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We extend the results of two recent letters by expressing the 10B, 9Be, 10Be, 11B, 11C, 12C and 14N 
binding energies, each independently and each to about parts-per-million or small parts-per-
100,000 accuracy in AMU, exclusively as a function of the up and down current quark masses.  
 
PACS:  21.10.Dr; 27.10.+h; 14.65.Bt; 14.20.Dh; 27.40.+z; 14.60.Cd; 26.20.Cd 
 
1.  Introduction 
 
 This letter in a continuation of two very recent letters [1] and [2] which explain how 
nuclear biding and fusion energies can be mapped exclusively as the function of the up and down 
quark masses, to accuracy on the order of small parts per 100,000 or parts per million AMU 
based on Koide-type matrices applied to three quark masses inside the proton and neutron.  The 
earlier letter [2] reported on 2H, 3H, 3He and 4He as well as the neutron minus proton mass 
difference and a relationship among the up, down and electron masses.  The later letter [1] went 
on to report on 6Li, 7Li, 7Be and 8Be.  Here we continue where [1] left off, and make a similar 
report as to all of 10B, 9Be, 10Be, 11B, 11C, 12C and 14N.  For economy, the results in [1] and [2] 
will not be repeated here, except as directly necessary to support the derivations here, nor will 
the references used in those two letters be repeated here. 
 
2.  Mass/Energy Relation between 10B and 8Be, and 12C and 14N 
 
 We begin this letter by considering the 10B nuclide.  For 6Li we considered the fusion 
reaction 4 6

2 32 EnergyHe p Li e ν++ → + + + .  We follow a similar route and consider the fusion 

reaction 8 10
4 52 EnergyBe p B e ν++ → + + + .  The energy released during such a fusion event is: 

 
8 10
4 5 0.006921034Ene 2  rg uy p eM M M m= + − − = , (2.1) 

 
using empirical data 84 8.003110780 uM = , 10

5 10.010194100 uM = , 1.007276466812 upM =  

and 0 000548579909 uem .= .  We recall from (2.2) of [1] that the energy released during 
4 6
2 32 EnergyHe p Li e ν++ → + + +  was given by ( )1.5

9 / 2u dm m π  to about 7 parts per million.  

Because 6Li has A=Z+N=6 nucleons and so has 9 3 / 2A= ×  up / down quark pairs, we 

interpreted this as indicating that each of the nine quark pairs gave up one ( )1.5
/ 2u dm m π  

energy dose during this fusion.  Following suit, we observe that 10B has A=Z+N=10 nucleons, 
and so contains 15 3 / 2A= ×  up / down quark pairs.  Expecting some consistency, we construct 

the factor ( )1.5
15 / 2u dm m π  and subtract this from the empirical energy in (2.1) to obtain: 
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( )1.5
15 /0.006921034 u 0.00354 70  2 3 7 uu d u dm m m mπ ≅=− . (2.2) 

 
So apparently there is still some energy that is unaccounted for when we open up the 2p shell 

with 10B.  However, is the easily seen that the energy calculated in (2.2) differs from u dm m  by 
62.3983 10  u−×  i.e., by just over two parts per million AMU, as is also shown above.  So we use 

(2.2) together with (2.1) to conclude that: 
 

( )
( )

8 10
4 5

1.58 10
4 5

Energy 2 Energy

          2 15 / 2 0.006923432 up e u d u d

Be p B e

M M M m m m m m

ν

π

++ → + + +

= + − − = + =
. (2.3) 

This differs from the empirical value (2.1) by the same 62.3983 10  u−× , or just over two parts per 
million.  So when the stable nuclide 10B is created by fusing 8Be with two protons, apparently 
each up / down quark pair in the target 10B nuclide contributes one energy does of 

( )1.5
/ 2u dm m π .  But in addition, there is an overall energy dose of u dm m  as well.  Noting that 

in the 2s shell, the orbital angular momentum is l=0, but that 2p is the first shell in which 

nucleons have a non-zero l=1, it makes sense, at least preliminarily, to regard this extra u dm m  

dose that did not appear when we built 6Li, as being required to provide the energy needed to 
sustain one proton and one neutron in n=2, l=1, m=0 states.  So we regard the 

( ) ( )1.5
3 / 2 / 2u dA m m π× ⋅  energy doses as pairwise contributions by the up and down quarks to 

sustain binding, and the overall u dm m  dose as a contribution to sustain angular momentum. 

