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Abstract: Most matter in nature and technology is composed of crystals and crystal grains. A full
understanding of the inherent symmetry is vital. A new interactive software tool is demonstrated, that
visualizes 3D space group symmetries. The software computes with Clifford (geometric) algebra. The space
group visualizer (SGV) is a script for the open source visual CLUCalc, which fully supports geometric
algebra computation. In our presentation we will first give some insights into the geometric algebra
description of space groups. The symmetry generation data are stored in an XML file, which is read by
a special CLUScript in order to generate the visualization. Then we will use the Space Group Visualizer
to demonstrate space group selection and give a short interactive computer graphics presentation on how
reflections combine to generate all 230 three-dimensional space groups.

1 Introduction
Crystals are fundamentally periodic geometric ar-
rangements of molecules. The directed distance be-
tween two such elements is a Euclidean vector in R3.
Intuitively all symmetry properties of crystals depend
on these vectors. Indeed, the geometric product of vec-
tors [8] combined with the conformal model of 3D Eu-
clidean space [5, 9, 15, 16, 25] yield an algebra fully ex-
pressing crystal point and space groups [10, 13, 14, 18].
Two successive reflections at (non-) parallel planes ex-
press (rotations) translations, etc. [6, 7]. This leads
to a 1:1 correspondence of geometric objects and sym-
metry operators with vectors and their products (Lips-
chitz elements, called versors in [13]), ideal for creating
a suit of interactive visualizations using CLUCalc [1, 2]
and OpenGL [18].

Excellent modern introductions to geometric alge-
bra are [2–4].

In this work we used CLUCalc [1, 2], a freely avail-
able software tool for 3D visualizations and scientific
calculations that was conceived and written by C. Per-
wass. CLUCalc interprets a script language called
CLUScript, which has been designed to make math-
ematical calculations and visualizations very intuitive.
Currently CLUViz Home 5.1 is only available for Win-
dows XP/Vista. The installation file of CLUViz Home
5.1 can be freely downloaded and installed. The soft-
ware package comes with a manual and many ex-
amples. The CLUViz Home edition is free for non-
commercial use.

Some of the main CLUViz features are: Easy
creation of interactive visualizations for geometry,
physics, human machine interfaces, image processing
and more. Direct programming of shaders from within
CLUScripts using the OpenGL shading language, for
image processing and fast mathematical calculations.
It is possible to run CLUViz visualizations from within
other C++ or C# programs using the CLUViz or CLU-
VizNET DLL.

The latest (2009) of CLUCalc is contained in the vi-
sualization suite CLUViz. CLUViz separates the visu-
alization engine from the CLUScript editor CLUCalc.
Therefore one can now use the visualization power of
CLUCalc from within other C++ and C# programs. The
CLUViz distribution also includes the editor CLUCalc.

The older version CLUCalc v4.3.3 is still available as
binaries and source code. CLUViz 5.1 is only available
as Windows binary, so far.

Before describing the actual visualization, we briefly
introduce some notions from Clifford geometric alge-
bra (GA) and the GA description of crystal symmetry.

2 Clifford’s geometric algebra
Clifford’s associative geometric product [8] of two vec-
tors simply adds the inner product to the outer prod-
uct of Grassmann

~a~b = ~a ·~b+ ~a ∧~b . (1)

Under this product parallel vectors commute and per-
pendicular vectors anti-commute

~a~x‖ = ~x‖~a , ~a~x⊥ = −~x⊥~a . (2)

This allows to write the reflection of a vector ~x at a
hyperplane through the origin with normal ~a as

~x ′ = −~a −1~x~a , ~a −1 =
~a

~a 2
. (3)

The composition of two reflections at hyperplanes
whose normal vectors ~a,~b subtend the angle α/2 yields
a rotation around the intersection of the two hyper-
planes by α

~x ′ = (~a~b)−1~x~a~b , (~a~b)−1 = ~b −1 ~a −1 . (4)

