right regular 
representation of (L, *) or briefly representation of L. 
 
 For any predetermined a, b in a loop L, a principal isotope 
(L, o) of the loop (L, *) is defined by x o y = X * Y where X * a 
= x and b * Y = y.  L is a G-loop if it is isomorphic to all of its 
principal isotopes. 
 
 Construction of a new class of loops. 
 
 Let Ln(m) = {e, 1, 2, …, n}; n > 3 and n is an odd integer.  
m is a positive integer such that m < n and (m, n) = 1 and  
(m – 1, n) = 1 with m < n. 
 
 Define on  Ln(m) a binary operation * as follows: 
 

(i) e * i = i * e = i for all i  Ln(m) 
(ii) i * i = e for all i  Ln(m) 
(iii) i * j = t where t = (mj – (m – 1)i ) (mod n) for 

all i, j  Ln(m), i  j, i  e and j  e.   
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Then Ln(m) is a loop.  We give one example.   
 
Consider the following the table of   

L7(4) = {e, 1, 2, 3, 4, 5, 6, 7} which is as follows: 
 

* e 1 2 3 4 5 6 7

e e 1 2 3 4 5 6 7

1 1 e 5 2 6 3 7 4

2 2 5 e 6 3 7 4 1

3 3 2 6 e 7 4 1 5

4 4 6 3 7 e 1 5 2

5 5 3 7 4 1 e 2 6

6 6 7 4 1 5 2 e 3

7 7 4 1 5 2 6 3 e

 

 
is a loop of order 8. We just give the physical interpretation of 
the operation in the loop Ln(m). 
 
 We give a physical interpretation of this class of loops 
which is as follows: Ln(m) = {e, 1, 2, …, n} be a loop of this 
new class.  Suppose that the non identity elements of the loop 
are equidistantly placed on a circle with e as its centre.  We 
assume the elements to move always in the clockwise direction. 
 
 
 
 
 
 
 
 
 
 

Let i, j  Ln(m) (i  j, i  e, and j  e).  If j is the rth element 
from i counting in the clockwise direction then i * j will be the 
ith element from j in the clockwise direction where t = (m–1)r. 

|

|

–– 2

i 

n

 

e 

1n–1
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 We see in general i . j need not be equal to j * i.  When i = j 
we define i * i = i2 = e and i.e = e.i = i for all i  Ln(m), e acts as 
the identity in Ln(m). 
 
 Let Ln denote the class of all loops Ln(m) in Ln for a fixed n 
and various m’s satisfying the conditions m < n, (m, n) = 1 and 
(m – 1, n) = 1, that is  
Ln = {Ln(m)|n > 3; n odd; m < n, (m, n) = 1 and (m – 1, n) = 1}.   
 

We will use the following results in case of subset loop 
groupoids of the loops Ln(m)  Ln. 
 
Result 1.1:  Let Ln be the class of loops for any n > 3 if  

n = 1 k
1 kp ,...,p   (i  1, i = 1, 2,…, k) then |Ln| = i

k
1

i i
i 1

(p 2)p 



  

where |Ln| denotes the number of loops in Ln. 
 
Results 1.2:  Ln contains one and only one commutative loop. 
 
Result 1.3:  Ln for n = 1 k

1 kp ,...,p   contains exactly Fn loops 

which are strictly non commutative where Fn = i

k
1

i i
i 1

(p 3)p 



 . 

 
Result 1.4:  If n = 3t the class of loops Ln does not contain any 
strictly non commutative loop. 
 
Result 1.5:  If n = pi, p a prime the loop in Ln is either 
commutative or strictly non commutative. 
 
Result 1.6:  The class of loops Ln contains exactly one left 
alternative loop and one right alternative loop and does not 
contain any alternative loop. 
 
Result 1.7:  The right and left alternative loops in Ln are non 
commutative.  
 
Result 1.8:  The class of loops Ln does not contain any 
Moufang loops. 
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Result 1.9:  The class of loops Ln does not contain a Bruck 
loop. 
 
Result 1.10:  Let Ln(m)  Ln.  Then Ln(m) is a weak inverse 
property loop if and only if  
    (m2 – m + 1)  0 (mod n). 
 
Result 1.11:  A left or right alternative loop of Ln is not a WIP 
loop. 
 
Result 1.12:  The class of loops Ln does not contain any 
associative loop. 
 
Result 1.13:  In the class of loops Ln we have for every  
x, y  Ln(m), (xy) x = x (yx). 
 
Result 1.14:  Let Ln be the class of loops.  The number of 
strictly non right (left) alternative loops is Fn where  

Fn = i

k
1

i i
i 1

(p 3)p 



  and n = i

k

i
i 1

p


  

 
Result 1.15:  If n = p, p a prime then in the class Ln a loop is 
either right (left) alternative or strictly non right (left) 
alternative. 
 
Result 1.16:  The exact number of distinct non identity pairs in 
Ln(m); Ln which commute is n(d–1)/2 where d = (n, 2m–1). 
 
Result 1.17:  Let Ln(m)  Ln if (2m–1, n) = 1 then the loop is 
strictly non commutative if (2m–1, n) = n then the loop is 
commutative. 
 
Result 1.18: For Ln(m)  Ln, the number of distinct non identity 
pairs which satisfy the right alternative law is given by n(d–2)/2 
where d2 = (m2 – 2m, n). 
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Result 1.19:  Let Ln(m)  Ln.  Then the number of distinct non 
identity pairs which satisfy the left alternative law is given by 
n(d–1)/2 where d = (m2 – 1, n). 
 
Result 1.20:  Let Ln(m)  Ln.  For every t/n there exists t 
subloops of order k+1 where k = n/t. 
 
Result 1.21:  Let Hi(t) and Hj(t) be subloops in Ln(m). 
   Hi(t)  Hj(t) = {e} where i  j. 
 

Result 1.22:  Let Hi(t)’s be subloops 
t

i
i 1

H (t)

 = Ln(m) for every 

t dividing n. 
 
Result 1.23:  Hi(t)  Hj(t) for every t dividing n. 
 
Result 1.24:  Ln(m)  Ln contains a subloop of order k + 1 if 
and only if k/n. 
 
Result 1.25:  Let r and s (1 < r < s) such that r/s implies r+1/s+1 
then s > r2 + r + 1. 
 
Result 1.26:  Let Ln(m)  Ln. 
 
 The Lagrange’s theorem for groups is satisfied by every 
subloop Ln(m) if and only if n is an odd prime. 
 
Result 1.27:  For any loop Ln(m) of Ln there exist only 2-Sylow 
subloops. 
 
Result 1.28:  Let Ln(m)  Ln.  No Ln(m) satisfies Cauchy 
theorem for any odd prime.   
 
 We just give an example of a right regular representation of 
this new class of loops. 
 
Example 1.27:  Let L7(4)  Ln where L7(4) = {e, 1, 2, …, 7} 
given by the following table: 
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* e 1 2 3 4 5 6 7

e e 1 2 3 4 5 6 7

1 1 e 5 2 6 3 7 4

2 2 5 e 6 3 7 4 1

3 3 2 6 e 7 4 1 5

4 4 6 3 7 e 1 5 2

5 5 3 7 4 1 e 2 6

6 6 7 4 1 5 2 e 3

7 7 4 1 5 2 6 3 e

 

              
 

I ;    (e 1) (2 5 3) (4 6 7) 
(e 2) (1 5 7) (3 6 4) 
(e 3) (1 2 6) (4 7 5) 
(e 4) (1 6 5) (2 3 7) 
(e 5) (1 3 4) (2 7 6) 
(e 6) (1 7 3) (2 4 5) 
(e 7) (1 4 7) (3 5 6) 

 
where I is the identity permutation on the loop L7(4). 
 
Example 1.28:  Let L = {1, 2, 3, 4, 5, 6}. 
 
 The composition table of (L, *) is as follows: 

 
* 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 5 3 6 4

3 3 5 1 6 4 2

4 4 3 6 1 2 5

5 5 6 4 2 1 3

6 6 4 2 5 3 1

 

 
The principal isotope (L, o) of (L, *) is as follows: 
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o 1 2 3 4 5 6

1 6 4 5 3 2 1

2 5 3 4 6 1 2

3 4 5 2 1 6 3

4 2 1 6 5 3 4

5 3 6 1 2 4 5

6 1 2 3 4 5 6

. 

 
Example 1.29:  We now give the loop (L5(2), *) and its 
principal isotope with a = e and b = 3 with identity e = 3 have 
the property x o x = e = 3. 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e

 

 
 

o e 1 2 3 4 5

e 3 2 5 e 1 4

1 5 3 4 1 e 2

2 4 e 3 2 5 1

3 e 1 2 3 4 5

4 2 5 1 4 3 e

5 1 4 e 5 2 3

 

 
 Now we have given most of the results used in this book.  
For more refer [4, 5]. 



 
 
 
 
 
 
Chapter Two 
 
 

 
 
SUBSET GROUPOIDS 
 
 
In this chapter we for the first time introduce the notion of 
subset non associative structure.  Here we define, describe and 
develop them. 
 
DEFINITION 2.1:  Let  
S = {Collection of all subsets from a groupoid (G, *)}.  For any 
A, B S define A*B (that is if A = {a1,…,an} and B = {b1,…, bt};  
 A * B = {ai * bj | ai  A and bj  B and ai, bj  G} and if  A * B 
 S; then we define S under the operation of the groupoid G to 
be the subset groupoid of G. 
 
 We will first illustrate this situation by some examples. 
 
Example 2.1:  Let  
S = {Collection of all subsets of the groupoid G=(Z6, (2,5), *)}; 
S is a subset groupoid of G.  Take A = {3, 4} and B = {5, 1, 2} 
 S. 
 
 A * B = {3 * 5, 3 * 1, 3 * 2, 4 * 5, 4 * 1, 4 * 2} 
 
 = {(6 + 25) (mod 6), (18 + 5) (mod 6) (6 + 10) (mod 6),  
           (8 + 25) (mod 6) (8 + 5) (mod 6), (8+10) (mod 6)} 
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 = {1, 5, 4, 3, 0}  S. 
 
Now if C = {4}  S we find (A * B) * C and A * (B * C). 
 
 Now A * B = {1, 5, 4, 3, 0} and  

(A * B) * C = {1 * 4, 5 * 4, 4 * 4, 3 * 4, 0 * 4}  
= {2 + 20 (mod 6), {10 + 20} (mod 6),  
    (8 + 20) (mod 6), {6 + 20} (mod 6)  
    {20} (mod 6)} 

     = {4, 0, 2}   …    I 
 
 We find B * C = {5, 1, 2} * {4} 
 = {5 * 4, 1 * 4, 2 * 4}  
 = {(10 + 20) (mod 6) (2 + 20) (mod 6) (4 + 20) (mod 6)} 
 = {0, 4}. 
 
 A * (B * C)  = {3, 4} * {0, 4} 
     = {3 * 0, 3 * 4, 4 * 0, 4 * 4} 
     = {0, 2, 4}    …     II 
 
 We see (A * B) * C  = A * (B * C) for this A, B, C  S. 
 
 Take A = {2}, B = {3} and C = {4}  S. 
 
 We now find (A * B) * C = ({2} * {3}) * C 
         = {2  2 + 3  5} * C 
         = {1} * C = {4} 
         = {1 * 4} = {2 + 20 (mod 6)} 
         = {4}   …   I 
 

A * (B * C)  = A * ({3}  {4}) 
     = A * {3  2 + 4  5 (mod 6)} 
     = A * {2} 
     = {4 + 10} = {2}   …   II 
 
 We see (A * B) * C  A * (B * C) as equations I and II are 
distinct. 
 
 Thus S is a subset groupoid. 
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 Example 2.2:  Let  
S = {Collection of all subsets of the groupoid G = {Z40, *,  
(5, 0)}} be the subset groupoid of G.   
 

We do not adjoin the empty set .  We never do that as we 
want to have a non associative operation on S. 
 
Example 2.3:  Let  
S = {Collection of all subsets of the groupoid G = {Z19, *,  
(1, 3)}} be the subset groupoid of G. 
 
 Take A = {3, 7, 5} and B = {1, 9} in S. 
 
 A * B = {3, 7, 5} * {1, 9} 
 = {3 * 1, 3 * 9, 7 * 1, 7 * 9, 5 * 1, 5 * 9} 
 = {(3 + 3) (mod 19), (3+27) (mod 19), (7 + 3) (mod 19),  

    (7 + 27) (mod 19), (5 + 3) (mod 19), (5 + 27) (mod 19)} 
 = {6, 11, 10, 15, 8, 13}. 
 
 Let C = {2}   S. 
 
  (A * B) * C = {6, 11, 10, 15, 8, 13} * {2} 
   = {6 * 2, 11 * 2, 10 * 2, 15 * 2, 8 * 2, 13 * 2} 
   = {12, 17, 16, 2, 14, 0}  …   I 
 
Consider A * (B * C) 
   = A * ({1, 9} * {2}) 
   = A * (1 * 2, 9 * 2) 
   = A * (7, 15) 
   = {3, 7, 5} * {7, 15}  
   = {3 * 7, 3 * 15, 7 * 7, 7 * 15, 5 * 7, 5 * 15} 
   = {(3 + 21) (mod 19), (3 + 45) (mod 19),  

    (7*21) (mod 19), (7 + 45) (mod 19),  
    (5  21) (mod 19), (5 + 45) (mod 19)} 

   = {5, 10, 9, 14, 7, 12}  …   II 
 
 We see equations I and II are not equal. 
 Thus (A * B) * C  A * (B * C) for A, B, C  S. 
 Hence the subset groupoid S is non associative. 
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Example 2.4:  Let S = {Collection of all subsets of the groupoid 
G = {Z16 (g), *, (2, 0), g2 = 0}} be the subset groupoid of G.   
Let A = {1 + 3g, 8g, 4g + 5} and B = {g + 3} be in S.   
 

A * B = {(1 + 3g) * (g + 3), 8g * (g + 3), (4g + 5) * (g + 3)}  
 = {2 + 6g + 0, 16g + 0, 8g + 10 + 0} 
 = {2 + 6g, 0, 8g + 10}  S. 
 
 We see this subset groupoid is the groupoid of dual 
numbers.   
 
Example 2.5:  Let S = {Collection of all subsets of the groupoid 
C(Z4) = {a + biF | a, b  Z4, 

2
Fi  = 3}, *, (2, iF)}} be the subset 

groupoid of G.  
 
 Let A = {3iF + 1, 1+iF, 2iF} and B = {2 + 2iF, 2}  S  
 
 A * B = {3iF + 1 * 2 + 2iF, 1 + iF * 2 + 2iF, 2iF * 2 + 2iF,  

 3iF + 1 * 2, 1 + iF * 2, 2iF * 2} 
      = {6iF + 2 + 2iF + 3, 2iF + 2 + 2iF + 3, 0 + 2iF + 3,  

 6iF + 2 + 2iF, 2 + 2iF + 2iF + 2iF}  
      = {1, 2iF + 3, 2, 2iF}  S. 
 
 This subset groupoid will also be known as finite complex 
modulo integer groupoid. 
 
Example 2.6:  Let S = {Collection of all subsets of the special 
dual like number groupoid.  G = {Z6 (g); *, (3, 2) | g2 = g}}; be 
the subset groupoid of G. 
 
 For A, B  S where A = {3g + 4, 5g, 2g + 3} and  
B = {2g, 3g+3}. 
 
 A * B = {3g + 4 * 2g, 5g * 2g, 2g + 3 * 2g, 3g + 4 * 3g + 3,  

 5g * 3g + 3, 2g + 3 * 3g + 3} 
      = {9g + 12 + 4g, 15g + 4g, 6g + 9 + 4g, 9g + 12 + 6g  

 + 6, 15g + 6g + 6, 6g + 9 + 6g + 6} 
      = {g, 4g + 3, 3g, 3}  S. 
 



Subset Groupoids 31 
 
 
  S is a subset special dual like number groupoid.  
 
Example 2.7:  Let S = {Collection of all subsets of the special 
quasi dual number groupoid G = {Z3 (g), *, (2, g) | g2 = –g}} be 
the subset groupoid of G.  
 
Let A = {2 + 2g, 2g} and B = {g + 1, g + 2}  S. 
 
A * B = {2 + 2g * g + 1  2 + 2g * g + 2, 2g * g + 1, 2g * g + 2} 
= {4 + 4g + g2 + g, 4 + 4g + g2 + 2g, 4g + g2 + g, 4g + g2 + 2g} 
= {1 + g, 1 + 2g, g, 2g}  S. 
 
 Thus S is a special quasi dual like number subset groupoid. 
 
Example 2.8:  Let S = {Collection of all subsets of the groupoid 
G = {C(Z5) (g), *, (4g, 0), g2 = 0}} be the subset finite complex 
modulo integer dual number groupoid of G. 
 
 Let A = {3g + 1, 4g + 2, g + 3} and B = {3g, 2g}  S. 
 
 A * B  = {12g2 + 4g + 0, 16g2 + 8g + 0, 4g2 + 12g + 0} 
   = {4g, 3g, 2g}  S. 
 
 S is a groupoid. 
 
 We see all the eight subset groupoids given in examples 2.1 
to 2.8 are all of finite order. 
 
 Now we proceed onto give examples of subset groupoids of 
infinite order. 
 
Example 2.9:  Let  
S = {Collection of all subsets of the groupoid G = {Z, *,  
(2, –1)}} be the subset groupoid of G.  Clearly S is a infinite 
order. 
 
 If A = {3, 2, 0, 5, 1} and B = {6, 2, 4}  S. 
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Then A * B = {3 * 6, 2 * 6, 0 * 6, 5 * 6, 1 * 6, 3 * 2, 2 * 2, 
0 * 2, 5 * 2, 1 * 2, 3 * 4, 2 * 4, 0 * 4, 5 * 4, 1 * 4}  

= {6 – 6, 4 – 6, –6, 10 – 6, 2–6, 6 –2, 4 – 2, 0 – 2, 10 – 2,  
2 – 2, 6 – 4, 4 – 4, –4, 10 – 4, 2 –4}  
 = {0, –2, –6, 4, –4, 2, 8, 6}. 
 
 It is easily verified (A * B) * C =  A * (B * C). 
 
 For take A = {3} B = {–5} and C = {2}; 
 
   (A * B) * C = ({3} * {5}) * {2} 
     = {6–5} * {2} 
     = {1} * {2} = 2–2 
     = {0}.    …  I 
 
 Consider {A} * ({B} * {C}) 
     = {3} * ({5} * {2}) 
     = {3} * {10–2}  
     = {3} * {8} 
     = {6–8} 
     = {–2}.    …  II 
 
 Clearly (A * B) * C  A * (B * C); since equations I and II 
are distinct. 
 
 Thus S is a subset groupoid of infinite order. 
 
Example 2.10:  Let S = {Collection of all subsets of the 
groupoid G = {Z+  {0}, *, (5, 0)}}be the subset groupoid of G.   
 
 Take A = {6, 3, 4, 8, 1} and B = {5, 2, 1}  S. 
 
   A * B  = {6, 3, 4, 8, 1}  {5, 2, 1} 
     = {30 + 0, 15 + 0, 20+0, 40+0, 5+0}  
     = {30, 15, 20, 40, 5}  S. 
 
 We see the subset groupoids given in examples 2.8 and 2.9 
are of different infinite cardinality. 
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 Example 2.11:  Let  
S = {Collection of all subsets of the groupoid G = {Q, *,  
(7, –1/2)}} be the subset groupoid of infinite order of G. 
 
Example 2.12:  Let S = {Collection of all subsets of the 

groupoid G = {R+  {0}, *, ( 3 , 5 )}} be the subset 
groupoid of infinite order. 
 

 If A = { 3 , 5 , 2, 4} and B = {5,  5 , -1, 0}  S then  

A * B = { 3  * 5, 3  * 5 , 3  * –1, 3  * 0, 5  * 0, 2 * 5, 

2 * 5 , 2 * –1, 2 * 0, 4 * 5, 4 * 5 ,  4 * (–1), 4 * 0}  
 

= {3– 5 5 , 3–5, 3 5 , 3, 15 5 5 , 2 3 –5, 2 3 5 ,  

2 3 , 4 3  – 5 5 , 4 3  –5, 4 3  + 5 , 4 3 } S. 
 
 Thus we see (S, *) is a subset groupoid of infinite order of 
the groupoid G. 
 
Example 2.13:  Let  
S = {Collection of all subsets the groupoid G = {C, *, (i, 0)}} be 
the subset groupoid of complex numbers.  S is of infinite order. 
 
Example 2.14:  Let S = {Collection of all subsets of the 
groupoid G = {C, *, (3, –2)}} be the complex number subset 
groupoid of G of infinite order. 
 
Example 2.15:  Let S = {Collection of all subsets of the 
groupoid  G = {R(g), *, (3g+2, 2g), g2 = 0}} be the subset 
groupoid of real dual numbers of G. 
 
Example 2.16:  Let S = {Collection of all subsets of the 
groupoid G = {(Z+  {0}) (g), *, g2 = g, (2, 3+g)}} be the 
subset groupoid of special dual like numbers of infinite order. 
 
Example 2.17:  Let S = {Collection of all subsets of the 
groupoid G = {(Q+  {0}) (g), *, (3g, 2) where g2 = 0}} be the 
subset groupoid of dual numbers of infinite order. 
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Example 2.18:  Let S = {Collection of all subsets of the 
groupoid G = {(Z+  {0}) (g1, g2, g3), *, (0, 5), 2

1g  = 0, 2
2g  = g2,  

2
3g  = 0, gigj = 0, i  j; 1  i, j  3}} be the subset mixed dual 

number groupoid of infinite order of G. 
 
Example 2.19:  Let S = {Collection of all subsets of the 
groupoid G = {C(g1, g2, g3), *, (0, 3i) | 2

1g  = 0, 2
2g  = g2,  

2
3g  = –g3, gigj = 0, i  j; 1  i, j  3}} be the subset special 

mixed dual number groupoid of infinite order of G. 
 
 Now having seen examples of subset groupoids of finite and 
infinite order we now proceed onto define properties about 
them. 
 
DEFINITION 2.2:  Let  
S = {Collection of subsets of a groupoid G} be the subset 
groupoid. 
 
 If for A, B  S we have A  B = {0} we say A is a subset 
zero divisor of the subset groupoid S where (A  {0} and B  
{0}}); (we may have right zero divisors as well as left zero 
divisors).   
 
 If {A} * {A} = {A} we define {A}  S to be a subset 
idempotent of the subset groupoid  S;  A  {0}. 
 
 We will first illustrate this situation by an example or two. 
 
Example 2.20:  Let S = {Collection of all subsets of the 
groupoid G = {Z16, *, (8, 0)}} be the subset groupoid of G.  
Take A = {0, 2, 4, 6, 10, 12} and B = {5, 7, 8, 11, 4, 3, 1}  S. 
 
    A * B = {0}. 
    B * A = {8, 0}  {0}. 
    So we see A * B = {0} but B * A  {0}. 
 
 Thus in groupoids we can have subset right zero divisors 
which are not subset left zero divisors and vice versa.   
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 Only in very rare cases we get a zero divisor which is both a 
right zero divisor and a left zero divisor. 
 
Example 2.21:  Let S = {Collection of all subsets of the 
groupoid G = {Z, *, (2, –2)}} be the subset groupoid of G. 
 
 Take A = {5}  S we see  
 A * A = {5} * {5} = {5 * 5} = {10–10} = {0}. 
 
 We see infact S is rich in subset nilpotent elements of order 
two. 
 
 All A = {n}  S for n  Z are subset nilpotent elements of 
order two. 
 
Example 2.22:  Let S = {Collection of all subsets of the 
groupoid G = {Z20, *, (2, 10)}} be the subset groupoid of G. 
 
  Consider A = {10} and B = {2}  S. 
   A * B    = {10} * {2}  
     = {10 * 2} 
     = {20 + 20} = {0}.  
 
   B * A    = {2} * {10} 
     = {2 * 10} 
     = {(4 + 100)} 
     = {4}  {0}. 
 
 Thus A * B = {0} but B * A  {0}. 
 
