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1 Abstract

There are two types of fundamental quantum gravitational mass amplitude
states that are denoted by the subscripts D and P . The D amplitudes lead
to Einstein’s usual general relativity mass density functions. The P ampli-
tudes lead to Einstein’s additional pressure mass densities, 3P/c2. Both of
these densities appear in the stress energy momentum tensor of general rel-
ativity. Here they appear as solutions to a non-linear Schrödinger equation
and carry three quantising parameters (lD,m) and (lP ,m), The lD, lP values
are subsets of the usual electronic quantum variable l which is here denoted
by l′ to avoid confusion. The m parameter is exactly the same as the elec-
tronic quantum theory m, there the z component of angular momentum.
In this paper, these parametric relations are briefly displayed followed by
an account of the connection to the spherical harmonic functions symmetry
system that is necessarily involved. Taken together, the two types of mass
density can be integrated over configuration space to give quantised general
relativity galactic masses in the form of cosmological mass spectra as was
shown in previous papers. Here this aspect has been extended to ensure
that every galaxy component of the spectra has a quantised black hole core
with a consequent quantised surface area. This is achieved by replacing the
original free core radius parameter rε with the appropriate Schwarzschild
radius associated with the core mass. Explanations are given for the choices
of two further, originally free, parameters, tb, θ0. The main result from this
paper is a quantum classification scheme for galaxies determined by the
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form of their dark matter spherical geometry.
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2 Introduction

This paper is a follow up of papers, [48], [49], [50], [52], [55] of similar ti-
tles and [56] on the problem of formulating the equation that describes the
equilibrium of a gaseous material in a self gravitational equilibrium condi-
tion in the galaxy modelling context, [47], see also, appendix 2 of ([35]). In
previous papers I have applied this new theory to examining the rotation
curves for galactic star motions. That work established that the velocity
curves for these quantized dark matter halos are decisively flat. That the-
ory also implied a precise formula that can give many possible mass spectra
each of which can give a discrete infinity of spectral lines determined by a
quantum parameter l with integral values, 1, 2, 3, . . . ,∞, starting at unity
and extending up to integral∞. Individual spectra are determined by three
free parameters, tb, rε, θ0. In the previous paper, the theoretical structure
radius only dependent theory was generalised into a three dimensional form
by expressing it in terms of the standard spherical (r, θ, φ) coordinates. The
was achieved by showing how the many function of the spherical harmon-
ics mathematical collection can be interleaved with the angular momentum
solutions part of a non-linear three dimensional Schrödinger equation. The
wave function solutions of this Schrödinger equation are then used to pro-
duce quantized mass values that can then be formed into a feedback po-
tential, replacing the usual external potential V (r) for the general three
dimensional gravitational Schrödinger equation structure. Thus a quantum
theory for galactic gravitational dynamical structure is produced of the same
style as the Schrödinger dynamic theory of atomic states. The atomic grav-
itational s p d f g h i... states are examined in more detail in the rest of
this paper. The main result introduced in this paper is an identification of
one of the original free parameters of the mass spectra, rε, with the radius
of a black hole, rε → rS, with the same contained mass as the core, rS being
the Schwarzschild radius.
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3 The Quantum Gravitational State Structure

The easiest way for the spherical symmetry quantum gravitational states,
l,m parameters, to be explained is via a table of their connections with the
standard angular momentum parameters of atomic theory which I denote
by l′,m. The m, parameter is the same in both sets and can be called the z
component of angular momentum in both sets but not called the magnetic
moment of the system in the gravitational set because no electric charge is
rotating necessarily in that case. The quantized gravity spherical harmonic
function parameters (l,m) relation with the usual atomic quantum angular
momentum harmonic function parameters (l′,m) can take a mass density
form, D, and and a pressure form, P , identified with Einstein’s general
relativity pressure term as follows,

D : l′ = 2l − 1 (3.1)

P : l′ = 2(2l − 1) (3.2)

lD = (l′ + 1)/2 (3.3)

lP = (l′ + 2)/4 (3.4)

−l′ ≤ mD/P ≤ l′. (3.5)

Listed below are the relations between the l′ and the l values starting at
l′ = 0 up to l′ = 20.

l′ , lD , lP ;mD ;mP (3.6)

0 , 1/2, 2/4 ; 0 ; 0 (3.7)

1 , 2/2, 3/4 ;±1, 0 ; 0 (3.8)

2 , 3/2, 4/4 ; 0 ;±2,±1, 0 (3.9)

3 , 4/2, 5/4 ;±3, . . . ,±1, 0 ; 0 (3.10)

4 , 5/2, 6/4 ; 0 ; 0 (3.11)

5 , 6/2, 7/4 ;±5, . . . ,±1, 0 ; 0 (3.12)

6 , 7/2, 8/4 ; 0 ;±6, . . . ,±1, 0 (3.13)

7 , 8/2, 9/4 ;±7, . . . ,±1, 0 ; 0 (3.14)

8 , 9/2, 10/4 ; 0 ; 0 (3.15)

9 , 10/2, 11/4 ;±9, . . . ,±1, 0 ; 0 (3.16)

10 , 11/2, 12/4 ; 0 ;±10, . . . ,±1, 0 (3.17)
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11 , 12/2, 13/4 ;±11, . . . ,±1, 0; 0 (3.18)

12 , 13/2, 14/4 ; 0 ; 0 (3.19)

13 , 14/2, 15/4 ;±13, . . . ,±1, 0; 0 (3.20)

14 , 15/2, 16/4 ; 0 ;±14, . . . ,±1, 0 (3.21)

15 , 16/2, 17/4 ;±15, . . . ,±1, 0; 0 (3.22)

16 , 17/2, 18/4 ; 0 ; 0 (3.23)

17 , 18/2, 19/4 ;±17, . . . ,±1, 0; 0 (3.24)