Continuing with a third reflection at a hyperplane with
normal ~c according to Cartan yields rotary reflections
and inversions

~x ′ = − (~a~b~c)−1~x~a~b~c ,

~x ′′ = − i−1~x i , (5)

i
.
= ~a ∧~b ∧ ~c,

where
.
= means equality up to non-zero scalar factors

(which cancel out in (6)). In general the geometric
product of k normal vectors (the versor S) corresponds
to the composition of reflections to all symmetry trans-
formations [13] of 2D and 3D crystal cell point groups

~x ′ = (−1)kS −1 ~xS. (6)
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Table 1: Geometric (geom.) and international (int.)
notation for 2D point groups.

Crys- Oblique Rect- Tri- Square Hexa-
tal angular gonal Square gonal

geo. 1̄ 2̄ 1 2 3 3̄ 4 4̄ 6 6̄
int. 1 2 m mm 3m 3 4m 4 6m 6

Table 2: Geometric 3D point group symbols
(Symb.) [13] and generators (Gen.) with θ~a,~b = π/p,

θ~b,~c = π/q, θ~a,~c = π/2, p, q ∈ {1, 2, 3, 4, 6}.
Symb. p p̄ pq p̄q pq̄ p̄q̄ pq

Gen. ~a, ~b ~a~b ~a, ~b, ~c ~a~b, ~c ~a, ~b~c ~a~b, ~b~c ~a~b~c

3 Geometric algebra description
of crystal symmetry

3.1 Two dimensional point groups

The 10 2D point groups (2D crystal classes) [13] are
generated by multiplying vectors selected [18] as in
Fig. 1. The index p can be used to denote these groups
as in Table 1. For example the hexagonal point group
is given by multiplying its two generating vectors ~a,~b

6 = {~a,~b,R = ~a~b,R2, R3, R4, R5, R6 = −1,

~aR2,~bR2,~aR4,~bR4}. (7)

The rotation subgroups are denoted with bars, e.g. 6̄.

Figure 1: Regular polygons (p = 1, 2, 3, 4, 6) and point

group generating vectors ~a,~b subtending angles π/p
shifted to center.

3.2 Three dimensional point groups

The selection of three vectors ~a,~b,~c from each crystal
cell [13, 18] for generating all 3D point groups (3D

crystal classes) is indicated in Fig. 2. Using ∠(~a,~b)

and ∠(~b,~c) we can denote all 32 3D point groups as in
Table 2. For example the monoclinic point groups are
then (int. symbols: 2/m, m and 2, respectively)

22̄ = {~c,R = ~a ∧~b = i~c, i = cR, 1},
1 = {~c, 1}, 2̄ = {i~c, 1}. (8)

3.3 Space groups

The smooth composition with translations is best done
in the conformal model [5, 9, 15–17, 25] of Euclidean

Figure 2: 7 crystal cells with vector generators ~a,~b,~c:
triclinic, monoclinic, orthorhombic, tetragonal, trigo-
nal (rhombohedral), hexagonal, cubic.

space (in the GA of R4,1), which adds two null-vector
dimensions for the origin ~e0 and infinity ~e∞

X = ~x+
1

2
~x2~e∞ + ~e0,

~e20 = ~e2∞ = X2 = 0, (9)

X · ~e∞ = −1.

The inner product of two conformal points gives their
Euclidean distance and therefore a planem equidistant
from two points A,B as

X ·A = −1

2
(~x− ~a)2 ⇒ X · (A−B) = 0,

m = A−B ∝ ~p− d~e∞, (10)

where ~p is a unit normal to the plane and d its signed
scalar distance from the origin. Reflecting at two
parallel planes m,m′ with distance ~t/2 we get the
translation operator (by ~t )

X ′ = m′mXmm′ = T−1~t
XT~t, T~t = 1+

1

2
~t~e∞. (11)

Reflection at two non-parallel planes m,m′ yields the
rotation around the m,m′-intersection by twice the
angle subtended by m,m′.