Example 2.23:  Let S = {Collection of all subsets of the 
groupoid G = {Z6, *, (3, 0)}} be the subset groupoid of G. 
 
 Take A = {2} and B = {5, 4, 3, 1}  S. 
 
 Consider  

A * B = {2} * {5, 4, 3, 1}. 
         = {2 * 5, 2 * 4, 2 * 3, 2 * 1} 
         = {0}. 
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But B * A = {5, 4, 3, 1} * {2} 

          = {5 * 2, 4 * 2, 3 * 2, 1 * 2} 
          = {15, 12, 9, 3} 
          = {3, 0}  {0}. 
 
  Thus A * B  B * A. 
 
Example 2.24:  Let S = {Collection of all subsets of the 
groupoid G = {Z+  {0}, *, (3, 4)}} be the subset groupoid.  
 
    We see for A, B  S. 
    A  {0}, B  {0}, A * B  {0}. 
 
    Thus S has no subset zero divisors. 
 
Example 2.25:  Let S = {Collection of all subsets of the 
groupoid G = {Z, *, (n, –n)}} be the subset groupoid.  Every  
A = {m} where m  Z is such that A * A = {0}. 
 
 Thus S has subset zero divisors which are nilpotents of 
order two. 
 
Example 2.26:  Let S = {Collection of all subsets of the 
groupoid G = {Z15, *, (5, 0)}} be the subset groupoid of G. 
 
 Take A = {3, 6, 9} and B = {1, 2, 3, 4, 5, 6, 7}  S. 
 
 A * B = {0} but B * A  {0}. 
 
 Infact we see for every B  S; 
 
 A * B = {0} but B * A may or may not be zero.   
 

We see this is a special property enjoyed by A  S. 
 
 We see A = {3}  S is also such that A * B = {0} for all  
B  S.   
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However B * A may be equal to zero or may not be equal to 
zero.  This is yet another element in S such that this sort of 
special property is enjoyed. 
 
 Take A = {6}  S, A is also such that A * B = {0} for all  
B  S. 
 
 Likewise A1 = {3, 6}, A2 = {9}, A3 = {3, 9} and A4 = {6, 9} 
in S are such that Ai * B = {0} for all B  S, 1  i  4. 
 
 So in view of this we make the following new definition. 
 
DEFINITION 2.3:  Let  
S = {Collection of all subsets of the groupoid G} be the subset 
groupoid of G.  If for A  S we have A * B = {0} for all B  S 
then we define A to be a right annihilator subset of the subset 
groupoid.  
 
 If A  S then B * A = {0} for all B  S then we define A to 
be the left subset annihilator of the subset groupoid.  
 
 We have in case of subset groupoids subset right or left 
annihilators of a subset groupoid. 
 
 We will illustrate this by some examples. 
 
Example 2.27:  Let S = {Collection of all subsets of the 
groupoid G = {Z20, *, (0, 4)}} be the subset groupoid.  Consider 
A = {5, 10}  S is such that B * A = {0} for all B  S. 
 
 Thus A is the subset left annihilator of the subset groupoid 
S. 
 
 A1 = {5, 15}, A2 = {5}, A3 = {10}, A4 = {15}, A5 = {5, 10} 
A6 = {10, 15}, A7 = {0, 5}, A8 = {0, 10}, A9 = {0, 15}, A10 = 
{10, 35, 15} and A11 = {0, 5, 10, 15} are all subset left 
annihilators of the subset groupoid S. 
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Example 2.28:  Let S = {Collection of all subsets of the 
groupoid G = {Z20, *, (4, 0)}} be the subset groupoid of G.  
Consider A = {5, 10}  S, A is a right annihilator subset of the 
subset groupoid S. 
 
 Infact all Ai given in example 2.27 are right annihilator 
subset of the subset groupoid S. 
 
Example 2.29:  Let S = {Collection of all subsets of the 
groupoid G = {Z20, *, (10, 0)}} be the subset groupoid of G.   
A1 = {2}, A2 = {4}, A3 = {6}, A4 = {8}, A5 = {10}, A6 = {12}, 
A7 = {14}, A8 = {16}, A9 = {18}, A10 = {0, 2}, A11 = {0, 2}, …, 
At = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18} are all right annihilators 
subsets of the subset groupoid S. 
 
 Infact A1, A2, …, At will be left annihilator subsets of the 
subset groupoid G = {Z20, *, (0, 10)}. 
 
Example 2.30:  Let S = {Collection of all subsets of the 
groupoid G = {Z7, *, (6, 0}} be the subset groupoid.  We see S 
has no set A  S such that S is a left or right subset annihilator 
of S. 
 
Example 2.31:  Let S = {Collection of all subsets of the 
groupoid G = {Z43, *, (25, 0)}} be the subset groupoid; we see S 
has no element A such that A is a left or right subset annihilator 
in S. 
 
Example 2.32:  Let S = {Collection of all subsets of the 
groupoid G = {Z19, *, (10, 0)}} be the subset groupoid of G; we 
see S does not contain any subset A  {0}  S such that A is the 
left or right annihilator subset of S. 
 
 Inview of this we have the following theorem. 
 
THEOREM 2.1:  Let S = {Collection of all subsets of the 
groupoid G = {Zn, *, (t, 0) / n-not a prime t/n}} be a subset 
groupoid of G.  If A1, …, At are subset right annihilators of the 
subset groupoid S then A1, A2, …, At are subset left annihilators 
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 of the subset groupoid S = {Collection of all subsets of the 
groupoid G = {Zn, *, (0, t)}}. 
 
 The proof is direct hence left as an exercise to the reader. 
 
Example 2.33:  Let S = {Collection of all subsets of the 
groupoid G = {Z, *, (–3, 3)}}.  We see An = {n}; n  Z are all 
neither right nor left annihilator subsets of G. 
 
 Only An * An = {0}. 
 If An * B  {0} for B = {4, 8} in S and 

An * B = {n * 4, n * 8} = {–3n + 12, –3n + 24}. 
 
 If An * B = {0} then + 3n = +12 and +3n = 24 forces n = 0.  
Hence the claim. 
 
Example 2.34:   Let S = {Collection of all subsets of the 
groupoid G = {Z, *, (–n, n)}, n  Z}.  We see S has no 
annihilator subset associated with it.  For no A in S we have  
A * B = {0} for all B  S. 
 
 A * B = {0} only when A = B = {t}; t  Z. 
 
Example 2.35:  Let S = {Collection of all subsets of the 
groupoid G = {R, *, (t, s)} t  s  R \ {0}} be a subset groupoid 
of G.  S has no subset which left annihilates S or right 
annihilates S. 
 
Example 2.36:  Let S = {Collection of all subsets of the 
groupoid G = {C, *, (a, b)} a, b  C \ {0}} be a subset groupoid 
of G.  S has no left or right annihators. 
 
Example 2.37: Let S = {Collection of all subsets of the 
groupoid G = {R+  {0}, *, (a, b)}, a, b  R+}} be the subset 
groupoid of G.  S has no left or right annihilator subset. 
 
Example 2.38:  Let S = {Collection of all subsets of the 
groupoid G = {Q+  {0}, *, (a, b)}, a, b  Q+}} be the subset 
groupoid of G.  S has no left or right subset annihilators. 
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 In view of all this we have the following theorems. 
 
THEOREM 2.2:  Let S = {Collection of all subsets of the 
groupoid G = {Z+  {0}, *, (a, b) | a, b  Z+}} be the subset 
groupoid of the groupoid G; S has no annihilator subset 
groupoid. 
 
 Proof is obvious.  If Z+  {0} is replaced by Q+  {0} or  
R+  {0}, still the results hold good. 
 
THEOREM 2.3:  Let S = {Collection of all subsets of the 
groupoid G = {Q, *, (a, b) / a, b  Q+ \ {0}}} be the subset 
groupoid.  S has no subset annihilators right or left. 
 
 This proof is also direct and hence left as an exercise to the 
reader. If in the above theorem Q is replaced by Z or R or C still 
the results hold good. 
 
 Now we proceed onto define substructures in subset 
groupoids. 
 
DEFINITION 2.4:  Let  
S = {Collection of all subsets of the groupoid G} be the subset 
groupoid of G.  Let P  S; if P itself is a subset groupoid under 
the operations of S, then we define P to be the subset 
subgroupoid of S. 
 
 We will first illustrate this by some examples. 
 
Example 2.39:  Let S = {Collection of all subsets of the 
groupoid G = {Z+  {0}, *, (4, 8)}} be a subset groupoid.   
P = {Collection of all subsets of the groupoid G = {2Z+  {0}, 
*, (4, 8)}} is the subset subgroupoid of S. 
 
Example 2.40:  Let S = {Collection of all subsets of the 
groupoid G = {Z24, *, (4, 0)}} be the subset groupoid of G.  
Take P = {Collection of subsets from 2Z24}  S, P is a subset 
subgroupoid of S. 
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 Example 2.41:  Let S = {Collection of all subsets of the 
groupoid G = {Z40, *, (0, 10)}} be the subset groupoid.  This 
has subset subgroupoids. 
 
 In view of this we have the following theorem. 
 
THEOREM 2.4:  Let  
S = {Collection of all subsets of a groupoid G} be a subset 
groupoid of G. 
 
 If G has a subgroupoid P, then T = {Collection of all 
subsets of the subgroupoid P of the groupoid G}  S is a subset 
subgroupoid of S. 
 
 The proof is direct hence left as an exercise to the reader. 
 
Example 2.42:  Let  
S = {Collection of all subsets of a groupoid G = {Z, *, (3, –1)}} 
be a subset groupoid.  Take P = {{a} | a  Z}  S, P is a subset 
subgroupoid of S. 
 
Example 2.43:  Let S = {Collection of all subsets of the 
groupoid G = {Z40, *, (8, 4)}} be a subset groupoid of G. 
 
 Take P = {{a} | a  Z40}  S; P is a subset subgroupoid of 
S.  Infact P  G. 
 
Example 2.44:  Let S = {Collection of all subsets of the 
groupoid G = {Z12, *, (8, 0)}} be a subset groupoid.   
 

P = {{a} | a  G}  S, is a subset subgroupoid of S. Infact 
P  G as groupoid by the map {a}   a for {a}  P and a  G. 
 
Example 2.45:  Let S = {Collection of all subsets of the 
groupoid G = {Z5, *, (3, 1)}} be a subset groupoid of G.   
 

P = {{0}, {1}, {2}, {3}, {4}}  S is a subset subgroupoid 
of S and P  G. 
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 In view of this we give the following theorem. 
 
THEOREM 2.5:  Let  
S = {Collection of all subsets of the groupoid G} be a subset 
groupoid of G.  Take P = {{a} | a  G}  S; P is a subset 
subgroupoid of G and P  G. 
 
 The proof is direct and hence left as an exercise to the 
reader. 
 
Example 2.46:  Let S = {Collection of all subsets of the 
groupoid G = {Z10, *, (5, 0)}} be a subset groupoid of G.  
P = {{a} | {a}  G} is a subset subgroupoid of G and P  G. 
 
 Now as in case of subset semigroups we can in case of 
subset groupoids define the notion of left subset ideals, right 
subset ideals and subset ideals of a subset groupoid.    
 

This can be done as a matter of routine so left as an exercise 
to the reader. 
 
Example 2.47:  Let S = {Collection of all subsets of the 
groupoid G = {Z, *, (4, 0)}} be the subset groupoid of G.  Take 
P = {Collection of all subsets from 2Z}  S, P is a subset ideal 
of S and P is both a subset left ideal as well as subset right ideal 
of S.   
 

Take p  P and s  S, where p = {2, 4, 0, 8}  P and  
s = {1, 2, 3}  S; now  
 

p * s =  {2 * 1, 2 * 2, 2 * 3, 4 * 1, 4 * 2, 4 * 3, 0 * 1, 0 * 2,  
0 * 3, 8 * 1, 8 * 2, 8 * 3} 

    = {8, 4, 16, 0, 32}  P. 
 
 Consider  

s * p = {1, 2, 3} * {2, 4, 0, 8} 
    = {1 * 2, 1 * 4, 1 * 0, 1 * 8, 2 * 2, 2 * 4, 2 * 0, 2 * 8,  

      3 * 2, 3 * 4, 3 * 0, 3 * 8} 
    = {4, 8, 12, 0}  P. 
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 Thus P is a subset ideal of the subset groupoid S. 
 
Example 2.48:  Let S = {Collection of all subsets of the 
groupoid G = {Z+  {0}, *, (0, 8)}} be a subset groupoid.   
P = {all subsets of the set 4Z+  {0}}  S is a subset ideal of S. 
 
 Infact S has infinite number of subset ideals. 
 
Example 2.49:  Let S = {Collection of all subsets of the 
groupoid G = {Z+  {0}, *, (1, 0)}} be a subset groupoid of G. 
 
 Take P = {all subsets of the set 2Z+  {0}}  S, P is a 
subset subgroupoid of S.   
 

Clearly P is not a subset ideal of S.  For take p = {2, 4, 8, 0} 
 P and s = {1, 3, 5}  S.  We see  

 
p * s   = {2 * 1, 2 * 3, 2 * 5, 4 * 1, 4 * 3, 4 * 5, 8 * 1, 8 * 3,  

 0 * 1, 0 * 3, 0 * 5}  
 

      = {2, 4, 8, 0}  P. 
 
Consider  

s * p   =  {1, 3, 5} * {0, 2, 4, 8}  
      =  {1 * 0, 1 * 2, 1 * 4, 1 * 8, 3 * 0, 3 * 2, 3 * 4, 3 * 8,  

  5 * 0, 5 * 2, 5 * 4, 5 * 8} 
      = {1, 3, 5}  P. 
 
 Thus P is only a right subset ideal of S and is not a left 
subset ideal of S. 
 
 Hence we have in subset groupoids which are subset right 
ideals and are not subset left ideals and vice versa. 
 
Example 2.50:  Let S = {Collection of all subsets of the 
groupoid G = {Z+  {0}, *, (0, 1)}} be the subset groupoid of 
G. 
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 Take M = {Collection of all subsets of 3Z+  {0}}  S; M 
is a subset subgroupoid of S. 
 
 We find for s  S and m  M; s * m and m * s. 
 
 Let  
s = {2, 4, 6, 10, 8, 0} and m = {12, 3, 24, 6, 9, 27, 0, 15}  M. 
 
 We find  
 
s * m  = {2, 4, 6, 8, 10, 0} * {0, 3, 6, 9, 12, 15, 24, 27} 
 
     = {2 * 0, 2 * 3, 2 * 6, …, 2 * 27, 4 * 0, 4 * 3, 4 * 6, …,  

 4 * 27, 6 * 0, 6 * 3, 6 * 6, …, 6 * 27, 8 * 0, 8 * 3, 8 * 6,  
 …, 8 * 27, 10 * 0, 10 * 3, 10 * 6, …, 10 * 27, 0 * 0,  
 0 * 3, 0 * 6, …, 0 * 27} 

     = {0, 3, 6, 9, 12, 15, 24, 27}  M. 
 
 Consider  
 

m * s = {0, 3, 6, 9, 12, 15, 24, 27} * {2, 4, 6, 8, 10, 0} 
 
     =  {0 * 2, 0 * 4, …, 0 * 0, 3 * 2, 3 * 4, …, 3 * 0, 6 * 2,  

 6 * 4, …, 6 * 6, 9 * 2, 9 * 4, …, 9 * 0, 12 * 2,  
 12 * 4, …, 12 * 0, 15 * 2, 15 * 4,…,15 * 0, 24 * 2,  
 24 * 4, …, 24 * 0, 27 * 2, 27 * 4, …, 27 * 0} 

 
     = {2, 4, 6, 8, 10, 0}  M. 
 
 Thus M is only a left subset ideal of S which is not a right 
subset ideal of S. 
 
Example 2.51:  Let S = {Collection of all subsets of the 
groupoid G = {Z20, *, (1, 0)}} be the subset groupoid.  If  
M = {collection of all subsets from {2, 4, 6, 8, 10, 12, 14, 16, 
18, 0}  G}  S be the subset subgroupoid of S.  Then M is not 
a subset ideal of S only a right subset ideal of S and is not a left 
subset ideal of S. 
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  Similarly if G in example 2.51 is replaced by  
G = {Z20, *, (0, 1)} then S the subset groupoid of G; we see 
M = {Collection of all subsets from the set {0, 2, 4, 6, 8, 10, 12, 
14, 16, 18}  G}  S is only a left subset ideal of S and is not 
a right subset ideal of S. 
 
 In view of the above examples we have the following 
theorem. 
 
THEOREM 2.6:  Let S = {Collection of subsets of the groupoid 
G = {Z (or Z+  {0} or Zn (n a composite number)), *, (1, 0)} or 
G = {Z (or Z+  {0} or Zn (n a composite number), *, (0, 1)}} 
be a subset groupoid.  S has subset right ideals which are not 
subset left ideals and vice versa. 
 
 The proof is direct and hence left as an exercise to the 
reader. 
 
Example 2.52:  Let S = {Collection of all subsets of the 
groupoid G = {Z, *, (4, 2)}} be the subset group.  S has subset 
ideals which are both left and right. 
 
 Now we make the following statement. 
 
THEOREM 2.7:  If S is the subset groupoid of a groupoid G and 
if 
  

(i) If G has a ideal then S has a subset ideal. 
(ii) If G has a left ideal then S has a subset left ideal. 
(iii) If G has a right ideal then S has a subset right ideal. 

 
The proof is direct hence left as an exercise to the reader.  

Now we proceed onto define other structures over these subset 
groupoids. 
 
DEFINITION 2.5:  Let  
S = {Collection of all subsets of a groupoid G} be the subset 
groupoid.  If S contains a non empty subset H  S such that H is 
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a subset semigroup of S then we define S to be a Smarandache 
subset groupoid. 
 
 We will first illustrate this situation by some examples. 
 
Example 2.53:  Let  
S = {Collection of all subset the groupoid G = {Z6, *, (4, 5)}} 
be the subset groupoid.  S is a Smarandache subset groupoid for 
H = {{0}, {3}, {0, 3}}  S is a subset semigroup. 
 
Example 2.54:  Let  
S = {Collection of all subsets of the groupoid G = {Z12, *,  
(3, 9)}} be a subset groupoid of G. 
 
   S is a Smarandache subset groupoid as  

H = {{0}, {6}, {0, 6}}  S is a subset semigroup. 
 
Example 2.55:  Let S = {Collection of all subsets of the 
groupoid G = {Z10, *, (5, 6)}} be a subset groupoid of G. 
 
 H = {{0}, {2}, {0, 2}}  S is a subset semigroup.  S is a 
Smarandache subset groupoid. 
 
Example 2.56:  Let S = {Collection of all subsets of the 
groupoid G = {Z12, *, (3, 4)}} be a subset groupoid of G. S is a 
Smarandache subset groupoid for H1 = {{0}, {2}} and  
H2 = {{0}, {4}, {0, 4}} are subset semigroups of S. 
 
 In view of all these we have the following theorem. 
 
THEOREM 2.8:  Let  
S = {Collection of all subsets of a groupoid G} be a subset 
groupoid of the groupoid G.  If G is a Smarandache groupoid 
then S is a Smarandache subset groupoid. 
 
Proof:  If G is a Smarandache groupoid then G contains a non 
empty subset H  G such that H is a semigroup under the 
operations of G.  Take P = {Collection of all subsets of H}  S, 
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 P is also a subset semigroup, hence S is a Smarandache subset 
groupoid. 
 
 It is left as an open question to test if S is a Smaradache 
subset groupoid over G should G be a Smarandache groupoid? 
 
 Now we discuss some more properties of subset groupoids. 
 
DEFINITION 2.6:  Let S be a subset groupoid of a groupoid G.  
Suppose P  S be a subset subgroupoid of G.  If these exists a 
M  P such that M is a subset semigroup then we define P to be 
a subset Smarandache subgroupoid of S. 
 
 We will first illustrate this situation by an example or two. 
 
Example 2.57:  Let S = {Collection of all subsets of the 
groupoid G = {Z8, *, (2, 6)}} be a subset groupoid of G.  Let  
P = {Collection of all subsets of the set; {0, 2, 4, 6}  Z8}  S.  
P is a subset Smarandache subgroupoid of G.   
 

For H = {{0}, {4}, {0, 4}}  S is a subset semigroup of P. 
 
Example 2.58:  Let S = {Collection of all subsets of the 
groupoid G = {Z6, *, (4, 5)}} be a subset groupoid of G.   
P = {Collection of all subsets of the set {1, 3, 5}  Z6}  S, P is 
a Smarandache subset subgroupoid of S as H = {{3}} is a 
subset semigroup of S. 
 
 Now we proceed onto define Smarandache commutative 
subset groupoid, Smarandache subset right ideal, Smarandache 
subset left ideal, Smarandache subset seminormal groupoid, 
Smarandache subset normal groupoid, Smarandache 
semiconjugate subset subgroupoid and Smarandache subset 
conjugate subgroupoid and describe them with examples [4]. 
 
DEFINITION 2.7:  Let S be a subset groupoid of the groupoid G.  
If S contains a subset semigroup H such that H is commutative 
then we define S to be a Smarandache commutative subset 
groupoid. 
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DEFINITION 2.8:  Let S be a subset groupoid of the groupoid G.  
Let P be a subset Smarandache subgroupoid of S.  If for s  S 
and p  P; sp  P then we define P to be a Smarandache subset 
left ideal of S.  If for s  S and p  P; ps  P we define P to be 
a Smarandache subset right ideal of S.  If P is both a 
Smarandache subset left ideal as well as Smarandache subset 
right ideal we define P to be a Smarandache subset ideal of S. 
 
DEFINITION 2.9:  Let S be a subset groupoid of a groupoid G. V 
be a Smarandache subset subgroupoid of S.  We say V is a 
Smarandache seminormal subset groupoid if 
 

(i) aV = X for all a  S 
(ii) Va = Y for all a  S 

 
where either X or Y is a Smarandache subset subgroupod of G 
but X and Y are both subset subgroupoids.   
 

We say V is a Smarandache normal subset groupoid if  
Va = Y and aV = X for all s  S where both X and Y are 
Smarandache subset groupoids. 
 
 Now we proceed onto define Smarandache subset 
semiconjugate subgroupoid and Smarandache subset conjugate 
subgroupoid. 
 
DEFINITION 2.10:  Let S be a subset Smarandache groupoid of 
a groupoid G.  We say two subset subgroupoids H and P of S 
are said Smarandache semiconjugate subset subgroupoids of S 
if 
 

(i) H and P are Smarandache subset subgroupoids of S. 
(ii) H = xP or Px or 
(iii) P = xH or Hx for some x  S. 

 
DEFINITION 2.11:  Let S be a Smarandache subset groupoid.  H 
and P be two subset subgroupoids of S.  We say H and P are 
Smarandache conjugate subset subgroupoids of S if 
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(i) H and P are Smarandache subset subgroupoids of S. 
(ii) H = xP or Px and  
(iii) P = xH or Hx for some x  S. 

 
We will first illustrate these definitions by some examples 

and describe a few properties associated with them. 
 
Example 2.59:  Let S = {Collection of all subsets of the 
groupoid G = {Z6, *, (4, 5)}} be a subset groupoid of a groupoid 
G.  Clearly S is a Smarandache commutative groupoid and is 
not a commutative groupoid. 
 
Example 2.60:  Let  
S = {Collection of all subsets of a groupoid G = {Z12, *, (1, 3)}} 
be a subset groupoid.  S is a Smarandache commutative subset 
groupoid of G. 
 
 In view of these examples we give the following theorem. 
 
THEOREM 2.9:  Let S be a commutative subset groupoid; if S is 
a Smarandache subset groupoid then S is a Smarandache 
commutative subset groupoid.  Conversely if S is a 
Smarandache subset commutative groupoid then S need not in 
general be a commutative subset groupoid.   
 

The proof is direct and hence left as an exercise to the 
reader. 
 
Example 2.61:  Let S = {Collection of all subsets of the 
groupoid G = {Z6, *, (4, 5)}} be the subset groupoid.  Take  
I = {Collection of all subsets of the set {1, 3, 5}}  S, I is a 
Smarandache subset left ideal of S and is not a Smarandache 
subset left ideal of S. 
 