18 , 19/2, 20/4 ; 0 ;±14, . . . ,±1, 0 (3.25)

19 , 20/2, 21/4 ;±19, . . . ,±1, 0; 0 (3.26)

20 , 21/2, 22/4 ; 0 ; 0 (3.27)

The above is a list showing how the new isothermal equilibrium gravita-
tional states represented by the l parameter are related to the usual quan-
tum mechanical Schrödinger equation states for angular momentum, here
denoted by l′ to avoid confusion. There does seem to be a technical dif-
ficulty associated with this list in that values for the l parameter appear
that are multiples of 1/2 or of 1/4 and many of which do not reduce to
integers whereas only integral values have been found in the isothermal l-
state theory. Among these values which reduce to multiples of 1/2, there
are those that could possible arise from spin which is so far not included
in the isothermal equilibrium theory. However, there is no existing expla-
nation for those which reduce to multiples of 1/4. I cannot resolve the
true significance of either of these cases at this juncture so I shall proceed
with this work, temporally regarding these two cases as not of immediately
physical significance. I shall, however work with the above list accepting
the existence of theoretical gaps that possible may be filled some day. On
the positive side, the mathematics of this structure does give definite values
associated with these parametric gaps. The physical structure of this theory
depends heavily on the mathematics of the Spherical Harmonic functions .
I spell out some relevant essentials of the theory of these functions in the
next subsection.

4



3.1 Spherical Harmonics

The gradient operator∇ in spherical polar coordinates takes the form below
and when squared it becomes 3.29

∇ =
e1 ∂

∂r
+

e2

r

∂

∂θ
+

e3

r sin(θ)

∂

∂φ
(3.28)

∇2 =
∂

r2∂r

(
r2∂

∂r

)
+

1

r2 sin(θ)

(
∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin(θ)

∂2

∂φ2

)
(3.29)

=
2∂

r∂r
+

∂2

∂r2
+

1

r2

(
cot(θ)∂

∂θ
+

∂2

∂θ2
+

1

sin2(θ)

∂2

∂φ2

)
(3.30)

=
2∂

r∂r
+

∂2

∂r2
− L̂

r2
(3.31)

L̂ = −
(

cot(θ)∂

∂θ
+

∂2

∂θ2
+

1

sin2(θ)

∂2

∂φ2

)
(3.32)

L̂ψλ = λψλ (3.33)

x = r sin(θ) cos(φ) (3.34)

y = r sin(θ) sin(φ) (3.35)

z = r cos(θ), (3.36)

The spherical harmonic functions Y (θ, φ) are the angular only factorial parts
of solutions, ψ(r, θ, φ), of the Laplace equation,

∇2ψ =
∂

r2∂r

(
r2∂

∂r

)
ψ +

1

r2 sin(θ)

(
∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin(θ)

∂2

∂φ2

)
ψ

= 0 (3.37)

Y e
m,n(θ, φ) = cos(mφ) sinm(θ)Tm

n−m(cos(θ)) = cos(mφ)Pm
n (cos(θ))

(3.38)

Y o
m,n(θ, φ) = sin(mφ) sinm(θ)Tm

n−m(cos(θ)) = sin(mφ)Pm
n (cos(θ))

(3.39)

Ym,n(θ, φ) = exp(imφ) sinm(θ)Tm
n−m(cos(θ)) = exp(imφ)Pm

n (cos(θ))

= Y e
m,n(θ, φ) + iY o

m,n(θ, φ) (3.40)

and they are even in φ of the form (3.38), odd in φ of the form (3.39) or
in complex exponential form in φ as at (3.40). The functions Tm

n−m(cos(θ))
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are called tesseral harmonics and can be defined as

Tm
n−m(x) =

dmPn(x)

dxm
(3.41)

x = cos(θ), (3.42)

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (3.43)

where Pn(x) is a Legendre polynomial conveniently defined by (3.43). The
functions Pm

n (cos(θ)) = sinm(θ)Tm
n−m(cos(θ)) above are the associate Legen-

dre functions and are solutions to the Legendre equation (3.44). The x
above and below is used as an abbreviation for cos(θ).

d

dx

(
(1− x2)

dP

dx

)
+

(
l(l + 1)− m2

1− x2

)
P = 0. (3.44)

The associated Lagrange functions Pm
n (cos(θ)) which are solutions to the

above equation can also be expressed, in terms of the Legendre polynomials
Pn(x) as

Pm
n (x) = (1− x2)m/2d

mPn(x)

dxm
, m ≥ 0. (3.45)

Then using (3.43), we infer that

Pm
n (x) =

1

2nn!
(1− x2)m/2 d

n+m

dxn+m
(x2 − 1)n. (3.46)

In volume integrals in three space polar coordinates , the volume element,
dv, is

dv = r2 sin(θ)drdθdφ. (3.47)

The mathematics of this system requires the evaluation of the total mass
within a spatial volume given the mass density within that volume and
this density involves the spherical harmonics contributing to that density
as factors in the form Y (θ, φ)Y ∗(θ, φ). So evaluating total amounts of mass
in a given volume involves integrals of the form∫ π

0

∫ 2π

0

Y (θ, φ)Y ∗(θ, φ) sin(θ)dθdφ. (3.48)
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Taking the complex version version for Y (θ, φ) = Ym,n(θ, φ) at (3.40) the
integral above becomes∫ π

0

∫ 2π

0

Pm
n (cos(θ))Pm

n (cos(θ)) sin(θ)dθdφ

= 2π

∫ +1

−1

(Pm
n (x))2dx =

4π

2n+ 1

(n+m)!