Group theoretically the conformal group C(3) is iso-
morphic to O(4, 1) and the Euclidean group E(3) is the
subgroup of O(4, 1) leaving infinity ~e∞ invariant [13].
Now general translations and rotations are represented
by geometric products of vectors (Lipschitz elements,
called versors in [13]). To study combinations of ver-
sors it is useful to know that (cf. Table 3)

T~t ~a = ~a T~t ′ , ~t ′ = −~a −1~t~a . (12)

Applying these techniques one can compactly tabulate
geometric space group symbols and generators [13].
Table 4 implements this for the 13 monoclinic space
groups. All this is interactively visualized by the Space
Group Visualizer [18–24].



Table 3: Computing with reflections and translations.
The vectors ~a,~b are pictured in Fig. 1.
∠(~a,~b) 180◦ 90◦ 60◦ 45◦ 30◦

T~a
~b = ~b T−~a

~b T~a
~b T~a−~b

~b T~a−~b
~b T~a−~b

T~b ~a = ~a T−~b ~a T~b ~a T~b−~a ~a T~b−2~a ~a T~b−3~a

Table 4: Monoclinic space group versor (Lipschitz el-

ement) generators (gen.), TA = T
1/2
~b+~c

, int. = interna-

tional name [11] in col. 2, # = Int. # in col. 1, geo. =
geometric name in col. 3, alt. = alternative, columns
3 and 4: [13]. T~a, T~b, T~c suppressed.

# Int. Geo. Geo. gen. Int. gen. Alt. gen.

3 P2 P 2̄ i~c = ~a ∧~b

4 P21 P 2̄1 i~cT
1/2
~c

5 C2 A2̄ i~c, TA

6 Pm P1 ~c

7 Pc Pa1 ~cT
1/2
~a

8 Cm A1 ~c, TA

9 Cc Aa1 ~cT
1/2
~a , TA

10 P2/m P22̄ ~c, i~c i, i~c i, ~c

11 P21/m P22̄1 ~c, i~cT
1/2
~c i, i~cT

1/2
~c i, ~cT

1/2
~c

12 C2/m A22̄ ~c, i~c, TA iTA, i~cTA, TA i, ~c, TA

13 P2/c Pa22̄ ~cT
1/2
~a , i~c i, i~cT

1/2
~a i, ~cT

1/2
~a

14 P21/c Pa22̄1 ~cT
1/2
~a , i~cT

1/2
~c i, i~cT

1/2
~a+~c i, ~cT

1/2
~a+~c

15 C2/c Aa22̄ ~cT
1/2
~a , i~c, TA i, i~cT

1/2
~a , TA i, ~cT

1/2
~a , TA

4 Interactive Software Imple-
mentation

The realization in software relies on the visual multi-
vector software CLUCalc (www.CLUCalc.info). The
excellent graphics rendering is based on OpenGL
graphics. The space group symmetry definitions de-
scribed in the previous sections are denoted for each
space group in the form of an XML input file. The
XML files serve as input for a CLUCalc script named
Space Group Visualizer (SGV).

4.1 The Space Group Visualizer GUI

Fig. 3 shows the SGV GUI. The SGV toolbar is mag-
nified and annotated in Fig. 4. Depending on the
displayed space group, basis vector lengths and (or)
angles may not be changed. This is indicated by tool-
bar elements shown in gray.

4.2 Space group and symmetry selec-
tion

Figure 5 shows the interactive (hyperlink like) space
group selection. Clicking blue text elements in the
browser panel on the left of the GUI allows to access
crystal systems, classes (point groups), and individual
space groups.

Figure 6 illustrates the selection of symmetries
from the complete list of Symmetries (left SGV GUI
browser panel), which are present in the currently se-
lected space group. Symmetries that are to be dis-

Figure 3: GUI of the Space Group Visualizer.

