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1 Definition of geometric algebra with quadratic
form

Quadratic forms allow a basis-free definition! of Clifford geometric algebra.[1, 7]

Definition. An associative algebra over a field F' with unity 1 is the
Clifford geometric algebra G(Q) of a non-degenerate quadratic form Q on a
linear space V over the field F, if G(Q) contains the linear space V itself and
the field F = F - 1 as distinct subspaces so that

e x>=0Q(x) VxeV
e 1 generates G(Q) as a algebra over the field F

e G(Q) is not generated by any proper subspace of V.

The third condition guarantees the universal property for odd dimensions n
with signatures 1 mod 4 of the quadratic form Q, and the dimension of G(Q) to
be 27. In general the quadratic form Q is associated to the following symmetric
bilinear form:

xey = 5100c+y) — Q) — Q)] = 50 +3)* — X~y

1
= i[xy—l-xy] eER Vx,yeV.

As an example let us look at the real (F' = R) linear quadratic space V' =
R”?, which generates the geometric algebra R, ;, = G(RP*?) of signature p — g.
With the help of Q (or the scalar * product[5]), we can introduce an orthonormal
basis {e1,es,...,e,} for R

The quadratic form applied to the orthonormal basis vectors gives explicitely

e?=1, V1<i<p, el=-1 Vp<i<n.

(2

IThe following definition is not the only one using quadratic forms. C. Chevalley gave
another definition in terms of a tensor algebra devided by an ideal. For the generation of this
ideal a quadratic form becomes again essential ([2], chapter 11).



For distinct orthonormal basis vectors we must have
1 ..
ei*ejzi[eiej—l-ejei]:() VIS'L<]S’R

This yields
eie; = —eje; V1<i<j<n,

i.e. the geometric product of orthogonal basis vectors is antisymmetric - exactly
like the exterior product of Grassmann. New for Clifford’s geometric product
xy of vectors x and y is the symmetric scalar part x xy = %[xy + xy].

2 Examples of quadratic forms and associated
geometric algebras

A number of examples in the chapter ”Basic Axioms of Geometric Algebra”.
This were:

e The geometric algebra Ry = Ry ¢ of the Euclidean plane R? withn=p =
2,q = 0 and signature p — ¢ = 2 — 0 = 2. The even subalgebra IR;' of Ry
was found to be isomorphic to the complex numbers.

e The geometric algebra Rs = R3¢ of the three-dimensional Euclidean space
R® with n = p = 3,¢ = 0 and signature 3. Its even subalgebra IR;' was
found to be isomorphic to Hamilton’s famous quaternion algebra, which
allows the most elegant spinorial description of rotations.

e The geometric algebra Rz, of the four-dimensional (n = 4) Minkowski
space R*', whose quadratic form is characterized by p = 3,¢ = 1 and
signature p — ¢ = 2. This particular geometric algebra is named Space
Time Algebra (STA), because it is of great use for uniformly describing
physics. Its even part IR?T,1 is isomorphic to the geometric algebra of Eu-
clidean space. This isomorphism depends on the particular choice of the
(time) vector with negative square and singles out a laboratory frame for
measurements.

e The geometric algebra Ry ; of the five-dimensional (n = 5) quadratic lin-
ear space R™', whose quadratic form is characterized by p = 4, ¢ = 1 with
signature p — ¢ = 3. R4 is very versatile as an algebraic model for three-
dimensional Euclidean space, called homogeneous or conformal model of
Euclidean space. Simple multivectors in R4 are in one-to-one correspon-
dence with points, lines, planes, circles and spheres in Euclidean space.
The operations of translation, rotation, join and intersection of these el-
ements all become simple exception-free, monomial multivector product
expressions.



3 Geometric algebras with degenerate quadratic
forms

3.1 A new interpretation of the geommetric algebra of the
Minkowski plane

Given a certain basis of n linearly independent vectors we have the freedom
replace it by another set of n linearly independent vectors, performing a basis
transformation. The expression for the quadratic form in the new basis depends
on this basis transformation.

Let us look at the non-trivial example of the Minkowski plane R™' and its
geometric algebra Ry ;, withn =2, p = ¢ =1, and signature p—¢g =1-1=0. In
the orthonormal basis {eg, e; } the quadratic form relationship x> = Q(x), Vx €
R can be expressed as

eg = —Le% = 1,6061 = —ej1ep = N,
and the orthonormality relation
€y xe; = O,

where N is just another name for the bivector pseudoscalar I» of the geometric
algebra Rq ; of the Minkowski plane.