(n−m)!
. (3.49)

The last stage of this integration at (3.49) takes about a page of algebra
from the x integration preceding it. However if we take either of the real
versions of the Y , (3.38) or (3.39). The integral (3.50) or (3.51) which are
the same for m > 0 because of (3.53).∫ π

0

∫ 2π

0

Y e
m,n(cos(θ))Y e

m,n(cos(θ)) sin(θ)dθdφ

=

∫ 2π

0

cos2(mφ)dφ

∫ +1

−1

(Pm
n (x))2dx =

4π

εm(2n+ 1)

(n+m)!

(n−m)!
. (3.50)∫ π

0

∫ 2π

0

Y o
m,n(cos(θ))Y o

m,n(cos(θ)) sin(θ)dθdφ

=

∫ 2π

0

sin2(mφ)dφ

∫ +1

−1

(Pm
n (x))2dx =

4π

εm(2n+ 1)

(n+m)!

(n−m)!
, (3.51)

= N2
n,m, say for m ≥ 0, (3.52)

where

1

εm
=

1

2π

∫ 2π

0

cos2(mφ)dφ =
1

2π

∫ 2π

0

sin2(mφ)dφ, m > 0 (3.53)

=
1

1
, m = 0 =⇒ εm = 1 (3.54)

=
1

2
, m = 1, 2, 3 . . . =⇒ εm = 2. (3.55)

However, if we take the complex version (3.40) for the spherical harmonics
in the mass density functions there is no εm factor appearing and so there
is no half factor necessary as at (3.55). An important and useful relation
between the associated Legendre functions for positive and negative values
for m is

P−m
l (x) = (−1)m (l −m)!

(l +m)!
Pm

l (x). (3.56)
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The integrated product expression (3.48) can be used to find what is called
the normalization constant for the spherical harmonics by using it to define
normalised spherical harmonics for which this integral would have the value
unity ∫ π

0

∫ 2π

0

Ẏ (θ, φ)Ẏ ∗(θ, φ) sin(θ)dθdφ = 1. (3.57)

Consequently in the special case of the complex spherical harmonics a nor-
malised version, denoted by the overhead dot, Ẏm,n(θ, φ) for Ym,n(θ, φ) at
(3.49) would take the form

Ẏm,n(θ, φ) = (−1)m

(
2n+ 1

4π

(n−m)!

(n+m)!

)1/2

Ym,n(θ, φ), (3.58)

if the negative option from taking the square root of N2
m,n is identified with

odd values of m as is the usual convention adopted. The normalised prod-
ucts are important in atomic quantum theory because there the concern is
with probability density functions obtained from quantum state functions
depending in various parameters, l and m for example, the integration over
such products giving the total probability for finding a particle in some
region in which it is certain to be found is represented by unity. In this
theoretical work the important information is the total amount of mass in
some region which is obtained from integrating over mass densities obtained
from products of quantum states depending in this case on subsets of the l
parameter and again on m. However, whereas the atomic quantum states
are normalized by taking the integrated products equal to one the gravita-
tional states make great use of the same normalisation factors in the very
inverse way of using the square of their values or equivalently the integrals
of the not normalized state function products in terms of l and m to deter-
mine gravitational mass spectra in terms of l and m. By taking the complex
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conjugate of the normalised version of Ym,n(θ, φ) at (3.40), we get

Ẏ ∗
m,n(θ, φ) = (−1)m

(
2n+ 1

4π

(n−m)!

(n+m)!

)1/2

exp(−imφ)Pm
n (cos(θ))

(3.59)

=

(
2n+ 1

4π

(n+m)!

(n−m)!

)1/2

exp(−imφ)P−m
n (cos(θ))

(3.60)

= (−1)−mẎ−m,n(θ, φ) (3.61)

Ẏ−m,n(θ, φ) = (−1)+mẎ ∗
+m,n(θ, φ). (3.62)

At (3.60), formula (3.56) has been used to replace Pm
n (x) with P−m

n (x)
and in the last line above functions have been transposed across the equals
sign to give a definition for the normalized Y now for possible negative m
showing it to be equal to the complex conjugate of Y for positive m with
the additional (−1)+m factor. Thus the normalisation constant given at
(3.52) for the complex versions of the Y generally can be taken to have the
property

N ′−2
n,m =

(
2n+ 1

4π

(n−m)!

(n+m)!

)
(3.63)

and the property below for the real versions of the Y

N−2
n,m =

(
εm(2n+ 1)

4π

(n−m)!

(n+m)!

)
(3.64)

ε0 = 1, εm = 2, (|m| = 1, 2, 3, . . . , l′). (3.65)

The information on the spherical harmonic functions given above is suffi-
cient to explain the gravitational mass spectra functions and calculate the
numerical mass spectra given also, of course, explicit mathematical realisa-
tions of these functions of θ and φ in terms of the l and m parameters and
the radial dependence of the gravitational quantum wave functions. This
aspect will be examined in the next section.

4 Obtaining Gravity Mass Spectra

Below the data for the D states above at (4.66) to (3.27) has been separated
out in order to concentrate on the mass spectra associated with these states.
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My objective is to obtain the numerical mass spectra structure firstly for the
D states in order to see if any conclusion can be formed about the physical
significance of these states.

l′ , lD , ;mD ; (4.66)

1 , 2/2, ;±1, 0 ; (4.67)

3 , 4/2, ;±3, . . . ,±1, 0 ; (4.68)

5 , 6/2, ;±5, . . . ,±1, 0 ; (4.69)

7 , 8/2, ;±7, . . . ,±1, 0 ; (4.70)

9 , 10/2, ;±9, . . . ,±1, 0 ; (4.71)

11 , 12/2, ;±11, . . . ,±1, 0; (4.72)

13 , 14/2, ;±13, . . . ,±1, 0; (4.73)

15 , 16/2, ;±15, . . . ,±1, 0; (4.74)

17 , 18/2, ;±17, . . . ,±1, 0; (4.75)

19 , 20/2, ;±19, . . . ,±1, 0; (4.76)

