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1 The geometric product of multivectors

The aim of this passage is to show how the geometric product of multivectors
is defined in general, extending the basic geometric product of vectors given by
Clifford. An alternative definition of Clifford geometric algebra, that guarantees
existence as quotient algebra of the tensor algebra was given by Chevalley in
1954.[2]

In line with [4] the approach I take here is to introduce how vectors and
homogeneous simple multivectors are multiplied. By linearity this extends first
to the products of vectors and homogeneous multivectors and second to the
products of vectors and arbitrary multivectors. Third, using the factorization
of homogeneous simple multivectors into a geometric product of anticommuting
vectors, we can repeatedly apply the product formula for vectors and arbitrary
multivectors to calculate products of homogeneous simple multivectors and ar-
bitrary multivectors. Fourth, by linearity this then extends to fully general
geometric products of arbitrary multivectors. For brevity I always refer to a
linear space of the reals R and its geometric algebra R,,, but the formulas and
definitions apply also to the geometric algebras R, , of linear spaces R”? of
arbitrary signature {p, q}.

Following Grassmann’s defintion, which was also adopted by Clifford, the
antisymmetric outer product of two vectors a,b; € R" is given by

a/\b1: —bl/\a,

mapping the pair a,b; to a bivector.
Following Clifford’s definition, the symmetric contractions (or scalar prod-
uct) of a,b; are given by the following grade 0 scalar

a_|b1:a|_b1:a>kb1 ER,

which also corresponds to the conventional inner product of vectors.
The full geometric product of the two vectors a, b, is the sum

ab1 :a_|b1 +a/\b1.



We now define a homogeneous simple grade r multivector B, € R,, to be the
product of r anticommuting vectors

B.=bby...b,, bjby=—byb;, 1<j<k<r<n.

The outer product of Grassmann maps a and B, to a grade r+ 1 multivector
which represents the grade r + 1 part (where grade selection is indicated by
angular brackets) of the geometric product aB,

aA B, =(aB;)pt1.

The (left) contraction of a vector a and B, is then given by the grade r — 1
part of the geometric product aB,.

a_|B,=(aB,),_1.

It can be calculated explicitely as a linear combination of homogeneous simple
grade r — 1 vectors

a_IBr = a_l(b1b2 .. br) = Z(—l)k+1a_|bk(b1b2 .. b% . .br),
k=1

where by, means that by, is to be omitted from the geometric product in round
brackets. Because of the anticommutativity (i.e. orthogonality) of the vectors
{b1,bs,...,b,.} we can rewrite a | B,. also as

a_IB,n == a_l(bl/\bQ/\.../\b,n)
= Y (-1D)*a_bg(by AbyA...AbgA...Ab,),
k=1

which will be of use later on.
The full geometric product aB, is the sum of the (left) contraction and the
outer product

aB, = <aB7‘>r—1 + <aBr>r+1 =a_B,+aAB,.

Notice that we get two new grade parts: one from the left contraction resulting
in a part of grade  — 1 and one from the outer product resulting in a part of
grade r + 1.

Every multivector in a given geometric algebra can be represented as a linear
combination of its homogeneous grade parts. Every grade part can be repre-
sented by a linear combination of simple multivectors of the same grade. This
second summation will only become necessary for n > 3, because for n < 3 ev-
ery homogeneous grade multivector can be factorized into a product of grade 1
vectors. For brevity I will omit the second summation over simple multivectors
of the same grade.



Applying linearity the product of a grade 1 vector a and a general multivector
B is then given as

n

aB=a) (B),=)» a(B),=)» (al(B),+aA(B),).

r=1 r=1

Next let us consider the geometric product of a simple grade s multivector
A with a general multivector B. Because Ay is considered to be simple and of
grade s, it can be factorized into a product of s anticommuting vectors

As =a;...a;_1a;5, ajay = —aga;, 1<j<k<s<n.