Example 2.62:  Let S = {Collection of all subsets of the 
groupoid G = {Z6, *, (2, 4)}} be a subset groupoid of the 
groupoid G. 
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 P = {Collection of all subsets from {0, 2, 4}}  S; P is a 
subset ideal of S however P is not a Smarandache subset ideal.  
That is P is not even a Smarandache subset subgroupoid of S. 
 
 In view of all these we have the following theorem. 
 
THEOREM 2.10:  Let S be a subset groupoid of a groupoid G.  If 
P  S is a Smarandache subset ideal of S then P is a subset 
ideal of S however if P is a subset ideal of S; P need not in 
general be a Smarandache subset ideal of S.  
 
THEOREM 2.11:  Let S be a subset groupoid of G.  If G has a 
Smarandache ideal then S has a Smarandache subset ideal. 
 
Example 2.63:  Let S = {Collection of all subsets of the 
groupoid G = {Z6, *, (4, 5)}} be the subset groupoid of G.   
P = {Collection of all subsets of the set {1, 3, 5}}  S be a 
subset Smarandache subgroupoid of S.  P is a Smarandache 
subset seminormal groupoid of S.  Clearly P is not a 
Smarandache normal subset groupoid. 
 
Example 2.64:  Let S = {Collection of all subsets of the 
groupoid G = {Z8, *, (2, 6)}} be the subset groupoid of G.   
P = {Collection of all subsets {0, 2, 4, 6}}  S.  P is a 
Smarandache subset normal groupoid of S. Further P is a 
Smarandache subset seminormal groupoid of S. 
 
 In view of all these we have the following result. 
 
THEOREM 2.12:  Let S be a subset groupoid.  Every 
Smarandache normal subset groupoid is a Smarandache 
seminormal subset groupoid and not conversely.   
 

The proof is direct and hence left as an exercise to the 
reader. 
 
 Next we proceed onto give examples of Smarandache 
semiconjugate subset subgroupoids. 
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 Example 2.65:  Let S = {Collection of all subsets of the 
groupoid G = {Z8, *, (2, 6)}} be the subset groupoid.   
 
 Let  
P = {Collection of all subsets of the set {0, 3, 2, 4, 6}  Z8} be 
the Smarandache subset subgroupoid of S.   
 
Let Q = {Collection of all subsets of the set {0, 2, 4, 6}  Z8} 
be the Smarandache subset subgroupoid of S. Now {7}P = Q.  
Hence P and Q are Smarandache semiconjugate subset 
groupoids. 
 
Example 2.66:  Let S = {Collection of all subsets of the 
groupoid G = {Z12, *, (1, 3)}} be the subset groupoid of G. 
 
 Let P1 = {Collection of all subsets of {0, 3, 6, 9}  Z12} be 
Smarandache subset subgroupoid of S and  
P2 = {Collection of all subsets of {2, 5, 8, 11}  Z12} be another 
Smarandache subset subgroupoid of S.  We see {3}P2 = P1 and 
{2}P1 = P2.   
 
 Hence P1 and P2 are Smarandache subset conjugate 
subgroupoids of G. 
 
 We just give some theorem the proofs of which are direct 
and hence left as an exercise to the reader. 
 
THEOREM 2.13:  Let S be a Smarandache subset groupoid of a 
groupoid G.  If P1 and P2 are two Smarandache subset 
subgroupoids of S which are Smarandache conjugate then they 
are Smarandache semiconjugate.  But Smarandache 
semiconjugate subset subgroupoids need not in general be 
Smarandache subset conjugate subgroupoids. 
 
THEOREM 2.14:  Let S be a subset groupoid of a groupoid G.  If 
G has two Smarandache subgroupoids A1 and A2 such that A1 
and A2 are Smarandache semiconjugates then S has two 
Smarandache subset subgroupoids which are semiconjugate. 
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However we are not aware of the fact about the following 
question. 
 
Problem 2.1:  Let G be a groupoid which has no Smarandache 
semiconjugate subgroupoids.   
 

S = {Collection of all subsets of the groupoid G} be the 
subset groupoiid of G.  Can S have Smarandache semiconjugate 
subset subgroupoids? 
 
THEOREM 2.15:  Let G be a groupoid such that G has two 
Smarandache subgroupoids  P1 and P2 such that P1 and P2 are 
Smarandache conjugate subgroupoids.   
 

Let S = {Collection of all subsets of the groupoid G} be the 
subset groupoid of G, then S has two Smarandache subset 
subgroupoids Q1 and Q2 such that Q1 and Q2 are Smarandache 
conjugate subset subgroupoids.   
 

However we have the following problem.  
 
Problem 2.2:  Let G be a groupoid which has no Smarandache 
conjugate subgroupoids.   
 

Let S = {Collection of all subsets of G} be the subset 
groupoid of G.  Can S contain Smarandache subset 
subgroupoids T1 and T2 such that T1 and T2 are Smarandache 
subset conjugate subgroupoids of G?  
 
 We just say a subset groupoid S of a groupoid G to be inner 
commutative if for every proper subset P of S which is a subset 
semigroup is commutative.  
 
 Our results in case of subset inner commutative groupoid is 
little difficult.  We will first study one example. 
 
Example 2.67:  Let  
S = {Collection of all subsets of the groupoid G = {0, 1, 2, 3}} 
under the operation * given by the table: 
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 * 0 1 2 3

0 0 3 2 1

1 2 1 0 3

2 0 3 2 1

3 2 1 0 3

 

 
be the subset groupoid of G.  A1 = {1} and {2} = A2 are subsets 
of S which are subset semigroups of S under the binary 
operation ‘*’.  P1 = {{0}, {2}, {0, 2}}, and P2 = {{1}, {3}, 
{1,3}}  S are subset subgroupoids which are infact 
Smarandache subset subgroupoids of G.  Clearly P1 and P2 are 
not commutative subset Smarandache subgroupoids of S.  
 
 Now consider all the subsets of G. 
 
 S = {{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 
3}, {2, 3}, {0, 1, 2}, {0, 1, 3}, {0, 3, 2}, {1, 2, 3}, {0, 1, 2, 3}} 
is the subset groupoid of order 15 which is also a Smarandache 
subset groupoid which is not commutative but is Smarandache 
commutative.   
 

Is S Smarandache inner commutative?  
 
So we just propose the following problem. 

 
Problem 2.3:  Let  
S = {Collection of all subsets of a groupoid G} be the subset 
groupoid of G. 
 

(i) If G is a Smarandache inner commutative groupoid, will 
S be a Smarandache inner commutative subset 
groupoid? 

(ii) If G is not a Smarandache inner commutative groupoid; 
can S be a Smarandache inner commutative subset 
groupoid? 

 
However the following result is direct hence left as an 

exercise to the reader. 
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THEOREM 2.16:  Let S be a Smarandache inner commutative 
subset groupoid then S is a Smarandache commutative subset 
groupoid but a Smarandache commutative subset groupoid in 
general is not a Smarandache inner commutative subset 
groupoid. 
 
 Next we proceed onto define identities in Smarandache 
subset groupoids. 
 
DEFINITION 2.12:  Let S be a subset groupoid of a groupoid G.  
We say S is a Smarandache subset Moufang groupoid if there 
exists a subset Smarandache subgroupoid H such that  
 
(A * B) * (C * A) = (A * ((B * C)) * A for all A, B, C in H  S. 
 
 If S is a Smarandache subset groupoid such that every 
Smarandache subset subgroupoid H of S satisfies the Moufang 
identity for all A, B, C in H then we define S to be Smarandache 
strong subset Moufang groupoid. 
 
 First we will illustrate this situation by some examples.  
 
Example 2.68:  Let S = {Collection of all subsets of the 
groupoid G = {Z10, *, (5, 6)}} be the subset groupoid of G.  
Clearly S is a Smarandache subset groupoid of G as {2}  S is a 
subset semigroup. 
 
 Take A = {4, 2, 1}, B = {3, 0}, and C = {5, 6} in S. 
 
 Consider (A * B) * (C * A) 
 
 = {4 * 3, 4 * 0, 2 * 3, 2 * 0, 1 * 3, 1 * 0} * {5 * 4, 5 * 2,  

    5 * 1, 6 * 4, 6 * 2, 6 * 1} 
 = {20 + 18, 20, 10 + 18, 10, 5 + 18, 5} * {25 + 24, 25 + 12,  

    25 + 6, 30 + 24, 30 + 12, 30 + 6} 
 = {8, 0, 3, 5} * {9, 7, 1, 4, 2, 6} 
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 = {8 * 9, 8 * 7, 8 * 1, 8 * 4, 8 * 2, 8 * 6, 0 * 9, 0 * 7, 0 * 1, 

    0 * 4, 0 * 2, 0 * 6, 3 * 9, 3 * 7, 3 * 1, 3 * 4, 3 * 2, 3 * 6,  
    5 * 9, 5 * 7, 5 * 1, 5 * 4, 5 * 2, 5 * 6} 

 
 = {40 + 54, 40 + 42, 40 + 6, 40 + 24, 40 + 12, 40 + 36, 54, 
           42, 6, 24, 12, 36, 15 + 54, 15 + 42, 15 + 6, 15 + 24,  
           15 + 12, 15+36, 25 + 54, 25 + 42,  25 + 6, 25 + 24,  

     25 + 12, 25 + 36} 
 
 = {4, 2, 6, 9, 7, 1}.      …  I 
 
 Consider [A * (B * C)] * A 
 
 = ({4, 2, 1} * ({3, 0} * {5, 6}) * {4, 2, 1} 
 = ({4, 2, 1} * {3 * 5, 3 * 6, 0 * 5, 0 * 6}) * {4, 2, 1} 
 = ({4, 2, 1} * {15+30, 15+36, 30, 36}) * {4, 2, 1} 
 = ({4, 2, 1}) * {5, 1, 6}) * {4, 2, 1} 
 = {4 * 5, 4 * 1, 4 * 6, 2 * 5, 2 * 1, 2 * 6, 1 * 5, 1 * 1, 1 * 6}  

    * {4, 2, 1} 
 = {20 + 30, 20 + 6, 20 + 36, 10 + 30, 10 + 6, 10 + 36,  
      5 + 30, 5 + 6, 5 + 36} * {4, 2, 1} 
 = {0, 6} * {4, 2, 1} 
 = {0 * 4, 0 * 2, 0 * 1, 6 * 4, 6 * 2, 6 * 1} 
 = {24, 12, 6, 30+24, 30+12, 30+6} 
 = {4, 2, 6}.        …  II 
 
 We see S is not a Smarandache strong subset Moufang 
groupoid though G is a Smarandache strong Moufang groupoid 
for I and II are distinct. 
 
 But S is a Smarandache subset Moufang groupoid for  
P = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}  S is a 
Smarandache strong Moufang subgroupoid of S. 
 
Example 2.69:  Let S = {Collection of all subsets of the 
groupoid G = {Z12, (3, 9), *}} be the subset groupoid of a 
groupoid G.  S is not a Smarandache strong Moufang groupoid.  
However S is a Smarandache Moufang subset groupoid. 
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 In view of all these we can just have the following theorem. 
 
THEOREM 2.17:  Every Smarandache strong Moufang subset 
groupoid is a Smarandache Moufang subset groupoid and not 
conversely. 
 
 We on similar lines define a subset groupoid S to be a 
Smarandache Bol subset groupoid if it satisfies atleast for a 
Smarandache subset subgroupoid H  S the Bol identity. 
 
(({A} * {B}) * {C}) * {B} = {A} * (({B} * {C}) * {B})  …   I 
 
for all {A}, {B}, {C}  H.   

If the Bol identity I is satisfied by every triple of subset 
{A}, {B}, {C}  S then we define S to be a Smarandache 
strong subset Bol groupoid. 
 
 We will illustrate these situations by some  examples. 
 
Example 2.70:  Let S = {Collection of all subsets of the 
groupoid G = {Z4, *, (2, 3)}} be the subset groupoid of the 
groupoid G.   
 

We see S is just a Smarandache subset Bol groupoid as  
P = {{0}, {2}, {0, 2}}  S is such that (P, *) is a Smarandache 
subset subgroupoid given by the following table: 
 

* {0} {2} {0,2}

{0} {0} {2} {0,2}

{2} {0} {2} {0,2}

{0,2} {0} {2,0} {0,2}

 

 
for all {2}  P is a subset semigroup in S.  We see P satisfies 
Bol identity so P is a Smarandache subset Bol groupoid. 
 
 But S is not a Smarandache strong subset Bol groupoid for 
take A = {1}, B = {2} and C = {2, 3}  S. 
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 ((A * B) * C) * B 
 
    = ({(1 * 2)} * C) * B 
    = ({0} * {2, 3}) * B 
    = {0 * 2, 0 * 3} * B 
    = {2, 1} * {2} 
    = {2, 0}.      …  I 
 
Now consider A * [(B * C) * B] 
 
    = A* [({2} * {2, 3})  {2}] 
    = A * [{2 * 2, 2 * 3}  {2}] 
    = A * ({2} * {2}) 
    = A * {2 * 2} 
    = A * {2} = {1} * {2} 
    = {1 * 2} 
    = {2 + 2} = {0}    …   II 
 

Clearly I and II are different so S is not a Smarandache 
strong subset Bol groupoid. 
 
Example 2.71:  Let S = {Collection of all subsets of the 
groupoid G = {Z12, *, (3, 4)}} be the subset groupoid of the 
groupoid G. 
 
 P = {{1}, {2}, …, {11}, {0}}  S is a Smarandache strong 
Bol subset subgroupoid of S.   
 

So S is clearly a Smarandache subset Bol groupoid.   
 

Now  we take three subsets A = {1, 2, 0}, B = {6, 3, 2} and 
C = {1, 4, 8} in S.  Now we find  

 
((A * B) * C) * B 

 
   = (({1,2, 0} * {6, 3, 2}) * C) * B 
   = [({1 * 6,  1 * 3, 1 * 2, 2 * 6, 2 * 3, 2 * 2, 3 * 6,  

   3 * 3, 3 * 2}) * C] * B 
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   = [{3 + 24, 3 + 12, 3 + 6, 6 + 24, 6 + 12, 6 + 6,  

     9 + 24, 9 + 12, 9 + 6} * C] * B 
 

   = ({3, 6, 9} * {1, 4, 8}) * B 
 
   = {3 * 1, 3 * 4, 3 *8, 6 * 1, 6 * 4, 6 * 8, 9 * 1, 9 * 4,  

    9 * 8} * B 
 

   = {9 + 4, 9 + 16, 9 + 32, 18 + 4, 18 + 16, 18 + 32,  
    27 + 4, 27 + 16, 27+32} * B 
 

   = {1, 5, 10, 7, 11} * {6, 3, 2} 
 
   = {1 * 6, 1 * 3, 1 * 2, 5 * 6, 5 * 3, 5 * 2, 10 * 6,  

    10 * 3, 10 * 2, 7 * 6, 7 * 3, 7 * 2, 11 * 6, 11 * 3,  
    11 * 2}  
 
=  {3 + 24, 3 + 12, 3 + 8, 15 + 24, 15 + 12, 15 + 8,  
    30 + 24, 30 + 12, 30+8, 21 + 24, 21 + 12, 21 + 8, 
    33 + 24, 33 + 12, 33 + 8} = {3, 11, 6, 2, 9, 5}  
          …  I 

 
 A * [[B * C] * B] 
 
   = A * [{{6, 3, 2} * {1, 48}} * B] 
 
   = A * ({6 * 1, 6 * 4, 6 * 8, 3 * 1, 3 * 4, 3 * 8, 2 * 1,  

   2 * 4, 2 * 8) * B) 
 

   = A * ({18 + 4, 18 + 16, 18 + 32, 9 + 4, 9 + 16,  
   9 + 32, 6 + 4, 6 + 16, 6 + 32} * B) 
 

   = A * ({10, 2, 1, 5} * {6, 3, 2}) 
 
   = A * {10 * 6, 10 * 3, 10 * 2, 2 * 6, 2 * 3,  2 * 2,  

   1 * 6, 1 * 3, 1 * 2, 5 * 6, 5 * 3, 5 * 2} 
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    = {0, 1, 2} * {30 + 24, 30 + 12, 30 + 8, 6 + 24,  

    6 + 12, 6 + 8, 3 + 24, 3 + 8, 3 + 12, 15 + 24,  
    15 + 8, 15 + 12} 

 
   = {0, 1, 2} * {6, 2, 3, 11} 
 
   = {0 * 6, 0 * 2, 0 * 3, 0 * 11, 1 * 6, 1 * 2, 1 * 3,  

   1 * 11, 2 * 6, 2 * 2, 2 * 3, 2 * 11} 
 

   = {24, 8, 12, 44, 3 + 24, 3 + 8, 3 + 12, 3 + 44,  
    6 + 24, 6 + 8, 6 + 12, 6 + 44} 
 

   = {0, 8, 3, 11, 6, 2}        … II 
 
 Clearly I and II are not equal so S is not a  Smarandache 
strong subset Bol groupoid.   
 

We have the following interesting theorem. 
 
THEOREM 2.18:  Let  
S = {Collection of all subsets of a groupoid G} be the subset 
groupoid of the groupoid G. 
 

(i) If G is a Smarandache strong Bol groupoid then the 
subset groupoid S has a subset subgroupoid H  S 
which is a Smarandache  strong subset Bol 
subgroupoid and H and G are isomorphic as 
groupoids. 

 
(ii) S the subset groupoid in general is not a Smarandache 

strong subset Bol groupoid. 
 

(iii) S is a Smarandache subset  Bol groupoid.   
 

The proof is direct and can be proved with appropriate 
modifications hence left as an exercise to the reader.  
 

Next we proceed onto define Smarandache subset  
P-groupoid and Smarandache strong subset P-groupoid. 



60 Subset Groupoids  
 
 
 
 
 

DEFINITION 2.13:  Let S be the subset groupoid.  Let P  S (P a 
proper subset) be a Smarandache subset subgroupoid of S and 
satisfies the identity; 
 
 (A * B) * A = A * (B * A) for all A, B  P; then we define S 
to be a Smarandache P-subset groupoid. If S is such that for 
every A, B  S the identity, (A * B) * A = A * (B * A) is satisfied 
then we define S to be a Smarandache strong P-subset 
groupoid. 
 
 We will illustrate this situation by some examples. 
 
Example 2.72:  Let S = {Collection of all subsets of the 
groupoid G = {Z6, *, (4, 3)}} be the subset groupoid of the 
groupoid G. 
 
 Take M = {{0}, {1}, {2}, {3}, {4}, {5}}  S; M is a 
Smarandache strong P-subset subgroupoid of S so S is a 
Smarandache P subset groupoid.   
 

Now we find whether for any A, B  S we have  
(A * B) * A = A * (B * A). 
 
 Let A = {1, 2, 0, 3} and B = {1, 4} be in S.   
 
To find (A * B) * A  
 
 = ({1, 2, 0, 3} * {1, 4}) * A 
 
 = {1 * 1, 1 * 4, 2 * 1, 2 * 4, 0 * 1, 0 * 4, 3 * 1, 3 * 4} * A 
 
 = {4 + 7, 4 + 12, 8 + 3, 8 + 12, 3, 12, 12 + 3, 12 + 12} * A 
 
 = {5, 4, 2, 3} * {1, 2, 0, 3} 
 
 = {5 * 1, 5 * 2, 5 * 0, 5 * 3, 4 * 1, 4 * 2, 4 * 0, 4 * 3, 3 * 1,  

    3 * 2, 3 * 0, 3 * 3} 
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  = {20 + 3, 20 + 6, 20, 20 + 9, 16 + 3, 16 + 6, 16, 16 + 9,  

    12 + 3, 12 + 6, 12, 12+9} 
 

 = {5, 2, 1, 4, 3, 0}       …  I 
 
Consider A * (B * A) 
 
 =  A * ({1, 4} * {1, 2, 0, 3}) 
 = A * {1 * 1, 1 * 2, 1 * 0, 1 * 3, 4 * 1, 4 * 2, 4 * 0, 4 * 3} 
 = A * {4 + 3, 4 + 6, 4, 4 + 9, 16 + 3, 16 + 6, 16, 16 + 9} 
 = {1, 2, 0, 3} * {1, 4} 
 = {1 * 1, 1 * 4, 2 * 1, 2 * 4, 0 * 1, 0 * 4, 3 * 0, 3 * 4} 
 = {4 + 3, 4 + 12, 8 + 3, 8 + 12, 3, 12, 12 + 3, 12 + 12} 
 = {1, 4, 3}         …  II 
 
 Clearly I and II are different so S is not a Smarandache 
strong subset P-groupoid. 
 
Example 2.73:  Let S = {Collection of all subsets of the 
groupoid G = {Z4, *, (2, 3)}} be a subset groupoid.  We see S is 
a Smarandache P-subset groupoid as  
M = {{0}, {1}, {2}, {3}}  S is a Smarandache subset 
subgroupoid which satisfies the identity  
(A * B) * A = A * (B * A) for all A, B  S. 
 
 Consider A = {0, 1} and B = {2, 3}  S. 
 
 We find (A * B) * A 
 = ({0,1} * {2, 3}) * A 
 = {0 * 2, 0 * 3, 1 * 2, 1 * 3} * A 
 = {6, 9, 2+6, 2 + 9} * A 
 = {2, 1, 0, 3} * {0, 1} 
 = {2 * 0, 2 * 1, 1 * 0, 1 * 1, 0 * 0, 0 * 1, 3 * 0, 3 * 1}  
 = {0, 3, 2, 1}       …  I 
 
Consider A * (B * A) 
 
 = A * {{2, 3} * {0, 1}}  
 = A * {2 * 0, 2 * 1, 3 * 0, 3 * 1} 
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 = A * {4, 4 + 3, 6, 6 + 3} 
 = {0, 1} * {0, 3, 2, 1} 
 = {0 * 0, 0 * 3, 0 * 2, 0 * 1, 1 * 0, 1 * 1, 1 * 2, 1 * 3} 
 = {0, 9, 6, 3, 2, 2 + 3, 2 + 6, 2 + 9} 
 = {0, 1, 2, 3}       …  II 
 
We see I and II are equal for this A and B in S. 
 
 Take A = {0, 1, 2} and B = {3} in S.  To find (A * B) * A 
and A * (B * A) 
 
 Consider (A * B) * A  
 

= ({0, 1, 2} * {3}) * A 
   = {0 * 3, 1 * 3, 2 * 3} * A 
   = {9, 2 + 9, 4 + 9} * A 
   = {1, 2} * {0, 1, 2} 
   = {1 * 0, 1 * 1, 1 * 2, 2 * 0, 2 * 1, 2 * 2} 
   = {2, 2 + 3, 2 + 6, 4, 4 + 2, 4 + 6} 
   = {2, 0, 1}        …  I 
 
 A * (B * A)  
 

= A* ({3} * {0, 1, 2}) 
   = A * {3 * 0, 3 * 1, 3 * 2} 
   = A * {6, 6 + 3, 6 + 6} 
   = {0, 1, 2} * {2, 1} 
   = {0 * 1, 0 * 2, 1 * 2, 1 * 1, 2 * 2, 2 * 1} 
   = {3, 6, 2 + 6, 2 + 3, 4 + 6, 4 + 3} 
   = {3, 2, 0, 1}       …  II 
 
 I and II are not the same for this A and B in S.  Thus S is 
not a Smarandache subset strong P-groupoid.  
 
Example 2.74: Let S = {Collection of all subsets of the 
groupoid G = {Z6, *, (3, 5)}} be the subset groupoid of the 
groupoid G.  Take B1 = {{0}, {3}, {0, 3}}  S; B1 is a 
Smarandache subset groupoid. 
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  A = {3}, B = {0}  B1 

 
 (A * B) * A  
 

= ({3} * {0}) * A 
= {9} * A 
= {3} * {3} 
= {9 + 15} 
= {0}        …  I 

 
 A * (B * A) = A * ({0} * {3}) 
    = A * {(0 * 3)} 
    = A * {15} 
    = {3} * {3} 
    =  {0}        …  II 
 
 I and II are equal for this A, B in B1. 
 