The mass spectra generating function for these states is given at (4.82)
in the form it has for the general polar spherical angular l,m parameter
dependence if the states chosen for representation are the complex versions
with normalisation given at (3.63). Thus the mass spectra function for the
D and P cases are respectively

Ml,m,D(rε, θ0, tb) =
c2Λs(tb)

G

(
(2l − 1)4l2lθ2l

0 r
3
ε

3(4l − 3)

)
A(2l − 1,m)

(4.77)

Ml,m,P (rε, θ0, tb) =
c2Λs(tb)

G

(
(2l − 1)8l−2(4l − 1)θ4l−1

0 r3
ε

(8l − 5)

)
×A(4l − 2,m), (4.78)

where s(t) is used to denote the dimensionless function, sinh−2((3Λ)1/2ct/2),
of time t from the general relativity dust universe model with tb the forma-
tion date of the mass accumulation and

A(l′,m) =
1

εm(2l′ + 1)

(
(l′ +m)!

(l′ −m)!

)
=

1

εm(2l′ + 1)

(
Γ(l′ +m+ 1)

Γ(l′ −m+ 1)

)
(4.79)
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with the appropriate value for l′ for the D and P cases. In the D case
l′ = 2l − 1. In the P case l′ = 4l − 2. The two cases being

A(2l − 1,m) =
1

εm(4l − 1)

(
Γ(2l +m)

Γ(2l −m)

)
(4.80)

A(4l − 2,m) =
1

εm(8l − 3)

(
Γ(4l − 1 +m)

Γ(4l − 1−m)

)
. (4.81)

Thus the mass spectrum for the D case (4.82) can be expressed as a product
as at (4.83)

Ml,m,D(rε, θ0, tb) =
c2Λs(tb)

G

(
(2l − 1)4l2lθ2l

0 r
3
ε

3(4l − 3)

)
A′(2l − 1,m)(4.82)

Ml,m,D(rε, θ0, tb) = MD(tb, rε)Sl,m,D(θ0) (4.83)

MD(tb, rε) =
c2Λs(tb)r

3
ε

G
(4.84)

Sl,m,D(θ0) =

(
(2l − 1)4l2lθ2l

0

3(4l − 3)

)
A′(2l − 1,m) (4.85)

where

A′(2l − 1,m) =
1

(4l − 1)

(
(2l − 1 +m)!

(2l − 1−m)!

)
= N

′2
l,m/(4π). (4.86)

The mass spectrum for the P case can be expressed as a product as at (4.88)

Ml,m,P (rε, θ0, tb) =
c2Λs(tb)

G

(
(2l − 1)8l−2(4l − 1)θ4l−1

0 r3
ε

(8l − 5)

)
×A(4l − 2,m) (4.87)

Ml,m,P (rε, θ0, tb) = MP (tb, rε)Sl,m,P (θ0) (4.88)

MP (tb, rε) =
c2Λs(tb)r

3
ε

G
= MD(tb, rε) (4.89)

Sl,m,P (θ0) =

(
(2l − 1)8l−2(4l − 1)θ4l−1

0

(8l − 5)

)
A(4l − 2,m) (4.90)

where

A(4l − 2,m) =
1

εm(8l − 3)

(
Γ(4l − 1 +m)

Γ(4l − 1−m)

)
. (4.91)
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5 Replacing the Galactic Core with a Black Hole

ρD,l,m(r) =
ρ(tb)θ

2l
0 (2l − 1)4l

εm(4l − 1)

(
r

rε

)−4l (
Γ(2l +m)

Γ(2l −m)

)
(5.1)

ρD,l,m(rε) =
ρ(tb)θ

2l
0 (2l − 1)4l

εm(4l − 1)

(
Γ(2l +m)

Γ(2l −m)

)
(5.2)

3P (r)

c2
= ρP,l,m(r) =

3ρ(tb)θ
4l−1
0 (2l − 1)8l−2

εm(8l − 3)

(
r

rε

)2−8l (
Γ(4l − 1 +m)

Γ(4l − 1−m)

)
(5.3)

ρP,l,m(rε) =
3ρ(tb)θ

4l−1
0 (2l − 1)8l−2

εm(8l − 3)

(
Γ(4l − 1 +m)

Γ(4l − 1−m)

)
(5.4)

ρ(t) = (3/(8πG))(c/RΛ)2 sinh−2(3ct/(2RΛ)). (5.5)

The two basic mass density functions ρD,l,m(r) and ρP,l,m(r) describe quan-
tum gravity mass distribution states in isothermal equilibrium. In their
most primitive form they were divergent at the radius distance variable,
r = 0, origin. To rectify this I introduced the parameter rε within which
distance the divergent part of the function ρD/P,l,m(r) was replaced with
the constant value ρD/P,l,m(rε) so that invariably the mass of the core,
MC , in the volume with radius distance less than rε would have the value
MC = 4πρD/P,l,m(rε)r

3
ε/3 which depends on the values of quantum parame-

ters (l,m) but within which the rε quantity could be given any arbitrary
value. This situation I exploited to obtain mass spectra, keeping a fixed
value of rε for any specific spectrum whilst the detailed line structure was
found by ranging over the (l,m), parameters. However, it seems to me
that this mathematical device that conveniently removes the infinity can
be given a physical justification by using the consensual view that most,
if not all, galaxies have a black hole at their centre. This is simply imple-
mented by finding the value of rε that ensures rε is equal to the value of the
Schwarzschild radius that is implied by the mass of the core for the state
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(D/P, l,m). This can be achieved as follows by taking,

MC =
c2rε

2G
= 4πr3

ερD/P,l,m(rε)/3 (5.6)

c2

2G
= 4πr2

ε

ρ(tb)θ
2l
0 (2l − 1)4l

3εm(4l − 1)

(
Γ(2l +m)