Making use of the associativity of the geometric product, we can therefore
rewrite the product A;B as

AsB=a;...a,1a;,B=a;(...(as_1(asB)...).

This can now be explicitely calculated by repeatedly applying the previous for-
mula for the product of a vector a and a general multivector B. Because each
geometric multiplication of a vector ag, 1 < k < s with a homogeneous multi-
vector part (B), yields two new parts of one grade lower and one grade higher,
the result of A4(B), will be a linear combination of parts with grades ranging
from grade r — s in steps of two up to the hightest grade part r + s (The left
contraction will automatically be zero for the contraction of a vector with a
scalar, therefore hypothetical negative grade parts will not occur, i.e. they will
simply be zero.)

AS<B>T = (AS<B),,),,,S + (AS<B>T>1‘*S+2 +.ot (AS<B>T>T+S-

To treat the most general case of the geometric product of two arbitrary
multivectors A and B we represent A also as a linear combination of its homo-
geneous grade parts. (Each homogeneous grade part can in turn be represented
as a linear combination of simple multivectors of the same grade. But again we
omit this second summation for brevity.)

A= (A),.

The general product of two arbitrary multivectors is then by linearity

AB = <Z<A>s> B=Y ((4):B).

s=1

To the expressions (A)sB we can in turn apply factorization of the simple ho-
mogeneous grade parts of (A4),, etc. and break down the whole general product
into simple elementary geometric products of grade 1 vectors (or in linear combi-
nations of expressions just given in terms of left contractions and outer products
of vectors).



To illustrate the method of explicit calculation let us conclude this section
with an example. For ease of calculation we write the multivectors in terms of
orthonormal basis vectors {e;, ez, e3} of the linear space R™ and their geometric
products. This corresponds already to decomposing the multivector factors A
and B into linear combinations of homogeneous simple grade parts. The scalar
coefficients for the magnitude of each homogeneous simple grade component are
represented by greek letters:

A =a+ arer + aizeies + arazereses,
B = 3 4 Baes + Pazeses + Sriazereses.

The geometric product AB is

AB = (a+aje; +appeier + ajnzeiezes) (B + Prer + fozezes + fraze ezes)
= af +afrez + afzzeses + abizzeiezes + fare; + faizerer
+Baizzereses + aifaerer + oy Brzereses + aiBiazerereses
+apfaererer + ajpfazererezes + ajafizzeeze ezes
+ap3frererezes + arzzfazerezezeses + aa3fiaze; esezeezes.

Because {ej, ez, e3} is orthonormal, the square of each vector is unity eje; =

e} = e2 = e2 = 1 and vectors of different index anticommute, e.g. ejes =

—eseq, etc. We therefore have

AB = aff —aizsfiazeseieiesezesr
+afzes + (a1 + ajafa)er — arafBiazelese; — oz fPazerese;
+(128 + a1f2)eres + (B2 + a1 Bia3)eses + arzfazeres
—aja3fre erese;
+(aB123 + Bz + a1 faz)ereses
= aff —a123Pi2s3
+(1 B + a12f2 — aiz3fBaz)er + afzex — arafiazes
+(a128 + a1f2)eres + (afzz + a1 fias)eses + (a12faz — ar23fa)eres
+(aB123 + faies + a1 fa3)ereses,

where we have listed the result line by line in terms of grade 0 scalars, grade 1
vectors, grade 2 bivectors and grade 3 trivectors.

2 The scalar product

A useful product of multivectors A, B € R™ that can be derived from their
general geometric product is the socalled scalar product defined as the scalar
part of the geometric product and indicated by an asterisk

A*BE(AB)()ER



Note that the index 0 is sometimes dropped, so that angular brackets without
an index come to mean the scalar part of the enclosed expression.

The scalar product of homogeneous multivectors A; of grade s and B, of
grade r will only be different from zero, if s = r. Given that s < r we can
understand this restriction due to the fact that as described in the previous
section, the geometric product AsB, has as its lowest grade part a term of
grade r —s. For the case that s > r we can reverse the order of all vector factors
in the geometric product AB and get

(A:B,) = (B, A,) = (-1)*-D/2(—1)r -0/, 4,).