 Take A = {3} and B = {0, 3} in B1.  To find (A * B) * A. 
 
 Now (A * B) * A  
 

= ({3} * {0, 3}) * A 
    = {3 * 0, 3 * 3} * A 
    = {0, 3} * A 
    =  {0, 3} * {3} 
    = {0 * 3, 3 * 3} 
    = {3, 0}      …  I 
 
 Consider A * (B * A)   
 

= A * {0, 3} * {3} 
    = A * {0, 3} 
    = {3} * {0, 3} 
    = {3 * 0, 3 * 3} 
    = {9, 9 + 15} 
    = {3, 0}      …  II 
 
 I and II are equal. 
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 Thus B1 is a Smarandache subset subgroupoid of S which 
satisfies the identity (A * B) * A = A * (B * A) for all A, B  B.  
Hence S is a Smarandache subset P-groupoid.   
 

We have the following theorem the proof of which is left as 
an exercise to the reader. 
 
THEOREM 2.19:  Let  
S = {Collection of all subsets of a groupoid G} be a subset 
groupoid of the groupoid G. 
 

(i) If G is a Smarandache strong P-groupoid then the 
subset groupoid S contains a subset subgroupoid H 
( S) such that H is a Smarandache strong  
P-subgroupoid of S. 

 
(ii) S is a Smarandache P-groupoid if G is a 

Smarandache P-groupoid. 
 

(iii) If G is a Smarandache strong P-groupoid then in 
general the subset groupoid S need not be a 
Smarandache strong subset P-groupoid. 

 
Next we proceed onto define the notion of Smarandache 

right alternative subset groupoid. 
 
Let S be a subset groupoid of G.  If H is a proper subset of S 

such that H is a Smarandache subset subgroupoid of S and 
satisfies the right alternative identity A* (B*B) = (A*B)*B for 
all A, B  H then we define S to be a Smarandache right 
alternative subset groupoid. 

 
On similar lines we can define Smarandache left alternative 

subset groupoid if (A*A)*B = A*(A*B) for all A, B  H.  If H 
satisfies both the left and right alternative identities then we 
define S to be a Smarandache subset alternative groupoid or 
Smarandache alternative subset groupoid. 
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 We define S to be a Smarandache strong right alternative 
subset groupoid if for all A, B  S; we have  
(A * B) * B = A * (B * B) and Smarandache groupoid if for all 
A, B  S.  We have (A * A) * B = A * (A * B).  If S is both a 
Smarandache strong right alternative subset groupoid and 
Smarandache strong left alternative subset groupoid then we 
define S to be a Smarandache strong alternative subset 
groupoid. 

 
We will illustrate this situation by some examples. 

 
Example 2.75:  Let S = {Collection of all subsets of the 
groupoid G = {Z14, *, (7, 8)}} be a subset groupoid.  It is easily 
verified S is a Smarandache alternative subset groupoid as  
P = {{0}, {1}, {2}, …, {12}, {13}}  S is a Smarandache 
strong alternative subset subgroupoid of S. 
 
 To find whether S is a Smarandache strong alternative 
subset groupoid.   
 
 Let A = {0, 7, 1, 6} and B = {2, 4, 11, 1}  S. 
 

We first find (A * B) * A  
= ({0, 7, 1, 5} * {1, 2, 4, 11}) * A 

 
   = {0 * 1, 0 * 2, 0 * 4, 0 * 11, 7 * 1, 7 * 2, 7 * 4,  

    7 * 11, 1 * 1, 1 * 2, 1 * 4, 1 * 11, 5 * 1, 5 * 2,  
    5 * 4, 5 * 11} * A 

 
   = {8, 16, 32, 88, 49 + 8, 49 + 16, 49 + 32, 49 + 88,  

    7 + 8, 7 + 16, 7 + 32, 7 + 88, 35 + 8, 35 + 16,  
    35 + 32, 35+88} * A 

 
   = {8, 2, 4, 1, 11, 9} * {0, 7, 1, 6} 
 
   = {8 * 0, 8 * 7, 8 * 1, 8 * 6, 2 * 0, 2 * 7, 2 * 1,  

   2 * 6, 4 * 0, 4 * 7, 4 * 1, 4 * 6, 1 * 0, 1 * 7, 1 * 1,  
   1 * 6, 11 * 0, 11 * 7, 11 * 1, 11 * 6, 9 * 0, 9 * 7,  
   9 * 11, 9 * 6} 
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   = {56, 56 + 56, 56 + 8, 56 + 48, 14, 14 + 56, 14 + 8,  

    14 + 48, 28, 28 + 56, 28 + 8,  28 + 48,  7 + 0,  
     7 + 56, 7 + 8, 7 + 48, 77 + 0, 77 + 56, 77 + 8,  
     77 + 48, 63 + 0, 63 + 56, 63 + 8, 63 + 48} 

 
   = {0, 8, 6, 7, 1, 13}      …  I 
 
 The reader is expected to find A* (B * A) and conclude. 
 We finally give the following theorem. 
 
THEOREM 2.20:  Let S be the collection of all subsets of a 
groupoid G.  S is a subset groupoid of G. 
 

(i) If G is a Smarandache strong alternative (left or 
right) groupoid then S has a subset subgroupoid 
such that  
 
(a) H  G. 
(b) H is a Smarandache strong subset alternative  
     (right or left) subgroupoid of S. 

 
(ii)  S is a Smarandache subset alternative (right or left) 

groupoid if G is a Smarandache strong alternative 
or left or right groupoid (or G is just a Smarandache 
alternative or left or right groupoid). 

 
(iii) Even if G is a Smarandache strong alternative (or 

left or right) groupoid, S need not in general be a 
Smarandache strong alternative (or left or right) 
subset groupoid of G. 

 
Now we will give some more types of groupoids built using 

Zn. 
 
Example 2.76:  Let S = {Collection of all subsets of the 
groupoid G = {Z7, *, (5, 3)}} be a subset groupoid of the 
groupoid G.  S has atleast six subset semigroups. 
 



Subset Groupoids 67 
 
 
 Example 2.77:  Let S = {Collection of all subsets of the 
groupoid G = {Z5, * (1, 3)}} be a subset groupoid of a groupoid 
G. P = {0, 1, 2, 3, 4, 5}  S is a subset semigroup of S.  So S is 
a Smarandache subset groupoid.   
 

However it is important to observe G is not a Smarandache 
groupoid.  
 
Example 2.78:  Let G = {Z5, *, (1, 2)} be a groupoid; G is not a 
Smarandache groupoid.   
 

However S = {Collection of all subsets of G} is the subset 
groupoid and is a Smarandache subset groupoid. 
 
 For P = {0, 1, 2, 3, 4}  S is a subset semigroup of S. 
 
 In view of these examples we have the following theorem. 
 
THEOREM 2.21:  Let  
 
S = {Collection of all subsets of a groupoid G} be a subset 
groupoid of a groupoid G.  Even if G is not a Smarandache 
groupoid we may have S to be a Smarandache subset groupoid. 
 

Proof follows from the fact if G * G = G then certainly S is 
a Smarandache subset groupoid of G even if G is not a  
S-groupoid.  
 
 We give the following problems. 
 
Problem 2.4:  Let S be a subset groupoid; can S be a 
Smarandache subset groupoid? 
 
Problem 2.5:  Can we have subset idempotent groupoid? 
 
Problem 2.6:  Can we have a Smarandache strong subset  
P-groupoid of infinite order? 
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Problem 2.7: Does there exist a Smarandache strong subset Bol 
groupoid of infinite order? 
 
Problem 2.8:  Does there exist a Smarandache subset groupoid 
of infinite order? 
 
Problem 2.9:  Does there exist a Smarandache strong subset 
Moufang groupoid of infinite order? 
 
Problem 2.10:  Can S = {Collection of all subsets of the 
groupoid G = {Z, *, (p, q)}} be a Smarandache strong 
alternative subset groupoid for any suitable values of p and q? 
 
Problem 2.11:  Let S = {Collection of all subsets of the 
groupoid G = {Q, *, (p, q)}} be a subset groupoid.   
 

Does there exist a (p, q) such that S is a Smarandache 
Moufang subset groupoid? 
 
Problem 2.12:  Let S = {Collection of all subsets of the 
groupoid G = {C(Zn), *, (p, q)}} (n a composite number)} be a 
subset groupoid of the groupoid G. 
 
 Is it possible for any p and q in G; so that; 
 

(i) S is a Smarandache strong Moufang subset groupoid. 
(ii) S is a Smarandache strong right alternative subset 

groupoid but not a Smarandache strong left 
alternative subset groupoid. 

(iii) S is a Smarandache strong alternative subset 
groupoid. 

(iv) S is a Smarandache strong Bol subset groupoid.  
 
Problem 2.13:  Let S = {Collection of subsets of the groupoid 
G = {Z (g), *, (p, q) | g2 = 0}} be a subset groupoid. 
 

(i) Does there exists p, q  Z(g) such that S is a 
Smarandache strong Moufang subset groupoid? 
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 (ii) Will p, q  Z(g) vary; if S is to be a S Bol subset 

groupoid? 
(iii) Will in general p, q  Z(g); vary depending on the 

identity which it has to satisfy? 
 
Problem 2.14:  Is it possible for the subset groupoid S to be a 
Smarandache strong subset P-groupoid but not a subset 
Moufang groupoid? 
 
Problem 2.15:  Is it possible to find for a subset groupoid S to 
be a Smarandache strong subset Bol groupoid? 
 
 Let S = {Collection of all subsets of the groupoid G = {Z11 
(g1, g2) | 

2
1g = 2

2g  = 0 = g1g2 = g2g1}, *, (p, q)}} be the subset 
groupoid.   
 

Can S be for any p, q  G, Smarandache strong Moufang 
subset groupoid? 
 
We suggest the following problems for interested reader. 
 
Problems: 
 
1. Find some special properties associated with subset 

groupoids. 
 
2. Let S = {Collection of all subsets of the groupoid  

G = {Z12, *, (6, 2)}} be the subset groupoid of G. 
 
 (i) Can S have subset zero divisors? 
 (ii) Can S have subset idempotents? 
 (iii) Find o(S). 
 
3. Let S = {Collection of all subsets of the groupoid  

G = {Z7, *, (3, 1)}} be the subset groupoid of G.   
 Study questions (i) to (iii) of problem 2 for this S. 
 
4. Let S = {Collection of all subsets of the groupoid  

G = {Z18, *, (6, 3)}} be a subset groupoid. 
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 (i) Can S have subset zero divisors? 
 (ii) Can S have subset idempotents? 
 (iii) Can S contain right subset ideals which are not left  
  subset ideals? 
 (iv) Is S a S-subset groupoid? 
 (v) Can S have subset Smarandache subgroupoids which  
  are not subset Smarandache ideals? 
 (vi) Can S have subset right ideals which are not  
  Smarandache subset left ideals? 
 (vii) Can S have subset subgroupoid which are not  
  Smarandache subset subgroupoids? 
 
5. Let S = {Collection of all subsets of the groupoid  

G = {Z, *, (3, –5)}} be the subset groupoid of the groupoid 
G.   Study questions (i) to (vii) of problem 4 for this S. 

 
6. Let S = {Collection of all subsets of the groupoid  

G = {(Z+  {0}) g, *, (0, g)}} be the subset groupoid of G.   
 Study questions (i) to (vii) of problem (4) for this S. 
 
7. Let S = {Collection of all subsets of the groupoid  

G = {C(Z10), *, (2iF, 0)}} be the subset groupoid. 
 Study questions (i) to (vii) of problem (4) for this S. 
 
8. Let S = {Collection of all subsets of the groupoid  

G = {C(Z19)(g); *, (iF, 2g) | g2 = 0, 2
Fi  = 18}} be the subset 

groupoid of G. 
 Study questions (i) to (vii) of problem (4) for this S. 
 
9. Let S = {Collection of all subsets of the groupoid  

G = {C(Z24) (g1, g2), *, (6g1, 8g2) where 2
1g  = 0 = 2

2g  = g2, 
g1g2 = 0 = g2g1}} be the subset groupoid.   

 Study questions (i) to (vii) of problem (4) for this S. 
 
10. Let S = {Collection of all subsets of the groupoid G = {Z40 

(g), *, (10, 0), g2 = –g}} be the subset groupoid of G.  
Study questions (i) to (vii) of problem 4 for this S. 
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11. Let S = {Collection of all subsets of the groupoid  
 G = {R(g), (–1, 1), g2 = 0}} be the subset groupoid of G.   
 Study questions (i) to (vii) of problem (4) for this S. 
 
12. Obtain some special properties of Smarandache subset 

groupoids? 
 
13. Is every subset groupoid a Smarandache subset groupoid? 
 
14. Does there exist a subset groupoid S such that every subset 

subgroupoid of S is a Smarandache subset subgroupoid? 
 
15. Does there exist a subset Smarandache groupoid S such 

that every right subset ideal of S is Smarandache? 
 
16. Does there exist a subset Smarandache groupoid such that 

only all its subset left ideals are Smarandache and none of 
its subset right ideals are Smarandache? 

 
17. Does there exists a Smarandache subset groupoid such that  
 
 (i) None of its subset subgroupoid is Smarandache. 
 (ii) None of its subset ideals (right or left) are  
  Smarandache. 
 
18. Give some special properties enjoyed by Smarandache 

seminormal subset groupoid. 
 
19. Give some special properties enjoyed by Smarandache 

normal subset groupoid. 
 
20. Let S = {Collection of all subsets of the groupoid  

G = {Z43, *, 3, 2}} be the subset groupoid. 
 
 (i) Is S a Smarandache normal subset groupoid? 
 (ii) Is S a Smarandache seminormal subset groupoid? 
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21. Let S = {Collection of all subsets of the groupoid  
G = {Z, *, (0, 3)}} be a subset groupoid. 

 Can S be a Smarandache strong normal subset groupoid? 
 
22. S = {Collection of all subsets of the groupoid  

G = {Z+{0}, *, (p, q)}} be a subset groupoid.   
 For what values of (p, q)  Z+{0} will S be a 

Smarandache seminormal subset groupoid? 
 
23. Find conditions on the subset groupoid to be a 

Smarandache conjugate subset groupoid. 
 
24. Let S = {Collection of all subsets of the groupoid  

G = {Z16, *, (4, 0)}} be a subset groupoid.   
 Can S be a Smarandache conjugate subset groupoid? 
 
25. Can S in problem 24 be a Smarandache strong subset 

Moufang groupoid? 
 
26. Let S = {Collection of all subsets of the groupoid  

G = {C(Z12), *, (4, 3)}} be a subset groupoid. 
 
 (i) Can S be a Smarandache seminormal subset  
  groupoid? 
 (ii) Can S be a Smarandache normal subset groupoid? 
 (iii) Can S be a Smarandache strong Moufang subset  
  groupoid? 
 (iv) Will S be a Smarandache subset groupoid? 
 (v) Can S be a Smarandache strong alternative subset  
  groupoid? 
 
27. Let S = {Collection of all subset of the groupoid  

G = {Z+  {0}, *, (p, q)}} be a subset groupoid of G. 
 Study questions (i) to (v) of problem (26) for this S. 
 
28. Let S = {Collection of all subsets of the groupoid  

G = {C(Z15), (g1, g2), *, (3g, 3iF) | 2
1g  = g1 and 2

2g  = 0,  
g1g2 = g2g1 = 0}} be a subset groupoid of G. 

 Study problems (i) to (v) of problem 26 for this S. 



Subset Groupoids 73 
 
 
  
29. Does there exist a subset groupoid S which is a 

Smarandache strong Moufang subset groupoid? 
 
30. Let G be a groupoid which is not a S-Moufang strong 

groupoid or a Smarandache Moufang groupoid.   
 Let S = {Collection of all subsets of G} be the subset 

groupoid of the groupoid G.   
 Prove S is not a S-Moufang strong subset groupoid.  
 
31. Obtain some special properties enjoyed by Smarandache 

Moufang subset groupoids. 
 
32. Can we have a S-Moufang subset groupoid to have its 

associated groupoid to be not even a Smarandache subset 
Moufang groupoid?  Justify. 

 
33. Find whether the subset groupoid  
 S = {Collection of all subsets of the groupoid G = {Z24, *, 

(8, 3)}} is a Smarandache subset Moufang groupoid. 
 
34. Let S = {Collection of all subsets of the groupoid  

G = {Z8 (g), *, (4, 2) | g2 = 0}} be a subset groupoid. 
 Study questions (i) to (v) of problem 26 for this S. 
 
35. Is S in problem (34) a Smarandache strong P-subset 

groupoid? 
 
36. Is S in problem (34) a Smarandache strong Bol subset 

groupoid? 
 
37. Let S = {Collection of all subsets of the groupoid  

G = {C(Z16), *, (15, 1)}} be a subset groupoid.   
 Study questions (i) to (v) of problem 26 for this S. 
 
38. Let S1 = {Collection of all subsets of the groupoid  

G = {C(Z16), *, (8, 0)}} be a subset groupoid.   
 Study questions (i) to (v) of problem 26 for this S. 
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39. Let S2 = {Collection of all subsets of the groupoid  
G = {C(Z16), *, (14, 2)}} be a subset groupoid.   

 Study questions (i) to (v) of problem 26 for this S.  
 
40. Let S = {Collection of all subsets of the groupoid  

G = {C(Z16), *, (8iF, 0)}} be a subset groupoid.   
 Study questions (i) to (v) of problem 26 for this S. 
 
41. Let S = {Collection of all subsets of the groupoid  

G = {C(Z16), *, (10iF, 6, 6iF+10)}} be a subset groupoid. 
 Study questions (i) to (v) of problem 26 for this S. 
 
42. Let S = {Collection of all subsets of the groupoid  

G = {C(Z16, *, (8, 8iF)}} be a subset groupoid.   
 Study questions (i) to (v) of problem 26 for this S. 
 
43. Let S = {Collection of all subsets of the groupoid  

G = {Z23, *, (1, 0)}} be a subset groupoid.   
 Study questions (i) to (v) of problem 26 for this S. 
 
44. Let S = {Collection of all subsets of the groupoid  

G = {Z23, *, (0, 1)}} be a subset groupoid.   
 Study questions (i) to (v) of problem 26 for this S.   
 Compare S in problems (43) and (44). 
 
45. Let S = {Collection of all subsets of the groupoid  

G = {Z23, *, (20, 3)}} be a subset groupoid.   
 Study questions (i) to (v) of problem 26 for this S. 
 
46. Let S = {Collection of all subsets of the groupoid G = {Z23, 

*, (3, 20)}} be a subset groupoid.   
 Study questions (i) to (v) of problems (26) for this S.   
 Compare S in problem (45) and (46). 
 
47. Does there exists a subset groupoid of infinite order which 

is a Smarandache normal subset groupoid? 
 
48. Does there exists a subset groupoid of infinite order which 

is a Smarandache seminormal subset groupoid? 
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49. Let S be a subset groupoid of infinite order.    
 Can S be a Smarandache strong Bol subset groupoid? 
 
50. Let S = {Collection of all subsets of the groupoid  

G = {C, *, (p, q)}} be a subset groupoid.   
 Does we have (p, q) so that S is a Smarandache subset 

strong Moufang groupoid?   
 
51. Is it possible for any subset groupoid to satisfy more than 

one identity? 
 
52. Can a subset groupoid S be both Smarandache strong Bol 

subset groupoid as well as Smarandache strong P-subset 
groupoid? 

 
53. Can a subset groupoid S be both Smarandache subset Bol 

as well as alternative subset groupoid? 
 
54. Give example of a subset Moufang groupoid.   
 Does there exist one such? 
 
55. Does there exist a subset Bol groupoid which is not a 

Smarandache strong Bol subset groupoid? 
 
56. Does there exist a subset right alternative groupoid which 

is not a Smarandache subset right alternative groupoid?  
 
57. Give some special properties enjoyed by Smarandache 

strong subset P-groupoid? 
 
58. Is it possible to have a subset groupoid which satisfies 

more than 3 identities? 
 
59. Let S = {Collection of all subsets of the groupoid  

G = {C(Z41), *, (3iF, 0)}} be a subset groupoid.   
 Does S satisfy any of the special identities? 
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60. Let S = {Collection of all subsets of the groupoid  
G = {C, *, (iF, –1)}} be a subset groupoid.   

 Can S be Smarandache strong Bol subset groupoid? 
 
61. Does S in problem 60 satisfy any of the four identities 

Moufang identity or Bol identity or P-groupoid identity or 
alternative identity? 

 
62. Does there exist a subset groupoid using the complex field 

C which satisfies atleast two identities? 
 
63. Let S = {Collection of all subsets of the groupoid  

S = {R(g), *, (g, –g) | g2 = 0}} be a subset groupoid. 
 Can S satisfy any one of the identities? 
 
64. Let S = {Collection of all subsets of the groupoid  

G = {R(g), *, (g, –g), g2 = –g}} be the subset groupoid of 
the groupoid G. 

 
 (i) Can S be Smarandache strong Bol subset groupoid? 
 (ii) Can S be a Smarandache Bol subset groupoid? 
 (iii) Can S be a Smarandache strong Moufang subset  
  groupoid? 
 (iv) Can S be a Smarandache left alternative subset  
  groupoid? 
 
65. Let S = {Collection of all subsets of the groupoid  

G = {(R+  {0}) g | *, (g, 0), g2 = 0}} be a subset groupoid 
of the groupoid G. 

 
 (i) Is it possible for S to satisfy any of the identities? 
 (ii) Can S be a seminormal subset groupoid? 
 (iii) Is S a normal subset groupoid? 
 
66. Obtain some special features enjoyed by subset seminormal 

groupoid of a groupoid G. 
 
67. Does there exist a subset normal groupoid of infinite order? 
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 68. Does there exists a subset groupoid of infinite cardinality 

which satisfies the alternative identity? 
 
69. Give an example of an infinite subset groupoid which does 

not satisfy any of the identities. 
 
70. Does there exist an infinite subset groupoid which satisfies 

right alternative identity but does not satisfy the left 
alternative identity? 

 
71. Let S = {Collection of all subsets of the groupoid  

G = {C(Z36) (g),*, (6, 6g) with g2 = 0}} be the subset 
groupoid of the groupoid G. 

 
 (i) Does S satisfy any of the identities? 
 (ii) Can S be a Smarandache normal subset groupoid? 
  
72. If in problem (71); (6, 6g) in G is replaced by (0, 6g) study 

questions (i) to (ii) of problem (71) for this S. 
 
73. Let S = {Collection of all subsets of the groupoid  

G = {Z12 (g), *, (10, 2g)}} be the subset groupoid of the 
groupoid G. 

  
 (i) Can S be a Smarandache seminormal subset  
  groupoid? 
 (ii) Can S be a Smarandache Moufang subset groupoid? 
 (iii) Can S be a Smarandache Bol subset groupoid? 
 (iv) Is it possible for S to be subset right alternative? 
 
74. Let S = {Collection of all subsets of the groupoid G = {Zn, 

(m, 0), * with m * m = m (mod n)}} be the subset groupoid 
of the groupoid G. 

 
 (i) Prove S is a Smarandache strong subset  Bol  
  groupoid. 
 (ii) Prove S is a Smarandache strong subset Moufang  
  groupoid. 
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 (iii) Prove S is a Smarandache subset strong P-groupoid.  
 (iv) Prove S is a Smarandache subset strong alternative  
  groupoid. 
 
75. Let S = {Collection of all subsets of the groupoid G = {Z20, 

*, (5, 0)}} be a subset groupoid of the groupoid G.  
 Study questions (i) to (iv) of problem 74 for this S. 
 
76. Give an example of a subset groupoid which is 

Smarandache subset idempotent. 
 
77. Is S = {Collection of all subsets of the groupoid G = {Z6, *, 

(3, 4)}}, a Smarandache strong subset Bol groupoid? 
 
78. Is S in problem (77) a Smarandache strong Moufang subset 

groupoid? 
 
79. Is S = {Collection of all subsets of the groupoid G = {Z12, 

*, (4, 9)} be a Smarandache subset P-groupoid? 
 
80. Can S in problem (79) be Smarandache alternative subset 

groupoid? 
 