Γ(2l −m)

)
(5.7)

c2

2G
= 4πr2

ε

3ρ(tb)θ
4l−1
0 (2l − 1)8l−2

3εm(8l − 3)

(
Γ(4l − 1 +m)

Γ(4l − 1−m)

)
(5.8)

so that rε becomes the Scharzschild radius, rSch by the first equality above.
The value of the second equality above can be found using formulae (5.2)
or (5.4). This is spelt out in the second and third lines above for the two
cases, D and P . Thus there are obviously different values for rε for the D
and P case. These two values are given below in terms of the r3

ε , the needed
form, and with state suffix identified.

r3
ε,D,l,m(tb, θ0) =

(
3c2εm(4l − 1)Γ(2l −m)

8πGρ(tb)θ2l
0 (2l − 1)4lΓ(2l +m)

)3/2

(5.9)

r3
ε,P,l,m(tb, θ0) =

(
c2εm(8l − 3)Γ(4l − 1−m)

8πGρ(tb)θ
4l−1
0 (2l − 1)8l−2Γ(4l − 1 +m)

)3/2

.(5.10)

These two values for rε can be used in the mass spectrum formulae to
give cosmological mass spectra that spell out the masses of galaxies against
the spherical harmonic parameters (l,m) that all have a quantised surface
area core black holes. The main emphasis on this last piece of work has been
on using the basic densities to get the black hole version of the cosmological
spectra. I shall now give a more detailed version of this step working with
the original mass spectra mass spectra functions which effectively reinforces
the results at (5.9) and (5.10).

If the total galactic mass up to radius r is evaluated up to the parameter
value r = rε. That is the core mass is evaluated we get the total core mass
Ml(rε) of a Galaxy expressed as

Ml,m(rε) = MD,l,m(rε) +MP,l,m(rε) +MDE(rε) (5.11)

13



where

MD,l,m(rε, θ0, tb) =
c2Λs(tb)θ

2l
0 r

3
ε (2l − 1)4lA(2l − 1,m)

6G
(5.12)

A(2l − 1,m) =
1

εm(4l − 1)

(
(2l − 1 +m)!

(2l − 1−m)!

)
=

1

εm(4l − 1)

(
Γ(2l +m)

Γ(2l −m)

)
(5.13)

MD,l,m(rε, θ0, tb) =
c2Λs(tb)θ

2l
0 r

3
ε (2l − 1)4lΓ(2l +m)

6Gεm(4l − 1)Γ(2l −m)
(5.14)

MP,l,m(rε, θ0, tb) =
c2Λs(tb)θ

4l−1
0 r3

ε (2l − 1)8l−2A(4l − 2,m)

2G
(5.15)

A(4l − 2,m) =
1

εm(8l − 3)

(
(4l − 2 +m)!

(4l − 2−m)!

)
=

1

εm(8l − 3)

(
Γ(4l − 1 +m)

Γ(4l − 1−m)

)
(5.16)

MP,l,m(rε, θ0, tb) =
c2Λs(tb)θ

4l−1
0 r3

ε (2l − 1)8l−2Γ(4l − 1 +m)

2Gεm(8l − 3)Γ(4l − 1−m)

(5.17)

MDE(rε) =
c2Λr3

ε

3G
. (5.18)

The Schwarzschild radius rS,M associated with any mass M is given by

rS,M =
2GM

c2
(5.19)

Thus we can write the three mass equations above as

rS,D,l,m(tb, θ0, rε) =
Λs(tb)θ

2l
0 r

3
ε (2l − 1)4lΓ(2l +m)

3εm(4l − 1)Γ(2l −m)
(5.20)

rS,P,l,m(tb, θ0, rε) =
Λs(tb)θ

4l−1
0 r3

ε (2l − 1)8l−2Γ(4l − 1 +m)

εm(8l − 3)Γ(4l − 1−m)
(5.21)

rS,DE(rε) =
2Λr3

ε

3
. (5.22)

It follows that the three possible mass accumulations above are black holes
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or not depends on the following list.

rS,D,l,m(tb, θ0, rε)

rε

≥ 1 or not < 1 (5.23)

rS,P,l,m(tb, θ0, rε)

rε

≥ 1 or not < 1 (5.24)

rS,DE(rε)

rε

≥ 1 or not < 1, (5.25)

where

MD,l.m(rε) =
c2rS,D,l,m(tb, θ0, rε)

2G
(5.26)

MP,l.m(rε) =
c2rS,P,l,m(tb, θ0, rε)

2G
(5.27)

MDE(rε) =
c2rS,DE(rε)

2G
(5.28)

Thus the maximum value that rε can have, in the three cases taking aX(l,m)
to be the surface area of the black hole is, for the mass accumulation involved
to be a black hole in the D case is given by (5.29) implying that the area
of the black hole is quantised and given by (5.30) and the parameter rε

given by (5.31). In the P case for the mass accumulation involved to be a
black hole, its quantised surface area is given by (5.33) implying that the

15



parameter rε given by (5.34).