The powers of (—1) are due to the anticommutativity of the vector factors of
the simple grade components of the homogeneous multivectos A; and B,.. Now
we can apply the same argument as for the case s < r and see in general that
the scalar product is only nonvanishing if r = s. But if » = s the powers of (—1)
cancel each other and we find that

Asx B, = B, x Aq.

That is the scalar product of two homogeneous mulitvectors is symmetric. By
linearity this extends to the scalar product of arbitrary multivectors

n n n n

AxB =) _(A))* O (B)y) =D (A)s#(B)s =Y (B)s*(A); = BxA.

s=1 r=1 s=1 s=1

The scalar product inherits linearity from the geometric product.
As an example let us consider the scalar product of a simple grade s—vector
A with its reverse A,

Agx Ay = (ASAQ = (a,...asaja; ...a,_ja,) = ajas...a>,
where we used the associativity of the geometric product, which allows us con-
venient pairwise multiplication of vector factors. Remember that the square of
each vector is a scalar. In case that the linear space R" has positive signature
(¢ = 0) the above result will be positive and by linearity we can define a positive
magnitude for a general multivector A as

n

AP = (A)s % (A)s > 0.

s=1

3 The outer product

The outer product in the Grassmann algebra historically preceeds the definition
of geometric algebras by Clifford. But Clifford did not intend to do away with
it, he rather wanted to unify Grassmann algebra and Hamilton’s algebra of
quaternions in a single algebraic framework. It is therefore not surprising, that



the geometric product of two arbitrary multivectors comprises the outer product
as the sum over the maximum grade parts of the result

n n

ANB = (Z<A>s) A (Z<B>r) = Z Z<<A>3<B>r>r+s-

s=1 r=1 s=1r=1

The outer product inherits both linearity and associativity from the geometric
product.
As defined by Grassmann, the outer product of two vectors a, b is antisym-
metric
aAb=-bAa.

Calculating the reverse of two homogeneous simple grade s and grade r muli-
tivectors A, and B, we see that

Ay AB, = (A,B,). .. = (BrA)yps = (—1)°C=D/2 (1) 0=10/2(BL A,y .

r+s

On the other hand we also have

<A;\ér> _1)(s+r)(s+r—1)/2 <AsBr>

r+s = ( r+s°

Equating both right sides again and taking care of the powers of (—1) we end up
with the symmetry formula for the outer product of homogeneous multivectors

Ay AB, = (=1)"*B, A A,

which includes the antisymmetry of the outer product of vectors as a special
case forr=s=1.

3.1 The cross product of three dimensions

In conventional three-dimensional vector analysis, frequent use is made of an
antisymmetric product of vectors, which results in a third vector perpendicular
to the two vector factors, with the length equal to the area of the parallelogram
spanned by these two vectors and with the orientation given by the socalled
right hand rule. The names used for this product are: vector product, cross
product or outer product and it is often indicated by an x-shaped product sign

a x b.

Historically this product has actually been derived from Grassmann’s outer
product of vectors by mapping the resulting grade 2 bivector area element to
the dual vector perpendicular to it. This is done by multiplication with the
pseudoscalar volume element I3.

axb=-laAb, aAb=1Izaxb.

For an orthonormal basis {e;,es, e3} of the Euclidean space R® we have I3 =
ejeses. Let us conclude this subsection with an example:

a=-e; +3ey, b=e;+ 4des,



axb = -—Iz;(aAb)
= —I3(e; + 3ex) A (e2 + de3)
= —(ejezes)(eres + dejes + 12eqse3)
= —ejesxezejes; — 4dejesesze ez — 12ejeqeszese;s
= ez —4es + 12ey,

where we have used orthonormality of the vectors {e1, es, es} and that eje; =
—epe; for k # j. To recover the outer product bivector we simply mulitiply
again with I35 to get

aAb=1I3(axb)=eees(es —4es + 12e1) = ejey + deje3 + 12eqe3.