81. Let S = {Collection of all subsets of the groupoid  

G = {Z5, *, (1, 3)}} be a subset groupoid of the groupoid 
G.   

 Can S be a Smarandache subset groupoid? 
 
82. Let S = {Collection of all subsets of the groupoid  

G = {Z9, (5, 3), *}} be a subset groupoid.   
 Can S be a Smarandache subset groupoid? 
 
83. Define the notion of Smarandache subset groupoid 

isomorphism.  Show this by an example. 
 
84. Study the special properties enjoyed by the subset groupoid 

S of G where S = {Collection of all subsets of the groupoid 
G = {Z12, *, (5, 10)}}. 
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 85. S = {Collection of all subsets of the groupoid G = {Z6, *, 

(3, 5)}} be the subset groupoid of the groupoid G.   
 Is S a P-subset groupoid? 
 
86. Let S = {Collection of all subsets of the groupoid  

G = {Z12, *, (3, 9)}} be the subset groupoid.   
 Is S a Smarandache normal subset groupoid? 
 
87. Find normal subset subgroupoid of S in problem (86). 
 
88. Does there exist subset groupoid which is simple? 
 
89. Characterize those groupoids which have their subset 

groupoids to be simple. 
 
90. Give an example of a simple subset groupoid. 
 
91. Can S = {Collection of all subsets of the groupoid  

G = {C(Z24), *, (13,11)}} be the subset simple groupoid? 
 
92. Let S = {Collection of all subsets of the groupoids  

G = {Z16, *, (11, 5)}} be a subset groupoid.   
 Can S be subset simple? 
 
93. Let S = {Collection of all subsets of the groupoid  

G = {C(Z21), *, (19, 2)}} be the subset groupoid.   
 Can S be subset simple? 
 
94. Let S = {Collection of all subsets of the groupoid  

G = {Z5, *, (3, 2)}} be the subset groupoid. 
 
 (i) Can S be subset simple? 
 (ii) Find o (S). 
 
95. Can S = {Collection of all subsets of the groupoid  

G = {C(Z17), *, (5, 2)}} be a simple subset groupoid? 
 
96. Let S = {Collection of all subsets of the groupoid  

G = {Z6, *, (3, 3)}} be a subset groupoid. 
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 (i) Can S be simple? 
 (ii) Find subset zero divisors if any in S. 
 (iii) Is S subset seminormal? 
 (iv) Can S be a normal subset groupoid? 
 (v) Find o(S). 
 (vi) Is S subset commutative? 
 (vii) Can S satisfy any of the special identities? 
 (viii) Is S an idempotent subset groupoid? 
 
97. Is it possible for the subset groupoid S = {Collection of all 

subsets of the groupoid G ={Z11, *, (3, 8)}} to be 
Smarandache strong Bol subset groupoid as well as 
Smarandache strong Moufang subset groupoid? 

  
98. If (3, 8) in G in the above problem is replaced by (0, 1) 

study question (i) to (viii) for S in problem 97. 
 
99. For S in problem 97 study questions (i) to (viii) of the 

problem 96. 
 
100. Characterize those subset groupoids which are S-right 

subset alternative and not S- subset left alternative? 
 
101. Give an example of a subset groupoid which is 

commutative. 
 
102. Give an example of a subset groupoid which is 

Smarandache subset commutative. 
 
103. Give an example of a subset groupoid which is 

Smarandache subset inner commutative.  
 



 
 
 
 
 
Chapter Three 
 

 
 
SUBSET LOOP GROUPOIDS 
 
 
 In this chapter authors for the first time define the notion of 
subset loop groupoids and study their properties. 
 
DEFINITION 3.1:  Let (L, *) be a loop  
S = {Collection of all subsets of L}.  {S, *} is a subset groupoid 
and (S, *) is defined as the subset loop groupoid of the loop L. 
 
 It is important to mention here that S will not be a subset 
loop, but only a subset groupoid. 
 
 We will first illustrate this situation by some examples. 
 
Example 3.1:  Let S = {Collection of all subsets of the loop  
(L, *) = {e, a1, a2, a3, a4, a5} given by the following table; 
 

1 2 3 4 5

1 2 3 4 5

1 1 3 5 2 4

2 2 5 4 1 3

3 3 4 1 5 2

4 4 3 5 2 1

5 5 2 4 1 3

* e a a a a a

e e a a a a a

a a e a a a a

a a a e a a a

a a a a e a a

a a a a a e a

a a a a a a e
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 {S, *} is the subset loop groupoid of the loop L.   
 

For A = {e, a2, a3} and B = {a4, a5, a1} in S we find  
A * B = {e * a4, e * a5, e * a1, a2 * a4, a2 * a5, a2 * a1,  

            a3 * a4, a3 * a5, a3 * a1} 
      = {a4, a5, a1, a3, a2}  S. 
 
 We now find B * A  

= {a4, a5, a1} * {e, a3, a2}  
= {a4 * e, a5 * e, a1 * e, a4 * a3, a5 * a3, a1 * a3,  
    a4 * a2, a5 * a2, a1 * a2} 

 = {a4, a5, a1, a2, a3}  S. 
 
   We see A * B = B * A 
   But in general A * B  B * A for take  
 

A = {a1} and B = {a3}.   
 
   A * B = {a1 * a3} = {a5} and  
   B * A = {a3 * a1} = {a4}. 
 
 Thus A * B  B * A in general for A, B  S. 
 
Example 3.2:  Let S = {Collection of all subsets of the loop  
(L, *) where L = {e, a1, a2, a3, a4, a5, a6, a7} given by the 
following table: 
 

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 1 5 2 6 3 7 4

2 2 5 6 3 7 4 1

3 3 2 6 7 4 1 5

4 4 6 3 7 1 5 2

5 5 3 7 4 1 2 6

6 6 7 4 1 5 2 3

7 7 4 1 5 2 6 3

* e a a a a a a a

e e a a a a a a a

a a e a a a a a a

a a a e a a a a a

a a a a e a a a a

a a a a a e a a a

a a a a a a e a a

a a a a a a a e a

a a a a a a a a e
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 be the subset loop groupoid.   
 

We see for every A, B  S we have A * B = B * A.  This is 
so because L is a commutative loop.  Thus S is a commutative 
subset loop groupoid of L. 
 
 Take A = {a1, a3, a5, a6} and B = {a1, a5, a7}  S. 
 
 A * B = {a1 * a1, a1 * a5, a1 * a7, a3 * a1, a3 * a5, a3 * a7,  

  a5 * a1, a5 * a5, a5 * a7, a6 * a1, a6 * a5, a6 * a7}  
    = {e, a3, a4, a2, a5, a6, a7}  S. 

 
 B * A = {a1, a5, a7} * {a1, a3, a5, a6}  
      = {a1 * a1, a1 * a3, a1 * a5, a1 * a6, a5 * a1, a5 * a3,  

 a5 * a5, a5 * a6, a7 * a1, a7 * a3, a7 * a5, a7 * a6} 
     = {e, a2, a3, a7, a4, a5, a6}  S. 
 
 Clearly A * B = B * A.  This is the way subset operations 
are performed on S.   
 

We see S cannot be a loop.  It is a subset groupoid and not a 
subset semigroup as the operation * is non associative. 
 
 For take A = {a1, a2}, B = {a3} and C = {a7, a6}  S. 
 
 Consider (A * B) * C  
 

= ({a1, a2} * {a3}) * C 
    = {a1 * a3, a2 * a3} * C 
    = {a2, a6} * {a7, a6} 
    = {a2 * a7, a2 * a6, a6  * a7, a6 * a6} 
    = {a1, a4, a3, e}      …  I 
 
 A *(B * C) = A *({a3} * {a6, a7}) 
 
    = A *({a3 * a6, a3 * a7})  
    = {a1, a2} * {a1, a5} 
    = {a1 * a1, a1 * a2, a2 * a1, a2 * a5} 
    = {e, a5, a7}      …  II 
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 Clearly (A * B) * C  A *(B * C) as I and II are distinct.   
 
Example 3.3:  Let S = {Collection of all subsets of the loop L 
given by the following table; L = {e, a1, a2, a3, a4, a5} 
 
 

1 2 3 4 5

1 2 3 4 5

1 1 5 4 3 2

2 2 3 1 5 4

3 3 5 4 2 1

4 4 2 1 5 3

5 5 4 3 2 1

* e a a a a a

e e a a a a a

a a e a a a a

a a a e a a a

a a a a e a a

a a a a a e a

a a a a a a e

 

 

 
be the subset loop groupoid.    
 

S is a non commutative subset loop groupoid of the loop L.  
Take  A = {a1} and B = {a5}  S,  
 

we see A * B = {a1} * {a5} = {a1 * a5} = {a2}   …   I 
 

 B * A = {a5} * {a1} = {a5 * a1}  = {a4}    …  II 
 
 Clearly I and II are not the same so S is a non commutative 
subset groupoid.   
 

In view of these we give the following theorem the proof of 
which is left as an exercise to the reader. 
 
THEOREM 3.1:  Let  

S = {Collection of all subsets of the loop (L, *)} be the 
subset loop groupoid of L.  S is a commutative subset loop 
groupoid if and only if L is a commutative loop. 
 
Proof:  Suppose L is a commutative loop.  Let A = {a1, …, an} 
and  B = {b1, …, bm}  S where ai, bj  L, 1  i  n and 1  j  
m. 
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 We see  
A * B = {ai * bj | ai  A and bj  B, 1  i  n and  

1  j  m}  S.   
 
Consider B * A = {bj * ai | bj  B, ai  a; 1  i  n and  

1  j  m}  S.  We know ai * bj = bj * ai for all 1  i  n and  
1  j  m; since we are given L is a commutative loop. 
 
 So A * B = B * A for all A, B  S.   
 

Thus S is a subset loop groupoid which is commutative. 
 

 Now if we assume S to be commutative we see if A, B  S 
we have A * B = B * A have to prove L is a commutative loop.   
 

Take A = {a} and B = {b} in S where a, b  L.  
 
We see  A * B = B * A so A * B = a * b = B * A = b * a for 

all a, b  L as S is given to be commutative, hence L is 
commutative.   

 
Hence the theorem. 

 
Example 3.4:  Let S = {Collection of all subsets of the loop 
L5(2) given by the following table: 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 4 5 2

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e

 

 
be the subset loop groupoid.  Clearly S is a non commutative 
subset loop groupoid of L5(2). 



86 Subset Groupoids  
 
 
 
 
 

     o(S) = 26 – 1. 
 
Example 3.5:  Let S = {Collection of all subsets of the loop 
L5(3) where the table of L5(3) is as follows: 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 4 2 5 3

2 2 4 e 5 3 1

3 3 2 5 e 1 4

4 4 5 3 1 e 2

5 5 3 1 4 2 e

 

 
be the subset loop groupoid of L5(3).  o(S) = 26 – 1. 
 
 Clearly S is a commutative subset loop groupoid.   
 

Now consider the subset groupoid of order 26 – 1 given by  
G = {Z6,(3, 0), *}. 
 
Example 3.6:  Let S1 = {Collection of all subsets of the 
groupoid G = {Z6, *,(3, 0)}} be the subset groupoid.   Clearly S1 
is non commutative and o(S1) = 26 – 1.   
 

Compare S and S1.  Does S1 contain a subset which is a 
loop? 
 
 It is to keep on record that if S is a subset loop groupoid of 
the loop L, then S has a subset collection which is isomorphic to 
the loop L. 
 
 However it is interesting to study if S1 is any subset 
groupoid can S1 contain a substructure which is a loop? 
 
 We know S1 has substructure which is a groupoid.  
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 Example 3.7:  Let  
S = {Collection of all subsets of the loop L = L45(8)} be a subset 
loop groupoid of L.  P = {{e}, {1}, {2}, …, {45}}  S is a 
subset loop subgroupoid of L.  We see P  L as loops by the 
map; {a}   a for all {a}  P and a  L = L45(8).   
 

Now we define substructures of a subset loop groupoid. 
 
DEFINITION 3.2:  Let S = {Collection of all subsets of a loop L} 
be the subset loop groupoid of L.  Let P  S if P is a subset 
groupoid and not a loop we define P to be a subset loop 
subgroupoid of S. 
 
 If W  S is such that W is a subset semigroup then we define 
W to be a Smarandache subset loop semigroup of S.  If V  S 
such that V is a subset loop we call S to be a super special 
subset loop-loop groupoid of S.  Suppose M  S such that M is a 
subset group we call M to be a subset Smarandache loop-group 
of S. 
 
 We will illustrate all these situations by an example or two. 
 
Example 3.8:  Let S = {Collection of all subsets of the loop  
L = L7(4) given by the following table; 
 

* e 1 2 3 4 5 6 7

e e 1 2 3 4 5 6 7

1 1 e 5 2 6 3 7 4

2 2 5 e 6 3 7 4 1

3 3 2 6 e 7 4 1 5

4 4 6 3 7 e 1 5 2

5 5 3 7 4 1 e 2 6

6 6 7 4 1 5 2 e 3

7 7 4 1 5 2 6 3 e

 

 
be a subset loop groupoid of L. Consider  
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V = {{e}, {1}, {2}, {3}, {4}, {5}, {6}, {7}}  S, clearly V 
is a loop so V is a super special subset loop-loop groupoid of S. 
 
 Consider W = {{e}, {5}, {e, 5}}  S.   The table of W is as 
follows: 
 

* {e} {5} {e,5}

{e} {e} {5} {e,5}

{5} {5} {e} {e,5}

{e,5} {e,5} {e,5} {e,5}

 

 
 We see W is a subset semigroup so W is a Smaradache 
subset loop semigroup of S. 
 
 Now consider T = {{e}, {6}}  S; the table of T is as 
follows: 
 

* {e} {6}

{e} {e} {6}

{6} {6} {e}

 

 
 Clearly T is a subset group of S;  so T is defined as subset 
S;  Smarandache subset loop-group of S. 
 
 Take M1 = {{e}, {6}}  S or M2 = {{e}, {7}}  S or   
M3 = {{e}, {2}}  S or M4 = {{e}, {3}}  S or M5 = {{e}, 
{4}}  S or M6 = {{e}, {5}}  S are all subset groups which 
are also subset subloops. 
 
Example 3.9:  Let  
S = {Collection of all subsets of the loop L45(8)} be the subset 
loop groupoid of L45(8). 
 
 Take V = {{e}, {1}, {6}, {11}, {16}, {21}, {26}, {31}, 
{36}, {41}}  S is a super special subset loop of S.   
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  Now if M = {Collection of all subsets of T = {e, 1, 6, 11, 
16, 21, 26, 31, 36, 41}  L}  S, M is  a subset loop 
subgroupoid of S.  
 
 We define a subset loop groupoid S to be super 
Smarandache loop groupoid if S has a subset which is a subset 
loop.  
 

On similar lines we define a subset loop subgroupoid P to 
be a super Smarandache loop subgroupoid if S has a subset loop 
subgroupoid P which is a super Smarandache subset loop 
subgroupoid. 
 
 A subset loop groupoid S is said have a normal subset loop 
subgroupoid, H if H  S and the following conditions are 
satisfied: 
 
   (i)    H is a subset loop subgroupoid of S. 
   (ii)   xH = Hx 
   (iii)  (Hx) y = H(xy) 
   (iv)  y(xH) =(yx) H for all x, y  S. 
 
 A subset loop groupoid S is said to be simple if S has no 
normal subset loop subgroupoid. 
 
Example 3.10:  Let  
S = {Collection of all subsets of the loop L5(3)} be the subset 
loop groupoid.  S is a simple subset loop groupoid. 
 
 For take H = {L5(3)} = {e, 1, 2, 3, 4, 5}  S.   
We see  
 

(i) xH = Hx for all x  S 
(ii) (Hx) y = H(xy) 
(iii) y(xH) =(yx)H for all x, y  S. 

 
Hence S is not simple in a trivial way.  However it is 

important to mention that H in S is a singleton.  It is not just like 
e  L5(3) and ex = xe = x; 
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e(xy) =(ex) y and y(xe) =(yx) e for all x, y  L5(3).   
 
Hence we can say for the subset loop groupoid S over  

L5(3) = {e, 1, 2, 3, 4, 5}. H = {e, 1, 2, 3, 4, 5} = L5(3)  S acts 
as the special pseudo identity as AH = HA = H. 

 
For take A = {2, 4, 1}  S.    
 

A * H  = {2, 4, 1} * {e, 1, 2, 3, 4, 5}  
 

= {2 * e, 2 * 1, 2 * 2, 2 * 3, 2 * 4, 2 * 5, 4 * e,  
    4 * 1, 4 * 2, 4 * 3, 4 * 4, 4 * 5, 1 * e, 1 * 1,  
    1 * 2, 1 * 3, 1 * 4, 1 * 5} 

 
= {2, 4, 5, 3, 1} = H. 

 
H * A = {e, 1, 2, 3, 4, 5} * {2, 4, 1}  

 
= {e * 2, e * 4, e * 1, 1 * 2, 1 * 5, 1 * 1, 2 * 2,  
     2 * 4, 2 * 1, 3 * 2, 3 * 4, 3 * 1, 4 * 2, 4 * 4,  
    4 * 1, 5 * 1, 5 * 2, 5 * 4} 

 
=  {2, 4, 1, 2, 5, e} = H.  

 
Thus A* H = H*A = H, hence we can call H only as a 

pseudo special identity which we define as the normal element 
of S.   

 
In view this we give the following theorem, the proof of 

which is direct. 
 
THEOREM 3.2:  Let S = {Collection of all subsets of the loop L} 
be the subset loop groupoid.  H = L = {all elements in L}  S 
acts as the pseudo identity that is the normal element of S. 
 
 The very natural question is can we have more normal 
elements in S.   
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 The answer is no for if H is the normal subset element and 
if A  S is another normal subset element A  H but A*H = 
H*A = H and it is not A. Hence the claim.   
 

However if we take any subset loop subgroupoid P of S we 
may have an element say M  P with M*T = T*M = M for all  
T  P.  If such a M exist we call M as the subnormal subset 
element.  A subset loop groupoid may have more than one 
subset subnormal element and in some case no subset 
subnormal element.   

 
We will illustrate this situation by some examples. 

 
Example 3.11:  Let S = {Collection of all subsets of the loop 
L5(4) which is as follows: 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 5 4 3 2

2 2 3 e 1 5 4

3 3 5 4 e 2 1

4 4 2 1 5 e 3

5 5 4 3 2 1 e

    . 

 
 We see L5(4) has no subloops only subgroups of the form 
{e, 1}, {e, 2}, {3, e}, {e, 4} and {e, 5}.   
 

So S has only H = {e, 1, 2, 3, 4, 5}  S such that  
A*H = H*A = H for all A  S is the normal element of S. 
 
 S has no subnormal elements. 
 
Example 3.12:  Let  
S = {Collection of all subsets of the loop L7(4)} be the subset 
loop groupoid of the loop L7(4) which is as follows: 
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* e 1 2 3 4 5 6 7

e e 1 2 3 4 5 6 7

1 1 e 5 2 6 3 7 4

2 2 5 e 6 3 7 4 1

3 3 2 6 e 7 4 1 5

4 4 6 3 7 e 1 5 2

5 5 3 7 4 1 e 2 6

6 6 7 4 1 5 2 e 3

7 7 4 1 5 2 6 3 e

 

 
 Clearly the loop L7(4) has no subloops the only subgroups 
of L7(4) are {e, 1}, {e, 2}, {e, 3}, {e, 4}, {e, 5}, {e, 6} and  
{e, 7}.   
 

Let H = {e, 1, 2, 3, 4, 5, 6, 7}  S; H is the unique normal 
element of S and we see H*A = A*H = H for all H  S. 
 
Example 3.13:  Let  
S = {Collection of all subsets of the loop L45(8)} be the subset 
loop groupoid of L45(8). 
 
 H1(15) = {e, 1, 16, 31} is a subloop of L45(8). 
 H1(5) = {e, 1, 6, 11, 16, 21, 26, 31, 36, 41} is also a subloop 
of L45(8).   
 

Let  
P = {Collection of all subsets of the subloop H1(15) of L45(8)} 
 S.  P is a subset subloop subgroupoid of S.   
 

We see T = {e, 1, 16, 31}  P is the subnormal subset 
element of P for each A  P we see T*A = A*T = T. 

 
 However H = L45(8) is the normal subset element of S.  
Take M = {Collection of all subsets of the subloop H1(5) = {e, 
1, 6, 11, 16, 21, 26, 31, 36, 41}  L45(8)}; M is a subset subloop 
subgroupoid of S.   
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 We see V = {e, 1, 6, 11, 16, 21, 26, 31, 36, 41}  M acts as 
a subnormal subset element of S.  

 
 Thus this S has subnormal subset elements.  Infact the 
number of subnormal subset elements of the subset loop 
groupoid of the loop L equals to the number of subloops of L 
which are not subgroups.  In case of simple loops we have no 
subnormal subset element one and only one normal subset 
element. 
 
 We will denote the subset loop groupoid of this loop Ln(m) 
 Ln by Sn(m) in Sn; that is  
 

Sn = {Collection of all subset loop groupoids of the loop 
Ln(m)  Ln}  

 
= {Sn(m) | Sn(m) is the collection of all subsets of the loop 
Ln(m)  Ln}.   
 

We see in case of S5 we have only 3 subset loop groupoids 
and all the three subset loop groupoids are simple S5 = {S5(3), 
S5(4), S5(2)}.  Similarly S7 = {S7(2), S7(3), S7(4), S7(5) and 
S7(6)} and all the 5 subset loop groupoids are simple. 
 

 |Sn| = |Ln| = i

k
1

i i
i 1

(p 2)p 



  and n is an odd prime; we see 

number of subset loop groupoids of Ln is n–2.    
 

So for a given odd prime p, p > 3 we can have p–2 number 
of subset loop groupoids each of Sn(m) is of order 2n+1 – 1.   
 

For proof of these refer [5]. 
 
 Now we will study some of the properties associated with 
the subset loop groupoids Sn of Ln(m)  Ln.   
 

Let Sn(m)  Sn(n > 3 n an odd number). 
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THEOREM 3.3:  Let  
Sn = {Collection of all subsets of the loop Ln(m)  Ln}  

 
= {Sn(m) |(n, m) = 1 =(n, m–1), n > 3, n odd} has one and 

only one commutative subset loop groupoid. (We see each Sn(m) 
is a subset loop groupoid of order 2n+1 – 1). 
 
Proof:  We know Ln the class of loops of order n + 1 contains a 
loop given by Ln(m) where m =(n+1)/2. 
 
 So Sn contains one and only one commutative subset loop 

groupoid given by Sn
n 1

2

 
 
 

. 

 
 For working refer [5].  We call a loop L to be strictly non 
commutative if xy  yx for any x, y  L; x  y. 
 
 We will define the notion of strictly non commutative 
subset loop groupoids.  We have to define a subset loop 
groupoid S which is strictly non commutative as A*B  B*A for 
all distinct A and B in S(A  B; A  {e}, B  {e}). 
 
 But we see in case of S we cannot have the notion of strictly 
non commutative subset loop groupoids for loops Ln(m)  L. 
 
 For we see if  
Sn(m) = {Collection of all subsets of the loop Ln(m)  Ln} be 
the subset loop groupoid.  Let H = {Ln(m)}  Sn(m).  We see 
for every A  Sn(m).  A*H = H*A so the concept of strictly non 
commutative subset loop groupoid cannot be defined. 
 
 However we are going define specially strictly commutative 
subset loop groupoid as follows: 
 
DEFINITION 3.3:  Let  
Sn = {Sn(m) = Collection of all subsets of the loop Ln(m)  Ln} 
be the collection of all subset loop groupoids of the loop Ln(m) 
in Ln}.  We say a subset loop groupoid Ln(m)  Ln is strictly non 
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 commutative subset loop groupoid if and only if the loop Ln(m) 
 Ln is a strictly non commutative loop. 
 
Example 3.14:  Let S19 = {S19(9) | 19 is an odd prime > 3} = 
{Collection of all subset loop groupoids of the loop L19(9) 
where L19(m)  L19}.   
 