1 =
rS,D,l,m(tb, θ0, rε)

rε

=
Λs(tb)θ

2l
0 aD(l,m)(2l − 1)4lΓ(2l +m)

12πεm(4l − 1)Γ(2l −m)

(5.29)

aD(l,m) =
12πεm(4l − 1)Γ(2l −m)

Λs(tb)θ2l
0 (2l − 1)4lΓ(2l +m)

= 4πr2
ε (5.30)

rε,D(l,m) =

(
3εm(4l − 1)Γ(2l −m)

Λs(tb)θ2l
0 (2l − 1)4lΓ(2l +m)

)1/2

(5.31)

1 =
rS,P,l,m(tb, θ0, rε)

rε

=
Λs(tb)θ

4l−1
0 aP (l,m)(2l − 1)8l−2Γ(4l − 1 +m)

4πεm(8l − 3)Γ(4l − 1−m)

(5.32)

aP (l,m) =
4πεm(8l − 3)Γ(4l − 1−m)

Λs(tb)θ
4l−1
0 (2l − 1)8l−2Γ(4l − 1 +m)

= 4πr2
ε

(5.33)

rε,P (l,m) =

(
εm(8l − 3)Γ(4l − 1−m)

Λs(tb)θ
4l−1
0 (2l − 1)8l−2Γ(4l − 1 +m)

)1/2

(5.34)

1 =
rS,DE(rε)

rε

=
2Λr2

ε

3
=

ΛaDE

6π
=⇒ aDE = 2πR2

Λ (5.35)

1 =
rS,DE(rε)

rε

=
2Λr2

ε

3
= 2

(
rε

RΛ

)2

=⇒ rε =
RΛ√

2
(5.36)

aX = 4πr2
ε,X , according to case, X = D,P,DE. (5.37)

Thus the quantisation of the surface areas of the D and P mass spectrum
central black hole cores is given by equations (5.30) and (5.33) respectively.
Working from such a centre, for the core to be a black hole formed from dark
energy mass it must occupy a sphere with the very large radius RΛ√

2
given at

(5.36) which is a very unlikely size for the core of any galaxy though still a
possibility of theoretical interest.
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The full mass spectra functions are

Ml,m,D(rε, θ0, tb) =
c2Λs(tb)

Gεm(4l − 1)

(
(2l − 1)4l2lθ2l

0 r
3
εΓ(2l +m)

3(4l − 3)Γ(2l −m)

)
(5.38)

Ml,m,P (rε, θ0, tb) =
c2Λs(tb)

Gεm(8l − 3)

×
(

(2l − 1)8l−2(4l − 1)θ4l−1
0 r3

εΓ(4l − 1 +m)

(8l − 5)Γ(4l − 1−m)

)
(5.39)

The core masses below are each followed by the r3
ε value which makes them

black holes at the centre of the full spectral masses above.

MD,l,m(rε, θ0, tb) =
c2Λs(tb)θ

2l
0 r

3
ε (2l − 1)4lΓ(2l +m)

6Gεm(4l − 1)Γ(2l −m)
(5.40)

r3
ε,D(l,m) =

(
3εm(4l − 1)Γ(2l −m)

Λs(tb)θ2l
0 (2l − 1)4lΓ(2l +m)

)3/2

(5.41)

MP,l,m(rε, θ0, tb) =
c2Λs(tb)θ

4l−1
0 r3

ε (2l − 1)8l−2Γ(4l − 1 +m)

2Gεm(8l − 3)Γ(4l − 1−m)
(5.42)

r3
ε,P (l,m) =

(
εm(8l − 3)Γ(4l − 1−m)

Λs(tb)θ
4l−1
0 (2l − 1)8l−2Γ(4l − 1 +m)

)3/2

.

(5.43)

If we substitute the r3
ε values into the full mass spectrum values at (5.44)

and (5.48), we get the resultant values Ml,m,D(θ0, tb) and Ml,m,P (θ0, tb) at
(5.47) and (5.51).

Mrε,l,m,D(θ0, tb) =
c2Λs(tb)θ

2l
0 r

3
ε2l(2l − 1)4lΓ(2l +m)

3Gεm(4l − 1)(4l − 3)Γ(2l −m)
(5.44)

← r3
ε,D(l,m) =

(
Λs(tb)θ

2l
0 (2l − 1)4lΓ(2l +m)

3εm(4l − 1)Γ(2l −m)

)−3/2

(5.45)
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Ml,m,D(θ0, tb) =
c2(Λs(tb))

−1/2θ−l
0 2l(2l − 1)−2lΓ(2l +m)−1/2

3−1/2Gε
−1/2
m (4l − 1)−1/2(4l − 3)Γ(2l −m)−1/2

(5.46)

=
31/2c2ε

1/2
m (4l − 1)1/22lΓ(2l −m)1/2

G(Λs(tb))1/2θl
0(2l − 1)2l(4l − 3)Γ(2l +m)1/2

(5.47)

Mrε,l,m,P (θ0, tb) =
c2Λs(tb)θ

4l−1
0 r3

ε (4l − 1)(2l − 1)8l−2Γ(4l − 1 +m)

Gεm(8l − 3)(8l − 5)Γ(4l − 1−m)

(5.48)

← r3
ε,P (l,m) =

(
Λs(tb)θ

4l−1
0 (2l − 1)8l−2Γ(4l − 1 +m)

εm(8l − 3)Γ(4l − 1−m)

)−3/2

(5.49)

Ml,m,P (θ0, tb)

=
c2(Λs(tb))

−1/2θ
−2l+1/2
0 (4l − 1)(2l − 1)−4l+1Γ(4l − 1 +m)−1/2

Gε
−1/2
m (8l − 3)−1/2(8l − 5)Γ(4l − 1−m)−1/2

(5.50)

=
c2ε

1/2
m (8l − 3)1/2(4l − 1)Γ(4l − 1−m)1/2

G(Λs(tb))1/2θ
2l−1/2
0 (8l − 5)(2l − 1)4l−1Γ(4l − 1 +m)1/2

(5.51)

