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Extended Electron in Constant Electric Field 
Part 1 : The net electric force  Fe  produced on the extended electron 
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             Abstract : When an extended electron is subject to an external constant electric field  E , 

                               the net electric force  Fe  is produced on it . The analysis on the extended  

                               model of the electron shows that  Fe  is the resultant of two opposite forces  

                               F  and  F’  ( i.e., Fe  =  F + F’ ) , where  F  is the resultant of all elementary  

                               forces fe  which are produced on surface dipoles of the electron (  F = fe  ),   

                               and  F’  is the electric force produced on the core (-q 0)  of the electron .   

                               We will calculate  fe , F  and  F’  by applying boundary conditions on the surface  

                               of the extended electron . The effective electric charge  Q  of the  electron will be 

                               deduced from  the expression  Fe = Q E  . 

                               Part 2 discusses the radiation process of the extended electron in the electric field .                                

 

         Keywords :  electric dipoles , surface dipoles , the core , electric and magnetic boundary conditions ,  

                            radiation by forces , radiation cone ,  conditions for radiation .   

                               

1. Introduction : 

 

The readers are recommended to read the previous article 
1(a) 

: "A new extended model for the electron "     

to have a view on the extended model of the electron and the assumptions for calculations ; since all the 

calculations in this article will be based on this model and the assumptions on the electric and magnetic 

boundary conditions . In a nutshell , the extended model of the electron is a spherical composite structure 

consisting of the point-charged core ( -q0 ) which is surrounded by countless electric dipoles ( -q,+q ) as 

schematically shown by Fig.1 and other figures in this article .   

     

Since this article " Extended electron in constant electric field " is rather long , it will be divided into two  

parts :   Part 1 : Determination of the net electric force Fe , 

             Part 2 : The radiation of the extended electron in electric field  . 

 

To reduce the length of the main text , long calculations are put into the appendices ,  only the results of 

these calculations are shown in the main text . ( Appendices A  and  B  are placed at the end of part 2 , the 

readers can read them later if they want to ) . 
 

When a point electron of electric charge  e  is subject to an external electric field  E , the Lorentz force   

FL  = e E    is a single force ; i.e., it cannot be decomposed into simpler components .  But for an extended 

electron , the net force  Fe  is more complicated because it consists of countless point charges :  the electric 

dipoles (-q , +q ) and the core ( -q0 ) , and hence lots of single forces are produced on it when it is subject to 

the external field .   

To determine the net electric force  Fe  produced on the extended electron , we will first calculate the 

"elementary" force  fe  which is developed on a surface dipole , then  the resultant  F =  fe   of all forces  

fe  produced on all surface dipoles of the electron ( section 2 ) . Then we will calculate the electric force  F'  

which is  produced on the core ( -q0 )   of the electron ( section 3 ) , and finally the net force  Fe   = F + F'   

( section 4) . 

Section 5 discusses the variability of the relative permittivity  ε  of the extended electron .  

Section 6 discusses the variability of the effective electric charge  Q  of the extended electron .  

Section 7 discusses the equation of motion of the extended electron in the external electric field .  
 

2. Determination of the elementary force  fe  produced on a surface dipole  

    and the resultant  F =  fe  .    



 2 

 Let  E  be the external electric field which exerts on the extended electron ; E  creates the electric field  E'  

inside the extended electron . Boundary conditions 
1(a)  

on the electric field allow us  to determine the 

electric field  E' from the components of the external field  E which is supposed to be a known field .  
First ,  let us calculate two elementary electric forces  fe  produced on two arbitrary surface dipoles  M  and  

N   on the upper and lower  hemispheres  of  the  electron , respectively . ( Fig.1 )  

For the surface dipole  M  on the upper hemisphere,  the angle  α  is  0    α    π /2   ( Figs. 4 and 5 ) .    

The force  fe  is the resultant of two forces fn  and   f’n  which are developed on two ends  -q  and +q  of 

the dipole  M , respectively . The calculations are shown in the Appendix A  . The results are : 

* when    1 ( Fig. 4)  ,    fe  =  f‟n  -  fn   =  ( 1/  -  1 ) q E cos  ,  fe  is centrifugal ,                         (1-a )                      

 

* when    1 ( Fig. 5 ) ,    fe  =  fn  -  f‟n   =  ( 1 – 1/ ) q E cos   ,  fe  is centripetal ,                          (1-b)                               

  

Where    is the relative permittivity of the extended electron ( ' )  to the free space ( 0 )  ;  i.e.,    = ' / 0 .  

 

 

                                        

 

 

 

 

                                                   

 

 

             

                                                                                        

 

 

 

                                                                                               

F.1  :   Two surface dipoles  M  and  N     

    on the upper and lower hemispheres   

    of the extended electron . 

    ( Error : permittivity of free space                     F.4:  When     1 :                            F.5 :  When    1  :        

    outside the electron is  0  , not                the resultant force  fe acting            the resultant force  fe  acting  

    as shown in F.1 ).                                      on dipole M  is centrifugal .            on dipole M  is centripetal .                                                                                                                                                                                                                                                    

 

  

Now let us calculate the resultant force  fe  acting on the surface dipole  N  on the lower hemisphere of the 

electron  ( Figs. 8  and 9 )  :  /2           , ( hence  cos    0 )  ( See Appendix  A ) .  The results are :   

   

*  when    1  ( Fig. 8 ) :  fe  =  f‟n  -  fn   =  ( 1/  -  1 ) q E ( -cos ) , fe  is centripetal,                  (1-c ) 

 

*  when    1  ( Fig. 9 )  : fe  =  fn  -  f‟n   =  ( 1 – 1/ ) q E ( -cos ) ,  fe  is centrifugal .                 (1-d)     
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F.8 :  When    1  :  the resultant force  fe                       F.9 : When    1  :  the resultant force  fe   

         acting on dipole  N  is centripetal .                                  acting on dipole  N  is centrifugal .                                                                

 

Now let us combine the results  from four  figures above to show the directions of the elementary forces  fe  

produced on two surface dipoles  M and N : 

 

*   when     1  :  Fig. 10  shows two forces  fe  at M and  N  ; and  Fig.10-a   ( from  Fig.10) 

    shows all forces  fe  on the upper and lower surface of the electron .         

 

*   when     1 :  Fig. 11  shows two forces  fe  at M and N ;  and  Fig.11-a  (  from  Fig.11)  

    showing all forces  fe  on the upper and lower surface of the electron.                             