 
 Rather than stay inside the n=2, l=1, m=0 states of the 2p shell, let us see if we can strike 
further into the nuclear binding table by building the 14N in a similar way.  Here, for the first 
time, we will have protons and neutrons in n=2, l=1, m=±1 states, i.e., with non-zero m magnetic 
quantum number states.  The analogous reaction we wish to consider here, is 
12 14
6 72 EnergyC p N e ν++ → + + + . The energy released is: 

 
12 14
6 7En 0.011478929 er 2 ugy p eM M M m= + − − = . (2.4) 

 
This uses the empirical data 12

6 11.996708521 uM = , 14
7 13.999233945N =  and the proton and 

electron masses.  Noting that these elements are both along the Z=N nuclide diagonal and have 
equal numbers of up and down quarks and that we have thus far utilized a 

0.003546105 uu dm m =  construct which is u d↔  symmetric, let us also bring the similarly-

symmetric ( ) 0.0038/ 22 7326 uu dm m+ =  construct into play.  This is about 8% larger than 

u dm m , but has the appropriate symmetry and so should also be considered especially when 

working on the Z=N diagonal.  Very interestingly, the above energy (2.4) differs from 

( )3 / 2u dm m× +  by a mere 63.0490 10  u−× .  We therefore make the association: 
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( )
( )

12 14
6 7

12 14
6 7

Energy 2 Energy

          2 3 0.011481  / 9 82 7 up e u d

C p N e

M M M m m m

ν++ → + + +

= + ⋅ − − == × +
. (2.5) 

  

Apparently, once we start to construct nuclides for which m≠0, nature replaces u dm m , and 

simply employs three “doses” of ( ) / 2u dm m+  to construct 14N.  Perhaps the number “3” 

representing these doses may be ascribed to the three complete shell levels 1s, 2s and 2p0 (where 
the superscript “0” indicates m=0) upon which the proton and neutron to create 14N are overlaid. 
 
3.  Mass/Energy Relations for 9Be, 10Be, 11B and 11C 
 
 Having obtained the relationship (2.3) for 10B, which is a stable nuclide, let us see if we 
can branch out from here.  First, we work over to 10B’s lighter isotone 9Be.  The reaction we shall 
consider is 9 10

4 5 EnergyBe p B+ → + , fusing a proton with 9Be to produce 10B for which the 

binding energy is now known in principle via (2.3).  (See section 4 of [1] which shows how the 
deduction is done once the nuclear weight is established, and see section 4 below in which we 
shall explicitly calculate this binding energy.)  The fusion energy relation is: 
 

9 10
4 5Ener 0.00707024  ugy 7pM M M= + − = , (3.1) 

  
using the empirical values 9

4 9.009987880 uM = ,  10
5 10.010194100 uM =  and the proton mass.  

This differs from 2 µ dm m  by 52.19637 10  u−×  or just over 2 parts per 100,000 AMU, which is 

within the ranges we have previously taken to be physically meaningful.  So we now establish 
the close relationship: 
 

( )9 10 9 10
4 5 4 5E 0.007092210 unergy Energy 2p µ dBe p B M M M m m+ → + = + − = = , (3.2) 

 
This binding energy for 9Be can now be deduced from this, and will be in section 4. 
 
 The next nuclide we consider branching to from 10B is the comparatively stable 10Be, 
which has a half-life of 1.39×106 years before it decays through β

- decay into its isotope 10B for 

which we deduced the fusion energy (2.3).  Here the reaction is 10 10
4 5 EnergyBe B e ν→ + + +  and 

so the energy relationships are:  
 

10 10
4 5 0.000596800 g uEner y eM M m= − − = . (3.3) 

 
Above, we use the empirical 10

4 10.011339480 uM = , 10
5 10.010194100 uM =  and the electron 

mass.  In trying to fit this result, we recall from eq. [15] of [2] that the binding energy of 3He is 

retrodicted to under four parts per 100,000 to be ( ) ( )3 2 2u d u u u dB He m m m m m m= + = + .  