Figure 4: Toolbar of the Space Group Visualizer.

Figure 5: Space group selection from the Space Group
Visualizer browser panel.



Figure 6: Space group selection of individual symme-
tries or groups of symmetries to be displayed.

played can be selected according to their properties
(angle, orientation, location, translation component).
Several properties selected together will display only
those symmetries that satisfy all properties. Another
way is to open the generator list of a certain type of
symmetry and select individual geometric algebra gen-
erators to be displayed (or to be removed from the
display).

4.3 Mouse pointer interactivity

The mouse pointer allows a variety of visual interac-
tions and animations, depending over which part of the
visualization it is placed. Moving the mouse pointer
over a symmetry element visualization both animates
the symmetry and displays detailed information about
this symmetry group element in the lower right corner.
Animation means dynamic color and size changes; and
the motion of general elements along a trajectory trac-
ing the symmetry operation incrementally. Placement
of the mouse pointer over a general element (locus) se-
lector activates it (blinking). The mouse pointer over
the rotation center selector allows to change the rota-
tion center of the mouse activated view rotation (de-
scribed below).

The mouse pointer can be placed anywhere in-
side the visualization window. Holding down the left
(right) mouse button and moving the mouse will ro-
tate (translate) the visualization. Alternative rota-
tion axes (translation directions) are activated by ad-
ditionally holding the SHIFT key. With a 3D-mouse
(3dconnexion) one can rotate and translate the view
along all axes simultaneously. First placing the mouse
pointer over a general element (locus) selector permits
to translate and rotate it (together with all its sym-
metric partners). This provides an excellent way to
grasp how one general element and the 3D symmetry
represented in the space group determine the whole
crystal structure.

A special feature of the SGV is the direct 3D graph-
ics interaction. Simply placing the mouse pointer over
a symmetry activates it and allows to:

• Select only the activated symmetry (left mouse
button). All other symmetries disappear from the
view.

• Holding the CTRL key at the same time (while

pressing the left mouse button) shows all symme-
tries (and only these) of the same type.

• Clicking the right mouse button removes an acti-
vated symmetry from the view.

• Holding the CTRL key at the same time (while
pressing the right mouse button) removes all sym-
metries of the same type.

4.4 Visualization options in detail

The visualization drop down menu allows to toggle
(activate and deactivate) the following visual functions

• Full screen mode.

• Orthographic view. The orthographic view al-
lows the most direct comparison with ITA ortho-
graphic projections [11].

• Animation of the origin locus when a symmetry
is activated (animated).

• Rotation animation of the whole view when it is
pushed with the (left) mouse button.

• Reset the crystal view to visualizer default values.

• Reset general element (loci) positions.

The special visualization lighting menu provides a
relative position light source. It is positioned rela-
tive to the visualization coordinate frame and moves
with the visualization. Deselecting this option fixes
the light source relative to the observer. The light
source can optionally be positioned at the center of
the coordinate frame, which is relative (or absolute)
depending on the (de)selection of the relative position
option. The ambient light submenu allows to adjust
the brightness of the ambient light, leading to more
dramatic effects for darker settings.

The color scheme menu item allows to select the cur-
rent color scheme. For example a scheme with black
background is more suitable for use in presentations,
while a white background is better for publications,
etc. It is possible via an XML file to individually de-
fine further color schemes. A color stereo option allows
to specify cinema type stereo colors, which are best
viewed with corresponding cinema color glasses in or-
der to obtain the full spatial 3D effect akin to virtual
reality.

The cell type menu allows to select between different
cell choices in the IT, Volume A [11], and (if different)
a special geometric algebra type cell, which has the
generating vectors ~a,~b,~c as cell axis attached to the
cell origin.