 

 

 

 

 

 

 

       

                                                                                                  

 

 

 

 

                                                                                                                       

 

 

 

F.10 :   When    1:                                                                F.11 : When    1:  

-  on the upper hemisphere , fe  is centrifugal                         -   on the upper hemisphere , fe  is centripetal 

-  on the lower hemisphere , fe  is centripetal                         -   on the lower hemisphere , fe   is centrifugal                                                                                                                                                                                                                                                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F.10-a   ( from  F.10 )   When     1 :                                 F.11-a   ( from  F.11 )     When    1 : 

-  on the upper hemisphere :  all fe  are centrifugal            - on the upper hemisphere : all fe  are centripetal     

-  on the lower hemisphere :  all fe  are centripetal            -  on the lower hemisphere : all fe  are centrifugal                                                                                                                                                                                                                                                                                                                                                              
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We have finished determining the magnitude and the direction of the elementary forces  fe  in two cases 

when    1  and    1  .  Now we will determine the direction and  magnitude of the resultant force   

F  =   fe   which exerts on the surface dipoles of the extended electron in these two cases . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 F.12:     1 :                                                                   F.13 :     1 :                

 Projections of  fe  at  M  and  N  onto                            Projections of  fe  at  M  and  N  onto                                                                                                                                                                      

the axis OE :  fM   and  fN   point upwards .                      the axis OE : fM   and  fN   point  downwards .      

 

                                                                                                                                                                                                

Because all forces  fe  are symmetric about  the axis  OE  ( as shown in two Figs.10-a  and 11-a ) ,   their 

resultant force  F =  fe   lies on OE and is equal to the sum of all projections of  fe  onto  OE .  

So , to determine the magnitude of  F  ,  we have to calculate first the projection of  fe  onto  OE .   

 

Let  fM   be the projection of  fe   at  M  onto the axis  OE  and  fN  , the projection of  fe  at  N onto  OE .   

 

When    1  ( Fig. 12 ) , fM   and    fN    point in the direction of  E ; their magnitudes are :  

fM  =  fe cos  =  ( 1/  -1 ) q E cos cos  =  ( 1/  -1 ) q E cos
2
                                                             (1) 

 

fN    =  fe cos  =  fe (- cos ) = ( 1/ -1 ) q E (- cos )(- cos ) =  ( 1/ -1 ) q E cos
2
                               (2) 

 

The magnitudes of fM  and  fN   in two Eqs. ( 1 ) and (2) have identical form but  in Eq.(1) :  0     /2    

and in Eq.(2) : /2      .  So,  F  =   fe  =   fM        if    varies from  0  to  ; that is     

                  

                 F  =    


n

i 1

( 1/  -1 ) q E cos
2
i  =   ( 1/ -1 ) q E 



n

i 1

cos
2
i                                                 (3)  

 

F  points in the direction of  E (  Fig.14 ) 

where  n  is number of surface dipoles on the surface of the electron ; 

i  is the angular position of a surface dipole , varying  from 0 to  ; 
 

  is the relative permittivity of the electron  :    =  ‟ / 0  ;   

q  is electric charge at the end of a surface dipole ;  

 

When    1   ( Fig. 13 )  fM    and     fN     point in the opposite direction to E , so the resultant    

F  =   fe  =   fM      also points in the opposite direction to  E . The same reasoning as above gives                           

          

             F  =    


n

i 1

( 1 - 1/  ) q E cos
2
i  =   ( 1 - 1/  ) q E 



n

i 1

cos
2
i                                                  (4) 

F  points in the opposite direction to  E  ( Fig.15) 
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F.14  :    1:  the resultant force  F  ( =  fe )                F.15 :     1: the resultant force  F  ( =  fe )   

            points in the direction of  E .                                            points in the opposite direction to E.                                                                                                               

 

In two equations (3) and (4) , the sum   


n

i 1

cos
2
i    depends on the number  n  of surface dipoles and the 

angular position  i  of the surface dipole , they represent the physical structure of the electron  .   

The magnitude and direction of  F  thus depend on    as shown in Eqs. (3) & (4) and two Figs.14 & 15. 

The magnitude and direction of  F  ( with respect to the direction of  E ) is graphically shown in Fig.16 

We have finished determining the magnitude and direction  of  the resultant  F  ( =  fe ) . 

 
 

                

 

 

 

 

                             

 

                                 

 

 

 

 

 

 

 

 
       F.16 : The smooth curve shows the magnitude and direction of  F versus    :  Eq. (3)     

          -   for    1   :  F  is positive ; i.e.,   F  E   as shown by F. 14   

          -   for    1   :  F  is negative ; i.e.,  F  E   as shown by F. 15 
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From two equations (3) and (4) we note that  F  exists only if    1 ; this means that the absolute 

permittivity  ‟   of the extended electron  is different from the permittivity  0   of the surrounding free 

space ( ‟  0  ) ; that is,  they are two different media .   Otherwise , if   = 1  ,  then  ‟ = 0     and  F = 0 ; 

this physically means that the electron has no electric dipoles around its core ; i.e., only the core exists :  

this is a point electron . Therefore , mathematically , the point electron is a particular case of the extended 

electron  when   = 1 .  For the extended electron     1  as we will see  below . 

 

 

3.  Determination of the net electric force produced on all interior dipoles  

     and the electric force F’  produced on the core  (–q0 )   of the electron  
 
3.1  The net electric force produced on all interior dipoles is zero .  

 

The external electric field  E  produces the field E’ inside the extended electron ; all interior dipoles and 

the core  ( - q0 )  are thus subject to the field  E’ .  Because the dipole is extremely small , two ends –q , +q  

of an interior dipole are exerted upon by the same field E’  and hence two electric forces  fe  and  f’e  are 

equal and opposite .  The dipole may be slightly  re-oriented ( or polarized ) but the resultant force  fe + f’e  

produced  on the dipole is cancelled out .  This explanation applies to all interior dipoles , which are 

possibly polarized  by the field  E’ , but the net electric force produced on all interior dipoles is zero .  

 

3.2  Determination of the electric force  F’  produced on the core  (-q0)   of the electron . 

 

 The core is a point charge ( -q0 ) which is subject to the field  E’ . To determine the electric force  F' 

produced on the core , we have to calculate  field  E’ first .  The calculation is shown in Appendix B  . 