6 Conclusions

In this paper, the cosmological mass spectra for galactic masses obtained
in the previous paper ([56]) have been made more realistic by setting up
the originally free parameter rε so that what was originally described as
being the galactic core now becomes a definite quantised black hole. That
leaves two free parameters, the galactic birth time tb and the dimensionless
parameter θ0 to assign values to before the spectra can be calculate and
displayed in detail. The obvious and very convenient way to decide the
birth time parameter, tb possible values, is to leave it arbitrary for the
following reasons. The factor s(tb) that appears in all the spectra formulae
is not an intrinsic part of the formula. As things stand, it appears with
fixed value multiplying every spectral mass. It simply scales the whole
spectrum. Thus I suggest all spectra should be interpreted as possible sets of
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values associated with some arbitrary but definite evolutionary time tb and
further that no mass member of such a set would have necessarily certainly
occurred physically. The parameter θ0 is intrinsic, in that it determines the
relative values between individual members of the spectrum. Thus its value
is important in controlling the line spacing of the spectrum structure. I can
see, at the moment, no theoretical way to determine this parameter. So the
only alternative is to find it physically. The obvious way to approach it from
that direction would be to have exact knowledge of the mass of a specific
galaxy of known (l,m) character and then evaluate θ0 from the appropriate
mass spectrum function. However, at this time, the (l,m) structure is not
known for any galaxy and the actual galactic masses generally are only
known very approximately. I think that this parameter probably has an
optimum value that will turn out to be a fundamental scale constant. As
neither of the usual options are available to deciding θ0 ,I have adjusted its
value so that the central sub-value of the l = 1 state which has the least
number of sub-options, actually only one, if we only take the integral options
(m = −1, 0,+1), to a specific mass value. This value MG is obtained from
the formula

MG =
RΛc

2

G
=

(
3c4

ΛG2

)1/2

≈ 2.00789× 1053 kg (6.1)

which for unknown reasons give a number of kilograms which could be the
actual mass of our universe.

I have included in the last section of this paper a print out of the galactic
mass spectrum based on the above mass with minimum detailed refinement,
X = 1. That is to say, taking mass line separation to be the largest interval
for the l and m parameters, 1. Only sufficient of this print out is given to
fill one page for its beginning and a second page for its ending, in fact just
a sample. The central part of the spectrum has not been included but the
formula for printing it all out has been given. The formula for generating
the printing out the whole table is adaptable, X = 1, to disregarding the
possible line separation refinements X = 1/2 or X = 1/4, if that is pre-
ferred. The main result of obtained in this paper is essentially a system
for classifying galaxies in terms of their spherical harmonic structure and
their mass values. The unrefined version of the system involving the pa-
rameter X = 1 has been firmly established. The refined version involving
X = 1/2, 1/4 is open to some uncertainty. The print out program follows
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7 Spectral Thble Print Out Program

l@ [1_. D_. thct 0_, tlr_l : =

( 3 ^  ( L  |  2 )  c ^ 2  . p r i l o n  [ D l  ̂  ( L  I  2 )  ( r L - L r ^ ( L l 2 )  2

l  c .n  [2 ] - -D l ^  (L /2 ) l  I  ( c  ( ! . cd !  r  l t b l  )  ̂  ( 1 /  2 )

t b . t  0 ^  ( I )  ( 2 1 -  1 )  ̂  ( 2 1 )  ( { r -  3 )  c . e A t 2 r + D l ^ ( 1  / 2 ) )

xP[l_, a_, tb.t 0_, t5_] := (c^2 elrr i loa[D]^(1/2)

( 8  1 - 3 ) ^ ( 1 / 2 )  ( r r - 1 )  G . D ! [ a : .  - L - D ) ^ ( L l 2 l l  /
(c (L!!b<rr r [ tb] )  ̂  (1 / 2) thct 0^ (21- - 1/ 2) (81- 5)

(2  ] -  -  1 )  ̂  ( {  I  -  1 )  c . lma [ r  I  -  1  +D]  ^  (1 /2 ) )

€ttr i l .o! [0] := 1

Do tq ) r i l - oD  [p_ ]  .=2 ,  19 ,  L l  r ,  +5O.25 ,  L l4 l )

Do  l € t r s i j . on  [p_ l  ,=2 ,  {p ,  -50 .23 ,  -L l4 '  L l  l } 1

r  [ t _ ]  : = s i a b l ( 3  L q o b & ) ^ ( 1 / 2 )  c t l 2 l ^  ( - 2 \

c : = 299 792 458

L ! d ! : =  1 . 3 5  x  1 0 ^  ( - 5 2 )

Rl,arbd! ::  (3 /Lanbd.) ^ (1/ 2)

tc :=  (2  Rl .aDlbdr /  (3c) )  r rcs inh a2^ ( - l /2) l
X = 1

tlc = tc

tb.t 0 = 2.9?8{5

r .b ] ' . t { I ,  D ,  ( l@[1 ,  ! ,  t h . t  0 ,  t b l  + r@[1 ,  n ,  t l t . t l o ,  t ! ] ) ) ,

{ 1 . .  1 ,  1 8 ,  x } ,  { D ,  - 1 ,  + r ,  x } l
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8 Spectral Thble Print Out Beginning

{ { { r '
{ r ,

{ { z '
{ 2 ,

{ 2 ,

{ s ,
{ r ,
{ r ,

{  { o ,
{ e ,
{ e ,
{ e ,
{ r ,
{s ,
{ s ,
{ s ,
{ s ,
{ s ,

{ { e ,

-  1 ,  4 .  53?85 x 10s3 ]  ,
0 ,  2 . 0 0 7 8 9 x r 0 t ' ) ,  { r ,  1 ,  1 . 8 5 ? 1 8 x r o s 3 } } ,
-2 ,  6 .5aa27  x  1051)  ,  {2 ,  - t ,  z .06611  :<  10s r } ,

o , 4 . z o L x 1 o s o ) ,  { 2 ,  t ,  t . z t t t ?  x  1 o s o } ,

2 ,  5 . . o s 6 3 x 1 o t ' ) ) ,  { { s ,  - s ,  1 . 5 2 ? 0 1 1 x 1 0 5 0 }
- 2 ,  3 . L L 6 8 7 x t o ' e ) ,  { S ,  - t ,  5 . 8 9 0 1 ? x 1 0 ' 8 } ,

o ,  ? . 6 0 4 0 ? x r 0 ' 7 ] ,  { r ,  r ,  r . s e s : s x  1 0 . 7 } ,

2 , 3 . 7 L o 3 7  x 1 0 ' 6 ) ,  { 2 ,  z ,  z . s z z t l x l o ' s } } ,
- 4 , 2 . 7 2 0 7 6 x r 0 ' 8 ] ,  { 1 ,  - 3 ,  r r . 1 0 1 6 9  x  1 0 ' ? } ,
- 2 , 5 . a o o 6 7  x 1 0 ' 6 ) ,  { t ,  - t ,  ? . 8 9 3 ? 1  x 1 0 1 5 } ,

