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Abstract. We treat the symmetries of crystal space lattices in geometric al-
gebra (GA) [1]. All crystal cell point groups are generated by geometric
multiplication of two or three physical cell vectors. Only one or two relative
angles subtended by these vectors need to be known. This treatment extends
to space groups by including translations. GA helps to identify optimal mul-
tivector generators. As example we take the monoclinic case. New free
interactive OpenGL and GA based software visualizes these symmetries.

1 Introduction

Crystals are fundamentally periodic geometric arrangements of molecules.
The directed distance between two such elements is a Euclidean vector in
R3. Intuitively all symmetry properties of crystals depend on these vectors.
Indeed, the geometric product of vectors [2] combined with the conformal
model of 3D Euclidean space yield an algebra fully expressing crystal point
and space groups [3, 1, 4]. Two successive reflections at (non-) parallel
planes express (rotations) translations, etc. This leads to a 1:1 correspon-
dence of geometric objects and symmetry operators with vectors and their
products (versors), ideal for creating a suit of interactive visualizations using
CLUCalc and OpenGL (free download from: [4]).

2 Cartan and geometric algebra

Clifford’s associative geometric product [2] of two vectors simply adds the
inner product to the outer product of Grassmann

—

ib=a-b+anhb. (1
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Under this product parallel vectors commute and perpendicular vectors anti-
commute

ﬁf|| :f||ﬁ, ax, =—X,d. 2
This allows to write the reflection of a vector X at a hyperplane through the
origin with normal d as

I L1 d
=—a~'xa, a ':_,—2. 3)
a

The composition of two reflections at hyperplanes whose normal vectors
d,b subtend the angle ¢ yields a rotation around the intersection of the two
hyperplanes by 2¢

-1

Sl

X' =(ab)"'zab, (ab)"'=b"'a"'. 4)

Continuing with a third reflection at a hyperplane with normal ¢ according
to Cartan yields rotary reflections and inversions

X' =—(abe) '®abe, " =—i"'%, i=adrbAZ (5)

where = means equality up to scalar factors (which cancel out). In general
the geometric product of k normal vectors (the versor S) corresponds to the
composition of reflections to all symmetry transformations [1] of 2D and 3D
crystal cell point groups

X' =(—1)ks71xs. (6)

3 Two dimensional point groups

2D point groups [1] are generated by multiplying vectors selected [4] as in
fig. 1. The index p can be used to denote these groups as in table 1. For
example the hexagonal point group is given by multiplying its two generating
vectors d ,E

6 = {a@,b,R =ab,R*,R*,R*,R> R® = —1,aR* bR*,aR*,bR*}.  (7)

The rotation subgroups are denoted with bars, e.g. 6.



Figure 1. Regular polygons (p = 1,2,3,4,6) and point group generating vectors
subtending angles 7/ p shifted to center.

Table 1. Geometric and international notation for 2D point groups.

Crystal Oblique Rectangular Trigonal Square Hexagonal
geometric 1 2 1 2 3 3 4 4 6 6
international 1 2 m mm 3m 3 4m 4 6m 6

4 Three dimensional point groups

The selection of three vectors @, b, ¢ from each crystal cell [1, 4] for gener-
ating all 3D pointgroups is indicated in fig. 2. Using Z(@,b) and Z(b,c) we
can denote all 32 3D point groups as in table 2. For example the monoclinic
point groups are then (int. symbols: 2/m, m and 2, respectively)

W={¢,R=aNb=iti=cR,1}, 1={¢1}, 2={ic,1}. (8)

Figure 2. 7 crystal cells with vector generators ﬁ,Z,E: triclinic, monoclinic, or-
thorhombic, tetragonal, trigonal (side & top), hexagonal, cubic.



Table 2. Geometric 3D point group symbols [1] and generators with 6, ; =7 /D,
6;:=7/q. 6ic =7/2. p,q €{1,2,3,4,6}.

Symbol p P g pqa  pq Pqg  Pq

-

Generators d,b db d,b,¢ db,¢ d,b¢ ab,bé¢ abc

5 Spacegroups

The smooth composition with translations is best done in the conformal
model [5] of Euclidean space (in the GA of R*"), which adds two null-vector
dimensions for the origin 7y and infinity 7.

1
X:)?+§5c‘2ﬁm+ﬁo, R=i=X>=0, X -few=—l. )

The inner product of two conformal points gives their Euclidean distance and
therefore a plane equidistant from two points A, B as

1
X-A:—§(£—5)2:>X-(A—B):O, m=A—Bo p—dii, (10)

where p is a unit normal to the plane and d its signed scalar distance from
the origin. Reflecting at two parallel planes m,m’ with distance 7/2 we get
the translation operator (by 7)

1.,
X' =m'mXmm' =T 'XT;, Ty =1+ 3. (an

Reflection at two non-parallel planes m,m’ yields the rotation around the
m,m’-intersection by twice the angle subtended by m,m’.

Group theoretically the conformal group C(3) is isomorphic to O(4, 1)
and the Euclidean group E(3) is the subgroup of O(4,1) leaving infinity
M. invariant [1]. Now general translations and rotations are represented by
geometric products of vectors (versors). To study combinations of versors it
is usefull to know that

Li=aT 7 =-a '7a. 12
t t'

Applying these techniques we get table 3 listing monoclinic space groups
and their versor generators. All this is interactively visualized in [4].



Table 3. Monoclinic space group versor generators (gen.), T4 =

1/2

TB+E’ geo. = geo-

metric, n. = name, alt. = alternative, cols. 3&4: [1]. T3, T;;, T suppressed.

#[6] Int.n.[6] Geo.n. Geo. gen. Gen. [6] Alt. gen.
3 P2 P2 ic=aAb
4 P2 P2, ier)?
5 C2 A2 ic, TA
6 Pm Pl ¢
-
7 Pc P,1 Ty
8 Cm Al ¢ T
9 Ce Al er)? T
10 P2/m P22 ¢, ic i, i@ i ¢
11 P2q/m P23, G icT!? i, icT}? i, o1}/
12 C2/m A22 ¢, i¢, TA iTA, ieTA, T i, ¢, TA
5 o 1/2 . C /2 .l )2
13 P2/c P22 cT,'", ic i, icT, i, T
14 P2jc  R23, erier!” i ier)! i, &1,
15  C2/c A22  er)Pie T iier]P A i er)? T
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