It shows that  the electric field  E'  is parallel to the external field  E  and has magnitude equal to :                                      

                              E’  =   ( 1/) E                                                                                                               (12) 

So , the electric force  F’  produced on the core (-q0)  is                                                                                

                              F’  =  - q0 E’  =  -  (1/) q0 E                                                                                          (13)                                                                                        

 

F’  is thus always negative ; i.e., it always points in the opposite direction to E  ( Fig.17) .  

Fig.18  shows the variation of  F’  vs      according to  Eq.(13) .  

 

 

 

 

 

 

 

 

 

                                                                                                       

 

 

 

 

 

 

 

 

  F.17 :     E  is the external electric field ;                      F.18 : The curve represents the magnitude                                 

  E’  is the electric field produced on the core (- q0 ) ,    and direction of the electric force  F’ versus  .          

  F’ is the electric force produced on the core ,              F’  is always negative ; i.e., F’  E .   

  it is always negative ; i.e., F’  E .   
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4.  Calculation of the net electric force  Fe   produced on the extended electron  
 

The net electric force  Fe  which is developed on the extended electron when it is subject to a constant 

electric field  E  is the sum    Fe  =  F + F’ .   

F  is given by Eq.(3) and  F'  by Eq.(13) .  Since F and F’ are collinear , their algebraic sum is  

 

                               Fe  =    (


1
 - 1) q E  

n

i

cos 2 
 i      -   



1
 q0  E                                                           (14) 

or                            Fe  =    [ (


1
 - 1)  (q / q0 ) 

n

i

cos 2 
 i    -   



1
 ]  q0 E                                                (15)   

Let‟s set     a      (q / q0 ) 
n

i

cos 2 
 i  ,        ( it is a factor inside the above square bracket)                   (16) 

„a‟  is thus a dimensionless positive number since  q  ,  q0    and  
n

i

cos 2 
 i   are positive numbers ;  

Eq.(15) becomes  

 

                               Fe  =  ( 


1a
  -  a) q0  E                   ( Fig . 19 )                                                        (17) 

 

 

  Note :  If we insert  „a‟  from (16) into the expression of  F in Eq.(3) , we get a simpler expression for  F : 

  F =  (


1
-1) a q0 E   ,   in which the parameter   'a'   absorbs the charge  q  and the sum   

n

i

cos 2 
 i  .                                                                                               

                                    

 

 

 

 

 

                                                                            

                                                                                                   F   =  (


1
-1) a q0 E        ,  ( F.16 )                                                                      

                                                                                                   F’  =  -  (1/) q0 E          ,  ( F.18 ) 

                                                                                                     

                                                                                                   Fe  =  F + F'  =  ( 


1a
  -  a) q0  E  ,  ( F.19 )            

 

 

 

F.19 :   Fe  =  F  +  F’ .   

 For     1 :  F and  F’ are both negative ; Fe  is always negative , i.e., Fe  points in opposite direction to  E  

 For   1 – 1/a       1 :  Fe is negative and tends to  zero as    1 – 1/a  

 For      1 – 1/a  :  Fe  becomes positive ;  i.e., Fe  points in the direction of  E : the extended electron  

                                behaves like a positron .    

 

We have thus calculated the net electric force  Fe that is produced on the extended electron when it is 

subject to the external electric field  E .  The magnitude and direction of  Fe  depend on two parameters  

  and  'a'  ; their  actual ( or physical ) intervals  of variation are discussed  in the section  5  below .   

Fe 

 

Fe 

(+) 

(-) 

0 1 1-1/a 

-qoE 

-aqoE 

E 
F 

Fe 

F‟ 

a1 



 8 

We notice that for a point electron   = 1 , F = 0 , F’ = - q0 E , and hence Fe =  F + F’ = - q0 E   

This is the familiar value of the electric force produced on the point electron :  Fe = e E  .  

But for an extended electron the magnitude of  Fe  is modified  by the factor ( 


1a
 -  a )  which depends 

on  two parameters   'a'  and    .  And thus  the electric force  Fe  does not vary linearly  with   E   

( as the Lorentz classical equation  Fe = e E  ) . 

The parameter  'a'  , as defined by the expression (16) , characterizes the physical structure of the electron , 

and depends on   q  ,  q0  ,   n   and    i   

.   q  ,  the magnitude of electric charge on the end of a dipole ; 

.   q0 ,  the magnitude of electric charge of the core ; 

.   n  ,  total number of surface dipoles on the surface of the electron ; 

.    i  , representing the angular distribution of the surface dipole  i  on the spherical surface of  the electron; 

    the angle    varies from 0 to  .   

  

 

5.  The actual ( physical ) intervals of variation of    and  a    
       

Let us examine Fig.19 which shows the variation of  the magnitudes of  F , F’ and their sum  Fe  versus  .   

If   = 1 ,  F =  0  ,   F’ = - q0  E   ,  Fe =  F + F’  = - q0  E  = F’   :  the net force  Fe  is thus reduced to the 

force  F’  which is produced on the core of the electron ;  this means that when   = 1  the extended  

electron is mathematically equivalent to a point charge which is the core ( as already noted at the end of 

section 2 ) .   

So , for the extended electron ,    1  ;  that is,  either     1  or      1 .   

 

For     1  ,  both  F  and  F’ are negative, and hence  Fe is always negative . This means that the net 

electric force  Fe  produced on the electron is always different from zero, and as a consequence , from the 

Newton ‟ s second law of motion, the acceleration is always different from zero ; and hence  the velocity of 

the electron will increase to infinity with time : this is  the runaway behaviour .  Since the velocity of any 

particle  must be limited  to  c , so we reject the interval of variation of     1       

 

For    1 ,  F  becomes positive while F’ is always negative  ;  Fe = F + F’ :  ( Fig.19) 

 

*   Fe    0    in the interval    (1- 1/a )    1  :   Fe  points in the opposite direction to  E ; this means that 

                                                                              the extended electron behaves like a real electron .  

*  Fe    0    for      (1- 1/a ) :  Fe  points in the direction of  E  ; i.e., the extended electron behaves like a  

                                                     positive electron or a positron , so we reject this interval  . 
 

Thus we accept the interval   (1- 1/a )    1  , for which  Fe  is negative , it  accelerates the electron  in the 

opposite direction to the external field   E .  This interval will be written shortly as    1.   

Figs.  4 , 8 , 10 ,  10-a  ,  12 , and 14  satisfy  this condition  (    1 ) . They show the directions of the 

elementary forces  fe  and the resultant  F  ( =  fe ) :  F  is upward ( positive ) .  