We see every subset loop groupoid L19(m) where (m,19) = 1 
=(m–1, 19) is strictly non commutative except for m = 10 and 
S19(10) is the only commutative subset loop groupoid.   
 

In view of this we have the following theorem. 
 
THEOREM 3.4:  Let  
Sn = {Sn(m) | n odd prime n  5 and(n, m) =(n, m–1) = 1}  
= {Collection of all subset loop groupoids of the loop Ln(m)  
Ln}.   
 

All subset loop groupoids Sn(m) with the exception of 

Sn
n 1

2

 
 
 

 are all strictly non commutative.  

 
Proof: Follows from the simple fact that every loop in Ln(m)  
Ln; n an odd prime n  5 is strictly non commutative for all m 

such that(m–1, n) =(n, m) = 1 and m  
n 1

2


 [5]. 

 

 In case of m = 
n 1

2


 we see Sn

n 1

2

 
 
 

 is a commutative 

subset loop groupoid of the commutative loop Ln
n 1

2

 
 
 

.   

 
Hence the claim. 

 
THEOREM 3.5:  Let  
Sn = {Sn(m) | n = 3t, n odd n > 3(m, n) =(m–1, n) = 1}  
= {Collection of all subset loop groupoid of the loop Ln(m); (m–
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1, n) =(n, m) = 1, n = 3t, n odd n > 3}.  Sn does not contain any 
strictly non commutative subset loop groupoid. 
 
Proof:  Follows from the simple fact Ln when n = 3t does not 
contain any strictly non commutative loop so Sn also does not 
contain any strictly non commutative subset loop groupoid. 
 
 We are now interested in finding the number of strictly non 
commutative subset loop groupoids in Sn = {Collection of all 
subset loop groupoids of the loops Ln(m) in Ln}. 
 
THEOREM 3.6:  Let Sn be the class of subset loop groupoids 
from Ln the class of loops.  If n = k1 2

1 2 kp p ...p   then Sn contains 
exactly Fn subset loop groupoids which are strictly non 

commutative where Fn =
 



 i

k
1

i i
i 1

( p 3 )p .   

 
The proof is similar to that of loops for more refer [5]. 

 
Example 3.15:  Let  
S = {Collection of all subsets of the loop L19(7)} be the subset 
loop groupoid.  S is strictly non commutative.  
 
Example 3.16:  Let  
S = {Collection of all subsets of the loop L23(12)} be the subset 
loop groupoid.  S is a commutative subset loop groupoid. 
 
Example 3.17:  Let  
S = {Collection of all subsets of the loop L29(11)} be the subset 
loop groupoid.  S is a strictly non commutative subset loop 
groupoid. 
 
Example 3.18: Let  
S = {Collection of all subsets of the loop L25(13)} be the subset 
loop groupoid.  S is commutative.  
 
 Now having seen examples of strictly non commutative 
subset loop groupoids and commutative subset loop groupoids 
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 we now proceed onto give some examples of strictly non 
commutative subset loop groupoids which are not strictly non 
commutative. 
 
Example 3.19:  Let  
S = {Collection of all subsets of the loop L27(8)} be the subset 
loop groupoid.  S is not a strictly non commutative subset loop 
groupoid.  
 
Example 3.20:  Let  
S = {Collection of all subsets of the loop L33(17)} be the subset 
loop groupoid of L33(17).  S is a commutative subset loop 
groupoid. 
 
Example 3.21:  Let  
S = {Collection of all subsets of the loop L33(5)} be the subset 
loop groupoid of L33(5).  S is not a strictly non commutative 
subset loop groupoid. 
 
Example 3.22:  Let  
S = {Collection of all subsets of the loop L33(14)} be the subset 
loop groupoid of L33(14). 
 
 S is a strictly non commutative subset loop groupoid. 
 
 Now as in case of the subset groupoids we can in case of 
subset loop groupoids also define the notion of left alternative 
subset loop groupoids, right alternative subset loop groupoids, 
alternative subset loop groupoids, Moufang subset loop 
groupoid, Bol subset loop groupoid.  Bruck subset loop 
groupoids and so on as in case of subset groupoids. 
 
 As the identity they satisfy be it a subset groupoid or a 
subset loop groupoid it is going to be the same we do not dwell 
into the definition. We just give some examples.   
 

We are more interested in working only with loops from the 
class of loops Ln defined in chapter I of this book. 
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Example 3.23:  Let  
S = {Collection of all subsets of the loop L19(18)} be the subset 
loop groupoid of the loop L19(18).  S is a left alternative subset 
loop groupoid. 
 
Example 3.24:  Let  
S = {Collection of all subsets of the loop L21(20)} be the subset 
loop groupoid.  It is easily verified S is a left alternative subset 
loop groupoid of L21(20). 
 
 It is pertinent to keep on record we call the subset loop 
groupoid S to be a left alternative subset loop groupoid if the 
basic loop on which we build S is a left alternative loop.  We do 
not demand subsets of S to satisfy it. 
 
Example 3.25:  Let S = {Collection of all subsets of the loop  
L = L5(4) given by the following table: 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 5 4 3 2

2 2 3 e 1 5 4

3 3 5 4 e 2 1

4 4 2 1 5 e 3

5 5 4 3 2 1 e

 

 
be the subset loop groupoid.  Clearly S is a left alternative 
subset groupoid of L5(4). 
 
Example 3.26:  Let  
S = {Collection of all subsets of the loop L27(26)} be the subset 
loop groupoid.   S is a left alternative subset loop groupoid of 
the loop L27(26). 
 
 Now we see how far the left alternative identity  
(x*x)*y = x*(x*y) is true in case of S in example 3.24. 
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 Consider A = {1, 2, 3}, B = {e, 2, 4} be S.   
To find (A * A) * B  
 

= ({1, 2, 3} * {1, 2, 3}) * B 
= {1 * 1, 1 * 2, 1 * 3, 2 * 1, 2 * 2, 2 * 3, 3 * 1, 3 * 2,  
    3 * 3} * B 
= {e, 5, 4, 1, 3} * {e, 2, 4} 
= {e * e, e * 2, e * 4, 5 * e, 5 * 2, 5 * 4, 4 * e, 4 * 2, 4 * 4,  
    1 * e, 1 * 2, 1 * 4, 3 * e, 3 * 2, 3 * 4} 
= {e, 2, 4, 5, 3, 1}      …  I 

 
Consider A *(A * B) 
 

= A* {1, 2, 3} * {e, 2, 4} 
= A * {1 * e, 2 * e, 3 * e, 1 * 2, 2 * 2, 3 * 2, 1 * 4, 2 * 4,  
   3 * 4} 
= {1, 2, 3, 5, 4}        …  II 

 
 We see I and II are equal and (A * A) * B = A *(A * B) for 
A, B  S. 
 
 In view of all these we just mention the following theorem. 
 
THEOREM 3.7:  The class of subset loop groupoids  
Sn = {Collection of all subsets loop groupoids of the loop Ln(m) 
 Ln for Ln(m) varying in Ln} contains exactly one left 
alternative subset loop groupoid.   
 
Proof: Follows from the fact Sn contains a subset loop groupoid 
of the loop Ln(n–1) this subset loop groupoid is left alternative 
as the loop Ln(n–1) is left alternative [5]. 
 
 Now we give examples of right alternative subset loop 
groupoids. 
 
Example 3.27:  Let  
S = {Collection of all subsets of the loop L7(2)} be the subset 
loop groupoid.  S is right a right alternative subset loop 
groupoid as L7(2) is a right alternative loop. 
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Example 3.28:  Let  
M = {Collection of all subsets of the loop L19(2)} be a subset 
loop groupoid of L19(2).  As L19(2) is a right alternative loop so 
M is also a right alternative subset loop groupoid of L19(2). 
 
Example 3.29:  Let  
M = {Collection of all subsets  of the loop L25(2)} be the subset 
loop groupoid of L25(2).  M is a right alternative subset loop 
groupoid as L25(2) is a right alternative loop.  
 
Example 3.30:  Let  
S = {Collection of all subsets of the loop L45(2)} be the subset 
loop groupoid of the loop L45(2).  S is a right alternative subset 
loop groupoid as L45(2) is a right alternative loop. 
 
 We will just give without proof the following theorem. 
 
THEOREM 3.8:  Let Sn = {Collection of all subset loop 
groupoids of the loops Ln(m) from Ln}.  Sn has only one right 
alternative subset loop groupoid given by  
S = {Collection of all subsets of the loop Ln(2)}  Sn.   
 
Proof:  Follows from the fact the collection of all loops Ln 
contains exactly only one right alternative loop Ln(2).  Hence 
the claim of the theorem. 
 
Example 3.31:  Let S = {Collection of all subsets of the loop 
L5(2) where the table of L5(2) is as follows: 
 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e
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 be the subset loop groupoid of the loop L5(2).  Clearly S is a 
right alternative subset loop groupoid of the right alternative 
loop L5(2). 
 
 Let A = {e, 1, 3} and B = {4, 5}  S  
 

(A * B) * B 
 
 =  ({e, 1, 3} * {4, 5}) * B 
 = {e * 4, e * 5, 1 * 4, 1 * 5, 3 * 4, 3 * 5} * B 
 = {4, 5, 2} * {4, 5} 
 = {4 * 4, 4 * 5, 5 * 4, 5 * 5, 2 * 4, 2 * 5}  

= {e, 1, 3}          …  I 
 
 Consider A *(B * B) 
 
 = A *({4, 5} * {4, 5}) 
 = A * {4 * 4, 4 * 5, 5 * 4, 5 * 5}  
 = A * {e, 1, 3} 
 = {e, 1, 3} * {e, 1, 3} 
 = {e * e, e * 1, e * 3, 1 * 3, 1 * 1, 3 * e, 3 * 1, 3 * 3} 
 = {e, 1, 3, 5, 4}        …  II 
 
 Clearly equations I and II are distinct so for subset A, B  S 
in general(A * A) * B  A *(A * B). 
 
 But by the definition of right alternative subset loop 
groupoid of the loop L we only need the loop L to be a right 
alternative.  So we see even for subset(A * A) * B  A *(A * B) 
still since the  loop L5(2) is a right alternative loop so is the 
subset loop groupoid of the loop L5(2).   
 

Hence we have seen the properties. 
 
Example 3.32:  Let  
S = {Collection of all subsets of the loop L7(5)} be the subset 
loop groupoid of the loop L7(5).  S is neither right alternative 
nor left alternative.  So S is not an alternative subset loop 
groupoid of the loop L7(5). 
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Example 3.33:  Let  
S = {Collection of all subsets of the loop L27(8)} be the subset 
loop groupoid of the loop L27(8).  S is not an alternative subset 
loop groupoid as L27(8) is not an alternative loop. 
 
Example 3.34:  Let  
S = {Collection of all subsets of the loop L49(11)} be the subset 
loop groupoid of the loop L49(11).  S is not a right alternative 
subset loop groupoid as L49(11) is not a right alternative loop.  S 
is not a left alternative subset loop groupoid as L49(11) is not a 
left alternative loop.   
 

Hence S is not an alternative subset loop groupoid as 
L49(11) is not an alternative loop. 
 
 In view of all these we have the following theorem. 
 
THEOREM 3.9:  Let Sn = {Collection of all subset loop 
groupoids of the loops from the class of loops Ln}.  Sn has no 
subset loop groupoid which is alternative. 
 
Proof:  A subset loop groupoid of a loop Ln(m) is alternative if 
and only if Ln(m) is an alternative loop in Ln.   
 

But we know the class of loops Ln has no alternative loop so 
Sn has no subset loop groupoid which is alternative.  
 
 We define a subset loop groupoid  
 
S = {Collection of all subsets of the loop L} to be a weak 
inverse property subset loop groupoid if and only if L is a weak 
inverse property loop; that is for every x, y, Z  L we have if  
(x * y) * z = e then x *(y * z) = e. 
 
 We will first illustrate this situation by some examples. 
 
Example 3.35:  Let S = {Collection of all subsets of the loop 
L7(3) given by the following table: 
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 * e 1 2 3 4 5 6 7

e e 1 2 3 4 5 6 7

1 1 e 4 7 3 6 2 5

2 2 6 e 5 1 4 7 3

3 3 4 7 e 6 2 5 1

4 4 2 5 1 e 7 3 6

5 5 7 3 6 2 e 1 4

6 6 5 1 4 7 3 e 2

7 7 3 6 2 5 1 4 e

 

 
be the subset loop groupoid of the loop L7(3). 
 
 Since L7(3) satisfies the weak inverse property i.e., as L7(3) 
is a weak inverse property loop we say S is a weak inverse 
property subset loop groupoid of the loop L7(3). 
 
Example 3.36:  Let  
S = {Collection of all subsets of the loop L31(6)} be the subset 
loop groupoid  of the loop L31(6).  L31(6) is a weak inverse 
property loop so S is a weak inverse property subset loop 
groupoid of the loop L31(6). 
 
Example 3.37:  Let  
S = {Collection of all subsets of the loop L57(8)} be the subset 
loop groupoid of the loop L57(8).  S is a weak inverse property 
subset loop groupoid as L57(8) is a weak inverse property loop. 
 
Example 3.38:  Let  
S = {Collection of all subsets of the loop L47(7)} be the subset 
loop groupoid of the loop L47(7).  Since L47(7) is a weak inverse 
property loop we see S is also a weak inverse property subset 
loop groupoid. 
 
 In view of all these examples  we propose the following 
theorem. 
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THEOREM 3.10:  Let Sn = {Collection of all subset loop 
groupoids of the loops Ln(m) from Ln}.  A subset loop groupoid 
S of the loop Ln(m) in Sn is a weak inverse property subset loop 
groupoid if and only if (m2 – m + 1)  0(mod n). 
 
Proof:  We know a loop Ln(m)  Ln is a weak inverse property 
loop if and only if (m2 – m + 1)  0 (mod n). 
 
 So S is a weak inverse property subset loop groupoid if and 
only if Ln(m) is a weak inverse property loop and Ln(m) is a 
weak inverse property loop if and only if  

(m2 – m + 1)  0 (mod n). 
 
 Hence the claim. 
 
 Refer [5] for more results we just see if a subset loop 
groupoid is a right alternative subset loop groupoid of a loop 
Ln(m) then S is not a weak inverse property loop.   
 

For we know if S is to be subset right alternative then loop 
groupoid m = 2 so that (m2 – m + 1) = 4 – 2 + 1 = 3  0 (mod n) 
for any n as in Ln(m) n > 3 and n a prime. 
 
 If S be a subset loop groupoid which is subset left 
alternative then also S is not a weak inverse property subset 
loop groupoid.  For a subset loop groupoid of the loop Ln(m) to 
be a left alternative subset loop groupoid we need m = n – 1.  
But for S to be a subset loop groupoid which has weak inverse 
property we need (m2 – m + 1)  0 (mod n) now if m = n – 1 we 
get m2 – m + 1 = (n–1)2 – (n–1) + 1 = 1 – (n–1) + 1  0 (mod n) 
for any n.   
 

Hence the claim.   
 
We define a subset loop groupoid S of a loop Ln(m) to be a 

strictly non right alternative if (x*y)*y  x*(y*y) for any pair x, 
y  Ln(m) it may so happen that we may have subset A, B  S 
with A*(B*B) =(A*B)*B still if Ln(m) is strictly non right 
alternative we define S to be a strictly non right associative. 
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 We will give examples of this situation. 
 
Example 3.39:  Let S = {Collection of all subsets of the loop 
L5(2) given by the following table: 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e

 

 
be the subset loop groupoid of L5(2).   
 
Take A = {2, 1, e} and B = {3, 4}  S.  We find  
 
A *(B * B)  
 

= A *({3, 4} * {3, 4})  
 = A * {3 * 3, 3 * 4, 4 * 3, 4 * 4} 
 = {1, 2, e} * {e, 5, 2} 
 = {1 * e, 1 * 5, 1 * 2, 2 * e, 2 * 5, 2 * 2, e * e, e * 5, e * 2} 
 = {e, 5, 2, 4}      …  I 
 
Consider 
 

(A * B) * B  
 
= {1, 2, e} * {3, 4} 

 = {1 * 3, 1 * 4, 2 * 3, 2 * 4, e * 3, e * 4} * B 
 = {4, 3, 5} * B 
 = {4, 3, 5} * {3, 4} 
 = {4 * 3, 4 * 4, 3 * 3, 3 * 4, 5 * 4, 5 * 3} 
 = {e, 5, 2, 1}      …  II 
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 I and II are distinct we do not know in general about subsets 
of S. 
 
 Whatever be the properties of the subsets of S we see since 
L5(4) is strictly not right alternative loop we say S is a strictly 
non right alternative subset loop groupoid. 
 
Example 3.40:  Let S = {Collection of all subsets of the loop 
L5(2); where the table of L5(2) is as follows: 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e

 

 
be the subset loop groupoid of the loop L5(2). 
 
 Take A = {e, 1, 2, 3, 4, 5} and B = {5, 2}  S 
 We now find(A * A) * B and A *(A * B). 
 
 Clearly S is a strictly non left alternative subset loop 
groupoid as L5(2) is a strictly non left alternative loop in L5.  
Consider (A * A) * B = A * B as (A * A = A). 
 
 Now A * B  

= {e * 5, 1 * 5, 2 * 5, 3 * 5, 4 * 5, 5 * 5, e * 2, 1 * 2,  
    2 * 2, 3 * 2, 4 * 2, 5 * 2} 

  = {5, 2, e, 4, 3} = A    …  I 
 
Consider  

A *(A * B) 
  = A * A(as A * B = A) 
  = A        …  II 
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  We see I and II are identical still S is only as per definition 
strictly non left alternative loop. 
 
 Likewise if A = {1, 2, 3, 4, e, 5} is in S in example 3.37  we 
will have  
 

A *(B * B) = (A * B)*B still, S in Example 3.37 is only a 
strictly non right alternative subset loop groupoid of the loop 
L5(4). 
 
 It is pertinent to keep on record if for any of the operations 
on S; if A = {Ln(m)} is taken as one of the elements in any 
identity(that is the special normal element of S)  we see the 
identity will be true what ever be the other subsets in S. 
 
 This is the special and a unique property enjoyed by the 
subset {e, 1, 2, …, n} = A  S. 
 
 Now we can find the number of strictly non right(left) 
alternative subset loop groupoids in Sn where  
 

Sn = {Collection of all subset loop groupoids of the loops in 
Ln}.  
 
 Let n = 1 2 k

1 2 kp p ...p    then Sn contains  

Fn = i

k
1

i i
i 1

(p 3)p 



 number of subset loop groupoids which are 

strictly non right(left) alternative in Sn.  
 

This result follows from the fact  
Ln = {Collection of the loops Ln(m)}  

 
= {class of loops Ln(m) with (n, m–1) =(n, m) = 1} is such 

that Ln contains only Fn = i

k
1

i i
i 1

(p 3)p 



 number of strictly non 

right(left) alternative loops where n = 1 2 k
1 2 kp p ...p    where pi’s 

are distinct primes 1  i  k [5].   
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Now it is to be observed that if n = p, p a prime then in the 

class of subset loop groupoids Sn either a subset loop groupoid  
is right(left) alternative or strictly non right(left) alternative. 
 
Example 3.41:  Let S7 = {Collection of all subset loop 
groupoids of the loop L7(m)  L7}. 
 
 The subset loop groupoid of the loop L7(2) is strictly non 
left alternative, L7(3) is strictly non left alternative and L7(6) is 
strictly non right alternative  subset loop groupoid of L7(6) and 
so on.   
 

We will on similar lines define a subset loop groupoid over 
a loop L is a Bol subset loop groupoid if and only if L is a Bol 
loop. 
 
Example 3.42:  Let  
S = {Collection of all subsets of the loop L = L11(7)} be the 
subset loop groupoid.  S is not a subset Bol loop groupoid or 
Bol subset loop groupoid as L11(7) is not a Bol loop. 
 
Example 3.43:  Let  
S = {Collection of all subsets of the loop L13(9)} be the subset 
loop groupoid of L13(9).  S is not a Bol subset loop groupoid as 
L13(9) is not a Bol loop. 
 
Example 3.44:  Let  
S = {Collection of all subsets of the loop L15(8)} be the subset 
loop groupoid.  S is not a Bol subset loop groupoid as L15(8) is 
not a Bol loop.   
 

In view of all these we prove the following theorem for the 
class of subset loop groupoid Sn. 
 
THEOREM 3.11:  Let  
Sn = {Collection of all subset loop groupoids of the loop Ln(m) 
 Ln}.  Sn does not contain any Bol subset loop groupoids. 
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 Proof:  Proof follows from the fact Ln the class of loops does 
not contain any Bol loop. So if S in Sn is to be a Bol subset loop 
groupoid of a loop Ln(m) in Ln we must have Ln(m) to be a Bol 
loop.  But no Ln(m) in Ln is a Bol loop so no S is Sn can be a Bol 
subset loop groupoid of the loop Ln(m). 
 
 Now we study about Bruck subset loop groupoid.   
 
Example 3.45:  Let  
S = {Collection of all subsets of a loop L19(8)} be a subset loop 
groupoid of the loop L19(8).  S is not a Bruck subset loop 
groupoid as the loop L33(8) is not a Bruck loop. 
 
 We show Sn the class of subset loop groupoids from the 
class of loops Ln has no Bruck subset loop groupoid. 
 
 This follows from the fact Ln the class of loops does not 
contain a Bruck loop so Sn = {Class of subset loop groupoids of 
loops from the class of loops Ln} does not contain any subset 
loop groupoid which is a Bruck subset loop groupoid of the 
loop Ln(m). 
 
Example 3.46:  Let  
S = {Collection of all subsets of the loop L19(8)} be the subset 
loop groupoid of the loop L19(8).  S is not a Moufang subset 
loop groupoid as L19(8) is not a Moufang loop. 
 
Example 3.47:  Let  
S = {Collection of all subsets of the loop L83(17)} be the subset 
loop groupoid of the loop L83(17).  S is not a Moufang subset 
loop groupoid of L83(17) as L83(17) is not a Moufang loop. 
 
Example 3.48:  Let  
S = {Collection of all subsets of the loop L11(7)} be the subset 
loop groupoid of the loop L11(7) is not a Moufang subset loop 
groupoid as L11(7) is not a Moufang loop. 
 
 In view of all these we prove the following theorem. 
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THEOREM 3.12:  Let Sn = {Collection of all subset loop 
groupoids of the loops from Ln}.  Sn does not contain any 
Moufang subset loop groupoid of a loop Ln(m)  Ln. 
 
Proof:  Follows from the fact that if Sn(m)  Sn is to be a 
Moufang subset loop groupoid of a loop Ln(m) we need Ln(m) 
to be a Moufang loop but we know Ln does not contain any 
Moufang loop so Sn cannot contain a Moufang subset loop 
groupoid [4, 5].  
 
Example 3.49:  Let  
S = {Collection of all subsets of the loop L9(8)} be the subset 
loop groupoid of the loop L9(8).  S is not an associative subset 
loop groupoid. 
 
Example 3.50:  Let  
S = {Collection of all subsets of the loop L19(3)} be the subset 
loop groupoid of the loop L19(3).  S is not an associative subset 
loop groupoid of the loop L19(3). 
 
Example 3.51:  Let  
S = {Collection of all subsets of the loop L21(11)} be the subset 
loop groupoid of the loop L21(11).  S is not an associative subset 
loop groupoid of the loop L21(11). 
 
 We see a subset loop groupoids of the loop L is associative 
if and only if the loop L is associative. 
 
THEOREM 3.13:  Let Sn = {Collection of all subset loop 
groupoids of the loop Ln(m)  Ln}.  No subset loop groupoid  
S = Sn(m) in Sn of the loop Ln(m) is associative. 
 
Proof:  We see any Sn(m)  Sn is a subset loop groupoid of a 
loop Ln(m)  Ln.  It is proved [5] no loop in Ln is associative so; 
no subset loop groupoid in Sn will be associative. 
 
 We can also define subset loop subgroupoids of a subset 
loop groupoids.   
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 Recall for any loop Ln(m) if t/n there exists t subloops of 
order k+1 where k = n/t.  