0 ,  ? . 4 5 8 8 6 x r 0 " ] ,  { 1 ,  t ,  1 . { 0 9 5 9 x 1 0 " } ,

2 ,  L . 9 L 8 2 L  x  r 0 ' 3 ) ,  { a , 1 ,  z . t t z z e x l 0 ' 2 } ,

I r , , { . o 8 e 6 1 r x 1 o { 1 } } ,  { { s ,  - s ,  3 . ? e 6 5 6 x 1 0 . 6 }
- 4 ,  4 . 3 3 1 7 6 x r 0 ' 5 ) ,  { s ,  - 3 ,  5 . 1 3 8 x  1 0 ( } ,
- 2 ,  5 . 6 0 6 0 2 x 1 0 ' 3 ) ,  { s ,  - r ,  5 . 9 ? 6 0 4 x 1 0 ' 2 } ,

o ,  4 . 4 5 4 2 7  x 1 0 1 1 ) ,  { s ,  r ,  e . s l o o 4 x l o ' 0 } ,

2 ,  7  .o7a3L  x  103e) ,  { s ,  s ,  t  . t zso?  x  1038}  ,
{ ,  8 . ? 4 1 1 6 5 x r o 3 ? } ,  { s ,  5 ,  1 . 0 { 5 1 9 x 1 o t t } } ,
- 6 ,  4 . 3 2 3 7 7 x  1 0 r { } ,  { e ,  - s .  1 . 2 8 1 1 1  x 1 0 { 3 } ,
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532r11  x  1O- t ' l ) ,

9

{ rz ,  re

{ { t e ,
{ r e '
{ r e '
{ r e ,
{ t e ,
{ 1 8 ,

{ 1 8 ,
{ 1 8 ,

{ r e '
{ r a ,
{ t e ,
{ t s ,
{ re ,
{ r a ,
{ r e '
{ t e '
{ re '
{ t e '
{ t a ,

Spectral Table Print Out End

,  1 .350s?  , .  r0 - ' o )  ,  { t t ,  n ,  a .
- 1 8 , 2 . 3 3 0 6 4 x 1 0 1 7 ) ,

- ! 1  , 7 . 5 4 5 1 4 x 1 0 1 s ) ,  { r e ,  
- r e ,  2 . 4 0 0 6 2 x 1 0 1 ' } ,

-  1 s ,  ? . s 1 6 6 3 x  r O r , ) ,  { r A ,  
- 1 { ,  2 . 3 1 9 6 8 x 1 0 1 1 } ,

- 1 3 ,  ? . 0 6 s 1 1  x 1 0 ' ) ,  { 1 8 ,  
- 1 . 2 , 2 . L 2 6 3 5 x L O 8 } ,

- 1 1 , 6 . 3 3 1 1 1  x 1 0 6 ] ,  { 1 8 ,  - 1 0 ,  1 8 5 6 9 4 . } ,
- 9 , 5 4 s 8 . 0 6 ) ,  {  1 8 ,  - 8 ,  1 5 8 . 3 s 4 } ,
- 7  ,  4 . 5 6 3 7 j  ,  { L 8 ,  - 6 ,  0 . 1 3 0 ? 6 s }  ,
- 5 ,  0 . 0 0 3 7 2 8 5 5 ) ,  { 1 8 ,  - 4 .  0 . 0 0 0 1 0 5 8 8 4 } ,
- 3 ,  2 . s s 7 2 s  x  r o - 6 )  ,  { r e ,  - 2 , 8 . 4 6 3 9 6 x 1 0 - 8 } ,

- 1 ,  2 . 3 8 6 3 5 x r 0 - ' � ) ,  { r e ,  o ,  4 . 7 5 3 1 L x 1 0 - 1 1 } ,
1 ,  1 . 8 9 3 9 2  x  1 0 - 1 2 ) ,  { t a ,  2 ,  5 . 3 3 s 7 7 x 1 0 - 1 r } .

3 ,  1 . 5 0 ? 9  x  r o - l s ) ,  { r e ,  4 ,  4 . 2 6 8 4 L  x  r o - 1 7 } ,

5 ,  t . 2L2L5  "  ro - t " ) .  { ra ,  o ,  3 . r t5623x  10 -20} ,

1 ,  s . s o 3 2 s x r o - " ] ,  { r e ,  8 ,  2 . 8 5 4 0 9 x 1 0 - 2 3 } ,

9 ,  8  .28053  x  ro - ' � s  )  ,  { ra .  La ,2 .42oa3xLo-25} ,

11 ,  ? .13865xr0 - '8 ) ,  { te ,  12 ,  2 .L255xro -2e l } ,

13 ,  6 .39?01  x  ro - t t )  ,  { : . a ,  u ,  1 .9483s  x  10 -32} ,

L 5 ,  6 . O L 2 7 5 x r O - 3 { } ,  { r e ,  1 6 ,  1 . 8 8 2 6 6 x 1 0 - 3 5 } ,

1 ? ,  s . 9 8 9 5 5 x r 0 - 3 ? ) ,  { r a ,  1 8 ,  1  .  9 3 9 1 9  x  l o - t t  }  }  }
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