Fig. 17  shows  F'   always downward ( negative ) . Since  F  and  F’  vary with   ,  when    =  1-1/a    ,  

F  =  - F’    and   Fe  = F + F’ = 0   ( Fig.19 ) : the electron reaches the speed limit  c . 

 

We note that the speed limit  c   is a postulate of the special theory of relativity :  it has no physical 

interpretation .  But here we can explain the physical reason why the extended electron's speed tends to  c  :  

when it is accelerated by an external electric field  E  , the magnitudes of two opposite  forces   F  and   F'   

tend to be equal when    =  1-1/a   , and the resultant force  Fe   0 .  From the Newton's  second law of 

motion :  if   Fe =  m dv /dt    0  ,  then  dv /dt    0  and  v  tends to a constant  that must be  c  because 

the electron is being accelerated . So ,  the variability of two opposite forces  F  and  F'  ( with  )  helps 

explain why the speed limit  c   is reached . 

 

In short , since    varies in the interval    (1- 1/a )    1  , we come to the following results : 
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-    The correction factor  (


1a
 -  a ) of the electric force  Fe  in  Eq.(17)  varies  from  -1  to  0 . 

-    The magnitude of the net electric force  Fe  varies from   – q0 E  to  0.  

                                                                                                          

-   The velocity  of the electron varies with    and tends to  c  as      1-1/a    .                                                                                                          

 

-   Since the relative permittivity     is a positive number  ,     1-1/a   means  that  1-1/a     0 

    i.e.,    'a'   is greater than unity  (a  1) . 

 

Four remarks related to the values of   : 

 

1.  The positron .  In this article we only investigate the properties of the electron ( not the positron ) ; this 

is when    varies in the interval (1-1/a )    1 , where  a  1 . In the following , this interval is written 

shortly as    1.  From Fig.19  we notice that when       1-1/a   ,  the electron is accelerated in the 

direction of the applying field  E ; i.e., the electron behaves like a positron .  This transition  suggests that  

e
- 
  and  e

+   
can be transformed from one to the other  if  its relative permittivity     is being changed 

around the value  (1-1/a)  where   F  = - F’  ,  
  
Fe = 0   and its speed is about  c . 

   

[ For comparison , let us recall that  Dirac 
  
revealed  from his relativistic equation

 
 of the electron that the 

electron  can have two energy states : positive and negative . He wrote in his Nobel lecture 
2
:  

“if we disturb the electron, we may cause a transition  from a positive-energy state of motion to a negative- 

energy one ...  ;  they correspond to the motion of an electron with a positive charge instead of the usual 

negative one - what the experimenters now call a positron ".  Thus , for Dirac  ,  e
-  

 and  e
+  

 are not 

independent  particles since   e
-   

can be transformed to   e
+ 

  by a disturbance  ( he did not specify what kind 

of disturbance ) ; in other words ,  the positron 
 
has its origin from the electron ] .  

 

The calculations of forces on the extended electron lead to Fig.19 which shows the variation of the net 

electric force  Fe  with    ;  it is the change of     about the value  (1-1/a)  that transforms    e
-  

 to   e
+  

and 

vice versa , so the disturbance here is the abrupt change of  
 


 
 . Moreover , the positron is not created alone, 

but together with the electron in the pair production  e
- 
- e

+ 
.
 
 This suggests that the positron may have the 

origin from the electron .
 
    

 

2.   Why   1   ?  

 We have come to the result  
  
  1  such that the velocity of the electron is limited  to  c  when it is 

accelerated in  E ; ( otherwise , if     1 , it will runaway ; i.e., its velocity tends to infinity) . Moreover , 

when    1  ,  Fe  is negative , it accelerates the electron in the opposite direction to  the applying field E, 

this is a feature of the real electron . 

This value of relative permittivity    1   is specific to the  “material ” of the extended electron because 

common materials
 
 such as water , glass , mica  … all have    ≥ 1 ; e.g.,  for air   = 1  , water ( 81) ,  

glass ( 5-10 ) , mica (6 ) and  no material with    1   is mentioned or listed in the current textbook 
3  

.  

This may be because the extended electron is composed of electric dipoles 
 
meanwhile common materials 

are composed of atoms or molecules . 

 

3 . The orientation ( or polarization ) of electric dipoles 

Now from Eq. (12) :  E’  =  ( 1/) E ,  since      1   ,      E’     E   .  This means that when an external  

electric field  E  is applied on the extended electron , it creates an electric field   E’  parallel and stronger 

inside the electron .  The reason for this is that the applying field  E  polarizes all electric dipoles inside the 

electron , giving rise to the field  E’ greater than  E .  This polarization causes the permittivity    of the 

electron to vary in the interval  (1-1/a  )     1  . We can say that    is a measure of the sensibility of the 

structure of the electron to the applying field  E .   
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Since electric dipoles contain both charges – and + , the polarization of the ensemble of electric dipoles in 

the extended electron  creates an electric dipole moment for the extended electron
 4, 5

 . A point electron  

with only negative charge cannot have an electric dipole moment .  

 

 

 

4.  The narrow interval of variation of  the relative permittivity    
 

The parameter „ a ‟ is a dimensionless positive number defined by the expression (16) :   

                                  a      (q / q0 ) 
n

i

cos 2 
 i                                                                                       

The magnitude of  „ a‟  increases with the number  „ n ‟   of surface dipoles because 
n

i

cos 2 
 i  is the sum 

of  n  positive terms ( cos 
2 
i  ).   For an extended electron , the number of surface dipoles is expected to be 

large  ( n  1 ) ; and hence , „ a‟ is also expected to be a large number (a  1) . If  a  1  , then   1/a   is  

an infinitesimal  number  , and hence ( 1- 1/a )   is  infinitesimally  less than 1  ;  therefore , the interval    

(1-1/a  )     1   becomes a  very narrow interval  (1-    1 ) . And hence , we can say that    is 

approximately constant and equal to  1-  ,   (    ≈   1- ) . (This approximation is needed for calculations in 

the Appendix  C ) .    

We conclude that  when the extended electron is subject to the external field  E   , its permittivity      

varies in the narrow interval  (1-1/a     1)  which causes the net electric force  Fe to change in the 

interval ( -q0 E , 0 ) and the effective electric charge  Q  of the extended electron varies in the interval  

 interval  ( - q0  , 0  ) as we see below . 

