Axioms of Geometric Algebra

Eckhard M.S. Hitzer
16 May 2003, rev.

1 Axioms for Geometric Algebra R,,

1.1 Algebra over Field of Real Numbers

The set R of real numbers forms a field. For the addition of a,b,c € R we have
the properties of

a+b=b+a commutativity
(a+b)+c=a+(b+c) associativity
a+0=a zero 0
a+(—a)=0 opposite —a of a.

For the multiplication of a,b,c € R we have the properties of
(a+b)e=bc+ac
a(b+c) =ab+ ac distributivity

(ab)c = a(be) associativity

la=a unity 1 # 0

aa =1 inverse ¢! for a # 0.
ab = ba commutativity.

Definition. An algebra over R is a linear space A over R together with a
bilinear map (implying distributivity) A x A — A, (a,b) — ab.

1.2 Definition (1) Using Quadratic Form

Let V = (R", Q) be a real vector space with a non-degenerate quadratic form
Q : V — R of signature (p,q) with p + ¢ = n. It is conventional to use the
abbreviation R”?. For vectors a,b € R”? we associate with Q the symmetric
bilinear form (ab) = 1[Q(a+ b) — Q(a) — Q(b)].

Definition. An associative algebra over the field R with unity 1 is the geometric
algebra Ry, , of the non-degenerate quadratic form Q (signature (p, ¢) and p+¢q =
n) on R™, which contains copies of the field R and of the vector space RP'? as
distinct subspaces so that

(1) a?> = Q(a) for any a € R™?
(2) RP? generates R, , as an algebra over the field R

(3) R, is not generated by any proper subspace of R"?.



Note the deliberate choice of unity 1! If ¢ = 0 the second index is often omitted

Rn = IRn‘O-
Using an orthonormal basis {ej,es,...,e,} for R”?, the condition (1) can be
expressed as
e%zl, 1<k<p, e%:—l, p<k<n, eye =—ee; k<I

(3) is only needed for signatures p — ¢ = 1 mod 4 where (ejez...€,)% = 1.

The basic multiplication rules for the basis vectors of an orthonormal basis
can also be used to define a geometric algebra. This was the approach taken by
Clifford himself in 1878 and 1882.

1.3 Definition (2) by Basic Multiplication Rules

Historically the first multiplication rule for vectors of the linear space R™ of
importance for us is the bilinear outer (exterior) product of vectors. For a fixed
orthonormal basis {ej,es,...,e,} of R" Grassmann introduced ”bivectors”

ex Ne=—e Neg, k£

es Neg=0,k=1.
The set of all bivectors {e; Aej|k < [} forms a basis of a new linear space \” R"

of dimension Z . The name outer (or exterior) product stems from the fact,

that it assigns to any pair of vectors of the original space R™ an element of a
different vector space A\? R™.

Grassmann then defines multivectors. To any r-tuple {vi,va,...,v,.} of
vectors v, € R™ he assignes the multivector of grade r (or rank r, German:
Stufe r)

ViAVeAL... AV,

vi A vy A ... Av, is set zero if the vi are linearly dependent. The grade r
multivectors change sign, under the permutation of any two adjacent vectors

VIN CAVEAVELI N AV = —VIALCAVERI AVEN LAV,

and form their own vector space /\" R". It follows that the set of all r-vectors
of the form

ek, Nep, A...ANeg,, {ki,kz,...,k.} r-subset of {1,2,...,n}

forms a basis of the new vector space " R™ of dimension

The full exterior algebra (or Grassmann algebra) is the vector space /A R"
of dimension 2™ with the r-vectors ey, Aey, A...Aeg,,1 <r <n asa basis.



For defining the associative bilinear geometric product of vectors Clifford
used Grassmanns multiplication rule of orthogonal vectors,

eye; = —ee, k £ 1,
but set the geometric product of a vector with itself to be a real number
erer = +1.

The associative algebra of dimension 2" so defined it the geometric algebra R, ;.
p says how many basis vectors of an orthogonal basis of the linear space R™ have
positive square and the rest ¢ = n — p have negative square.

The goemetric product operating on multivectors u,v,w € A RP? can be
expressed with the help of the left contraction u_v € A\ RP?

(a) xdy = 3(xy +yx) € R
(b) xd(uAv) = (xdu) Av+aA (x-v)
(¢) (uAv)dw=ud(vdw)

for x,y € R”? and the grade involution

=31,

T

with (u), the grade r-vector parts of u. (a) shows that the left contraction
generalizes the usual inner product of 1-vectors. (b) indicates that the vector
x acts like a "derivation”. With the help of the left contraction, the geometric
product of a vector x € R”'? and a general multivector u € A\ RP”"? can be written
as

xu=xJdu+zAu.

Demanding associativity and linearity the geometric product extends to all of
/\ RP'?. This gives the bilinear map which equips Grassmann’s exterior algebra
vector space /\ R”? to become the geometric algebra Ry 4.

1.4 Grade r Subspaces

All elements u € R, 4 are defined as sums of terms of length 7, summing over
all  =0...n. Terms of constant length r

(u)r = Z Uk; ...k €ky -+ - €k,

1<k <...<k.<n

are said to be of degree (or grade) r or r—vectors. This notion is independent
of the choice of the orthonormal basis {ei,es,...,e,}. Linear combinations
of degree r = 27’ are called even, those with a degree r = 2r’ + 1 are called
odd. According to the definition, R”'? forms the subspace of all 1—vectors and
R the subspace of all scalars (that is 0—vectors or elements of grade 0). The



geometric algebra Ry, ; is the direct sum of its (even and odd) subspaces A" R”?

of r—vectors:
2

n
Rp,q =R RP-4 @/\Rp‘q D... @/\Rp‘q.
As mentioned earlier, the dimension of each subspace A" RP? of r—vectors is

" ). Therefore the dimension of A" RP4 s ") = 1. The n-vectors are

all scalar multiples of the pseudoscalar (oriented n-volume)

I=1,=eANexN...\Ne,.