 
 Hi(t) = {e, i, i+t, i+2t, …, i+(k–1)t} is a subloop of Ln(m). 
 
 We see Hi(t) and Hj(t) are subloops of Ln(m) then  

Hi(t)  Hj(t) = {e}; i  j and  
 

t

i
i 1

H (t)

 = Ln(m). 

 
Example 3.52:  Let  
S = {Collection of all subsets of the loop L35(2)} be the subset 
loop groupoid of the loop L35(12).  Clearly 7/35 and 5/35.  Let 
Hi(S) = {Collection of all subsets of the subloop Hi(7); where  
 
 H1(7) = {e, 1, 8, 15, 22, 29} or 
 H2(7) = {e, 2, 9, 16, 23, 30} or 
 H3(7) = {e, 3, 10, 17, 24, 31} or 
 H4(7) = {e, 4, 11, 18, 25, 32} or 
 H5(7) = {e, 5, 12, 19, 26, 33} or 
  H6(7) = {e, 6, 13, 20, 27, 34} or 
 H7(7) = {e, 7, 14, 21, 28, 35}}  
‘or’ used in the mutually exclusive sense. 
 
 We see Hi(S) 


 S. 

 
 Clearly equality can never be attained. 
 
 However each Hi(5) is a subset subloop subgroupoid of S.   
 
 If we consider 
 H1(5) = {e, 1, 6, 11, 16, 21, 26, 31} 
 H2(5) = {e, 2, 7, 12, 17, 22, 27, 32} and so on. 
 
 We see H1(5)  H2(5) = {e}.  It is obvious from the 
subloops of the loop Ln(m). 
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 So we have subset subloop subgroupoids of a subset loop 
groupoid. 
 
Example 3.53:  Let  
S = {Collection of all subsets of the loop L15(8)} be the subset 
loop groupoid of L15(8). 
 
 Take P1 = {Collection of all subsets of the subloop  
 
 H2(3) = {e, 2, 5, 8, 11, 18}  L15(8)}; is a subset subloop 
subgroupoid of S.  Take P1 = {Collection of all subsets of the 
subloop H3(5) = {e, 3, 8, 13}  L15(8)}}  S is also a subset 
subloop subgroupoid of S.   
 

Now P2 = {Collection of all subsets of the subloop H3(3) = 
{e, 3, 6, 9, 12, 15}  L15(8)} be the subset subloop subgroupoid 
of S.  We see P1  P2 = {e}. 
 
 B2 = {Collection of all subsets of the subloop H2(5) = {e, 2, 
7, 12}  L15(8)}  S} is a subset subloop subgroupoid of S.  
We see B1  B2 = {e}.   
 

Thus we can get eight such subset subloop subgroupoids of 
S. 
 
Example 3.54:  Let  
S = {Collection of all subsets of the loop L21(11)} be the subset 
loop groupoid of the loop L21(11).  Let H1 = {Collection of all 
subsets of the subloop H1(3) = {e, 1, 4, 7, 10, 13, 16, 19}  
L21(11)}  S be the subset subloop subgroupoid of S. 
 
 H2 = {Collection of all subsets of the subloop H2(3) = {e, 2, 
5, 8, 11, 14, 17, 20}  L21(11)}  S be the subset subloop 
subgroupoid of S. 
 
 H3 = {Collection of all subsets of the subloop H3(3) = {e, 3, 
6, 9, 12, 15, 18, 21}  L21(8)}  S be the subset subloop 
subgroupoid of S. 
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  We see Hi  Hj = {e} if i  j; 1  i, j  3. 
 
 Consider P1 = {Collection of all subsets of the subloop 
H1(7) = {e, 1, 8, 15}  L21(11)}  S be the subset subloop 
subgroupoid of S. 
 
 P2 = {Collection of all subsets of the subloop H2(7) = {e, 2, 
9, 16}  L21(11)}  S be the subset subloop subgroupoid of S.  
P3 = {Collection of all subsets of the subloop H3(7) = {e, 3, 10, 
17}  L21(11)}  S be the subset subloop subgroupoid of the 
subset loop groupoid S of the loop L21(11) and so on. 
 
 Let P7 = {Collection of all subsets of the subloop  
H7(7) = {e, 7, 14, 21}  L21(11)}  S be the subset subloop 
subgroupoid of S.  We see Pi  Pj = {e} if i  j. 1  i, j  7. 
 
 We see S has atleast ten subset subloop subgroupoids. 
 
Example 3.55:  Let  
S = {Collection of all subsets of the loop L55(8)} be a subset 
loop groupoid of the loop L55(8).  Let P1 = {Collection of all 
subsets of the subloop H1(5) = {e, 1, 6, 11, 16, …, 51}} be the 
subset subloop subgroupoid of S.   
 

P2 = {Collection of all subsets of the subloop;  H2(5) = {{e, 
2, 7, 12, 17, 22, …, 52}} be the subset subloop subgroupoid of 
S.  P3 = {Collection of all subsets of the subloop.  H3(5) = {e, 3, 
8, 13, 18, 23, …, 53}  L55(8)} be the subset subloop 
subgroupoid of S. 
 
 P4 = {Collection of all subsets of the subloop  
H4(5) = {{e, 4, 9, 14, 19, 24, …, 54}  L55(8)}  S be the 
subset subloop subgroupoid of S. 
 
 P5 = {Collection of all subsets of the subloop H5(5) = {{e, 5, 
10, 15, 20, …, 55}  L55(8)}  S be the subset subloop 
subgroupoid of S. 
 
 We see Pi  Pj = {e}, i  j, 1  i, j  5. 
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 Let B1 = {Collection of all subsets of the subloop H1(11) = 
{{e, 1, 12, 23, 34, 45}  L55(8)}  S be the subset subloop 
subgroupoid of S. 
 
 B2 = {Collection of all subsets of the subloop H2(11) = {{e, 
2, 13, 24, 35, 46}  L55(8)}  S be the subset subloop 
subgroupoid of S. 
 
 B3 = {Collection of all subsets of the subloop H3(11) = {{e, 
3, 14, 25, 36, …, 47}  L55(8)}  S be the subset subloop 
subgroupoid of S and so on.  
 
 B11 = {Collection of all subsets of the subloop H11(11) = {e, 
11, 22, 33, 55}  L55(8)}  S be the subset subloop 
subgroupoid of S. 
 
 We see Bi  Bj = {e} if i  j. 1  i, j  11. 
 
 Thus we are in a position to find atleast 16 subset subloop 
subgroupoids of the subset loop groupoid S of the loop L55(8). 
 
 In view of this we have the following theorem. 
 
THEOREM 3.14:  Let S = {Collection of all subsets of the loop 
Lpq(t) where p and q two distinct odd primes} be the subset loop 
groupoid of the loop Lpq(t).  S has atleast p+q subset subloop 
subgroupoids.   
 
Proof:  We see p/pq and q/pq.  We have Hi(p) which gives p 
number of subloops;  i = 1, 2, …, p so related with each of these 
subloops we have a subset subloop subgroupoids say P1, P2, …, 
Pp such that Pi  Pj = {e} if i  j; 1  i, j  p. 
 
 Thus S has p + q number of distinct subset subloop 
subgroupoid where Pi = {Collection of all subsets of the subloop 
Hi(p) = {e, I, i+p, i+2p, …, i+(q–1)p} Lpq(t)}  S be the 
subset subloop subgroupoid of S.  Now Mj = {collection of all 
subset of the subloop Hj(p) = {e, j, j+q, j+2q, …, j+(p–1)q}  
Lpq(t)}  S be the subset subloop subgroupoid of S, 1   j  q. 
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It is easily verified Pi  Pj = {e} if i  j; 1  i, j  p and  
Mi  Mj = {e} if i  j. 1  i, j  q. 
 
 Hence the theorem. 
 
 Suppose we see p and q not relatively prime say (p, q) = d, 
d > 1 then what are the types of subset subloop subgroupoid we 
have for Ln(m), n = pq (p, q)  1.   
 

To this end we first illustrate some examples. 
 
Example 3.56:  Let  
S = {Collection of all subsets of the loop L45(14)} be the subset 
loop groupoid of the loop L45(14). 
 
 Consider H1(9) = {e, 1, 10, 19, 28, 37}, H2(9) = {e, 2, 11, 
20, 29, 38}, H3(9) = {e, 3, 12, 21, 30, 39}, H4(9) = {e, 4, 13, 22, 
31, 40} and so on H9(9) = {e, 9, 18, 27, 36, 45} all of them are 
subloops of L45(14).   
 

We see Pi = {Collection of all subsets of the subloop Hi(9) 
 L45(14)}  S is a subset subloop subgroupoid of S; 1  i  9. 
 
 Consider H1(15) = {e, 1, 16, 31}, H2(15) = {e, 2, 17, 32}, 
H3(15) = {e, 3, 18, 33}, H4(15) = {e, 4, 19, 34}, H5(15) = {e, 5, 
20, 35} and so on.  H15(15) = {e, 15, 30, 45}; all of them are 
subloops of L45(14). 
 
 Let Mj = {collection of all subsets of the subloop Hj(15)  
L45(14)}  S; Mj is a subset subloop subgroupoid of S, 1  j  
15. 
 
 We now find  
 
 P1 = {Collection of all subsets of the subloop H1(9) = {e, 1, 
10, 19, 28, 37}  L45(14)}  S the subset subloop subgroupoid 
of S. 
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M3 = {Collection of all subsets of the subloop H3(15) = {e, 
3, 18, 33}  L45(14)} be the subset subloop subgroupoid of S. 
 
 We see H1(9)  H3(15) = {e}. 
 
 For {e, 1, 10, 19, 28, 37}  {e, 3, 18, 33} = {e}. 
 
 We find now Hi(3) for 3/45. 
 
 H2(3) = {e, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 31, 35, 38, 41, 
44}.   
 
We now find H2(3)  H3(15) = {e} and H2(3)  H1(9) = {e}. 

 
 Now we find H1(3) = {e, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 
31, 34, 37, 40, 43}  L45(14) is a subloop. 
 
 Clearly H1(3)  H1(9) = {e, 1, 10, 19, 28, 37} = H1(9). 
 
 We now find H1(15) = {e, 1, 16, 31}  L45(14) subloop of 
L45(4). 
 
  Consider H1(15)  H1(3) 
      = {e, 1, 16, 31} = H1(15). 
 
  We now find 
      H1(9)  H1(15) = {e, 1}. 
 
 Several conclusions can be made from this study. 
 
 Now let  
 
Nt = {Collection of all subsets of the subloop Ht(3)  L45(45)} 
 S be the subset subloop subgroupoid of S. 
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  We make the following observations  
 
     Pi  Mj = {e} if i  j 
     Pi  Nk = {e} if i  k 
     Nk  Mj = {e} if j  k 
     1  i  9, 1  j  15 and 1  k  t. 
 
 Now we just study another example. 
 
Example 3.57:  Let  
S = {Collection of all subsets of the loop L75(14)} be the subset 
loop groupoid of the loop L75(4).  We see Hi(5), Hj(15), Hi(3) 
and Hj(25) gives four classes of subloops.  We have 48 subloops 
of L75(14). 
 
 Associated with these 48 subloops we can get 48 subset 
subloop subgroupoids of S.  Some of the subgroupoids have {e} 
to be common and some of them are subset subloop 
subgroupoids of these subset subloop subgroupoids to be 
common if they are built on subgroupoids of subgroupoids i, 
i.e., Hi(5) and Hi(15) are such that Hi(5)  Hi(15) likewise Hi(3) 
 Hi(15) 
 
 Hi(5)  Hi(25) 
 
 We just given only a few illustrations from them  
 
 H1(15) = {e, 1, 16, 31, 46, 61}  L75(14) is a subloop of the 
loop L75(14). 
 
 Consider H1(25) = {e, 1, 26, 51}  L75(14) is again a 
subloop of L75(14).  Clearly H1(15)  H1(25) = {e, 1}.   
 

But if we take H1(5) = {e, 1, 6, 11, 16, 21, 26, 31, 36, 41, 
46, 51, 56, 61, 66, 71}  L75(14) is a subloop of the loop 
L75(14). 
 
   We see H1(5)  H1(25) 
   = {e, 1, 26, 51} = H1(25). 
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   Similarly H1(5)  H1(15) 
   = {e, 1, 16, 31, 46, 61} = H1(15). 
 
 Thus we see if in H1(t) and Hi(m) if t/m the  
Hi(t)  Hi(m) = Hi(t) provide i is taken to be the same index. 
 
 Consider H2(5)  H6(15) 
 
 = {e, 2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72} 
 {e, 6, 21, 36, 51, 66} = {e}.   
 

We see if i  j even if Hi(5)  Hj(15).  We see Hi(5)  
Hj(15) = {e} for i  j.  Only for same value of i we have the 
containment relation to be true. 
 
Example 3.58:  Let  
 

S = {Collection of all subsets of the loop L105(23)} be the 
subset loop groupoid of the loop L105(23). 
 
 Consider Hi(3) = {e, I, i+3, …, i+(105–i+1)}  L105(23) is a 
subloop of S. 
 
 H1(5) = {e, 1, 6, 11, 16, 21, 26, 31, …, 101} 
 H1(3) = {e, 1, 4, 7, 10, 14, 17, 20, 23, …, 103} 
 H1(7) = {e, 1, 7, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, …, 99} 
 H1(15) = {e, 1, 16, 31, 46, 61, 76, 91}   L105(23). 
 H1(21) = {e, 1, 22, 43, 64, 85}  L105(23) and  
 H1(35) = {e, 1, 36, 71} L105(23) are all subloops of the 
loop L105(23). 
 
   We see H1(35) = H1(7) 
 
     H1(21)  H1(7) and  
     H1(15)  H1(5). 
 
 Further the subset subloop subgroupoid of the subloops are 
also contained as per above containment.  
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  P1 = {Collection of all subsets of the subloop H1(35)  
L105(23)}  S be the subset subloop subgroupoid of S. 
 
 M1 = {Collection of all subsets of the subloop H1(7)   
L105(23)}  S be the subset subloop subgroupoid of S. 
 
 N1 = {Collection of all subsets of the subloop H1(5)  
L105(23)}  S be the subset subloop subgroupoid of S.  
 
 T1 = {Collection of all subsets of the subloop H1(21)   
L105 (23)}  S be the subset subloop subgroupoid of S. 
 
 B1 = {Collection of all subsets of the subloop H1(15)  
L105(23)}  S be the subset subloop subgroupoid of S and  
 
 R1 = {Collection of all subsets of the subloop H1(3)  
L105(23)}  S be the subset subloop subgroupoid of S. 
 
 We see T1  R1, B1  R1, P1  N1, P1  M1, B1  N1.  We 
see this is true for any appropriate i. 
 
Example 3.59:  Let  
S = {Collection of all subsets of the loop L63(11)} be the subset 
loop groupoid of the loop L63(11). 
 
 Consider H1(3) = {e, 1, 4, 7, 10, 13, 16, 19, 22, …, 61}, 
 H2(3) = {e, 2, 5, 8, 11, 14, 17, 20, 23, …, 62} and 
 H3(3) = {e, 3, 6, 9, 12, 15, …, 63} subloops. 
 
 H1(9) = {e, 1, 10, 19, 28, 37, 46, 55, 64}  L63(11), 
 H2(9) = {e, 2, 11, 20, 29, 38, 47, 56, 65}  L63(11), 
 H3(9) = {e, 3, 12, 21, 30, 39, 48, 57, 66}  L63(11) and 
 H9(9) = {e, 9, 18, 27, 36, 45, 54, 63}  L63(11). 
 
 H1(7) = {e, 1, 8, 15, 22, 29, 36, 43, 50, 57}  L63(11) 
 H2(7) = {e, 1, 2, 9, 16, 23, 30, 37, 44, 51, 58}  L63(11) 
and so on; 
 H7(7) = {e, 7, 14, 21, 28, 35, 42, 49, 56, 63}  L63(11) 
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 H1(21) = {e, 1, 22, 43}  L63(11) 
 H2(21) = {e, 2, 23, 44}  L63(11) 
 H3(21) = {e, 3, 24, 45}  L63(11) 
 H4(21) = {e, 4, 25, 46}  L63(11) 
and so on 
 
 H21(21) = {e, 21, 42, 63}  L63(11) are the subloops of  
L63(11) we have 40 subloops.  Corresponding to each of the 
subloop we have subset subloop subgroupoid of S.   
 
 Thus we have 40 distinct subset subloop subgroupoids of S.   
 

In view of all these we have the following results. 
 
THEOREM 3.15:  Let  
S = {Collection of all subsets of the loop Ln(m)  Ln} be the 
subset loop groupoid of the loop Ln(m).  If r/n and s/n then the 
subset subloop subgroupoids Pi and Bi of the subloops satisfy 
the following. 
 

(i) o(Pi  Bj) = 1 if (r, s) = d, d > 1 and i  j (mod d) 
(ii) o(Pi  Bj) = 21+(n/rs) – 1 if (r, s) = 1 
(iii) o(Pi  Bj) = 2(1+n/lcm(r,s)) – 1 if (r, s) = d (d > 1) and 

i  j (mod d) 
 

The proof is similar to that of subloops [5]. 
 
Now we can define for subset loop groupoid of the loop the 

analogous of Lagrange’s theorem for finite groups. 
 
We know the Lagrange’s theorem for groups is true in case 

of loop Ln(m) when n is an odd prime. 
 
For any subloops in Ln(m)  are Hi = {e, i}  Ln(m),  

i  Ln(m); and o(Hi) = 2, and 2/n+1. 
 
However if n = 9 say then L9(8) is a loop of order 9.   

H1(3) = {e, 1, 4, 8} is a subloop of L9(8). 
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 o(H1(3)) = 4 and 4 / 10 so this subloop does not divide 
order of L9(8). 

 
o(S) = 210 – 1 and  
o(P1) = o ({Collection of all subsets of the subloop H1(3)}) 

= 24 – 1 = 15. 
 
15 /  210–1.  So Lagranges theorem for group is not 

satisfied by the subset subloop subgroupoid. 
 
Consider S the subset loop groupoid of the loop L15(8).  
o(L15(8)) = 216 – 1. 
 
Let P1 = {Collection of all subsets of the subloop  

H1(5) = {e, 1, 6, 11}  L15(8)}  S be the subset subloop 
subgroupoid of S. 

 
o(P1) = 24 – 1 but o(H1(5)) = 4 and 4/16 also 24–1 / 216–1.  

We see H1(5) satisfies Lagrange theorem for finite loops and 
also the subset subloop subgroupoid also satisfies the Lagrange 
theorem for subloops. 

 
 We see if we take Hi(3) = {e, 1, 4, 7, 10, 13}  L15(8); 
 
 o(Hi(3))  /  o(L15(8)).  o(B1)= 26–1. 
 
 We see o(B1) / o(S) as 26–1 / 216–1.  We see some of the 
subset subloop subgroupoid satisfy the Lagranges theorem for 
finite groups. 
 
Example 3.60:  Let S = {Collection of all subsets of the loop 
L21(11)} be the subset loop groupoid of the loop L21(11).   
H1(7) = {e, 1, 8, 15}, H2(7) = {e, 2, 9, 16}, H3(7) = {e, 3, 10, 
17}, …, H7(7) = {e, 7, 14, 21}. 
 
 o(S) = 221 – 1 and  
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 o(P1) = o(P1) = {Collection of all subsets of the subloop 
H1(7)}) = 24 – 1. 
 
 Clearly 24 – 1  / 221 – 1. 
 
 H1(3) = {e, 1, 4, 7, 10, 13, 16, 19}  L21(11). B1 = 
{Collection of all subsets of the subloop H1(3)  L21(11)}  S, 
be the subset subloop subgroupoid of the subloop o(B1) = 28 – 1.  
 
 Clearly 28 – 1 / 221 – 1. 
 
Example 3.61:  Let  
S = {Collection of all subsets of the loop L11(8)} be the subset 
loop groupoid of the loop L11(8).   
 

We know o(S) = 212 – 1. Now the only subloops of L11(8) 
are {e, i}  Ln(m), i  L11(8).  Clearly the subset subloop 
subgroupoids are of order 3.  3/212–1.  So order of all the subset 
subloop subgroupoids of S divides the order of S. 
 
Example 3.62:  Let  
S = {Collection of all subsets of the loop L23(7)} be the subset 
loop groupoid of the loop L23(7).  Clearly the only subset 
subloop subgroupoid of S are {i, e} where i  L23(7).  Let Pi = 
{Collection of all subsets of {i, e}}  S (i  e) is a subset 
subloop subgroupoid of S of order 3.  We see o(S) = 224 – 1 and 
o(Pi) = 22 – 1 and o(Pi) /o(S) 
 
 Now having seen examples of subset loop groupoids of the 
loop Ln(m); n a prime we formulate the following results. 
 
THEOREM 3.16:  Let Sn = {Collection of all subset loop 
groupoids of the class of loops Ln}.   
 
S = {Collection of all subsets of the loop Ln(m)} be the subset 
loop groupoid Ln(m).  The Lagrange theorem for finite groups is 
satisfied by every subset subloop subgroupoids of S if and only 
if n is an odd prime. 
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Proof:  Follows from the simple fact that Ln(m)  Ln satisfies 
the Lagrange theorem if and only if n is an odd prime [5].   
 

Now if S is the subset loop groupoid of the loop Ln(m) then 
o(S) = 2n+1 – 1. 
 
 Take all the subset subloop groupoids of S; they are  
Hi = {e, i}  Ln(m) such that i  Ln(m) and M = {e, 1, 2, …, p} 
 S.   
 

If Pi = {Collection of all subset subloop subgroupoids of Hi} 
the subset subloop subgroupoid of S then o(Pi) = 22 – 1 .  o(M) 
= 1.  Thus o(M) / 2p+1 – 1 and o(Pi) = 22 – 1 /2p+1 – 1, hence the 
claim. 
 
 We will call a subset subloop subgroupoid H of a subset 
loop groupoid S to be a p-Sylow subset subloop subgroupoid if 
o(H) = pk then pk / o(S) but pk+1 /  o(S). 
 
 We first illustrate the situation of the existence / non 
existence of p-Sylow subset subloops of groupoids. 

 
Example 3.63:  Let  
S = {Collection of all subsets of the loop L27(8)} be the subset 
loop groupoid of the loop L27(8). 
 
 The subset subloop subgroupoids of the subset loop 
groupoid, L27(8) are as follows: 
 
 H1(3) = {e, 1, 4, 7, 10, 13, 16, 19, 22, 25}  S,  
 H2(3) = {e, 2, 5, 8, 11, 14, 17, 20, 23, 26}  S and 
 H3(3) = {e, 3, 6, 9, 12, 15, 18, 21, 24, 27}  S are subset 
subloop subgroupoids of S. 
 
 H1(9) = {e, 1, 10, 19}  L27(8) 
 H2(9) = {e, 2, 11, 20}  L27(8) 
 H3(9) = {e, 3, 12, 21}  L27(8) and so on 
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 H9(9) = {e, 9, 18, 27}  L27(8) are all the subloops of 
L27(8). 
 
 All the associated subset subloop subgroupoids of S are  
Pi = {Collection of all subsets of the subloop Hi(9)} be the 
subset subloop subgroupoid of S. 
 
 o(Pi) = 24 – 1 = 7 
 and o(S) = 228 – 1 and 24 – 1 / 228 – 1. 
 Also o(Hi(9)) / o(L27(8)). 
 
 In view of this we propose the following problem that if 
o(Hi) / o(Ln(m)) then will i no(H ) o(L (m))2 1/ 2 1   ? 
 
 We see in most of the examples this is true. 
 
Example 3.64:  Let  
S = {Collection of all subsets of the loop L45(8)} be the subset 
loop groupoid of the loop L45(8).  
 

H1(5) = {e, 1, 6, 11, 16, 21, 26, 31, 36, 41}  L45(8) 
H2(5) = {e, 2, 7, 12, 17, 22, 27, 32, 37, 42}  L45(8) 
H3(5) = {e, 3, 8, 13, 18, 23, 28, 33, 38, 43}  L45(8) 
H4(5) = {e, 4, 9, 14, 19, 24, 29, 34, 39, 44}  L45(8) and 
H5(5) = {e, 5, 10, 15, 20, 25, 30, 35, 40, 45}  L45(8) be 

the subloops of the loop L45(8). 
 