 

  6.  The variability of the electric charge of the extended electron   
 

From Eq.(17) which gives the net electric force  Fe                                 

                                                  

                                                Fe  =  ( 


1a
  -  a) q0  E              ( shown in Fig.19 )                                                 

 

 the effective electric charge  Q  of the electron can be deduced as   

 

                                               Q =  ( 


1a
  -  a) q0                    a   1                                                                                            (18)  

 
From Fig.19 , for the electron  ( Fe is negative ) ,     varies in the interval  (1-1/a )    1    and  hence   

Q  is negative and varies in the interval  ( - q0  , 0  ) . 

 

To find  the correspondence between the velocity  v   with      and  Q  , let us recall that on page 6  of the 

previous article entitled 
1(b)

 “  A Foundational Problem in Physics : Mass versus Electric Charge " 
 
 , 

we have obtained the general expression for the effective electric charge of the electron when it is subject to 

an external  field : 

 

                                                Q  = - ( 1 – v
2 
/ c

2  
)

N/ 2
 q 0                                                                                            (19) 

 

where  N  0  is a real number representing the applying electric or magnetic field .   

A  minus sign is added on the right hand side of Eq.(19) to indicate  the negative charge  Q  of the electron . 

From (18) and (19)  we get  
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

1a
  -  a   =  -  ( 1 – v

2 
/ c

2  
)

N/ 2
                                                                (20)   

 

or                                           =  (a – 1 ) /  [ a   -  ( 1 – v
2 
/ c

2  
)

N/ 2
 ]                                                            (21)  

 

So ,   when    v    c   ,       1   ,             Q    - q0       and     Fe    -  q0  E      (equivalent to a point electron)  

and   as          v    c   ,       1 – 1/a   ,   Q     0      and     Fe    0  . 

 

So , when it moves at  v    c  , the extended electron is mathematically equivalent to a point electron  (in 

terms of electric charge and force , both are constant ) .  But as   v    c  it behaves differently from the 

point electron :  its  effective charge  Q  and the net force  Fe  change with velocity , i.e., with time ,  while 

it is accelerated in the electric field  E .      
 

We note that Eq.(20) provides a relationship between three parameters  'a'  ,    and the velocity  v  of the 

electron . The Appendix C  shows that this equation can suggest a way to relate the radiation and 

absorption of light of the extended electron to its velocity ; that is , when the electron radiates , it slows 

down ; and when it absorbs light , it speeds up .     

 

7.  Equation of motion of the extended electron in external electric field  E   

 

Equation of motion of the extended electron in the form of  the Newton's  2nd law of motion is    

  

                                   m v
.
    =  Fe  = F  +  F’  =   ( 



1a
  -  a ) q0  E           from Eq.(17)                      (22)                       

or                                m v
.
    =     -  ( 1 – v

2 
/ c

2  
)

N/ 2
  q0  E                              from Eq.(20)                       (23)                                                                                 

 

where  v
. 
(= d

2
x/ dt

2
) .  Hence , the equation  (23)   is a second order differential equation  which obeys the 

Newton‟s first law of motion ( law of inertia ) and avoids the problems of runaway and preacceleration . 

  

We should note that the radiation reaction force  Frad 
 
 ( which is the recoil force produced by the 

radiation of an accelerating point charge   ) does not exist in the radiation of the extended electron .  

The force  F’  which is produced on the core  ( - q0  ) ,  is not the radiation reaction force produced by the 

radiation of the extended electron .    

Meanwhile the equation of motion of the point electron ( Lorentz-Abraham-Dirac equation ) including the 

radiation reaction force  Frad  is a third order differential equation   

                                     

                                    m v
.  

=  Fext     +   Frad                                                            
  
                                  (24)                       

 

where  Frad   =  2q
2  v

.. 
/ 3c

3  
 ( in cgs ) ;   v

..  
(= d

3
x / dt

3
)  is the second time derivatives of the velocity  v .  

Eq.( 24) does not obey the law of inertia and is involved in many problems including the runaway and 

preacceleration
6
.  

 

 Summary and conclusion 

 

More than 100 years ago , many physicists had proposed various extended model for the electron  :   

Lorentz ( 1904 ) , Poincaré ( 1906 ) ...  All these models contained only negative charges .   

 

The new extended model contains both types of  charges ( + and - ) in its volume.  It is a version
 1(a)

 of the 

image of the screened electron by vacuum polarization such that calculations can be performed on it to 

determine its effective electric charge . We have come to the following results :    
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When the electron is subject to an external electric field  E , two opposite electric forces  F  and  F' are 

produced on it :  F  is the resultant of all elementary forces  fe   ,  F'  is   produced on the core (- q0 ) . 

The net force   Fe =  F + F'  accelerates  the electron in the opposite direction  to  E  , varies with velocity  

and tends to zero as  v → c . 

The effective electric charge  Q  changes with the velocity and tends to zero as  v → c . 

 

The investigation on this extended model leads us to following ideas :   

 

1/   The concept  of   screened electron by vacuum polarization 
1(a) 

 should be abandoned 
 
since it does not 

provide  any form of calculation to determine the effective electric charge of the electron .  The virtual pairs 

of ( e
-  

, e
+ 

)  are fictitious  , they must not have real effect on the electron . Whereas electric dipoles  or 

photons  are real particles (as conceived by Feynman) , which constitute the real part of the electron around 

its central core ( -q0 ) instead of those fictitious pairs of  ( e
-  

, e
+ 

) .  

2/   The old-fashioned concept of  mass varying with velocity 
 1(b)

 should be abandoned and  replaced by the  

concept of varying effective charge  which is derived from the new extended model of the electron .  

 

3/   The extended model of the electron can help explore more experimental properties of the electron , such 

as its radiation and spin in external electric and magnetic fields .  

________________ 

 

Part 2 : Radiation of the extended electron in constant electric field . 

 
1.  Introduction : radiation by forces  
 

Radiation process is a tough topic to discuss because of the dual nature of light and the unknown structure 

of the electron that emits light .  In this part 2 , the extended model of the electron
1(a)

 will be used in the 

discussion of the radiation process .  As for light , it is assumed that the electron emits  light , and light may 

be particles ( called photons) , as conceived by Feynman* or  it may be a  chunk of self-sustaining 

field** which detaches from the electron and travels through space , as conceived by the classical theory of 

radiation .    

In this article and subsequent ones,  we choose to consider light as particles which are identified as tiny  

needles carrying two opposite charges  -q  and  +q  at their two ends ; these   "electric dipoles"  form the 

outer part of the extended electron 
1(a)

 .  When the electron emits its electric dipoles into the surrounding 

space , we say it is radiating .  