Keeping this in mind, we form three similar mass combinations 
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( )2 2d d u d u dm m m m m m+ = + ,  ( )2 2d u d d u dm m m m m m+ = +  and 

( )2 2u u d u u dm m m m m m+ = + , as well as the foregoing divided by ( )1.5
2π .  All of these 

are readily constructed from the square root of an up or down quark mass times the trace of a 
Koide matrix for the proton or neutron, see, e.g., (15) of [2].  It turns out that the value in (3.3) 

differs from the final expression ( ) ( )1.5
2 / 2u u dm m m π+  by 65.0911 10  u−− × , that is, by five 

parts per million.  We take this to be a meaningful relationship, and so write (3.3) as: 
 

( )
( ) ( )

10 10
4 5

1.510 10
4 5 0.00060189

Energy Ener

1 

gy

          2 / u2e u u d

Be B e

M M m m m m

ν

π

→ + + +

= − − = + =
. (3.4) 

 
 Now we branch up to 11B via 10 11

5 5 EnergyB p e B ν+ + → + + .  The energies are: 

 
10 11
5 5E 0.011456647 unergy p eM M m M= + + − = . (3.5) 

 
Above, we use 10

5 10.010194100 uM = , 11
5 11.006562500M =  and the proton and electron 

masses.  It turns out that the above differs from ( )3 / 2u dm m⋅ +  by 52.53311 10  u−× , or under 3 

parts per 100,000.  We take this as a meaningful relationship, and so write (3.5) as: 
 

( )
( )

10 11
5 5

10 11
5 5

Energy Energy

        0.011481978   3 2 u/p e u d

B p e B

M M m M m m

ν+ + → + +

= + + − = ⋅ + =
. (3.6) 

   
 So as a respective result of (2.3), (3.2), (3.4) and (3.6), it becomes possible to deduce the 
binding energies of four new nuclides: 10B, 9Be, 10Be and 11B.  Before we explicitly deduce these 
four binding energies, let us also look at one final branch, this time from 11B to 11C.  Carbon-11, 
which is used to label molecules in PET scans, has a half-life of 20.334(24) min before it β+ 
decays into 11B which we have just uncovered in (3.6) above.  This reaction is 
11 11
6 5 EnergyC e B ν+ → + + , which is represented as: 

 
 11 11

6 5Energ 0.00212820  y 0 ueM m M= + − = . (3.7) 

 
Here we have used 11

5 11.006562500M =  and 11
6 11.008142121 uM = .  Comparing to the usual 

constructs, we see that ( ) ( )1.5
4 2 / 2u u dm m m π+  differs by 51.49327 10  u−− × , less than 2 parts 

in 100,000.  So we take this to be meaningful, and rewrite (3.7) as: 
 

( )
( ) ( )

11 11
6 5

1.5 1.511 11
6 5

Energy Energy

        0.002113  8 / 2 4 / 2 267 ue u u d

C e B

M m M m m m

ν

π π

+ → + +

= + − = + =
. (3.8) 
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Now we shall explicitly decide the binding energies for all of 10B, 9Be, 10Be, 11B and 11C, before 
we turn separately to 12C which completes the 2p0 subshell (0 representing m=0). 
 
4.  Deduction of Binding Energies for 10B, 9Be, 10Be, 11B and 11C 
 

As we are reminded in section 4 of [1], for a nuclide with Z protons and N neutrons hence 
A=Z+N nucleons, the binding energy A

Z B  is related to its atomic weight A
Z M  according to: 

 
A A
Z P N ZB Z M N M M= ⋅ + ⋅ − . (4.1) 

 
So for the 10B, 9Be, 10Be, 11B and 11C binding energies, we need to find: 
 
10 10
5 5

9 9
4 4

10 10
4 4

11 11
5 5

11 11
6 6

5 5

4 5

4 6

5 6

6 5

P N

P N

P N

P N

P N

B M M M

B M M M

B M M M

B M M M

B M M M

= ⋅ + ⋅ −

= ⋅ + ⋅ −

= ⋅ + ⋅ −

= ⋅ + ⋅ −

= ⋅ + ⋅ −

. (4.2) 

  
We begin by substituting (2.3), (3.2), (3.4), (3.6) and (3.8) into the above, rearranged so that the 
nuclear masses on the very right of each of the above may be replaced.  This yields:  
 

( )

( ) ( )
( )

( ) ( )