4.5 Integration with the online Inter-
national Tables of Crystallography

Through the window menu an additional window can
be opened for displaying the pages of a space group
from the online version of the International Tables of
Crystallography, Volume A (ITA) [11]. For this the



Figure 7: Parallel space group selection in the SGV
window and the online ITA [11] space group window.

user must hold a valid user ID and password. When
the online ITA can be accessed, the SGV and the on-
line ITA window will always show the same space
group. The user can synchronously navigate from
space group to space group either in the SGV or in
the online ITA window (cf. Fig. 7).

4.6 Saving results

It often takes some time to interactively bring the visu-
alization into a desired state, which includes selection
of a space group, selection and deselection of symme-
try elements, 3D translations and rotations, adjust-
ments of size, color and lighting, etc. If the user wants
to save his work in order to show it to others, use it
for teaching and presentations, produce publications,
images for the internet, etc. the File menu offers the
options to do a one step Quick Save View or a more de-
tailed Save View. The latter will open a popup menu
in order to choose the destination folder and the de-
sired file name and file format. File formats available
are: PNG (default), JPEG, Bitmap, Postscript, JPEG
+ EPS (get the same picture at once in two formats),
and PNG with Bounding Box. The EPS option is par-
ticularly useful for use with Latex. In this way most
of the figures were produced in this paper.

5 Conclusion
We have briefly reviewed the geometric algebra repre-
sentation of R3 in the socalled conformal model and its
use for the representation of 2D and 3D point groups
and space groups. The key point is to only use physical
crystal lattice vectors for the group generation. The
second part introduced the interactive software visu-
alization of 3D space group symmetries based on the
established geometric algebra representation. This im-
plementation uses the conformal model both for gener-
ating the graphics itself and for internally computing
with space group transformations.

Future options are the visualization of extraordi-
nary space group orbits, subperiodic space groups,
and magnetic space groups. The latter seems particu-
larly attractive as it may nicely integrate the bivector
representation of spin [12] in the real Dirac-Hestenes
equation of relativistic quantum physics. Based

on CLUCalc a first rudimentary geometric algebra
protein visualizer has been programmed recently for
proteins of several thousand (up to 10 000) atoms.
A possible future molecule (or ion group) toolbox
may therefore be able to display complex biomolecule
crystals as well.

Acknowledgments. E. Hitzer wishes to thank
God: It (Jerusalem) shone with the glory of God, and
its brilliance was like that of a very precious jewel, like
a jasper, clear as crystal [26]. He thanks his family,
his students D. Ichikawa, M. Sakai, K. Yamamoto,
T. Ishii, his colleagues G. Sommer, D. Hestenes, J.
Holt, T. Matsumoto, H. Wondratschek, M. Aroyo, H.
Fuess, K. Tachibana, and the organizers of FSS 2009.

References
[1] C. Perwass, CLUCalc - a visual calculator,

www.clucalc.info
[2] C. Perwass, Geometric Algebra with Applications

in Engineering, Springer, NY, 2009.
[3] L. Dorst, D. Fontijne, and S. Mann, Geomet-

ric Algebra for Computer Science: An Object-
oriented Approach to Geometry, (Morgan Kauf-
mann Series in Computer Graphics), 2007.

[4] H. Li, Invariant algebras and geometric reasoning,
World Scientific, Singapore, 2008.

[5] P. Angles, Construction de revetements du
groupe conforme d’un espace vectoriel muni d’une
metrique de type (p,q), Ann. de l’I.H.P., Sect. A,
Vol. 33, No. 1, 33–51 (1980).

[6] H.S.M. Coxeter, Discrete groups generated by re-
flections, Ann. of Math. 35, 588–621 (1934).

[7] H.S.M. Coxeter, W.O.J. Moser, Generators and
Relations for Discrete Groups, Springer, 4th ed.,
1980.

[8] C. Doran, A. Lasenby, Geometric Algebra for
Physicists, CUP, Cambridge UK, 2003.