The following sections will introduce  the readers to a novel way of explaining the radiation process :  this 

is radiation  by forces  . 

 

  2.  Radiation of the extended electron by electric forces   
 

Before  discussing  the radiation process and defining the conditions for radiation , let us review  two 

electric forces  fe  and  G  which are produced on surface dipoles of the extended electron when it is 

subject to an external constant electric field  E .  These two forces will help explain the radiation process . 

First , the elementary forces  fe  produced on all surface dipoles are shown in F.10-a   when     1   :  

fe  are centrifugal on the upper hemisphere and centripetal on the lower hemisphere ; their magnitude is   

____________________________   

*  Feynman : " I want to emphasize that light comes in this form – particles .  It is very important to know 

that light behaves like particles , especially for those of you who have gone to school , where you were 

probably told something about light behaving like waves . I’m telling you the way it does behave – like 

particles . ”   ( Optics , E.Hecht , p.138 ) 

**  " If the point charge is subjected to a sudden acceleration caused by some external force , then pieces 

of the electric and magnetic fields break away from the point charge and propagate outward as a self-

supporting electromagnetic wave pulse . "  ( Classical Electrodynamics , 1988 ,  H. C. Ohanian , p. 411 )       
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                                       fe   =  ( 1/  -  1 ) q E cos  ,        1   ,        0                                                          

 

 Second are the cohesive forces  G  which attract all surfaces dipoles toward the core of the electron ;  

i.e., they are centripetal and produced by the self-field  E0   of the electron ;  their magnitude is     

 

                                        G  =  [(1/) – 1] q E0      ,     Eq.(16)                                                                                  

  

which had been calculated in Fig.19  of the article 
1(a)

 "A New Extended Model for the Electron ".  

  
These two forces  fe  and  G  are shown together in  Fig.20  and  Fig.21   below .   

 

On the upper hemisphere, while  fe  are centrifugal ,  the cohesive forces  G  are centripetal  . So , if the 

magnitude of  fe  is stronger than that of   G    ( fe  G ) , these surface dipoles can break away from the 

surface of the electron ; that is, the electron emits these electric dipoles upwards . This means that the 

electron radiates upwards , from the upper hemisphere , while the electron is moving downwards in the 

opposite direction to the applying field  E  . 

Meanwhile , on the lower hemisphere, since both  fe  and  G are centripetal , these surface dipoles cannot 

break free from the surface of the electron ; that is , there is no radiation from the lower hemisphere 

 

 

  

 

 

 
                                                                      Fig. 20 shows when    1  :           

                                                                     - electric forces  fe :  centrifugal on the upper                       

                                                                                      hemisphere and centripetal on the lower hemisphere ,             

                                                                                   - cohesive forces G  : all are centripetal ,                                                       

                                                                                   - electric force  F’  acting on the core (–q0 ) ,                        

                                                                                   - the direction of the applying field  E  .     

                  
  
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                    F.21   shows when    1  :           

                                                                                                  the radiant zone limited by the angle             

                                                                                                  o  where  fe
0
 = G . 

                                                                                                  The cone of radiation is upward  

                                                                                                  ( in the direction of  E  ) while the  

                                                                                                  electron moves downwards .  
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In short , the extended electron does not radiate from its entire surface ,  but only from a limited zone 

around the north pole , on the upper hemisphere of the electron as shown in Fig.21 .    

In the following , we will determine this radiant zone around the north pole and define the conditions for 

radiation of the extended electron in the electric field  E  .  

 

3.   The cone of radiation - Conditions for radiation . 
 

Now let us determine the radiant zone on the upper hemisphere  as shown in Fig.21 .  

Let us recall that  the magnitude of  fe  produced on a surface dipole  M of the upper hemisphere has been 

calculated  in part 1 ( Fig.4 ) ;  fe  is centrifugal , its magnitude is                                    

            fe  =  ( 


1
 - 1 ) q E cos     ,   where     1    and      0     /2                                                (25) 

fe  thus depends on the angular position    of the surface dipole .   

 

Let   0    be the value of the angle   at which   fe
0
  =   G     ( in magnitude )                                           (26)                                 

 

then the condition                     fe     G     ( for the radiation to occur as stated above)    

 is rewritten as                          fe    fe
0    

            

or                ( 


1
 - 1 ) q E cos       ( 



1
 - 1 ) q E cos 0                                                                          (27)              

or                                      cos       cos 0        

 

or                                                  0                                                                                                       (28)                                                                   

 

 Fig.21  shows  the radiant zone on the upper hemisphere , restricted in a zone around the north pole of the 

electron , limited by the angle 0   which is defined by the relation (26).  

 

All rays radiating  from the radiant zone are contained inside a radiation cone of  half- angle  0   at  the 

vertex  O . So , the existence of the angle 0  means the existence of the radiation cone .                                                                  

 

Now let us determine the condition for the existence of the angle 0  .  From (26) we have  

 ( 


1
 - 1 ) q E cos 0  =  G    where E is the applying electric field .       

  

 The magnitude of  G  has been calculated to be equal to  

  G  =  ( 


1
 - 1 ) q E0      where  E0      is the self field of the electron .                                                               

Hence  ( 


1
 - 1 ) q E cos 0  =  ( 



1
 - 1 ) q E0    or      cos 0  =    E0 / E    1                                          (29)                                                                 

The condition for the radiation to occur is thus                    E    E0                                                          (30) 

 

Therefore , 

 

i)    if   E    E0    ,  cos 0   1  ; 0   does not exist :  no radiation emits from the 

                          electron while it is accelerated in  E ; this also means that in free space ( E = 0 )   

                          the electron cannot radiate .            

                   

 ii)    if   E  =  E0    ,  cos 0  = 1  , 0  = 0  :  the radiation cone reduces to a ray ( or a beam ) 

                               of light emanating from the north pole of the electron .  

                  

 iii)    if   E  E0   ,  cos 0  1 ,  0  0    /2  :  radiation occurs around the north pole of the 
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                              electron ; a radiation cone emanates from the electron as shown in Fig.21  . 

                  

iv)     if   E    ,  cos 0    0   ,  0   /2  :  the radiant zone expands to cover the entire upper 

                               hemisphere ( this is only a limit case since  E  can never  tend to infinity ). 