It is important to note that the cross product vector construction is limitted
to three dimensions. It does not work in two dimensions, because no third
perpendicular dimension is available and it does not work in four and higher
dimensions, because the perpendicular space is then two or higher dimensional,
i.e. a unique perpendicular vector can no longer be defined. In contrast to this
Grassmann’s original bivector construction is not bound to the dimensionality
of the space.

3.2 Linear dependence and independence

The nonzero outer product of a set of r linearly independent vectors uniquely
determines an r—dimensional subspace of R™ spanned by these vectors.[4] Let
us therefore proof the following proposition:

aj Aas A...Na, =0 <= aj,as,...,a, € R" linearly dependent.

(<) Let a;,as,...,a, € R” be a set of linearly dependent vectors. Without
loss of generality we assume that

r
a; = E arag,
k=2

with at least one of the coefficients ay, # 0. Inserting the sum for a; we get

-
ajANas A...Na, = (Zakak>/\ag/\.../\ar:0,
k=2

because each term of the sum contains an expression of the form a; A ap = 0.

(=) Let the outer product of r vectors a;, az,...,a, € R" be zero: a; Aas A
...Na, = 0. But let us assume, that A, _; = as A... Aa, # 0, and that the
vectors {as,...,a,} are orthogonal. Then

Ar,1 = azag...ar



The following definitions will be convenient for showing that a; is a linear com-
bination of as,...,a,. The multiplicative inverse of each vector with respect to
the geometric product is given by
— af
ak1 = a_i’ k=2,...,r
and the inverse of A,_; is then given by the reversly ordered product of the
inverse vectors

-1 _ 1,1 —1
A, =a a,__,...a;

We then have

-1 _ —1_.—1 -1 _ -1 -1 _ =
A 1A, =ay...a,_ja,a, a,_;...a, =az...a, j1a, ;...a, =...=1

According to our assumption, the full geometric product of a; and A,_; is
aA,_ g =a; A, +a ANA,_; =a; 1A,
and therefore

a; = ajd, A;_ll = (a4 —|Ar—1)A;_11
r
= Z (—I)T*k(al _Iak)a,fla,:ll - .a;laQ ...ap...a,
k=2

r

—1,.-1 -1
= Z(al _lag)a,"a._,...a...a; as...af...aya

k=2
r

= Z(al _lag)ay.

k=2

End of the proof.
A lemma, of the above proposition is, that

ajAayA...ANa, 20 < aj,as,...,a, € R" linearly independent.

Another lemma, is that for a set of linearly independent vectors a;,as,...,a, €
R™ we have for a € R™:

a € Span{a;,as,...,a,} < aAa;AaxA...ANa, =0.

Up to an arbitrary nonzero scalar factor, each homogeneous simple multivector is
therefore in one to one correspondence with a subspace of R"™. This is the reason,
why the operations of join, intersection (meet) and projection on subspaces can
be easily be expressed by geometric products of corresponding homogeneous
simple multivectors. The pseudoscalar I, of a geometric algebra R,, corresponds
to the space R" itself.



4 Right and left contraction

We have already encountered the left and right contractions of two grade 1
vectors and the left contraction of a vector and a homogeneous grade r mul-
tivector. But the left and right contractions can be generalized to apply to
arbitrary multivectors.

The most general approach is to define left and right contractions solely
in terms of the outer product and the scalar product. In this way the left
contraction can be defined as[5]

Cx(AdB)=(CAA)=x*B, VA,B,C € Ry,
and the right contraction as
(BLA)«C =Bx(AANC), VA,B,C € R,.