2 Geometric Algebra R,

2.1 Complex Numbers

R2 = Ra is a 4—dimensional real algebra with a basis {1,e1, ez, e12 = ejeq}.
The multiplication table is

| €1 €2 €12
€] 1 €12 (S))]
e | —e2 1 —e
€12 —€9 e -1

R has grade 0, grade 1 and grade 2 subspaces spanned by

1 R scalars (even)
e, e R? vectors (odd)
ers A°R?  bivectors (even)

The geometric algebra Ry can also be written as the direct sum Ry = RF © Ry
of its even and odd parts:

RS = R® A”R? (even)

R, = Rz (odd).
The even part is not only a subspace but also a subalgebra isomorphic to the
field Cof complex numbers.

2.2 Reflections and Rotations

In a Euclidean space, we can fix one point as origin O. All other points are
then defined by their position vectors x. Each straight line through O can be
expressed in terms of a (unit length) direction vector a with aa = 1. Using the
fact that in the geometric product of vectors parallel components commute and
orthogonal components anticommute we can reverse the sign of the orthogonal
(to a) component of a general vector x by

' :axa:aa(x” —XJ_) =X|| —XL-



Figure 1: Reflection at a line through O in direction a

This describes a reflection at the straight line through O in the direction a.
(Fig. 1.)

Two successive reflections at two lines of angle /2 produce a rotation by the
angle ¥. If the two lines intersect in O and have unit length direction vectors a
and b with angle ¥/2, the rotation by ¢ is described by (Compare figure 2.)

x"" = bx'b = baxab.

The product R = ba is the rotation operator, the rotor. The reverse product
R = ab is often just referred to as the reverse. A second successive rotation
by with rotor R’ = cb by twice the angle 1¥¥'/2 between the vectors ¢ and b
combines as expected to give the rotation by 9 + 9’

x""" = cbbaxabbc = caxac

with rotor R” = R'R. The multiplication of two rotors gives therefore a new
rotor. This yields the dirotation group of rotations. (The prefix di indicates
that the rotors +R describe oriented equivalent rotations with opposite senses.
Physicists call this representation also the spz'n—% representation of the rotation
group.)

2.3 Two-dimensional Point Groups

A regular polygon with & sides in two dimensions has 2k oriented lines of re-
flections, that leave the polygon invariant. This are the k lines through the k
corners and the k lines through the middles of each side. (Each line is counted
twice giving two orientations to each reflection, by the two orientations +a of



Figure 2: Rotation by two reflections.

the direction vectors.) Combining an even number of these reflections, we get
the symmetry rotations of the polygon. Odd numbers of reflections simply com-
bine to new reflections. All combinations of reflections together generate the
symmetry group of the polygon, the dihedral group 2Hjy. Compare table 1 for
k = 3. The subgroup of symmetry rotations is simply the even subgroup 2Cj, of
the dihedral group, also called dicyclic group. If we don’t distinguish between
the two ”orientations” of each reflection, we have only k distinct symmetry
reflections of the k-polygon, generating the group Hy. Its even subgroup Cy
comprises k distinct symmetry rotations.

Each dihedral group can be generated from only two reflections at straight
lines passing through the center O of a k-polygon. The frist straight line passes
through a corner (direction vector a) and the second straight line through the
midpoint of a side (direction vector b). Compare figure 3 for k = 3. Repeated
reflections at both lines generate all symmetry transformations of the dihedral
group. The kth power of the elementary rotor R = ba leads to a full rotation
by 360 degree B

(ba)* = -1, R*xRF = (-1)’x =x.
2

This relation for the kth power of R together with the unity conditions a® =
b? = 1 determines the dicyclic rotor group 2C; completely.

3 Geometric Algebra R3 and Quaternions

Rs = Rs, is an 8—dimensional real algebra with a basis {1,e;,eq,e3,—1 =
€93 = €ezeg3, —j = €31 = ezeq, —k = €12 = eleg,i = €123 = 819283}. We have
the following multiplication results:



N

Figure 3: Vectors a, b generate 27H3.

3 distinct ”positive sense” | 3 distinct "negative sense” | 6 distinct reflections
rotations with rotors rotations with rotors at "oriented” lines
with directions

1 =a%="b? —1 = (ba)® = (ab)3 +a
ba —ba = ba(ab)?® = (ab)? +b
(ba)? —(ba)? = ab +bab = t+aba

Table 1: The 12 distinct elements of the group 2Hs.



1,7 commute with all elements,
ii=eq,1j =eq, ik = eg,
22—k = -1,
ij=k,jk =1,ki =j.
R3 has grade 0, grade 1, grade 2 and grade 3 subspaces spanned by
1 R scalars (even)
e[, es, e R3 vectors (odd)

i,j,k A’R® bivectors (even)
i A’R®  trivectors (odd)
The geometric algebra Ry can also be written as the direct sum Rz = RY @ R3
of its even and odd parts:
Rf = R® A’R® (even)
Ry = R*@ A’R® (odd).
The even part is not only a subspace but also a subalgebra isomorphic to the
algebra Hof quaternions.

4 Geometric Algebra R3;, the Space-Time Al-
gebra

5 Geometric Algebra R,; as Conformal Model
of Euclidean Space
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