                               

Thus   E  E0    is the condition for the existence of the angle 0   (which implies the condition for the 

emission of radiation  ) . So, while it is accelerated in  E , the extended electron can or cannot radiate * 
,
 ** 

depending on the strength of the applying field  E  compared to that of its self- field  E0  , but not on its 

acceleration ***.  

We note that in the case  i)  E    E0  :  the electron is accelerated by the applying field  E  but it does not 

radiate because cos 0   1   ( i.e.,  0   does not exist ) ; therefore, the radiation of the extended electron 

does not depend on its acceleration .   

( The  Larmor 's formula links the power radiated  (P = 2q
2 
a

2 
/ 3c

3
 )  by a radiating point electron to its 

acceleration ; this formula does not applied to the extended electron ).   

Following are statements of three eminent physicists about the radiation and acceleration :   

 

  *   Pearle
 7

  :  “  A point charge must radiate if it accelerates , but the same is not true of an extended 

                     charge distribution .”      

 **Jackson
 8

  : “  Radiation is emitted in ways that are obscure and not easily related to the acceleration  

                             of a charge .”      

*** Feynman  : “  We have inherited a prejudice that an accelerating charge should radiate . ”  

 

We also note that the radiation reaction force  Frad 
 
 (which is the recoil force produced by the radiation of 

a radiating point electron )  does not exist in the radiation of the extended electron .  

The force  F’ produced on the core  ( - q0  ) ,  although  pointing in the opposite direction to the radiation ,  

is not produced  by the radiation of the extended electron .   

As mentioned in section 7 of part 1 , if the radiation reaction force  Frad    is included in the equation of 

motion of the electron , the equation  becomes a third order differential equation ; this is Lorentz-Abraham-

Dirac equation for the point electron which is involved in  such problems as  runaway and preacceleration .    

 

Conclusion 
 

This article presents the theory on a new extended model of the electron 
1(a)

 , it reveals some features 

which are quite different from  those of the point  electron .  

In part 1 , the net electric force  Fe  developed on the extended electron is not a single force , but the 

resultant of two opposite forces  F  and  F' ;  Fe  and the effective electric charge  Q   change with velocity 

of the electron and tend to zero as  v → c  . 

Part 2  introduces a novel way of explaining the radiation process of the extended electron :  radiation by 

electric forces . When the extended electron is subject to an external field  E which is stronger than the self-

field  E0    of the electron ,  the electron radiates in the direction of  E  by the elementary forces  fe  that 

emanate from the upper hemisphere of the extended electron  ( Fig. 21 ) ;  the radiation does not depend on 

the acceleration of the electron and produces no radiation reaction force .  
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Appendix  A : Calculation of the elementary force  fe  
                                                                                                       

                                  

 

 

 

 

 

  

 

 

 

 

 

 

 

F.2  :  Normal and tangential components of                         F. 3 :  Normal and tangential components of the  

      E  and  E’  on two ends of surface dipole  M                    electric forces on two ends of surface dipole M                  

 

 

First , we use boundary conditions  to determine the electric field  E’ inside the electron ,  then we calculate 

the electric force  fe .   

Fig. 1  shows two arbitrary surface dipoles  M  and  N :   M  on the upper hemisphere, N on the lower 

hemisphere .   

Boundary conditions applied on dipole  M  give ( Fig. 2 )  

E  =  En  +  Et    acting on the negative charge –q  of the surface dipole  M , 

E’ =  E’n  +  E’t  =  ( 1/) En  +  Et    acting on the positive charge  +q   ,  

where  En  =  E cos    , 0    /2    and    Et  =  E sin  .  

Since  Et  =  E’t  ,  two tangent forces  ft  and  f’t   produced on two ends –q  and  +q  of dipole  M  are 

equal and opposite  ( Fig. 3 )  :  ft  =  f‟t  =  q Et  =  q E sin  . 

Two normal forces fn  and  f’n   have magnitudes  

fn  =  q En  =  q E cos  ,  fn  is centripetal , 

f‟n  =  q E‟n  = (1/) q En  =  (1/) q E cos  ,  f’n  is centrifugal . 

Since the dipole is extremely small , these  forces can be considered as if they apply on the same point on 

the dipole M . Their resultant force  fe  acting on the dipole  M  is thus   

fe  =  fn + f’n + ft + f’t  =  fn  +  f’n   since  ft  and  f’t  are equal and opposite .  

Since   fn  and   f’n  are in opposite directions, the magnitude and direction of  fe  depend on   :  

*  when    1 ( Fig. 4) , f‟n    fn , hence :  fe  =  f‟n  -  fn  =  ( 1/  -  1 ) q E cos ,  fe  is centrifugal , (1-a)       

 

*  when    1 ( Fig. 5) ,  fn    f‟n  , hence :  fe  =  fn  -  f‟n  =  (1 – 1/ ) q E cos , fe  is centripetal ,  (1-b)  

    

 

 

 

 

 

 

 

 

  

 

 

 

 

 



 17 

 

F.6 :  Normal and tangential components of                          F. 7 :  Normal and tangential components of the 

E  and  E’ on two ends of surface dipole  N                         electric forces on two ends of surface dipole  N  

  

 

Now we calculate the resultant force  fe  acting on the dipole  N , on the lower hemisphere of the electron  :  

 /2         ,   ( hence cos     0 )  ,    Fig. 6 & Fig.7 . 

Since    +   =     ,   En  =  E cos   =  - E cos   and   Et  =  E sin  =  E sin . 

Boundary conditions give  Et  =  E’t  ;  so , two tangent forces  ft  and  f’t  produced on two ends –q  and  

+q  of the dipole  N  are equal and opposite  :   ft  =  f‟t  =  q E sin  . 

Two normal forces fn  and  f’n  have magnitudes  

fn  =  q En  =   q E ( -cos ) ,  fn  is centrifugal , 

f‟n  =  q E‟n  =  ( 1/) q E ( - cos )  ,  f’n  is centripetal . 

Since  cos  0  ,  (-cos )  is a positive number ; the resultant force  fe  acting on the dipole  N  is  

*  when    1  ( Fig. 8 ) :  fe  =  f‟n  -  fn   =  ( 1/  -  1 ) q E ( -cos ) , fe  is centripetal,                       (1-c)    

*  when    1  ( Fig. 9 )  : fe  =  fn  -  f‟n  =  ( 1 – 1/ ) q E ( -cos ) ,  fe  is centrifugal .                       (1-d) 

 

We have used four expressions ( 1-a ) , (1-b ), (1-c ) and (1-d ) in the determination of  fe  in the main text . 