A particular choice of a new basis, is the null basis {n,fi} defined by the
basis transformation?

1
n=—-(egte), n= i(eo —eq).

Because the new basis is no longer orthonormal, the same quadratic form rela-
tionship x> = Q(x), Vx € R"! looks now a little unfamiliar

1 1
n>=0=0, nAfA=-N, and n*n=-[nf+fin] = ——.
2 2 2
The last relationship nfi = {[na+nn] = —1 can be interpreted as a ”duality”

between the two one-dimensional spaces V! and V'* spanned by the vectors n
and @, respectively.[6] The duality condition being, that V1* is the space of
unique scalar-valued mappings, such that

1 1
Vx=zneV'zeR Hli:—ﬁevl*:x*i:—i.
x

The inverse basis transformation is given by

eg=n+n, e, =n-—n.

2The factor 1 in the definition of i is the only major difference to the treatment in section
5 of the chapter on ”Basic Axioms of Geometric Algebra”.



3.2 Generalizing to the geometric mother algebra with
p=q=n
We can now generalize the interpretation of the last subsection. We extend the
one-dimensional space V' to an n—dimensional space V" with an orthogonal
null-vector basis {ny,ns,...,n,} and the dual space V'* to the n—dimensional
space V™ with the orthogonal null-vector basis {fi;, iz, . .., @i, }. The anaolgous
duality conditions on the two basis are now that the basis vectors n; are related
to dual map vectors n; by
_ 1 .
n; xnj = —551-’]- Vi,j=1,2,...,n.

d;,; is the usual Kronecker delta symbol. Assuming that all vectors n; and n;
are linearly independent, the direct sum of the two vector spaces V™ and V"™*
is a 2n—dimensional vector space

R™™ = V7 @ V.
The goemetric algebra of R™" is denoted by
an — g(Rn,n)

and called (geometric) mother algebra. The name stems from the fact that it
is very useful for working with (multi)linear functions on n—dimensional vector
spaces.[3, 6]

Continuing the analogy, we change the combined null-vector basis of the
vector space R™" into an orthonormal basis, that clearly shows the quadratic
form to which the geometric mother algebra is associated

€ =0n;+n;, e=1n;—n;, 1<i<n.

Based on the null-vector properties of the vectors n; and n; and on the scalar
product condition n; * f; = —%&J Vi,j = 1,2,...,n, we can calculate the
orthonormality relationships

€, %€ = —(Si,j, e;xe; =0, e;xe; :51'7]' Vi,j=1,2,...,n.
The orthonormal set of vectors {e;,es,...,e,} is seen to span a real Euclidean
vector space R", and the orthonormal set of vectors {€;,€s,...,€,} is seen to

span an anti-Euclidean vector space R”. Hence the 2n—dimensional vector space
R™™ can also be written as the direct sum of

R™" =R"®R".
Finally the simple homogeneous grade (p + ¢) multivectors ((p + ¢)-blades)
e|es ...epélég ...éq

can be used to project out any desired subspace R”?, because each (p+ ¢)-blade
is in one-to-one correspondence a subspace of R™"([4], p. 19).



We therefore now understand in general, how any null-vector (sub)space with
even dimension 2n' can be reinterpreted by a change of basis as a vector space
R” ™. In the same way that vector spaces and quadratic forms are invariant
under a change of basis, the geometric algebra generated by a vector space
and its quadratic form according to the general definition on page 1 is also
invariant. This gives a strategy how to deal with degenerate geometric algebras,
i.e. geometric algebras with quadratic forms that result in subspaces whose
vectors square to zero.

A general notation used for vector spaces with arbitrary signatures is R»%",
where p, ¢, mean the dimensions of the subspaces whose vectors have positive,
negative or zero squares, respectively.[8] The third index r is often omitted,
if r = 0. According to the main argument of this subsection, any degenerate
n—dimensional vector space is a subspace of the comprehensive vector space
R™™ and hence any degenerate geometric algebra can also be embedded in
a larger non-degenerage geometric algebra R, , called the mother algebra of
n—space.

As an example, the Minkowski plane algebra R; ;o is equivalent to the de-
generate algebra Rg o2 and the geometric algebra of the conformal model Ry 1,0
is equivalent to the degenerate algebra R3 o 2. These two examples are closely re-
lated, because as argued in this section, the underlying vector spaces are related

by
RLLO — IR070’2, RO — R300 g R11O,

Both relationships correspond to simple changes of basis.
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