Note that both left and right contractions are linear, because the scalar product
and the outer product used in these definitions are linear. Decomposing the
multivectors A, B, C' grade by grade we get

A:zn:Ak, B=Y B, C=) Cp.
k=1 l m

Inserting this into the expression for the left conctraction we get by linearity of
both the outer and the scalar product

(CANA)xB = Y (Co AAy)*Bi = (CoArBi=mr)o
k,l,m m,k
m,k m k
= Cx(AdB).

This gives an explicit expression for the left contraction in terms of the grade
parts of A and B

AAB =Y ((A(B))i—r.
k,l
In analogy to this we get for the right contraction

BLA=Y ((B)(A))i s
k,l

Note that in both cases m =1 — k > 0, i.e. combinations of [ and k with [ < k
do not contribute.

It is now straightforward to see that the contractions of two homogeneous
multivectors of the same grade give their scalar product

(A 1Bk = (A)p L (B = ((A)e(B) i) k—k=0 = (A)k x (B)r,



and that, e.g. the left contraction of a vector a with a homogeneous grade r
multivector B, will give a homogeneous grade r — 1 multivector

a_|B, = (aB),_1.

In order to derive convenient explicit formulas for the calculation of the
contractions of homogeneous simple multivectors, we will show the following

formula:
A, 1(Bs 1Cy) = (A A Bg) 1C%,

where A,., Bs; and C} are supposed to be homogeneous simple multivectors of
grade r, s and t, respectively. For the left side to be nonzero, we must have
t > s and t — s > r which is equivalent to t > r + s. To perform the proof, we
scalar multiply with an arbitrary multivector D € R,, from the left to get by
repeated application of the defining relationship of the left contraction

Dx[A, A(BsdC)] = (DAA)*(Bs AC:) = (DA A-NBg)xC
= [DA(A, ABy)]*Cy =D x[(Ar A Bs) ACY],
VD € R,.

And hence A, _1(Bs 1Ct) = (A, AB;) 1C;. Note that for conducting the proof
no conditions on the values of the grades r,s and ¢ had to be made. The left
contraction ”takes care” of this.

Let us now look in detail at the left contraction of two homogeneous simple
multivectors A, and B; of grades r and s, respectively, given by the following
vector factorizations

Ar:alf\agf\.../\ar, Bs:blf\bgf\.../\bs

With repeated application of the formula, which we have just proved, we can
rewrite the left contraction of A, and By as
Ar_lBs = (a1/\a2/\.../\ar)_|(b1/\b2/\.../\bs)
= ((a1/\agA.../\aT_l)Aar)_l(bl/\b2/\.../\bs)
= (31/\a2/\.../\ar,1)_l(a,,_l(b1/\b2/\.../\bs))

= al_l(ag_l(_l(ar_l(blf\bg/\/\bs))))

By repeated application of a previously shown formula

r
a B, = > (=1)*'a_ibi(by AbyA...AbgA...Aby),
k=1

and by reordering we finally reach a very explicit formula for A, _| B,

Ay ABy= > €(ji..js)Ar d(bj, A Ab)(bj AL Aby).

10



Note that the left contraction is only nonzero for » < s. For r > s the right side
has to be replaced by zero. Each j; < s is a positive integer with j; < ... < j,
and with j.41 < ... < js. €(j1...js) =1 for even permutations of (1,2,...,s)
and —1 for odd permutations, respectively. Compare also formula (1.40) on
page 11 of [4].
Reordering and the explicit formula for a _1 B further yield for r = s that
r
ApxB, = A, 4B, = (=1)"*(a; dbg)(arA...5;..Aar) I (biA.. by .Ab,).
k=1

Continuing this expansion for the homogeneous simple grade r — 1 multivectors
(ar A...ag...Aag) and (by A...bg... A b,) we get the expansion formula for
the determinant of the matrix with coefficients f;rx = a; _Ibgy = a; * by. This
is also precisely the reason why the determinant definition in geometric algebra
given previously as

det(f) = i(ln) * fn = i(fn) * I

agrees with the traditional matrix calculus definition. We just need to set r = n,

B, =1, and 4, = f(I,) & A, = f(I,).
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