Consider H1(9) = {e, 1, 10, 19, 28, 37}  L45(8) 
H2(9) = {e, 2, 11, 20, 29, 38}  L45(8), …,  
H9(9) = {e, 9, 18, 27, …, 45}  L45(8) be the subloops of 

the loop L45(8). 
 

H1(3) = {e, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 
43}  L45(8) 

 
H2(3) = {e, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 

44}  L45(8) and  
 



Subset  Loop Groupoids  125 
 
 
 H3(3) = {e, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 
45}  L45(8) are all subloop of L45(8). 

 
o(Hi) (5)) = 10, o(Hi(3)) = 16 and o(Hi(9)) = 6; clearly 

o(Hi(5)) does not divider o(L45(8)) i.e., 10 /  46.  o(Hi(3)) / 

o(L45(8)) that is 16 /  46 and o(Hi(9)) /  o(L45(8)) that is 

6 / 46.   
 
Clearly none of the subloops of the loop L45(8) is a 

Lagrange subloop of L45(8).   
 
We see none of the order of the subset subloop 

subgroupoids of S divides order of S. 
 
That is 26 – 1 /  246 – 1, 210 – 1 /  246 – 1 and 216 – 1 /  

246 – 1.   
 
Hence the Lagrange theorem for subset subloop 

subgroupoid is not true in case of this S. 
 
Example 3.65:  Let  
S = {Collection of all subsets of the loop L39(11)} be the subset 
loop groupoid of the loop L39(11).  The subloops of L39(11) are 
Hi(3) and Hj(3), i = 1, 2, …, 13 and j = 1, 2, 3. 
 
 H1(13) = {e, 1, 14, 27},  
 
 H2(13) = {e, 2, 15, 28} and so on H13(13) = {e, 13, 26, 39} 
are subloops of L39(11) which are Lagrange subloops as 
o(Hi(13)) = 4 and 4/40. 
 
 H1(13) = {e, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37}  
 H2(13) = {e, 2, 5, 8, 11, 14, 17, …, 35, 38} and  

H3(3) = {e, 1, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 33, 39}  
L39(11).   

 
Clearly o(Hj(3)) / o (L39(11)) as o(Hj(3)) = 14 and that of 

o(L39(11)) = 40 and 14 / 40.    
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Thus some subloop of L39(11) satisfy Lagrange theorem and 

some of them do not satisfy the Lagrange theorem for finite 
groups.  

 
If Pi = {Collection of all subsets of the subloop Hi(13)  

L39(11)} be the subset subloop subgroupoid  then o(Pi) / o(S) 
where o(Pi) = 24 – 1 / 240 – 1 and if  
 
Bi = {Collection of all subsets of the subloop Hi(3)  L39(11)} 
be the subset subloop subgroupoid then o(Bi) = 214 – 1 does not 
divide 240 – 1.  

 
Thus we have loops L such that in that L some subloops are 

Lagrange and some subloops are not Lagrange.   
 
We also see some of the subloops of the loop Ln(m)  Ln 

are Sylow but most of them are not Sylow. 
 
Example 3.66:  Let  
S = {Collection of all subsets of the loop L7(3)} be the subset 
loop groupoid of the loop L7(3).  We see the only subloops of 
L7(3) are Hi = {e, i}  L7(3); where i  {1, 2, 3, …, 7}, 1  i  
7. 
 
 Now  
Pi = {Collection of all subsets of Hi} = {{e}, {i}, {e, i}}  S is a 
subset subloop subgroupoid of order 3. 
 
 o(S) = 28 – 1 and o(Pi) = 22 – 1 and o(Pi) / o (28 – 1).   
 

Thus S has 3 p-Sylow subset subloop subgroupoid. 
 
Example 3.67:  Let  
S = {Collection of all subsets of the loop L15(8)} be the subset 
loop groupoid of the loop L15(8).  o(S) = 216 – 1 and  
o(L15(8)) = 16. 
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  Clearly S has 3-Sylow subset subloop subgroupoids given 
by the subloop (associated with the subloop), Hi = {e, i}   
L15 (8); i  {1, 2, …, 15}; 1  i  15.  Thus all subset subloop 
subgroupoids associated with Hi are of order 3 = 22 – 1 and  
22 – 1 / o(S) = 216 – 1.  Thus S has 3-Sylow subloop 
subgroupoid.   
 

Consider Hi(5) = {e, 1, 6, 11}  L15(8) be a subloop of 
L15(8).  Let P1 = {Collection of all subsets of the subloop Hi(5)} 
be the subset subloop subgroupoid of S.  o(Pi) = 24 – 1 and  
24 – 1 / 216 – 1 hence Pi’s are Lagrange.  As o(Pi) = 24 – 1 = 15 
we cannot define any notion like p-Sylow for these subset 
subloop subgroupoids of S and 15/216 – 1.  
 
Example 3.68:  Let  
S = {Collection of all subsets of the loop L29(7)} be the subset 
loop groupoid of the loop L29(7).  L29(7) has only subgroups 
(subloops) of order two.  We see Hi = {e, i}  L29(7) where  
i  {1, 2, …, 29}, 1  i  29 are the 29 subloops.  Related with 
each of these subloops we get subset subloop subgroupoids of S 
of order 24 – 1. We see order of S = 230 – 1.   
 

Further 24 – 1 / 230 – 1.   
 

Thus all subset subloop subgroupoids of S are Lagrange and 
3-Sylow.   

 
However we see the fact that number of p-Sylow subset 

subloop subgroupoids of S for a given prime is of the form 1+kp 
where (1+kp) / o(S) for some positive integer k is general is not 
true. 
 
Example 3.69:  Let  
S = {Collection of all subsets of the loops L23(7)} be the subset 
loop groupoid of the loop L23(7).  o(S) = 224 – 1.  
 
 The subset subloop subgroupoids of S are Pi = {Collection 
of all subset of subloops of the loop Hi = {e, i}}  S be the 
subset subloop subgroupoids of S.  o(Pi) = 22 – 1.  o(Pi) / o(S).  
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All subset subloop subgroupoids are 3-Sylow subset subloop 
subgroupoids. 
 
 We see S has 23, 3-Sylow subset subloop subgroupoids.   
p = 2 and 224 – 1 S has 23 number of 3-Sylow subset subloop 
subgroupoids and we have 1+3k = 23 and we see these does not 
exist any integer k such that 1 + 3k = 23.   Hence the third p-
Sylow theorem is not true in case of S which is associated with 
the loop Lp(m)  Lp; p a prime. 
 
Example 3.70:  Let  
S = {Collection of all subsets of the loop L27(8)} be the subset 
loop groupoid of the loop L27(8).  The subset subloop 
subgroupoid of S are  

H1(3) = {e, 1, 4, 7, 10, 13, 16, 19, 22, 25}  L27(8).   
 

P1 = {collection of all subsets of H1(3)} be the subset 
subloop subgroupoid of S. o(P1) = 210 – 1 and o(S) = 228 – 1.  
We see P1 is not a p-Sylow subset subloop subgroupoid of S. 
 
Example 3.71:  Let  
S = {Collection of all subsets of the loop L51(8)} be the subset 
loop groupoid of the loop L51(8). 
 
 Let 3/51 and 17/51 so we see we have two subset subloop 
subgroupoids associated with the subloops Hi(3) and Hi(17) 
where  
 

H1(3) = {e, 1, 4, 10, 13, 16, 19, 22, 25, 28, 31, 34,  
    37, 40, 43, 46, 49}  L51(8),  

 
H2(3)  = {e, 2, 5, 8, 11, 14, 17, 20, 23, 26, …, 47,  

    50}  L51(8) and 
 
H3(3)  = {e, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,  

    42, 45, 48, 51}  L51(8). 
 
H1(17)  = {e, 1, 18, 35}  L51(8),  
H2(17)  = {e, 2, 19, 36}  L51(8), 
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 H3(17)  = {e, 3, 20, 27}  L51(8), …, and 

H17(17) = {e,17, 34, 51}  L51(8) are the subloops of L51(8).   
 
We have 20 subloops for the loop L51(8). 
 
Pi = {collection of all subsets of the subloop Hi(3)}  S,  

1  i  3 be the subset subloop of the subgroupoid of the 
subloop of Hi(3)  L51(8). 

 
Mi = {collection of all subsets of the subloop Hi(17)}  S 

be the subset subloop subgroupoid of the subloop Hi(17); 1  i  
17.   

 
o(Pi) = 24 – 1 as o(Hi(3)) = 4.   
 
Now o(Mi) = 218 – 1 as o(Hi(17) = 18; o(S) = 252 – 1  clearly 

o(Pi) / o(S) but o(Mi) /  o(S) so we see Pi is not a Sylow subset 
subloop subgroupoid as o(Pi) = 15, 1  i  3.   

 
Thus S has no p-sylow subset subloop subgroupoids. 
 
Thus o(Hi(3)) / o(L51(8)); 4/52; 8 / 52  So Hi(3) is a 2-

Sylow subloop of L51(8).   
 
However the subset subloop subgroupoid of the subloop 

Hi(3) is not a p-Sylow  subset subloop subgroupoid of S. 
 
Example 3.72:  Let  
S = {Collection of all subsets of the loop L33(5)} be the subset 
loop groupoid  of the loop L33(5).   
 
 3/33 and 11/33 so we have 14 subloops for the loop L33(5) 
given by  
 

H1(3) = {e, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31},  
H2(3) = {e, 2, 5, 8, 12, 14, 17, 20, 23, 26, 29, 32} and  
H3(3) = {e, 3, 6, 9, 13, 15, 18, 21, 24, 27, 30, 33}  L33(5) 

are of order 12.   
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Thus Hi(3) are not p-Sylow subloop of L33(5).   
 
H1(11) = {e, 1, 12, 23} 
H2(11) = {e, 2, 13, 24} 
H3(11) = {e, 3, 14, 25}, …, and 
H11(11) = {e, 11, 22, 33} 
o(L33(5)) = 34. 
 
o(Hi(11)) = 4;  4 /  34 so L33(5) does not contain any  

p-Sylow subloops. 
 
o(Pi) = 24 – 1 = 15 where  

Pi = {Collection of all subsets of the subloop Hi(3)}  S. 
 
o(Mi) = 212 – 1 where  

Mi = {Collection of all subsets of the subloop Hi(11)}  S. 
 
We see L33(5) has no p-Sylow subloops as well as S has no 

p-Sylow subset subloop subgrouoids. 
 
Now we proceed onto study the concept of principal isotope 

of a subset loop groupoid of a loop Ln(m)  Ln.   
 
Suppose Ln(m)  Ln is a loop and (Ln(m), o) be the 

principal isotope with respect a, b  (Ln(m), o) then if  
 

S = {Collection of all subsets of the loop Ln(m)} be the 
subset loop groupoid of Ln(m) then we denote by  

 
SPI(a, b) = {collection of all subsets of (Ln(m), o) the 

principal isotope of Ln(m)}.   
 
We define SPI(a, b) to be the principal isotope subset loop 

groupoid of the principal isotope of the loop Ln(m). 
 
We will first illustrate this situation by some examples. 
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 Example 3.73:  Let  
S = {Collection of all subsets of the loop L5(2)} be the subset 
loop groupoid of the loop L5(2).   
 
 The loop of L5(2) is as follows: 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e

 

 
 Now we get the principal isotope of (L5(2), *) for a = e and 
b = 3 we get the (L5(2), o) which is as follows: 
 

o e 1 2 3 4 5

e 3 2 5 e 1 4

1 5 3 4 1 e 2

2 4 e 3 2 5 1

3 e 1 2 3 4 5

4 2 5 1 4 3 e

5 1 4 e 5 2 3

 

 
(L5(2), o) is the principal isotope of (L5(2), *) with e = 3 as the 
identity and x * x = e = 3. 
 
 SIP = {Collection of all subsets of the principal isotope 
(L5(2), o)} be the principal isotope subset loop groupoid of 
(L5(2), o).   
 

Clearly we see SIP is not a commutative principal isotope 
subset loop groupoid of (L5(2), o). 
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Example 3.74:  Let  
S = {Collection of all subsets of the loop {L5(4), *}} be the 
subset loop groupoid.   
 

The following loop of L5(4) is 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 5 4 3 2

2 2 3 e 1 5 4

3 3 5 4 e 2 1

4 4 2 1 5 e 3

5 5 4 3 2 1 e

 

 
 Take a = 1, b = e with e = 1.  Let (L5(4), o) be principal 
isotope of (L5(4), o).  
 
 The table of (L5(4), o). 
 
 

o e 1 2 3 4 5

e 1 e 5 4 3 2

1 e 1 2 3 4 5

2 4 2 1 5 e 3

3 2 3 e 1 5 4

4 5 4 3 2 1 e

5 3 5 4 e 2 1

 

 
 SIP(1,e) = {Collection of all subsets of the principal isotope 
loop (L5(4), o)} be the subset loop subgroupoid of the principal 
isotope. 
 
 We see SIP(1, e) is non commutative. 
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 Example 3.75:  Let  
S = {Collection of all subsets of the loop (L5(3), *)} be the 
subset loop groupoid.   
 

The table for L5(3) is as follows: 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 4 2 5 3

2 2 4 e 5 3 1

3 3 2 5 e 1 4

4 4 5 3 1 e 2

5 5 3 1 4 2 e

 

 
 The principal isotope loop of (L5(3), *) be (L5(3), o) a = b = 
5 with e = e identity. 
 
 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 4 5 2

2 2 3 e 5 1 4

3 3 4 5 e 2 1

4 4 5 1 2 e 3

5 5 2 4 1 3 e

 

 
 Let SIP (a, b / a = b = 5) = {Collection of all subsets of the 
principal isotope loop (L5(3), o)} be the principal isotope subset 
loop groupoid of (L5(3), o).   
 

We see SIP is also a commutative subset loop groupoid.  
 
 In view of this we have the theorem. 
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THEOREM 3.17:  Let Ln(m)  Ln.  Let the principal isotope of 
(Ln(m), *) with respect to a, b  Ln(m) be (Ln(m), o).   
 

Let S = {Collection of all subsets of the loop (Ln(m)} be the 
subset loop groupoid of (Ln(m), *).   

 
Let SIP = {Collection of all subsets of the loop (Ln(m), o)} be 

the principal isotope subset loop groupoid of (Ln(m), o).  SIP is a 
non commutative subset loop grouped in the following cases  
 

(i) a = e and b  e 
(ii) a  e and b = e. 

 
The proof follows from the fact if in (Ln(m), *); (Ln(m), o) 

is non commutative if  
 

(i) a = e and b  e 
(ii) a  e and b = e. 

 
We give yet another example. 

 
Example 3.76:  Consider the loop L5(3) given by the following 
table: 
 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 4 2 5 3

2 2 4 e 5 3 1

3 3 2 5 e 1 4

4 4 5 3 1 e 2

5 5 3 1 4 2 e

 

 
 Take a = 4, b = e the principal isotope (L5(3), o) 
composition table is as follows: 
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o e 1 2 3 4 5

e 4 5 3 1 e 2

1 3 2 5 e 1 4

2 5 3 1 4 2 e

3 2 4 e 5 3 1

4 e 1 2 3 4 5

5 1 e 4 2 5 3

 

 
 We see (L5(3), o) is strictly commutative.  However (L5(3), 
*) is a commutative loop.   
 

So S = {Collection of all subsets of the loop (L5(3), *)} is a 
subset loop groupoid which is commutative.  But SIP(4, e) = 
{Collection of all subsets of the principal isotope (L5(3), o)} the 
principal isotope subset loop groupoid is strictly non 
commutative. 
 
 However we show by an example even the loop Ln(m) is 
strictly non commutative yet (Ln(m), o) need not be strictly non 
commutative. 
 
Example 3.77:  Let (L5(2), *) be the loop whose composition 
table is as follows: 
 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e

 

 
(L5(2), *) is a strictly non commutative loop.  Take a = 2 

and b = 3.   
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The principal isotope (L5(2), o)’s composition table is as 
follows: 
 

o e 1 2 3 4 5

e 4 e 3 2 5 1

1 e 1 2 3 4 5

2 3 2 5 e 1 4

3 5 3 4 1 e 2

4 1 4 e 5 2 3

5 2 5 1 4 3 e

 

 
 Clearly (L5(2), o) is not strictly non commutative as  
4 o 5  5 o 4. 
 
 Thus we see  
S = {Collection of all subsets of the loop (L5(2), *)} the subset 
loop groupoid of (L5(2), *) and  
 

SPI(2, 3) = {Collection of all subsets of the loop (L5(2), o)} 
the subset loop groupoid of (L5(2), o) is not strictly non 
commutative where as S is strictly non commutative. 
 

Here we suggest problems for this chapter. 
 
 
Problems: 
 
1. Give some special features enjoyed by subset loop 

groupoids. 
 
2. Does there exist a subset loop groupoid of infinite order? 
 
3. Let S = {Collection of all subsets of the loop L17(5)} be 

the subset loop groupoid. 
 

(i) Find o(S). 
(ii) Can S have Smarandache subset loop subgroupoids?  
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4. Does there exist a commutative subset loop groupoid of 

infinite order? 
 
5. Does there exist a subset loop groupoid of infinite order 

which is inner commutative? 
 
6. Does there exist a subset loop groupoid of infinite order 

which is strictly non commutative? 
 
7. Does there exist a subset loop groupoid of infinite order 

which is not commutative but not strictly non 
commutative? 

 
8. Does there exists a Bol subset loop groupoid of infinite 

order? 
 
9. Does there exist a Burck subset loop groupoid of infinite 

order? 
 
10. Give an example of a Bol subset loop groupoid. 
 
11. Give an example of a Burck subset loop groupoid. 
 
12. Give an example of a strictly non left alternative subset 

loop groupoid of infinite order. 
 
13. Does there exist a Moufang loop of infinite order? 
 
14. Give some examples of Moufang loops of infinite order. 
 
15. Does there exist a Moufang subset loop groupoid of 

infinite order? 
 
16. Give an example of a Moufang subset loop groupoid of 

finite order. 
 
17. Give some special features enjoyed by Moufang subset 

loop groupoids. 
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18. Does there exist a subset loop groupoid S of the loop L 

which is Moufang?   
(That is every A, B, C  S satisfies the Moufang). 

 
19. Does there exist a subset loop groupoid,  S of the loop L 

which is Bol? 
 
20. Does there exist a subset loop groupoid S of a loop which 

is subset right alternative but not subset left alternative? 
 
21. Let S be a subset loop groupoid of a loop L.  Can S be 

subset left alternative but not subset right alternative? 
 
22. Can S be a subset loop groupoid of a loop L such that S is 

a weak inverse property subset loop groupoid? 
 
23. Does there exist a subset loop groupoid S of the loop L so 

that S is a P-subset loop groupoid? 
 
24. Let Sn = {Collection of all subsets of loop Ln(m)  Ln} be 

a subset loop subgroupoid of the loop Ln(m).   
Find the subset loop groupoid which is commutative. 

 
25. Obtain some special features enjoyed by the SPI of any 

loop (Ln(m), *). 
 
26. Compare S and SPI for the loop L43(8), e = a and b = 42. 
 
27. Compare S and SPI for the loop L29(3), a = 10 and b = 17. 
 
28. Compare S and SPI for the loop L31(8) for a = e and b = 8. 
 
29. Compare S and SPI for the loop L27(8) for a = b = 8. 
 
30. Characterize those SPI loops which are commutative. 
 
31. Characterize those SPI loops which are strictly non 

commutative.  
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32. Characetrize those SPI loops which satisfy Lagrange 

theorem for finite groups. 
 
33. When will both S and SPI be commutative? 
 
34. When will both S and SPI be strictly non commutative? 
 
35. Characterize those loops Ln(m)  Ln which are satisfy 

Lagrange theorem for finite groups. 
 
36. Characterize those loops Ln(m)  Lm such that none of 

the subloops of Ln(m) divide the order of Ln(m). 
 
37. Characterize those loop Ln(m)  Ln which have some 

subloops Hi(t) such that o(Hi(t)) / o(Ln(m)) and some 
subloops Hj(s) such that o(Hj(s)) / o(Ln(m)). 

 
38. Study the above three questions in case of subset loop 

groupoids of these three types of loops. 
 

(i) Ln(m) left alternative 
(ii) Ln(m) right alternative 
(iii) Ln(m) alternative. 

 
39. Does there exist a loop L which is alternative so that 

every pair of elements in 
    S = {Collection of all subsets of L} the subset loop  
    groupoid is alternative? 

 
40. Let S = {Collection of all subsets of the loop L49(3)} be 

the subset loop groupoid of the loop L49(3). 
 

(i) Find all subset subloop subgroupoids of S. 
(ii) How many of these subset subloop subgroupoids 

satisfy the Lagrange theorem for finite groups? 
(iii) Can S have p-Sylow subset subloop subgroupoids? 
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(iv) Find Hi(7) of L49(3). 
(v) Let Pi = {Collection of all subsets of Hi(7)  L49(3)}, 

1  i  7.  Study the special properties enjoyed by Pi. 
(vi) Does Pi satisfy any of the special identities as subset 

subloop subgroupoid of S, 1  i  7? 
 

41. Let S = {Collection of all subsets of the loop L65(12)} be 
the subset loop groupoid of the loop L65(12).  Let Hi(13) 
and Hj(5); 1  i  13 and 1  j  4 be subloops. 

 
 Study the special associated properties of the subset 

subloop subgroupoids of the subloops Hi(13) and Hj(5),  
1  i  13 and 1  j  5.  

 
 Can S have more than 24 subset subloop subgroupoids.  

Justify your claim. 
 
42. Let Sn = {Collection of all subsets loop groupoids of the 

loops L105(m)  L105} be the subset loop groupoids. 
 

(i) Find the number of subset loop groupoids in Sn. 
(ii) How many of S in Sn satisfy Lagrange theorem for 

finite groups? 
(iii) How many of S in Sn have p-Sylow subset subloop 

subgroupoids? 
(iv) Find any other special properties enjoyed by S in Sn. 

 
43. Let S43 = {collection of all subset loop groupoids of the 

loops L43(m)  L43} be the subset loop groupoids.   
Study questions (i) to (iv) of problem 42 for this S43. 

 
44. Let S19 = {Collection of all subset loop groupoids of 

L19(m)  L19}. 
 

(i) Compare S43 and S19 
(ii) Study all questions (i) to (iv) of problem 42 for this 

S19. 
(iii) Compare Sn in problem 42 and this S19. 
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45. Let  

S27 = {Collection of all subset loop groupoids of the loop 
L27(m)  L27}. 

 
(i) Study questions (i) to (iv) of problem 42 for this S27.  
 
(ii) Compare S27 with S19 of problem 44  and S43 of 

problem 43. 
 
46. Let S57 = {Class of subset loop groupoids of L57(m)  

L57}.  
 

(i) Compare S57 with S27 of problem 45. 
 
(ii) Do they enjoy any common features? 

 
(iii) Study questions (i) to (iv) of problem 42 for this S57. 

 
47. Let S147 = {collection of all subset loop groupoids of the 

loop L147(m)  L147}. 
 

(i) Study questions (i) to (iv) of problem (42). 
(ii) Compare S147 with S7, S29, S9 and S21. 

 
48. Let S99 = {Collection of all subset loop groupoids of 

L99(m)  L99}. 
 

(i) What are the special identities satisfied by the subset 
loop groupoids S  S99? 

(ii) Compare S99 with S11, S9, S13 and S3. 
 
49. Let S1479 = {collection of all subset loop groupoids of 

L1479(m)  L1479}. 
(i) How many subset loop groupoid in S1479 satisfy 

Lagrange theorem for finite groupoid? 
(ii) Find o(S1479). 
(iii) Study questions (i) to (iv) of problem 42 for S1479. 
(iv) Compare S1479 with S7, S15, S9 and S147. 
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50. Find any special features about Sn. 

(i) n prime. 
(ii) n odd. 

 
51. Can S be of infinite order with the associated loop to be 

of infinite order satisfy any of the special identities? 
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