[9] A.W.M. Dress, T.F. Havel, Distance geometry
and Geometric Algebra, Found. Phys., Vol. 23,
No. 10, 1357–1374 (1993).

[10] J.D.M. Gutierrez Operaciones de simitria medi-
ante algebra geometrica aplicadas a grupos crista-
lograficos, Thesis, UNAM, Mexico, 1996.

[11] T. Hahn, Int. Tables of Crystallography A,
Springer, Dordrecht, 2005; Online: it.iucr.org

[12] D. Hestenes, Spacetime Physics with Geometric
Algebra, Am. J. Phys. Vol. 71, No. 7, 691–714
(2003).

[13] D. Hestenes, Point groups and space groups in ge-
ometric algebra, in L. Dorst et al (eds.), Applica-
tions of Geometric Algebra in Computer Science
and Engineering, Birkhauser, Basel, 3–34 (2002);

[14] D. Hestenes, J. Holt, The crystallographic space
groups in geometric algebra, J.M.P. Vol. 48,
023514 (2007).

[15] D. Hestenes, H. Li, A. Rockwood, New Alge-
braic Tools for Classical Geometry, in G. Sommer
(ed.), Geometric Computing with Clifford Alge-
bras, Springer, Berlin, pp. 4–26 (2001).



[16] E. Hitzer, Euclidean Geometric Objects in the
Clifford Geometric Algebra of Origin, 3-Space, In-
finity, Bulletin of the Belgian Mathematical So-
ciety – Simon Stevin, Vol. 11, No. 5, 653–662
(2004);

[17] E. Hitzer, Conic Sections and Meet Intersections
in Geometric Algebra, Computer Algebra and Ge-
ometric Algebra with Applications, GIAE 2004,
Revised Selected Papers, Springer, Lecture Notes
in Computer Science, No. 3519, 350–362 (2005).

[18] E. Hitzer, C. Perwass, Crystal cells in geometric
algebra Proc. of Int. Symp. on Adv. Mech. Engrng
(ISAME), Fukui, 290–295 (2004);

[19] E. Hitzer, C. Perwass, Full Geometric Descrip-
tion of All Symmetry Elements of Crystal Space
Groups by the Suitable Choice of Only Three Vec-
tors for Each Bravais Cell or Crystal Family,
ISAME, Busan, 19–25 (2005);

[20] E. Hitzer, C. Perwass, Interactive Visualization
of Full Geometric Description of Crystal Space
Groups, ISAME, Busan, 276–282 (2005);

[21] E. Hitzer, C. Perwass, Crystal Cell and Space
Lattice Symmetries in Clifford Geometric Alge-
bra, Int. Conf. on Numerical Analysis and Applied
Mathematics, Rhodes, in T.E. Simos et al (eds.),
Wiley-VCH, Weinheim, 937–941 (2005);

[22] E. Hitzer, C. Perwass, Three Vector Generation of
Crystal Space Groups in Geometric Algebra Bull.
of the Soc. for Science on Form, 21, 55–6, 2006.

[23] E. Hitzer, C. Perwass, Space Group Visualizer for
Monoclinic Space Groups, 21, 38–9; 2006.

[24] C. Perwass, E. Hitzer, Space Group Visualizer
Project Homepage, www.spacegroup.info (2005).

[25] P. Lounesto, E. Latvamaa, Conformal Transfor-
mations and Clifford Algebras, Proc. of The AMS,
Vol. 79, No. 4, 533–538 (1980).

[26] The Holy Bible, New International Version Inter-
national Bible Society, Colorado Springs, 1984.

Contact address

E. Hitzer, Univ. of Fukui, 910-8507 Fukui
E-mail: hitzer@mech.fukui-u.ac.jp

Hitzer
E. Hitzer, C. Perwass, Visualization of fundamental symmetries in nature, Proceedings of Fuzzy System Symposium (FSS 2009), Tsukuba, Japan, 14-16 Jul. 2009. 