 

 

Appendix  B : Determination of the force  F’  produced on the core of the electron 

 
 

The core is a point charge ( -q0 ) subject to the field  E’ .  Because of the spherical symmetry of the 

structure of the of the electron , E’  at the core must be parallel to the external field  E .  And hence we  

can write  

                                         E’  =  k E                                                                                                              (5) 

 

where  k  is a positive number different from 1  :   0   k   1. 

k  is positive because  E’ is parallel to  E  ;  k   1  because if  k = 1 , Eq.(5)  becomes      E’  =   E  ;  and 

this means that the electric field inside the electron is independent of the material of the electron .  But 

since the extended electron has a permittivity ( ‟ ) different from that of the surrounding free space  ( 0 ) , 

it is reasonable to think that E’  depends on the medium of the electron ; i.e., E’  differs from E  in 

magnitude or  k  1 . 

Now let‟s apply boundary conditions to two points on both sides of the interface :  M on the surface of the 

electron and the center O   

 

At  M  :   E  =  En  +  Et                                                                                                                                (6) 

 

At  O  :   E’  =  ( 1/ ) En  +  Et                                                                                                                     (7)  

 

Equations ( 5) and (6) give  

 

              E’  =  kE  =  k En  +  k Et                                                                                                               (8) 

 

Comparing  (7) and (8) we get  (9) and (10) 

 

( 1/ ) En  =  k En         k  =  1/     1    and                                                                                            (9) 

                                                                    

Et  =  k Et      ( k – 1 ) Et  = 0      Et  =  0    since  k–1   0                                                                (10) 

 

Since  Et  =  0  ,  Eq.(6)  becomes      E   =  En                                                                                           (11)  

 

and  Eq.(7)  becomes   E’  =  (1/) En  =  ( 1/) E                                                                                      (12) 
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So , the electric force  F’  produced on the core (-q0)  is  

 

                             F’  =  - q0 E’  =  -  (1/) q0 E                                                                                           (13)     

 

F’  is thus always negative ; i.e., it always points in the opposite direction to E  ( Fig.17) .  

Fig.18  shows the variation of  F’  vs      according to  Eq.(13) .  

 

Note :  The above results  Et  =  0   (in Eq.10)  and  E   =  En   (in Eq.11)  imply that the point  M  must be 

located at either the north pole (  = 0 ) or the south pole (  = )  of the electron because  Et = E sin = 0, 

hence  sin = 0 . This result comes from the fact that the electron is spherically symmetric : E  and  E’ are 

collinear  (12)  and normal  (11) to the spherical surface only at the north and south poles of the electron .    

If  M  takes an arbitrary position on the surface of the electron , we cannot solve the equations of boundary 

conditions for the field  E’   at the core  O  .   

 

We have used two Eqs. (12) and (13) in the determination of  F'  in the main text .  

 

 

Appendix  C :  Radiation and absorption of light ( or photons )  

 
In part 2  we  maintained that light is composed of particles called photons which are identified as electric 

dipoles that form the outer part of the electron
 1(a)

 .  In the determination of the net electric force  Fe , we 

defined the parameter   'a'   by the expression  (16)    

                                       a      (q / q0 ) 
n

i

cos 2 
 i  ,                                                                      (16) 

 

which represents the structure of the extended electron , in which   n  is the number of surface dipoles . 

The parameter   'a'   is thus a positive dimensionless number  which  increases monotonically  with the 

number  n  of surface dipoles because    
n

i

cos 2 
 i     is the sum of  n  positive terms   cos 

2 
 i   .  

 

This expression suggests the idea that the radiation and the absorption of light of the extended electron are 

linked to   n   and  'a'  in the  following manner : 

 

*  when the electron radiates , it emits its surface dipoles into space ; this means that the number   n   (of  

   surface dipoles  ) decreases , and thus the parameter  'a'  decreases accordingly ,  

 

*  when the electron absorbs photons ( e.g., by irradiation  ) , it collects dipoles onto its surface ; this means 

   that  n  increases , and thus the parameter  'a'   increases accordingly . 

 

As mentioned on page 11 ( section 6 , part 1 ) that the  equation  (20 )   

 

                                                                     



1a
  -  a   =  -  ( 1 – v

2 
/ c

2  
)

N/ 2
                                                                 (20)     

 

can suggest a way to relate the radiation and absorption of light of the extended electron to its velocity ; 

that is , when the electron radiates , it slows down ; and when it absorbs light , it speeds up .     

To prove this statement , let us extract  v
2 
/ c

2     
from Eq.(20)   

 

                                    
  
          

  
v

2 
/ c

2     
=  1 -  [ a - ( a - 1 ) /   ] 

2/N
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As mentioned on page  10  that  since  a ˃˃ 1  ,      ≈   1-   ( infinitesimally less than 1 ) ;  so  if     is 

considered approximately constant  ,   we can take the derivative of    v
2 
/ c

2    
 with respect to  'a'   : 

 

                                               d (v
2 
/ c

2 
) / da 

    
=   (2/N) [ ( 1/  )  -  1 ]  [ a - ( a - 1 ) /   ] 

( 2/N ) -1 
    

 

For  N  ˃ 0  ;   a  ˃˃  1   and     ≈   1-    or  (1-1/a )    1    , we have  

 

(2/N)  ˃  0   ;    [ ( 1/  )  -  1 ]   ˃  0   ;   [ a - ( a - 1 ) /   ] 
( 2/N ) -1 

   ˃  0   for all values of the  

 

exponent   ( 2/N ) - 1   ,   therefore  we get  
 
   d (v

2 
/ c

2 
) / da 

    
˃  0   

 

This means that    v
2 
/ c

2  
   and  'a'     increase  monotonically   ,  that is  

 

*   when the electron radiates :  'a'  decreases  , and    v
2 
/ c

2  
  decreases as well  ; this means that the 

electron slows down ; i.e., it loses its ( kinetic ) energy . ( For example , in the synchrotron accelerator , 

electrons radiate and lose their energy ) . 

 

*   when the electron absorbs photons :  'a'  increases , and    v
2 
/ c

2  
  increases as well ; this means that  the 

electron speeds up ; i.e.,  it gains energy . ( In the photoelectric effect , electrons absorb photons via 

irradiation and gain energy ) .  

 

These  results are not new findings , they are already known in the classical theory of radiation .  

What is new here is that they can be deduced
 
 from a few mathematical expressions which are derived from 

the extended model of the electron 
1(a)

 . 
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