1.510 8
5 4

9 10
4 5

1.5 1.510 10
4 5

11 10
5 5

1.5 1.511 11
6 5

3 5 15 / 2

5 5 2

4 6 / 2 2 / 2

4 6 3 / 2

6 5 8 / 2 4 / 2

P N u d u d e

P N µ d

P N u u d e

P N u d e

P N u u d e

B M M M m m m m m

B M M M m m

B M M M m m m m

B M M M m m m

B M M M m m m m

π

π π

π π

= ⋅ + ⋅ − + + +

= ⋅ + ⋅ − −

= ⋅ + ⋅ − − − −

= ⋅ + ⋅ − + ⋅ + −

= ⋅ + ⋅ − − − +

. (4.3) 

 
Next we substitute for 10

5M  in the second through fourth expressions, and for 11
5M  and again for 

10
5M  in the final expression.  This brings us to: 

 

( )
( )
( ) ( )

( ) ( )
( )

1.510 8
5 4

1.59 8
4 4

1.5 1.510 8
4 4

1.511 8
5 4

11 8
6 4

3 5 15 / 2

3 5 15 / 2

2 6 13 / 2 / 2

2 6 3 / 2 15 / 2

3 5 3 / 2

P N u d u d e

P N u d u d e

P N u d u d u

P N u d u d u d

P N u d u

B M M M m m m m m

B M M M m m m m m

B M M M m m m m m

B M M M m m m m m m

B M M M m m m m

π

π

π π

π

= ⋅ + ⋅ − + + +

= ⋅ + ⋅ − − + +

= ⋅ + ⋅ − + + −

= ⋅ + ⋅ − + ⋅ + + +

= ⋅ + ⋅ − + ⋅ + + ( ) ( )1.5 1.5
8 / 2 11 / 2d u u d em m m mπ π− + +

.(4.4) 
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 Now the foregoing all contain the nuclear weight 8
4M  of 8Be.  So now we invert (4.1) 

specifically for 8Be, to write: 
 
8 8
4 44 4P NM M M B= ⋅ + ⋅ − . (4.5) 

 
Substituting this into all of (4.4) and reducing, next yields: 
 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1.510 8
5 4

1.59 8
4 4

1.5 1.510 8
4 4

1.511 8
5 4

1.511 8
6 4

15 / 2

15 / 2

2 13 / 2 / 2

2 3 / 2 15 / 2

3 / 2 8 / 2 11

N P u d u d e

N P u d u d e

N P u d u d u

N P u d u d u d

N P u d u d u u d

B M M B m m m m m

B M M B m m m m m

B M M B m m m m m

B M M B m m m m m m

B M M B m m m m m m m

π

π

π π

π

π

= − + + + +

= − + − + +

= − + + + −

= − + + ⋅ + + +

= − + + ⋅ + + − + ( )1.5
/ 2 emπ +

. (4.6) 

 
 Now we just need to make three final substitutions and reduce:  From [1.10] of [1]: 
 

( ) ( )
3
23 2 3 / 2N P u d µ d uM M m m m m m π− = − + − . (4.7) 

 
From [4.5] through [4.7] of [1]: 
 

( ) ( )1.58
4 12 12 2 20 64 20 / 2u d u d d u d uB m m m m m m m m π= + − − + + . (4.8) 

 
And from [1.11] of [1]: 
 

( ) ( )1.5
3 / 2e d um m m π= − . (4.9) 

 
 Making the substitutions (4.7) through (4.9) into all of (4.6), reducing, and evaluating 
using the quark masses from [1.12] and [1.13] of [1], namely: 
 

0 002387339327 uum .= , (4.10) 

0 005267312526 udm .= , (4.11) 

 
finally yields for 10B, 9Be, 10Be, 11B and 11C, respectively: 
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( ) ( )

( ) ( )

( ) ( )

1.510
5

1.59
4

1.510
4

11
5

0.0694937119 u

0

13 12 20 20 51 / 2

13 12 3 20 20 51 / 2

14 12 15 26 55 / 2

31 27
1

.0624015014 u

0.06973

4 26

169  

2

01 u

2

u d u d u d u d

u d u d u d u d

u d u d u d µ d

u d u d u

B m m m m m m m m

B m m m m m m m m

B m m m m m m m m

B m m m m m

π

π

π

= + − − + + =

= + − − + + =

= + − − + + =

= + − − +( ) ( )

( ) ( )

1.5

1.511
6

53 / 2

29 27

0.0818155590 u

0.078862422428 20 55 /  u2
2 2

d µ d

u d u d u d µ d

m m m

B m m m m m m m m

π

π

+ =

= + − − + + =

. (4.12) 

 
Respective empirical values for the above are 0.0695128136 u ( 51.910169 10  u−∆ = − × ); 
0.0624425669 u ( 54.106544 10  u−∆ = − × ); 0.0697558829 u ( 52.419278 10  u−∆ = − × ); 
0.0818093296 u ( 66.22936 10  u−∆ = × ); and finally, 0.0788412603 u ( 52.116207 10  u−∆ = × ). 
 
5.  Binding Energy for 12C 
 
 Carbon-12 has Z=A=6 and fully fills the 2p0 subshell for both protons and neutrons.  It 
contains 18 up and down quarks alike.  Like 4He and 8Be, we expect that the binding energy for 
12C will be symmetric under u d↔  interchange.  Therefore, we expect that the only admissible 

numbers will be u dm m  and ( )1
2 u dm m+  and multiples and combinations thereof. 

 
 Using the proton and neutron “energy numbers” from (1.6) and (1.7) of [1] 
 

( ) ( )1.5
2 4 4 / 2P d u d u d uE m m m m m m π∆ = + − + + , (5.1) 

( ) ( )1.5
2 4 4 / 2N u d u u d dE m m m m m m π∆ = + − + + , (5.2) 

 
(1.2) of [1] reported that the 4He alpha particle binding energy is: 
 
4
2 2 2 2P N u dB E E m m= ⋅ ∆ + ⋅ ∆ −  (5.3) 

 
to under 3 parts per million AMU.  Similarly, in (3.3) of [1] we found that the 8Be binding 
energy is (see the fully-expanded expression (4.8) above): 
 

( )1.58
4 4 4 2 32 / 2P N u d u dB E E m m m m π= ⋅ ∆ + ⋅ ∆ − − , (5.4) 

 

to about 2 parts per 100,000 AMU.    If we define an energy “dosage” 1
1 2 u dD m m≡ , then we 

may write (5.3) in terms of A=Z+N as: 
 
4
2 1P NB Z E N E A D= ⋅ ∆ + ⋅ ∆ − ⋅  (5.5) 

 
Using this same dosage, (5.4) may be written as: 
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( )( )1.58
4 1 116 / 2

2 2P N

A A
B Z E N E D D π= ⋅ ∆ + ⋅ ∆ − − , (5.6) 

 

recalling that in obtaining (5.6), we took advantage of ( )1.5
16 15.749609 452 9 7π =≅ , see [1] 

between [3.1]and [3.2].  This is was what accounted for the almost immediate alpha-decay of one 
8Be nucleus into two 4H nuclei.  
 
 It turns out after some trial and error fitting based on the foregoing, that the 12C binding 

energy may be specified, not using u dm m , but rather, the other u d↔  symmetric construct 

( )1
2 u dm m+  which differs from u dm m  by about 8%, and which has previously appeared in 

(2.5) for 14N and (3.6) for 11B.  Specifically, it may be calculated that a 12C binding energy 
defined in terms of quark masses as: 
 

( ) ( ) ( )1.512
6 0.0989087255 6 6 12 / 2 uP N u d u dB E E m m m m π= ⋅ ∆ + ⋅ ∆ − + − + =  (5.7) 

 
will differ from the empirical energy 0.0989397763 u by 53.10508 10  u−− × . 
 
 To obtain an “apples-to-apples” comparison with (5.5) and (5.6) to help discern the 
overall pattern of full-shell Z=N=even elements such as 4He, 8Be, 12C, 16O, 20Ne, 24Mg, etc., 
which as we have seen in section 3 here appear to form a “backbone” from which it then 
becomes possible to branch out to close isotones, isobars and isotopes, let us define another 
dosage number ( )1

2 4 u dD m m≡ + .  Using this in (5.7) allows us to write: 

 

( )( )1.512
6 2 216 / 2

3 4P N

A A
B Z E N E D D π= ⋅ ∆ + ⋅∆ − − ⋅ . (5.8) 

 
While it is not yet clear what the overall formulation is for A

Z B  in general for the Z=N=even 

backbone, (5.5), (5.6) and (5.8) start to give us a sense of what to be looking for.  Trying to 
further fit 16O, 20Ne and 24Mg, the next three backbone nuclides, may provide a better view of 
how to propagate this backbone all the way through the nuclide table, and provide the “tree 
trunk” for then branching out as in section 3 above, in order to “map” the complete “nuclear 
genome” as a function of up and down quark masses to low parts per 100,000 or parts per 
million AMU. 
 
6.  Derivation of the 14N binding Energy 
 
 Finally, with one more data point on the nuclear “backbone” identified in (5.7), let us 
make us of (2.5) and (5.7) to deduce the 14N binding energy.  This is the first element we are 
considering in the 2p±1 subshell.  As in section 4, we start with (4.1) which tells us that: 
 
14 14
7 77 7P NB M M M= ⋅ + ⋅ − . (6.1) 
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We next rearrange (2.5) to separate 14

7 M  and use this in (6.1), thus: 

 
( )14 12

7 65 7 3 / 2P N u d eB M M m m M m= ⋅ + ⋅ × + − ++ . (6.2) 

 
Then using (4.1) in the inverted form 12 12

6 66 6P NM M M B= ⋅ + ⋅ − , we rewrite (6.2) as: 

 
( ) ( )14 12

7 63 / 2N P u d eB M M m m B m= − × + + ++ . (6.3) 

 
Now, we simply use (4.7), (5.7), (5.1), (5.2) and (4.9) in the above and reduce.  Using the quark 
masses (4.10), (4.11), we finally obtain: 
 

( ) ( )1.514
7

39 37
42 42 50 / 2

2 2
0.1123277324 uu d u d u dB m m m m m m π= + − + + = . (6.4) 

 
The empirical binding energy is 0.1123557343 u, which differs by 52.800186 10  u−× .  This is 
our first nuclide which contains protons and neutrons for which m≠0. 
 

The incremental approach of deducing binding energies by "weaving" from one nuclide 
to other nearby nuclides through the close consideration of fusion and data decay reactions as 
first elaborated in [1] appears to be very much re-validated by the results obtained here as well. 
Additionally this sort of approach gives us confidence that our overall expressions for binding 
energies are correct, because they are incrementally constructed in this manner, brick by brick or 
stitch by stitch so to speak, enhancing the probability that the relationships obtained are 
meaningful, and are not random fortuitous coincidences. 
 
7.  Conclusion 
 

Deep inelastic scattering is the tool most widely used to probe the quark structure inside 
of protons and neutrons, But the European Muon Collaboration as well as the long-recognized 
existence of mass defects in the nuclear table, make it clear that the structure of the quarks inside 
of individual nucleons will be materially affected by whether those nucleons are free, or are 
bound together as part of a composite nucleus.  This also appears to depend even upon the 
particular shell within which a particular nucleon resides.  Therefore, it seems that one very good 
way to understand quark structure is to examine various nuclei and how the quark structure 
changes depending upon the particular nucleus and nuclear shell in question. 
 

What the results detailed here and in the two prior letters [1] and [2] demonstrate very 
clearly, is that the nuclear weights of the various nuclides themselves, converted into fusion 
release and binding energies, are in fact telling us a great deal about what is going on inside of 
those nucleons in relation to the nuclei and shells within which they sit, even without resort to 
deep scattering.  In other words, the well-characterized mass defects long observed in the nuclear 
table are the best, most precise signals and evidence we have about what is actually going on 
with the quarks inside of various nuclei, and we don't need to smash particles together in order to 
acquire this information.  But, it now becomes very important to decipher this signal evidence in 
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order to understand what it is truly telling us about the behavior of quarks inside of nucleons and 
nuclei and nuclear shells. 
 

The results in this letter as well as the two recent letters [1] and [2] tell us in very exact 
terms what is happening to the energies inside of nuclei as a direct function of the quark masses, 
as well as to the quark energy structure itself, on a shell by-shell and nucleon-by-nucleon basis.  
Further extension of these results, as well as their careful deciphering, may finally begin to 
inform us at a very detailed and granular level, what is really happening with the quarks inside of 
protons and neutrons, and with the protons and neutrons inside atomic nuclei.  
 

In the same way that Feynman diagrams are developed term-by-term from invariant 
amplitude expressions to inform us about the nature of particle interactions, it may well be that 
nuclear models can be similarly constructed term-by-term from expressions such as (4.12) and 
(6.4) and the backbones in section 5, to help us understand how atomic nuclei are put together 
and how they are structured.  All of this may in turn shed some long-needed light on how matter 
really binds together to form the material world we observe and inhabit. 
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